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Summary. All agents have the same ordinal ranking over all objects, receiv-
ing no object (opting out) may be preferable to some objects, agents differ on
which objects are worse than opting out, and the latter information is private.
The Probabilistic Serial assignment, improves upon (in the Pareto sense) the
Random Priority assignment, that randomly orders the agents and offers them
successively the most valuable remaining object. We characterize Probabilistic
Serial by efficiency in an ordinal sense, and envy-freeness. We characterize it
also by ordinal efficiency, strategyproofness and equal treatment of equals.

Keywords and Phrases:Random assignment, No Envy, Strategyproofness, Pri-
ority.

JEL Classification Numbers: D61, C78, D63.

1 Introduction

An assignment problem consists of a finite set of indivisible objects, and a finite
set of agents that can each consume at most one object. Randomization is the
simplest and most common device to restore (ex ante) fairness in spite of the
indivisibility of the objects ([7], [12], [1]).
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We consider the special case of random assignment where the objects are
ranked in the same way (from best object to worst) by all agents, where opting
out (receiving no object) is feasible and where the agents differ about which
objects are desirable (i.e., preferred to opting out).

The main example is a scheduling problem where the server processes one
agent per unit of time and each agent has a deadline, beyond which the service
is worthless ([11], [5]). In another example, agents timeshare a set of machines
of decreasing quality (with one machine usable by no more than one agent at a
time) and each agent can only use machines with a certain minimal quality (think
of PCs with decreasing memory size). In this second example, randomization is
replaced by timesharing, and expected utility over lotteries by utility additive
with respect to the time spent with a given machine.

Fix an arbitrary ordering of the agents and, following this ordering, let the
agents successively either choose their preferred unassigned good or opt out.
This Priority mechanism ([1] and [9] speak of “serial dictatorship”) is efficient
and incentive compatible, namely strategyproof. Raadom Priority mechanism
first selects at random and without bias an ordering of the agents, then implements
the corresponding Priority mechanism. This mechanism is equitable (in the strong
sense of No Envy, Lemma 4.3) and strategyproof. Yet it is Pareto inferior to
another equitable and incentive compatible mechanismPtbkabilistic Serial
one, introduced in [4]. The idea behind PS is that all agents for whom a certain
object is desirable can claim a fair “share” of this object: if the object is valuable
for m agents, each can claim the probability upttg of receiving this object.

Thus an agent gets a fair share of the best object, a fair share of the next best
object, and so on until either she has accumulated a probability of one or no

more object is desirable to her. This defines a random assignment, that differs in
an interesting way from the RP assignment.

We compare PS and RP in an example. Assume four objects and four agents,
and that agent’s deadline isi, for i = 1,2,3,4: agent 1 finds the best object
more desirable than opting out, but prefers the latter to the second best object
(or any lower object); agent 2 finds only the first two objects desirable, and so
on. One computes easily the RP assignment:

agent§ObJeCtS a b c d
1% 0 0 O RP assignment Q)
2| Yy 13 0 0
3| Ys Y5 3 0
41 Yy Y5 3 1

For instance, agent 4 gets the worst object if and only if the priority ordering is
{1,2,3,4}, an event with probability/24. And so on.

The PS allocation is computed from left to right by splitting equally the
successive goods (starting from the best good) among all agents who desire it,
until either there are no goods left or the agents still interested have already
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received a total probability of one. See Definition 4.1. In the example, the latter
happens with the third good:

a b c
Yy 0 0 PS assignement (2)
Yy Yz 0

Ys Y3 S/o
Ys Y3 S5/2

o o o o|la

A WN PP

It is easy to see that the PS allocationPiareto superior to the RP one in the
stochastic dominance sense. Agents 1 and 2 are obviously indifferent to the switch
but agent 3 receives the desirable goaaith strictly higher probability; similarly
agent 4's probability of receiving goadl is transferred to that of receiving good

C.

