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Summary. All agents have the same ordinal ranking over all objects, receiv-
ing no object (opting out) may be preferable to some objects, agents differ on
which objects are worse than opting out, and the latter information is private.
The Probabilistic Serial assignment, improves upon (in the Pareto sense) the
Random Priority assignment, that randomly orders the agents and offers them
successively the most valuable remaining object. We characterize Probabilistic
Serial by efficiency in an ordinal sense, and envy-freeness. We characterize it
also by ordinal efficiency, strategyproofness and equal treatment of equals.

Keywords and Phrases:Random assignment, No Envy, Strategyproofness, Pri-
ority.
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1 Introduction

An assignment problem consists of a finite set of indivisible objects, and a finite
set of agents that can each consume at most one object. Randomization is the
simplest and most common device to restore (ex ante) fairness in spite of the
indivisibility of the objects ([7], [12], [1]).
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We consider the special case of random assignment where the objects are
ranked in the same way (from best object to worst) by all agents, where opting
out (receiving no object) is feasible and where the agents differ about which
objects are desirable (i.e., preferred to opting out).

The main example is a scheduling problem where the server processes one
agent per unit of time and each agent has a deadline, beyond which the service
is worthless ([11], [5]). In another example, agents timeshare a set of machines
of decreasing quality (with one machine usable by no more than one agent at a
time) and each agent can only use machines with a certain minimal quality (think
of PCs with decreasing memory size). In this second example, randomization is
replaced by timesharing, and expected utility over lotteries by utility additive
with respect to the time spent with a given machine.

Fix an arbitrary ordering of the agents and, following this ordering, let the
agents successively either choose their preferred unassigned good or opt out.
This Priority mechanism ([1] and [9] speak of “serial dictatorship”) is efficient
and incentive compatible, namely strategyproof. TheRandom Priority mechanism
first selects at random and without bias an ordering of the agents, then implements
the corresponding Priority mechanism. This mechanism is equitable (in the strong
sense of No Envy, Lemma 4.3) and strategyproof. Yet it is Pareto inferior to
another equitable and incentive compatible mechanism, theProbabilistic Serial
one, introduced in [4]. The idea behind PS is that all agents for whom a certain
object is desirable can claim a fair “share” of this object: if the object is valuable
for m agents, each can claim the probability up to1/m of receiving this object.
Thus an agent gets a fair share of the best object, a fair share of the next best
object, and so on until either she has accumulated a probability of one or no
more object is desirable to her. This defines a random assignment, that differs in
an interesting way from the RP assignment.

We compare PS and RP in an example. Assume four objects and four agents,
and that agenti ’s deadline isi , for i = 1, 2, 3, 4: agent 1 finds the best object
more desirable than opting out, but prefers the latter to the second best object
(or any lower object); agent 2 finds only the first two objects desirable, and so
on. One computes easily the RP assignment:

agents\objects
a b c d

1 1/4 0 0 0 RP assignment

2 1/4 1/3 0 0

3 1/4 1/3 3/8 0

4 1/4 1/3 3/8 1/24

(1)

For instance, agent 4 gets the worst object if and only if the priority ordering is
{1, 2, 3, 4}, an event with probability1/24. And so on.

The PS allocation is computed from left to right by splitting equally the
successive goods (starting from the best good) among all agents who desire it,
until either there are no goods left or the agents still interested have already
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received a total probability of one. See Definition 4.1. In the example, the latter
happens with the third good:

a b c d

1 1/4 0 0 0 PS assignement

2 1/4 1/3 0 0

3 1/4 1/3 5/12 0

4 1/4 1/3 5/12 0

(2)

It is easy to see that the PS allocation isPareto superior to the RP one in the
stochastic dominance sense. Agents 1 and 2 are obviously indifferent to the switch
but agent 3 receives the desirable goodc with strictly higher probability; similarly
agent 4’s probability of receiving goodd is transferred to that of receiving good
c.

Crès and Moulin [4] show that the situation of this example is fully general:
for any profile of ordinal deadlines, the PS assignment is guaranteed to be either
identical or Pareto superior to the RP assignment, no matter what the cardinal
preference profile is.

Note that, in order to compute the PS or the RP random assignments, we
only need to know the profile ofdeadlines, i.e., for each agent her ordinal rank-
ing of “opting out” (receiving the null object) among “real” objects; no further
information about the cardinal intensity of VNM utilities over objects and opting
out is needed.

