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Summary. Consider an oligopolistic industry composed of two groups (or pop-
ulations) of firms, the low cost firms and the high cost firms. The firms produce
a homogeneous good. I study the finite population evolutionarily stable strategy
defined by Schaffer (1988), and the long run equilibrium in the stochastic evolu-
tionary dynamics based on imitation and experimentation of strategies by firms
in each group. I will show the following results. 1) The finite population evolu-
tionarily stable strategy (ESS) output is equal to the competitive (or Walrasian)
output in each group of the firms. 2) Under the assumption that the marginal
cost is increasing, the ESS state is the long run equilibrium in the stochastic
evolutionary dynamics in the limit as the output grid step, which will be defined
in the paper, approaches to zero.
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1 Introduction

Recently Vega-Redondo (1997) studied the long run evolutionary equilibrium in
a symmetric oligopoly with a homogeneous good, and showed that the Wal-
rasian behavior, that is, profit maximization given the market clearing price is
the long run equilibrium strategy. I consider an oligopolistic industry composed
of two groups (or populations) of firms, the low cost firms and the high cost
firms, producing a homogeneous good, and study the finite population evolution-
arily stable strategy defined by Schaffer (1988), and the long run equilibrium in
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the stochastic evolutionary dynamics based on imitation and experimentation of
strategies by firms in each group. The long run equilibrium is the state where it
spends most of the time in the long run when the probability of experimentation
(mutation) becomes very small. I will show the following results. 1) The finite
population evolutionarily stable strategy (ESS) output is equal to the competitive
(or Walrasian) output in each group of the firms. 2) Under the assumption that
the marginal cost is increasing, the ESS state is the long run equilibrium in the
stochastic evolutionary dynamics in the limit as the output grid step, which will
be defined below, approaches to zero.

Schaffer (1988) proposed a concept of an evolutionarily stable strategy (ESS)
for a finite (or small) population as a generalization of the standard ESS concept
for an infinite (or large) population by Maynard Smith (1982). It is calledthe
finite population ESS. He showed that the finite population ESS is not gener-
ally a Nash equilibrium strategy. In Schaffer (1989) he applied this concept to
an economic game, and showed that the strategy which survives in economic
natural selection is the relative, not absolute, payoff maximizing strategy. He
considered the following survival rule in economic natural selection. Firms are
born with strategies and cannot change their strategies in response to changing
circumstances. At the end of each period, if the payoff of Firmi is larger than
the payoff of Firmj , the probability that Firmi survives in the next period is
larger than the probability that Firmj survives in the next period.

Alternatively we can consider that the survival rule operates on strategies,
not firms, and the population proportion of successful strategies grows by firms’
imitation of strategies. In this paper I consider the following model. Firms can
observe decisions of other firms, but do not know the exact form of the demand
function, and can not compute their best responses to other firms’ strategies. On
the other hand, each firm knows that the cost functions for all firms in the group
to which it belongs are the same and the game is symmetric. When all firms in
each group choose the same strategy, denoting it bys1, in a symmetric oligopoly
their profits are equal, and they do not have incentive to change their strategies.
Now, suppose that one firm (the mutant firm) experiments a different strategy,
s2. If this firm makes higher profit than the rest of the firms, they will wish to
imitate the mutant firm’s success. On the other hand, if the mutant firm makes
lower profit than the rest of the firms, they will not wish to imitate the mutant
firm’s failure, and in fact the mutant firm will wish to switchs2 to s1. If, starting
from s1, experimenting always leads to lower profit for the mutant firm than for
the rest of the firms, thens1 is an ESS1.

Hansen and Samuelson(1988) also presented analyses about evolution in eco-
nomic games. They showed that with small number of firms the surviving strat-
egy in economic natural selection, they called such a strategy auniversal survival
strategy, is not a Nash equilibrium strategy. Theiruniversal survival strategyis
essentially equivalent to Schaffer’s finite population evolutionarily stable strat-
egy. They said, “In real-world competition, firms will be uncertain about the

1 For a more detailed analysis of an imitation behavior, see Schlag (1998).
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profit outcomes of alternative strategies. This presents an obvious obstacle to
instantaneous optimization. Instead, firms must search for and learn about more
profitable strategies. As Alchian (1950) emphasizes, an important mechanism for
such a search depends on a comparison of observed profitability across the strate-
gies used by market participants. That is, search for better strategies is based on
relative profit comparisons.”.