Cres and Moulin [4] show that the situation of this example is fully general:
for any profile of ordinal deadlines, the PS assignment is guaranteed to be either
identical or Pareto superior to the RP assignment, no matter what the cardinal
preference profile is.

Note that, in order to compute the PS or the RP random assignments, we
only need to know the profile afeadlines, i.e., for each agent her ordinal rank-
ing of “opting out” (receiving the null object) among “real” objects; no further
information about the cardinal intensity of VNM utilities over objects and opting
out is needed.

We introduce the new concept ofdinal efficiency which relies only on the
profile of (ordinal) deadlines. It views an assignment as inefficient if there is
another feasible assignment that is Pareto supericalfarardinal utility profiles
compatible with the given profile of (ordinal) deadlines (see Definition 3.2).

In our axiomatic analysis, we restrict attention to those mechanisms that only
elicit the ordinal component of the agents’ preferences, namely the deadline.
On the other hand we assume that agents compare random allocations by their
expected utility (they have standard Von Neumann-Morgenstern utilities over
lotteries). These two assumptions are commonplace in the literature on proba-
bilistic voting (e.g., [6], [2]). They mean that the mechanism is informationally
less sophisticated than the agents themselves.

In particular, the mechanism cannot achieve full ex ante efficiency (i.e., effi-
ciency with respect to the VNM utility functions): ordinal efficiency is the most
demanding efficiency test relying only on the profile of deadlines. On the other
hand, the properties No Envy and strategyproofness rely on individual compar-
isons between lotteries (e.g., an agent compares her own allocation to that of
another agent), performed with (VNM) expected cardinal utilities.

The paper is organized as follows. Section 2 defines the model and Section
3 discusses the central concept of ordinal efficiency. The Probabilistic &srial
signment is introduced in Section 4 and characterized by No Envy and ordinal
efficiency (Theorem 4.1). The Probabilistic Senaéchanism is then character-
ized in Section 5 by the combination of Ordinal Efficiency, Equal Treatment of
Equals and strategyproofness (Theorem 5.1).
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A few comments about related literature. In the short literature on random
assignment, Zhou [12] offers an impossibility result that can be applied to our
model: the three requirements of equal treatment of equals, strategyproofness
and the usual ex ante efficiency w.r.t. VNM cardinal utilities are incompatible.
We go around this impossibility by restricting the information elicited by the
mechanisms, and weakening accordingly the efficiency requirement.

Abdulkadiroglu and 8nmez [1] offer an alternative definition of the RP
assignment based on the top-trading cycles of Shapley and Scarf [10].

In the companion paper [3], we apply the concept of ordinal efficiency to
random assignment with arbitrary preferences and define the Probabilistic Serial
assignment, a central point within the set of ordinally efficient assignments: this
definition generalizes that of the current paper. The No Envy property of the PS
assignment is maintained, however therR$hanismis no longer strategyproof.

2 The model

Given are the sl = {1,2,...,n} of agents, the se& = {1,2,..., m} of objects
and a null object denoted.

A deterministic assignment is a mapping/l from N into AU {&} that is
one-to-one orA (no two agents can have the same “real” object; each agent
gets either a real object or the null object). In matrix representatibris a
(n x m)-matrix filled with 0 and 1, and with at most one 1 per column and per
row.

A random assignment is a mapping from N into

AA) = {P € R"

m
ZpaSL paZO for all aeA}

a=1

associating to each ageint N an allocationP; = (pia)aca in A(A). Of course,

Pia represents the probability that an ageneceives objeca, and 1- ", pia the
probability that she receives the null object. In matrix notat®ris a ( x m)-
matrix P = [pia]ien,aca. Throughout the paper, we identify a random assignment
P with its matrix representation and the allocatiBnwith thei-th row of P.

A random assignment is feasible if and only if it is generated by a probability
distribution over deterministic assignments. Thus a random assignment fatrix
is feasible if and only if it is a convex combination of deterministic assignment
matrices/I.