We introduce the new concept ofordinal efficiency which relies only on the
profile of (ordinal) deadlines. It views an assignment as inefficient if there is
another feasible assignment that is Pareto superior forall cardinal utility profiles
compatible with the given profile of (ordinal) deadlines (see Definition 3.2).

In our axiomatic analysis, we restrict attention to those mechanisms that only
elicit the ordinal component of the agents’ preferences, namely the deadline.
On the other hand we assume that agents compare random allocations by their
expected utility (they have standard Von Neumann-Morgenstern utilities over
lotteries). These two assumptions are commonplace in the literature on proba-
bilistic voting (e.g., [6], [2]). They mean that the mechanism is informationally
less sophisticated than the agents themselves.

In particular, the mechanism cannot achieve full ex ante efficiency (i.e., effi-
ciency with respect to the VNM utility functions): ordinal efficiency is the most
demanding efficiency test relying only on the profile of deadlines. On the other
hand, the properties No Envy and strategyproofness rely on individual compar-
isons between lotteries (e.g., an agent compares her own allocation to that of
another agent), performed with (VNM) expected cardinal utilities.

The paper is organized as follows. Section 2 defines the model and Section
3 discusses the central concept of ordinal efficiency. The Probabilistic Serialas-
signment is introduced in Section 4 and characterized by No Envy and ordinal
efficiency (Theorem 4.1). The Probabilistic Serialmechanism is then character-
ized in Section 5 by the combination of Ordinal Efficiency, Equal Treatment of
Equals and strategyproofness (Theorem 5.1).
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A few comments about related literature. In the short literature on random
assignment, Zhou [12] offers an impossibility result that can be applied to our
model: the three requirements of equal treatment of equals, strategyproofness
and the usual ex ante efficiency w.r.t. VNM cardinal utilities are incompatible.
We go around this impossibility by restricting the information elicited by the
mechanisms, and weakening accordingly the efficiency requirement.

Abdulkadiroglu and S̈onmez [1] offer an alternative definition of the RP
assignment based on the top-trading cycles of Shapley and Scarf [10].

In the companion paper [3], we apply the concept of ordinal efficiency to
random assignment with arbitrary preferences and define the Probabilistic Serial
assignment, a central point within the set of ordinally efficient assignments: this
definition generalizes that of the current paper. The No Envy property of the PS
assignment is maintained, however the PSmechanism is no longer strategyproof.

2 The model

Given are the setN = {1, 2, . . . , n} of agents, the setA = {1, 2, . . . , m} of objects
and a null object denoted∅.

A deterministic assignment is a mappingΠ from N into A ∪ {∅} that is
one-to-one onA (no two agents can have the same “real” object; each agent
gets either a real object or the null object). In matrix representation,Π is a
(n × m)-matrix filled with 0 and 1, and with at most one 1 per column and per
row.

A random assignment is a mapping from N into

∆(A) =

{
P ∈ R

m

∣∣∣∣∣
m∑

a=1

pa ≤ 1, pa ≥ 0 for all a ∈ A

}

associating to each agenti ∈ N an allocationPi = (pia )a∈A in ∆(A). Of course,
pia represents the probability that an agenti receives objecta, and 1−∑

A pia the
probability that she receives the null object. In matrix notation,P is a (n × m)-
matrix P = [pia ]i∈N ,a∈A. Throughout the paper, we identify a random assignment
P with its matrix representation and the allocationPi with the i -th row of P .

A random assignment is feasible if and only if it is generated by a probability
distribution over deterministic assignments. Thus a random assignment matrixP
is feasible if and only if it is a convex combination of deterministic assignment
matricesΠ.

Lemma 2.1. A random assignment matrix P = [pia ] is feasible if and only if it is
substochastic, namely if we have

pia ≥ 0 for all i , a;
∑
a∈A

pia ≤ 1 for all i ;
∑
i∈N

pia ≤ 1 for all a. (3)

We denote by P the set of substochastic matrices.
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The lemma is an easy variant of the Birkhoff-Von Neumann theorem [8].
Every individual preference agrees with the given ordering ofA: for all k , k =
1, 2, . . . , (m − 1), every agent strictly prefers objectk to object (k + 1). We
assume that agenti ’s preferences over∆(A) are represented by a Von Neumann
Morgenstern utility functionui defined on A. Her utility for an allocationPi ∈
∆(A) is:

ui · Pi =
m∑

k=1

ui (k ) · pik .