The authors of some recent papers studying evolutionary dynamics such as
Robson and Vega-Redondo (1996) and Vega-Redondo (1997) consider a model of
stochastic evolutionary dynamics assuming imitation dynamics of players’ strate-
gies. On the other hand, in other some papers such as Kandori and Rob (1995)
and Kandori and Rob (1998) best response dynamics are assumed. In best re-
sponse dynamics each player chooses a strategy in periodt + 1 which is a best
response to other players’ strategies in periodt . Thus players must know the
whole payoff structure of the game, and must be able to compute their best
responses. While in imitation dynamics, players simply mimic successful other
players’ strategies. For an infinite population, imitation dynamics coincide with
best response dynamics. I think that imitation dynamics is more appropriate
than best response dynamics for an economic game with boundedly rational
players, and a finite population evolutionary game is more interesting than an
infinite population one. There are experimental studies about the role of im-
itation in an economic decision making such as Pingle and Day (1996) and
Offerman and Sonnemans (1998). Pingle and Day (1996) argued that imitation
plays an important role in real-world decision making because it is one of the
procedures that allows the decision maker to economize on decision costs.

In the next Sect. I consider the finite population evolutionarily stable strategy
in an oligopoly with two groups of firms producing a homogeneous good, and
show that the ESS output is equal to the competitive output in each group. In
Sect. 3 I will show that the ESS state is the long run equilibrium in the limit as
the output grid step approaches to zero.

2 The finite population evolutionarily stable strategy

Consider an oligopolistic industry composed ofN firms producing a homoge-
neous good. There are two groups (populations) of firms, the low cost firms and
the high cost firms. The number of the low cost firms isn1, and the number of
the high cost firms isn2. n1 and n2 are integer numbers which are not smaller
than 3, andn1 + n2 = N . The output of thei -th low cost firm is denoted byxi ,
and the output of thei -th high cost firm is denoted byyi . The price of the good
is denoted byp.

The inverse demand function is

p(X + Y) whereX =
n1∑

i =1

xi andY =
n2∑

i =1

yi .

X is the total output of the low cost firms, andY is the total output of the high
cost firms.p(·) is decreasing inX + Y .
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The cost function for the low cost firms is

cl (xi ) = c(xi ),

and the cost function for the high cost firms is

ch(yi ) = λc(yi ) whereλ > 1.

The cost for the high cost firms is proportionally higher than the cost for the low
cost firms.c(·) is increasing and twice differentiable. Further I assume

Assumption 1 c(xi ) is convex, that is, the marginal costs,c′(xi ) andλc′(yi ), are
increasing.

The profits of the low cost firms are written as follows,

πl
i (xi , X + Y) = p(X + Y)xi − c(xi ), i = 1, 2, · · · , n1.

Similarly, the profits of the high cost firms are written as follows,

πh
i (yi , X + Y) = p(X + Y)yi − λc(yi ), i = 1, 2, · · · , n2.

I consider an evolutionary game in whichN firms repeatedly play anN firms
oligopoly stage game. In this evolutionary game the population isN , and the
stage game is also anN players game. Thus it is a so calledplaying the fields
modelof evolutionary game. Strategies for the firms are their outputs. The firms
repeatedly play the stage game in each period, and may change their strategies
between one period and the next period. This dynamic problem is treated in the
next section. In this section I consider the finite population evolutionarily stable
strategy of the stage game in each group of firms.

Consider the state in which all low cost firms choosex∗. If, when one low
cost firm (mutant firm) chooses a different strategyx′, the profits of the firms
who choosex∗ are larger than the profit of the mutant firm given the outputs of
the high cost firms, and this relation holds for allx′ /= x∗, thenx∗ is the finite
population evolutionarily stable strategy (ESS) for the low cost firms2. Formally,
x∗ is the finite population ESS if

πl
i (x

∗, X + Y) > πl
j (x

′, X + Y), ∀x′ /= x∗ and all i /= j (1)

wherexj = x′, andxi = x∗ for all i /= j in X.

In this expression it is assumed that the mutant firm is thej -th low cost firm.
According to Schaffer (1988) we can find the finite population ESS as the solution
of the following problem,

x∗ = arg max
x′

ϕl , (2)

where
2 Schaffer’s definition is weaker. He definesx∗ as the finite population ESS if Eq. (1) is satisfied

with weak inequality. I adopt the definition with strong inequality. About the definitions of the finite
population ESS, see Crawford (1991).
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ϕl = πl
j (x

′, X +Y)−πl
i (x

∗, X +Y) = p(X +Y)x′ −c(x′)−p(X +Y)x∗ +c(x∗). (3)

If there is a unique value ofx′ which maximizes Eq. (2) givenx∗ and the total
output of the high cost firmsY =

∑n2

i =1 yi , thenx∗ satisfies Eq. (1) sinceϕl has
the maximum value, which is zero, only whenx′ = x∗.