Lemma 2.1. A random assignment matrix P = [pia] isfeasible if and only if it is
substochasti¢ namely if we have

Pa>0 foral i,a; » pa<iforali;> pa<1foral a. (3)

acA ieN

We denote by & the set of substochastic matrices.
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The lemma is an easy variant of the Birkhoff-Von Neumann theorem [8].
Every individual preference agrees with the given ordering\ofor all k, k =
1,2,...,(m — 1), every agent strictly prefers objektto object k + 1). We
assume that agents preferences over\(A) are represented by a Von Neumann
Morgenstern utility functiory; defined on A. Her utility for an allocatio®; €
A(A) is:

m
U - P; :ZUi(k)'pik-
k=1
Note that we have normalizad so thatu; (@) = 0.
Finally we assume that no agent is indifferent between the null heuaed
a real house. Thus our domdih of utility functions is

U={y e R"|uk) >u(k+1) for 1<k <m-1andujk)#0 forall k}.

We say that a utility functiony; in U is of typek if k is the worst real object
preferred to the null object; we say thatis of type 0 ifu; (1) < 0. We denote
by Uk the subset of utility functions of typle.

A profile of utility functions is an elemert of UN. However, for the def-
inition of ordinal efficiency as well as of the PS and RP assignments, we only
use the profile of types, t € {0,1,...,m}N, wheret; =k < u; € Uy.

Remark 2.1. The assumption ruling out indifference between two objects is cru-
cial. If indifferences between objects are permitted, the PS assignment is no
longer ordinally efficient and none of our results survive. On the other hand, it
is easy to adapt our results to allow for indifferences between the null house and
a real object.

3 Ordinal efficiency

Given a profile of utility functionsu, u € UN, a substochastic matri® in -
is efficient (Pareto optimalpgt u if there is no matrixQ in &, such that

u -Q >u - P forall i, with at least one strict inequality 4)
Ordinal efficiency relies on the notion of stochastic dominance.

Definition 3.1. Fix an agent i of typet, and two allocations P;, Q; in A(A). We
say that P; i-stochastically dominates Q;, and we write P; >; Q;, if the two
following equivalent conditions are satisfied:

i) the following system of inequalities holds, with at least one strict inequality

k k
> ba = > Gaforal k=1,....t,
a=1

k

a=1

k
Spa < D qaforal k=t+1....m, (5)

a=t+1 a=t+1
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i)

foral uycU, : u-P>u-Q. (6)
The equivalence of propertiésandii) is straightforward. We writd; —; Q; if
Pi = Q or P, = Q; this property is equivalent téu;.P; > u;.Q; for all u; in
Ui}

Definition 3.2. Given a profile of types, t € {0,1,...,m}N, and a substochas-
tic matrix P in &, we say thatP is ordinally efficient at t if there is no other
substochastic matriQ in & such that

forallieN : QZziP and Q#P.

Given a utility profileu, u € UN, with associated profile of types if P in
&’ is efficient atu then it is ordinally efficient at. In the next two Lemmas,
we characterize the ordinally efficient feasible assignments first in the case of
deterministic, then of random assignments.

Fix a profile of typeg, and an ordering of N, namely a one to one mapping
from {1,2,...,n} into N: o(1) is the agent with the highest priority,(2) is
the agent with the second highest priority and so on. Construct a deterministic
assignment/I(t; o) as follows: according to the priority ordering the agents
are successively “offered” the best unassigned object; an agent receives the object
offered to her if it is a desirable one, otherwise she gets the null object (and the
best current object is offered to the next agent in the priority order).

Lemma 3.1. Given a profile of typest, the deterministic assignment I7 is efficient
if and only if it is the priority assignment 71(t; o) for some ordering o of N.