Note that we have normalizedui so thatui (∅) = 0.
Finally we assume that no agent is indifferent between the null house∅ and

a real house. Thus our domainU of utility functions is

U = {ui ∈ R
m |ui (k ) > ui (k +1) for 1≤ k ≤ m −1 and ui (k ) /= 0 for all k} .

We say that a utility functionui in U is of type k if k is the worst real object
preferred to the null object; we say thatui is of type 0 if ui (1) < 0. We denote
by Uk the subset of utility functions of typek .

A profile of utility functions is an elementu of U N . However, for the def-
inition of ordinal efficiency as well as of the PS and RP assignments, we only
use the profile of typest , t ∈ {0, 1, . . . , m}N , whereti = k ⇔ ui ∈ Uk .

Remark 2.1. The assumption ruling out indifference between two objects is cru-
cial. If indifferences between objects are permitted, the PS assignment is no
longer ordinally efficient and none of our results survive. On the other hand, it
is easy to adapt our results to allow for indifferences between the null house and
a real object.

3 Ordinal efficiency

Given a profile of utility functionsu, u ∈ U N , a substochastic matrixP in P

is efficient (Pareto optimal)at u if there is no matrixQ in P , such that

ui · Qi ≥ ui · Pi for all i , with at least one strict inequality. (4)

Ordinal efficiency relies on the notion of stochastic dominance.

Definition 3.1. Fix an agent i of type t , and two allocations Pi , Qi in ∆(A). We
say that Pi i -stochastically dominates Qi , and we write Pi �i Qi , if the two
following equivalent conditions are satisfied:

i) the following system of inequalities holds, with at least one strict inequality

k∑
a=1

pia ≥
k∑

a=1

qia for all k = 1, . . . , t ,

k∑
a=t+1

pia ≤
k∑

a=t+1

qia for all k = t + 1, . . . , m, (5)



628 A. Bogomolnaia and H. Moulin

ii)
for all ui ∈ Ut : ui · Pi > ui · Qi . (6)

The equivalence of propertiesi) and ii) is straightforward. We writePi �i Qi if
Pi � Qi or Pi = Qi ; this property is equivalent to{ui .Pi ≥ ui .Qi for all ui in
Ut}.

Definition 3.2. Given a profile of typest , t ∈ {0, 1, . . . , m}N , and a substochas-
tic matrix P in P , we say thatP is ordinally efficient at t if there is no other
substochastic matrixQ in P such that

for all i ∈ N : Qi �i Pi and Q /= P .

Given a utility profile u, u ∈ U N , with associated profile of typest , if P in
P is efficient atu then it is ordinally efficient att . In the next two Lemmas,
we characterize the ordinally efficient feasible assignments first in the case of
deterministic, then of random assignments.

Fix a profile of typest , and an orderingσ of N , namely a one to one mapping
from {1, 2, . . . , n} into N : σ(1) is the agent with the highest priority,σ(2) is
the agent with the second highest priority and so on. Construct a deterministic
assignmentΠ(t ; σ) as follows: according to the priority orderingσ, the agents
are successively “offered” the best unassigned object; an agent receives the object
offered to her if it is a desirable one, otherwise she gets the null object (and the
best current object is offered to the next agent in the priority order).

Lemma 3.1. Given a profile of types t , the deterministic assignment Π is efficient
if and only if it is the priority assignment Π(t ; σ) for some ordering σ of N .

We omit the straightforward proof.
We turn to random assignments. Recall that a feasible assignment matrixP

is a convex combination of deterministic assignment matricesΠ:

P =
∑
α

λα · Πα λα ≥ 0,
∑
α

λα = 1 ,

where the sum runs over all deterministic assignments. Anecessary condition
for ordinal efficiency ofP at a given profile of typest , is that each matrixΠα

receiving a positive weight in the above sum is ordinally efficient att : for if it
is not, we simply replace in the above sumΠα by a t-stochastically superior
matrix Q and the resulting convex combinationt-stochastically dominatesP . In
view of Lemma 3.1, this means that a matrixP ordinally efficient att must take
the form

P =
∑

σ

λσΠ(t ; σ) . (7)

That the above condition is, however, not sufficient for ordinal efficiency is
established by the numerical example with 4 agents andt = (1, 2, 3, 4) discussed
in the introduction (see (1), (2)). Indeed theRandom Priority assignment isde-
fined, at any profile of types, as the uniform average of all priority allocations.
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RP (t) =
1
n!

∑
σ

Π(t ; σ) where the sum runs over all orderings ofN . (8)

Lemma 3.2. Given a profile of types t , t ∈ {0, 1, . . . , m}N , and a substochastic
matrix P in P , the matrix P is ordinally efficient at t if and only if it satisfies
the four following properties:

a) for all k , all i : ti < k ⇒ pik = 0
Let k∗ = max{k |∑i∈N pik > 0} be the worst object assigned with some posi-
tive probability;

b) for all k < k∗ :
∑

i∈N pik = 1

c) for all i : {ti > k∗} ⇒ ∑k∗

k=1 pik = 1

d) if
∑

i∈N pik∗ < 1 then for all i : {ti ≥ k∗} ⇒ {∑k∗

k=1 pik = 1}.

Proof. Only if : if any one of propertiesa, b, c or d is violated, it is easy to
construct a matrixQ stochastically dominatingP . For instance ifP fails b, i.e.,
there are two columnsk , k ′ such that

k < k ′,
∑

j
pik < 1,

∑
j

pik ′ > 0 ,

then choose an agenti such thatpik < 1, pik ′ > 0. A matrix Q which differs
from P only by qik = pik + ε, qik ′ = pik ′ − ε is feasible forε small enough
(Lemma 2.1) and stochastically dominatesP .

If: Fix a matrixP in P meetinga, b, c, d , and assume there is another matrix
Q in P such thatQi �i Pi for all i . From propertya for P and the definition
of stochastic dominance it follows that:

for all i , k : {ti < k} ⇒ pik = qik = 0 . (9)

Let k∗ be the last nonzero column ofP . Stochastic dominance impliesqi1 ≥ pi1

if ti ≥ 1, thus by (9) we haveQ1 ≥ P1. As
∑

i pi1 = 1 (propertyb for P ), we
get Q1 = P1. Next, stochastic dominance yieldsqi1 + qi2 ≥ pi1 + pi2 if ti ≥ 2,
and so (9) impliesqi2 = pi2 = 0 if ti < 2. ThereforeQ1 + Q2 = P1 + P2. The
obvious induction argument givesQk = Pk for k = 1, . . . , k∗ − 1.

Next consider columnsk∗, k∗ +1, . . . , m. Assume first
∑

i pik∗ < 1. By prop-

erty d we have
∑k∗

1 pik = 1 for all i such thatti ≥ k∗. In view of pik = qik for
k = 1, . . . , k∗ − 1, and ofQi �i Pi this impliesQi = Pi . Turning to an agenti
such thatti < k∗, we havepik = qik = 0 (by (9)) for all k ≥ k∗ and the equality
Qi = Pi holds as well.

We are left with the case
∑

i pik∗ = 1. If i is such thatti < k∗, then as above
pik = qik = 0 for all k ≥ k∗. If i is such thatti = k∗ then qik = pik = 0 for k ≥
k∗ + 1 andQi �i Pi implies qik∗ ≥ pik∗ (recall qik = pik for k = 1, . . . , k∗ − 1).
If i is such thatti > k∗, then qik = pik = 0 for k ≥ k∗ + 1, and propertyc
gives

∑k∗

1 pik = 1 so thatQi �i Pi implies qik∗ = pik∗ . Finally, all inequalities
qik∗ ≥ pik∗ must be equalities, because

∑
i qik∗ ≤ 1, and we have shownQ = P

as desired. ��
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4 The Probabilistic Serial assignment: first characterization result

We use the following notation: given a profile of typest and an objectk , 1 ≤ k ≤
m, the setNk is made of all the agents of type at leastk , Nk = {i ∈ N |ti ≥ k}
and its cardinality isnk , 0 ≤ nk ≤ n.

Definition 4.1. Given a profile of typest , t ∈ {0, 1, . . . , m}N , the Probabilistic
Serial assignment is the random assignment denotedPS (t) = [pik ] and defined
recursively by system (10) or explicitly by the equivalent system (11):

pik = 0 if ti < k ; pik = min

{
1
nk

, 1 −
k−1∑
k ′=1

pik ′

}
if k ≤ ti (10)

set

k∗ = 1 + max

{
k |1 ≤ k ≤ m and

k∑
k ′=1

1
nk ′

< 1

}

pik = 0 if ti < k

pik =
1
nk

if k ≤ k∗ − 1 and ti ≥ k

(11)
pik∗ = 1−

k∗−1∑
k ′=1

1
nk ′

if ti ≥ k∗

pik = 0 if k ≥ k∗ + 1 and ti ≥ k

(note that in (11) we setk∗ = 1 if n1 = 1 or n1 = 0. In the latter case,PS (t) is the
null matrix; in the former case, it gives the best object to the single interested
agent).