We omit the straightforward proof.
We turn to random assignments. Recall that a feasible assignment fatrix
is a convex combination of deterministic assignment matrices

P=> Ao Mo Xa>0,> X=1,
« «@

where the sum runs over all deterministic assignmentsegessary condition
for ordinal efficiency ofP at a given profile of types, is that each matrixX7,
receiving a positive weight in the above sum is ordinally efficient: dor if it
is not, we simply replace in the above suify, by a t-stochastically superior
matrix Q and the resulting convex combinatitsstochastically dominateB. In
view of Lemma 3.1, this means that a matRxordinally efficient att must take
the form

P=Y \II(t;0). (7)

That the above condition is, however, not sufficient for ordinal efficiency is
established by the numerical example with 4 agentstandl, 2, 3,4) discussed
in the introduction (see (1), (2)). Indeed tRandom Priority assignment igle-
fined, at any profile of types, as the uniform average of all priority allocations.
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1 .
RP(t) = > II(t;0) where the sum runs over all orderings bf. ~ (8)
' o

Lemma 3.2. Given a profile of typest, t € {0,1,...,m}N, and a substochastic
matrix P in &7, the matrix P is ordinally efficient at t if and only if it satisfies
the four following properties:

a) forallk,ali : t<k=px=0
Let k* = max{K|>_; .\ Pik > O} be the worst object assigned with some posi-
tive probability;

b) forall k <k* : >, ypk=1

o foralli @ {t>k}=>K pe=1

d) if ey Pi- < Lthen forall i {t >k*} = {3, pw = 1}.

Proof. Only if: if any one of properties,b,c or d is violated, it is easy to
construct a matribX@ stochastically dominating. For instance i fails b, i.e.,
there are two columnk, k’ such that

I " "
9 .M 9 . I
k <k Elpk<1 E]p.k/>0

then choose an agentsuch thatpx < 1, piv > 0. A matrix Q which differs
from P only by gk = pik + &, Ok = pik — ¢ is feasible fore small enough
(Lemma 2.1) and stochastically dominats

If: Fix a matrixP in & meetinga, b, ¢, d, and assume there is another matrix
Q in & such thatQ; = P; for all i. From propertya for P and the definition

~

of stochastic dominance it follows that:
forall i,k : {t <k}=pk=0«k=0. 9)

Let k* be the last nonzero column Bf. Stochastic dominance impli€g; > pi1
if t > 1, thus by (9) we hav@®® > P. As 3", pi1 = 1 (propertyb for P), we
get Q! = PL. Next, stochastic dominance yields, + gi» > pi1 + pi2 if t; > 2,
and so (9) impliegy» = pi» = 0 if tj < 2. ThereforeQ! + Q% = P1 + P2, The
obvious induction argument give®* = Pk for k = 1,..., k* — 1.

Next consider columnk*, k*+1,..., m. Assume firs® ", pi~ < 1. By prop-
erty d we haveZ'f pik = 1 for all i such thatt; > k*. In view of py = gy for
k=1...,k*—1, and ofQ; ; P; this impliesQ; = P;. Turning to an agenit
such that; < k*, we havepix = gk = 0 (by (9)) for allk > k* and the equality
Qi = P; holds as well.

We are left with the cas®; pi- = 1. If i is such that; < k*, then as above
pik = gk = 0 for all k > k*. If i is such that; = k* thenqy = pix = 0 for k >
k*+1 andQ; = P; implies gk~ > pix- (recallgix = pik for k =1,...,k* — 1).
If i is such thatt; > k*, thenqgyx = px = 0 for k > k* + 1, and propertyc
gives Z'f pik =1 so thatQ, =i P; implies gk~ = pi~. Finally, all inequalities
Gik- > Pik- Must be equalities, becaulg; gk~ < 1, and we have show@ =P
as desired. O
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4 The Probabilistic Serial assignment: first characterization result

We use the following notation: given a profile of tygeand an objeck, 1 < k <
m, the setNy is made of all the agents of type at le&stNy = {i € N|t > k}
and its cardinality igl, 0 < ng < n.