For instance, ifN = {1, 2, 3, 4} and t = (1, 2, 3, 4), the matrixPS (t) is given
by (2) and differs fromRP (t) given by (1). On the other hand, ift ′ = (1, 1, 3, 3),
the two matrices coincide:

PS (t ′) = RP (t ′) =




1/4 0 0 0
1/4 0 0 0
1/4 1/2 1/4 0
1/4 1/2 1/4 0


 (12)

Lemma 4.1. For all t ∈ {0, 1, . . . , m}N , the Probabilistic Serial assignment is
ordinally efficient.

Proof. System (11) implies easily that the matrixPS (t) is substochastic.
To prove ordinal efficiency, we check thatPS (t) meets the propertiesa, b, c, d

in Lemma 3.2. This is straightforward, in view of the fact thatk∗ defined in (11)
is precisely the last column ofPS (t) with positive weight as in Lemma 3.2. In
particular, note that

∑k∗

1 pik = 1 holds for any agenti such thatti ≥ k∗, implying
c andd . ��
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Definition 4.2. Given a profileu in U N , and a feasible random assignment ma-
trix P in P we say thatP meetsNo Envy (or is nonenvious) if we have

for all i , j in N : ui · Pi ≥ ui · Pj .

Given a profile of typest in {0, 1, . . . , m}N , we say thatP meets No Envy att
if we have

for all i , j in N : Pi � Pj ,

or equivalently,P meets No Envy at all profilesu compatible witht .

Lemma 4.3. Given a profile of types t , the matrices PS (t) and RP (t) are nonen-
vious at t .

Proof. Compare the two allocationsPi andPj in PS (t), when ti ≤ tj . We have
pik = pjk for k = 1, . . . , ti andpik = 0, ui (k ) ≤ 0 for k ≥ ti + 1; therefore agent
i does not envyj . As uj (k ) > 0 for k = ti + 1, . . . , tj , agentj does not envyi
either.

To prove thatRP (t) is nonenvious, fix two agentsi , j and an arbitrary ordering
σ where i precedesj ; let σ̃ be obtained fromσ by exchangingi and j . The
following is easy to check

ui · (Πi (t ; σ) + Πi (t ; σ̃))
2

≥ uj · (Πj (t , σ) + Πj (t , σ̃))
2

.

The conclusion follows by summing up over all orderings wherei
precedesj . ��
Theorem 4.1. Given a profile of types t , the random assignment PS (t) is the only
feasible assignment satisfying Ordinal Efficiency and No Envy at t .

Proof. We fix the profilet and a substochastic matrixP = [pik ], ordinally efficient
and nonenvious att . No Envy implies the following facts:

for all i , j , all k : ti , tj ≥ k ⇒ pik = pjk (13)

for all i , j , ti = tj ⇒ Pi = Pj (14)

Indeed letk̄ be the first column where (13) fails, saypi k̄ < pj k̄ . We can find
a utility vector ui in U such thatui (k ) ≈ 1 for k = 1, . . . , k̄ , ui (k ) is a small
positive number fork = k̄ + 1, . . . , ti , and ui (k ) < 0 for k > ti , and such that
ui · Pj ≥ ui · Pi , violating No Envy. Property (14) follows from (13) because
ordinal efficiency impliespik = 0 for k > ti .

Denote byk∗ the last column with positive sum inP (Lemma 3.2) and recall
that Nk is the set of agents of type at leastk . By propertiesa, b in Lemma 3.2
and (13) we have

k < k∗ ⇒ pik =
1
nk

for all i ∈ Nk ; pik = 0 for i /∈ Nk ; (15)

pik∗ = pjk∗ for all i , j ∈ Nk∗ ; pik∗ = 0 for i /∈ Nk∗ . (16)
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Let k̃ be the last non zero column inQ = PS (t). Assume firstk∗ < k̃ . The
definition ofPS plus (15) implyQk = Pk for k = 1, . . . , k∗ −1 and the definition
of PS plus (16) giveQk∗ ≥ Pk∗

. Now the matrixQ has some positive weight
beyond columnk∗ but P does not, which results inQ �t P , contradiction.