Definition 4.1. Given a profile of types, t € {0,1,...,m}N, the Probabilistic
Serial assignment is the random assignment den@®(t) = [pik] and defined
recursively by system (10) or explicitly by the equivalent system (11):

k—1
. )1 .
pk =0 if § <k; pik:mm{,l—Zpik,} if k<t (10)
M k=1
set
1
k*:1+max{k|1<k<m and ) <1}
N/
k'=1
pk = 0 if tj <k
Pk = 1 if k<k*—1 andt >k
Nk
k*—1 (112)
P = 1) if t>k*

oot W

pk = 0 if k>k*+1 andti >k

(note that in (11) we sét* = 1 if ny =1 orn; = 0. In the latter casé?S(t) is the
null matrix; in the former case, it gives the best object to the single interested
agent).

For instance, iN = {1,2,3,4} andt = (1,2, 3,4), the matrixPS(t) is given
by (2) and differs fromRP(t) given by (1). On the other hand, tif = (1,1, 3, 3),
the two matrices coincide:

Yy 0 0

0
PS(t)) = RP(t') = Zj ?/2 ?/4 ; (12)
0

Yy Yo 1,

Lemma 4.1. For all t € {0,1,...,m}N, the Probabilistic Serial assignment is
ordinally efficient.

Proof. System (11) implies easily that the mat®§(t) is substochastic.

To prove ordinal efficiency, we check thaB(t) meets the properties b, c,d
in Lemma 3.2. This is straightforward, in view of the fact tk&tdefined in (11)
is precisely the last column d?S(t) with positive weight as in Lemma 3.2. In
particular, note thaE'f pik = 1 holds for any agentsuch that; > k*, implying
c andd. O
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Definition 4.2. Given a profileu in UN, and a feasible random assignment ma-
trix P in & we say thatP meetsNo Envy (or is nonenvious) if we have

forall i,j in N u-P>u-P.

Given a profile of types in {0,1,...,m}N, we say thaP meets No Envy at
if we have
forall i,j in N : P =

~

P,
or equivalently,P meets No Envy at all profiles compatible witht.

Lemma 4.3. Given a profile of typest, the matrices PS(t) and RP(t) are nonen-
vious at t.

Proof. Compare the two allocatior3 andP; in PS(t), whent; < t;. We have
pik = Pk for k =1,...,t andpi =0, u(k) <0 fork > t; +1; therefore agent
i does not envy. As uj(k) > 0 fork =t +1,...,t, agentj does not envy
either.

To prove thaRP(t) is nonenvious, fix two agentsj and an arbitrary ordering
o wherei precedeg; let & be obtained fromy by exchanging andj. The
following is easy to check

(Ui (t; 0) + 11 (8 5)) (5 (t, o) + 11 (t, 5))
U - > U - .
2 2
The conclusion follows by summing up over all orderings whdre
precedes. O

Theorem 4.1. Given a profile of typest, the random assignment PS(t) isthe only
feasible assignment satisfying Ordinal Efficiency and No Envy at t.

Proof. We fix the profilet and a substochastic mati= [pic], ordinally efficient
and nonenvious &t No Envy implies the following facts:

forall i,j, all k : t,t >k = pik = pi (13)
for all i,j, ti=t =P =P (14)

Indeed letk be the first column where (13) fails, s@j < pji. We can find
a utility vectoru; in U such thatu; (k) ~ 1 for k = 1,...,k,u(k) is a small
positive number fok =k + 1 ... t, andu; (k) < O for k > tj, and such that
ui - P > u - P, violating No Envy. Property (14) follows from (13) because
ordinal efficiency impliegix = 0 fork > t;.

Denote byk* the last column with positive sum i (Lemma 3.2) and recall
that N is the set of agents of type at leastBy propertiesa,b in Lemma 3.2
and (13) we have

1 ) .
k<k*:>pik=n—foraII|eNk; pik =0 for i ¢ Ny; (15)
k

Pik- = Pi- forall i,j € Ne=; pi= =0 for i ¢ N . (16)
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Let k be the last non zero column i@ = PS(t). Assume firstk* < k. The
definition of PS plus (15) implyQ* = Pk for k = 1,...,k* —1 and the definition
of PS plus (16) giveQX" > PX". Now the matrixQ has some positive weight
beyond columrk* but P does not, which results i > P, contradiction.

Next assumé < k*. As above, properties (15), (16) and the definitiorP&f
give QK = P for k = 1,...,k — 1 andQK < Pk. Because there is at least one
agenti with t; > k (the k* column of P is not zero), propertg in Lemma 3.2
gives

k—1 k—1 k—1
1=0g+> G =CGg+Y Pk <P+ P, 17)
k=1 k=1 k=1

hencep;; = g and QX = PX (because both columns treat equally all agents
in N;). So we haveP ~; Q in contradiction of the ordinal efficiency d®.
We have showrk = k*. ThusQ andP coincide except perhaps in colunk.
Moreover, by (16) and the analogous property@rwe haveQk” > P¥" and/or
PX" > QX". Ordinal efficiency ofP andQ implies thenP = Q. i

5 The Probabilistic Serial mechanism: second characterization result

We discuss incentive compatibility in a special class of revelation mechanisms.
These mechanisms only elicit the type (deadline) of each agent. On the other
hand, the requirement of strategyproofness relies on the full-fledged (cardinal)
utility functions.

Definition 5.1. Given N andA, a random assignment mechanism is a mapping
P from {0,1,...,m}N into &, associating to each profile of types feasible
random assignmerR(t). We say thaP is strategyproof if for any agenti in N,
any two profilest, t* in {0,1,...,m}N such that; = t* for all j different from
i, we have:

Pi(t) i Pi(t*) where >; refers to typet;. (18)

~

We say thaP is ordinally efficient if P(t) is ordinally efficient at for all t. We
say thatP meetsEqual Treatment of Equals if for all t and alli, j, t =t implies
Pi(t) = Pj ().

Equal Treatment of Equals is a minimal equity requirement implied by and
much weaker than the requirement tlrqt) is nonenvious for alt .

For any fixed orderings of N, the priority mechanisn — I1(t; o) is strate-
gyproof. Strategyproofness is preserved by fixed convex combinations (because
(19) is a system of inequalities linear R\(t)), therefore the Random Priority
mechanismt — RP(t) is strategyproof; it is also equitable (even nonenvious:
Lemma 4.3) but not ordinally efficient.

Theorem 5.1. The Probabilistic Serial mechanismt — PS(t) is characterized,
within the set of random assignment mechanisms, by the combination of Strate-
gyproofness, Ordinal Efficiency and Equal Treatment of Equals.
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Proof. The PS mechanism is ordinally efficient and nonenvious (Lemmas 4.1,
4.3). We will need the following

Lemma 5.1. An ordinally efficient mechanism P is strategyproof if and only if
for any two profilest, t* as in Definition 5.1

pik(t) = pi(t*) for all k < min{t;,t*}
Proof. If: easily follows, as efficiency guarantees
pk(t) =0V k >t

Only if: by contradiction consider the smallestsuch thatk < min{t;,t*}
and pi(t) # pi(t*). We can find a utility vectow;, such thatu;(k) ~ 1 for
k=1,...,k, u(k) =0 for k >k, and thaty; - P;(t) # u; - P;(t*), providing for
i a possibility to manipulate. O

Lemma 5.1 and Definition 4.1 imply that the PS mechanism is strategyproof.

Now we fix a mechanisniP satisfying the three announced properties and
prove the equalityP(t) = PS(t) by induction on|t| = ", t;. This equality is
obvious for|t| = 0,1,2. Consider an arbitrary profile of typésthat remains
fixed throughout the rest of the proof; we simply wrigft) = P = [pik] and
PS(t) = Q = [qik]. Without loss of generality we label the agents in such a way

thatt; < t, < ... <ty and define the increasing subsequengé,...,i; as
follows:
th = . =i, =0<tigin=tigie=...=t, <tijw1=tip2=...