Next assumẽk < k∗. As above, properties (15), (16) and the definition ofPS
give Qk = Pk for k = 1, . . . , k̃ − 1 andQk̃ ≤ Pk̃ . Because there is at least one
agenti with ti > k̃ (the k∗ column ofP is not zero), propertyc in Lemma 3.2
gives

1 = qi k̃ +
k̃−1∑
k=1

qik = qi k̃ +
k̃−1∑
k=1

pik ≤ pi k̃ +
k̃−1∑
k=1

pik , (17)

hencepi k̃ = qi k̃ and Qk̃ = Pk̃ (because both columns treat equally all agents
in Nk̃ ). So we haveP �t Q in contradiction of the ordinal efficiency ofQ .
We have showñk = k∗. ThusQ and P coincide except perhaps in columnk∗.
Moreover, by (16) and the analogous property forQ , we haveQk∗ ≥ Pk∗

and/or
Pk∗ ≥ Qk∗

. Ordinal efficiency ofP andQ implies thenP = Q . ��

5 The Probabilistic Serial mechanism: second characterization result

We discuss incentive compatibility in a special class of revelation mechanisms.
These mechanisms only elicit the type (deadline) of each agent. On the other
hand, the requirement of strategyproofness relies on the full-fledged (cardinal)
utility functions.

Definition 5.1. Given N andA, a random assignment mechanism is a mapping
P from {0, 1, . . . , m}N into P , associating to each profile of typest a feasible
random assignmentP (t). We say thatP is strategyproof if for any agenti in N ,
any two profilest , t∗ in {0, 1, . . . , m}N such thattj = t∗

j for all j different from
i , we have:

Pi (t) �i Pi (t
∗) where �i refers to type ti . (18)

We say thatP is ordinally efficient if P (t) is ordinally efficient att for all t . We
say thatP meetsEqual Treatment of Equals if for all t and alli , j , ti = tj implies
Pi (t) = Pj (t).

Equal Treatment of Equals is a minimal equity requirement implied by and
much weaker than the requirement thatP (t) is nonenvious for allt .

For any fixed orderingσ of N , the priority mechanismt → Π(t ; σ) is strate-
gyproof. Strategyproofness is preserved by fixed convex combinations (because
(19) is a system of inequalities linear inP (t)), therefore the Random Priority
mechanismt → RP (t) is strategyproof; it is also equitable (even nonenvious:
Lemma 4.3) but not ordinally efficient.

Theorem 5.1. The Probabilistic Serial mechanism t → PS (t) is characterized,
within the set of random assignment mechanisms, by the combination of Strate-
gyproofness, Ordinal Efficiency and Equal Treatment of Equals.
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Proof. The PS mechanism is ordinally efficient and nonenvious (Lemmas 4.1,
4.3). We will need the following

Lemma 5.1. An ordinally efficient mechanism P is strategyproof if and only if
for any two profiles t , t∗ as in Definition 5.1

pik (t) = pik (t∗) for all k ≤ min{ti , t∗
i }

Proof. If: easily follows, as efficiency guarantees

pik (t) = 0 ∀ k > ti

Only if: by contradiction consider the smallestk̄ such thatk̄ < min{ti , t∗
i }

and pi k̄ (t) /= pi k̄ (t∗). We can find a utility vectorui , such thatui (k ) ≈ 1 for
k = 1, . . . , k̄ , ui (k ) ≈ 0 for k > k̄ , and thatui · Pi (t) /= ui · Pi (t∗), providing for
i a possibility to manipulate. ��

Lemma 5.1 and Definition 4.1 imply that the PS mechanism is strategyproof.
Now we fix a mechanismP satisfying the three announced properties and

prove the equalityP (t) = PS (t) by induction on|t | =
∑

i ti . This equality is
obvious for |t | = 0, 1, 2. Consider an arbitrary profile of typest that remains
fixed throughout the rest of the proof; we simply writeP (t) = P = [pik ] and
PS (t) = Q = [qik ]. Without loss of generality we label the agents in such a way
that t1 ≤ t2 ≤ . . . ≤ tn and define the increasing subsequencei0, i1, . . . , ir as
follows:

t1 = . . . = ti0 = 0 < ti0+1 = ti0+2 = . . . = ti1 < ti1+1 = ti1+2 = . . .