G, <...<t,_+1=ti,_,+2=... =¥,

where i; =n and, by convention,jo=0 if N;=N (i.e., if t; > 0).

Thus the range of types tg,...,t, if io =0 and Ot,,...,t if ip > 1. In the
latter case, ordinal efficiency implies that the firgtows of P andQ are null.

We now show that their nonnull rows are equal as well. By Equal Treatment of
Equals, we have

P +1=Pi,_j42=...=P forall s=1...,r. (19)
For anys,s=1,...,r, lett® be the following profile of types:
tt=t,—1 ; t?=¢t forall j#is.
The induction hypothesis implie(t®) = PS(t°) = [p;]. From Definition 4.1
PG._1+1) = PG+ =--- =Pk forall s=1,...;r andallk <t,. (20)
Ast andt® only differ in theis component, Lemma 5.1 gives
Pk =P forall s=1,....r andall k <t . (21)

Gathering (19)—(21), we have shown that the following submatrices coincide:
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pk = py forall s=1...)r, alli, is_;<i <ls,
and allk, 1<k <t. (22)

For Probabilistic Serial, when the profile changes, the allocation of the columns
k=1 ...,t, —1 does not change from¥ to t (this is clear from Definition 4.1,
see also the related property stated in Remark 4.1). Hence, from (22):

Gk = PpPx=pk foral s=1....r, all i, is_3<i <ls,
and all k, 1 <k < t,. (23)

Moreover, ordinal efficiency impliegix = pix = 0 for all s, all i, is_; <i <g
and allk, t, < k. Therefore we are left to check that for all= 1,...,r the
following subcolumns of andQ coincide:

Ok, Pk for is_y <i <is, k=t

s ¢

By Equal Treatment of Equals, each one of theses@bcolumns is made of
identical elements. Moreover the complete colur@is and P have the same
entry in any rowi such that <is_; (by (23)), or such that > is (where they
are both zero). Thu®b > P% and/orP%s > Q.

Let k* (respk) be the last column with positive sum R (resp.Q). By
Lemma 3.2,5" pik = 1 (resp.>_ gk = 1) fork = 1,...,k* — 1 (resp.k — 1).
Since P, Q are both ordinally efficient, neither of them can be stochastically
dominated by the other. Together with all the above, this implies khat k,
and, given this equality, thaf; pik- = >_; k=, Which finally givesQ's = Pt
for all s, andP = Q.

Remark 5.1. Cres and Moulin [4] show that both mechanisPS and RP meet
the stronger incentive compatibility requiremengobupstrategyproofness ruling
out profitable misreports by any coalition of agents.

Remark 5.2. As mentioned in the introduction, the proof of the main result in [12]

implies the following impossibility result in our problem: among mechanisms
eliciting the full fledged cardinal utility functions, the requirements of Strate-
gyproofness, Efficiency w.r.t. cardinal utilities and Equal Treatment of Equals
are incompatible.

Remark 5.3. Theorems 4.1 and 5.1 are tight results.

Drop Equal Treatment of Equals in Theorem 5.1 or No Envy in Theorem 4.1:
then all priority mechanismé&l (-, &) meet the other assumptions. Drop Ordinal
Efficiency in either theorem, then any constant and egalitarian mechaR{$jim~

P allt, P, =P; all'i,j) meets the other assumptions. Drop Strategyproofness in
Theorem 5.1. Then construct an equitable mechanism where priority is given to
the more impatient agents (those with a shorter deadline) as follows. Gilen

S(t) be the set of all orderings of N such that; < tj = o(i) < o(j). Define

#{S(t)} 2 o).

oeS(t)
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We let the reader check, with the help of Lemma 3.2, that this mechanism is

ordinally efficient. Equal Treatment of Equals is obvious.
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