= ti2 < . . . < tir−1+1 = tir−1+2 = . . . = tir
where ir = n and, by convention,i0 = 0 if N1 = N (i.e., if t1 > 0) .

Thus the range of types isti1, . . . , tir if i0 = 0 and 0, ti1, . . . , tir if i0 ≥ 1. In the
latter case, ordinal efficiency implies that the firsti0 rows of P andQ are null.
We now show that their nonnull rows are equal as well. By Equal Treatment of
Equals, we have

Pis−1+1 = Pis−1+2 = . . . = Pis for all s = 1, . . . , r . (19)

For anys, s = 1, . . . , r , let t s be the following profile of types:

t s
is = tis − 1 ; t s

j = tj for all j /= is .

The induction hypothesis impliesP (t s ) = PS (t s ) = [ps
ik ]. From Definition 4.1

ps
(is−1+1)k = ps

(is−1+2)k = . . . = ps
is k for all s = 1, . . . , r and all k < tis . (20)

As t and t s only differ in the is component, Lemma 5.1 gives

pis k = ps
is k for all s = 1, . . . , r and all k < tis . (21)

Gathering (19)–(21), we have shown that the following submatrices coincide:
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pik = ps
ik for all s = 1, . . . , r , all i , is−1 < i ≤ is ,

and all k , 1 ≤ k < tis . (22)

For Probabilistic Serial, when the profile changes, the allocation of the columns
k = 1, . . . , tis − 1 does not change fromt s to t (this is clear from Definition 4.1,
see also the related property stated in Remark 4.1). Hence, from (22):

qik = ps
ik = pik for all s = 1, . . . , r , all i , is−1 < i ≤ is ,

and all k , 1 ≤ k < tis . (23)

Moreover, ordinal efficiency impliesqik = pik = 0 for all s, all i , is−1 < i ≤ is
and all k , tis < k . Therefore we are left to check that for alls = 1, . . . , r the
following subcolumns ofP andQ coincide:

qik , pik for is−1 < i ≤ is , k = tis .

By Equal Treatment of Equals, each one of these 2r subcolumns is made of
identical elements. Moreover the complete columnsQtis andPtis have the same
entry in any rowi such thati ≤ is−1 (by (23)), or such thati > is (where they
are both zero). ThusQtis ≥ Ptis and/orPtis ≥ Qtis .

Let k∗ (resp.̃k ) be the last column with positive sum inP (resp. Q). By
Lemma 3.2,

∑
i pik = 1 (resp.

∑
i qik = 1) for k = 1, . . . , k∗ − 1 (resp.k̃ − 1).

Since P , Q are both ordinally efficient, neither of them can be stochastically
dominated by the other. Together with all the above, this implies thatk∗ = k̃ ,
and, given this equality, that

∑
i pik∗ =

∑
i qik∗ , which finally givesQtis = Ptis

for all s, andP = Q .

Remark 5.1. Crès and Moulin [4] show that both mechanismsPS andRP meet
the stronger incentive compatibility requirement ofgroupstrategyproofness ruling
out profitable misreports by any coalition of agents.

Remark 5.2. As mentioned in the introduction, the proof of the main result in [12]
implies the following impossibility result in our problem: among mechanisms
eliciting the full fledged cardinal utility functions, the requirements of Strate-
gyproofness, Efficiency w.r.t. cardinal utilities and Equal Treatment of Equals
are incompatible.

Remark 5.3. Theorems 4.1 and 5.1 are tight results.

Drop Equal Treatment of Equals in Theorem 5.1 or No Envy in Theorem 4.1:
then all priority mechanismsΠ(·, σ) meet the other assumptions. Drop Ordinal
Efficiency in either theorem, then any constant and egalitarian mechanism (P (t) =
P all t , Pi = Pj all i , j ) meets the other assumptions. Drop Strategyproofness in
Theorem 5.1. Then construct an equitable mechanism where priority is given to
the more impatient agents (those with a shorter deadline) as follows. Givent , let
S (t) be the set of all orderingsσ of N such thatti < tj ⇒ σ(i ) < σ(j ). Define

P (t) =
1

#{S (t)}
∑

σ∈S (t)

Π(t , σ) .



A simple random assignment problem with a unique solution 635

We let the reader check, with the help of Lemma 3.2, that this mechanism is
ordinally efficient. Equal Treatment of Equals is obvious.
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