Differentiation ofϕl with respect tox′ yields

p(X + Y) + p′(X + Y)(x′ − x∗) − c′(x′) = 0.

p′(X + Y) is the derivative of the inverse demand function. Then, the condition
for maximization ofϕl is written as

p(X + Y) − c′(x∗) = 0 whereX = n1x∗. (4)

The value ofx∗ obtained from Eq. (4) depends onY =
∑n2

i =1 yi . Denote suchx∗

when all high cost firms choosey by x∗(y). Call x∗(y) the ESS output for the
low cost firms relative to y. It is obtained from the following equation.

p(n1x∗(y) + n2y) − c′(x∗(y)) = 0. (5)

The finite population ESS for the high cost firms is similarly defined, and is
obtained as the solution of the following problem,

y∗ = arg max
y′

ϕh,

where

ϕh = πh
j (y′, X + Y) − πh

i (y∗, X + Y)

= p(X + Y)y′ − λc(y′) − p(X + Y)y∗ + λc(y∗).

By similar procedures the condition for maximization ofϕh is obtained as fol-
lows,

p(X + Y) − λc′(y∗) = 0 whereY = n2y∗. (6)

Similarly to x∗(y), from Eq. (6) we obtainthe ESS output for the high cost firms
relative to x. It is denoted byy∗(x), and is obtained from the following equation.

p(n1x + n2y∗(x)) − λc′(y∗(x)) = 0. (7)

The conditions for the finite population ESS for both groups are written as

p(n1x∗ + n2y∗) − c′(x∗) = 0, (8)

and
p(n1x∗ + n2y∗) − λc′(y∗) = 0, (9)

Eq. (8) and Eq. (9) mean that the price of the good is equal to the marginal cost
for both low cost and high cost firms. Subsequently, we obtain the following
proposition.

Proposition 1. The finite population ESS output of the low cost firms and that of
the high cost firms are equal to the competitive outputs.

Denote the pair of ESS outputs of the low cost and the high cost firms obtained
from Eq. (8) and Eq. (9) by (x∗, y∗). Since the marginal cost is increasing, we
find x∗ > y∗, that is, the ESS output of the low cost firms is larger than that of
the high cost firms.
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3 The long run equilibrium

In this Sect. I will show that the finite population ESS output for each group ob-
tained in the previous section is the long run equilibrium strategy in the stochastic
evolutionary dynamics based on imitation and experimentation of strategies by
the firms.

Kandori et al. (1993), Kandori and Rob (1995), Vega-Redondo (1996) and
Vega-Redondo (1997) presented analyses of long run equilibria of dynamic and
stochastic evolutionary games. In our model,N players (firms) play an oligopoly
game in each period. According to Robson and Vega-Redondo (1996) and Vega-
Redondo (1997) I consider the following imitation dynamics of the firms’ strate-
gies. In periodt + 1 each low cost (or high cost) firm has a chance with positive
probability less than one to change its strategy to the strategy which achieved
the highest profit among the strategies chosen by some low cost (or high cost)
firms in period t . If the strategy of one firm in periodt achieved the strictly
highest profit in its group, this firm does not change its strategy. If in periodt
the highest profit was attained by two or more firms in one of the groups even
when they chose different strategies, in periodt + 1 each firm in this group may
choose either strategy among the strategies which attained the highest profit in
period t . If all firms in one of the groups chose the same strategy in periodt ,
since in such a state this strategy achieved the strictly highest profit, the firms in
this group do not change their strategies.

As in Vega-Redondo (1997) I assume that the firms in each group must
choose their outputs from a finite gridΓ = {0, δ, 2δ, · · · , vδ} where δ > 0
and v ∈ N are arbitrary.δ is called the grid step. It is required that the finite
population ESS outputsx∗ andy∗ belong to this grid.δ can be arbitrarily small
to make the grid sufficiently fine. The state of the imitation dynamics is identified
with the output profile. The state space is denoted byΩ which is equal toΓ N .
Denote the transition matrix of this dynamics byT(ω, ω′), and byT (m)(ω, ω′) the
correspondingm-step transition matrix, whereω, ω′ ∈ Ω.

In addition to this dynamic adjustment, there is a random mutation. In each
period, each firm switches (mutates) its strategy with probabilityε. Mutation may
be interpreted as experimentation of a new strategy by the firms. All strategies
may be chosen with positive probability. Thus the complete dynamic is an ergodic
Markov chain, and it has the unique stationary distribution. Consider the limit
of the stationary distribution of the Markov chain asε → 0. The long run
equilibria are the states which are assigned positive probability in the limit. This
adjustment process is the same as that in Robson and Vega-Redondo (1996) and
Vega-Redondo (1997). It has the stochastic nature even without mutation since
each firm has a chance to change its strategy independently with some positive
probability, and the number of firms in each group who change their strategies
in period t + 1 to the best strategy in periodt is the stochastic variable without
mutation. In periodt + 1 all firms may choose the best strategy in periodt with
strictly positive probability.
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I define alimit set of the dynamics without mutation. A setA is a limit set if
this set is closed under the finite chains of positive probability transitions. That
is,

(1) ∀ω ∈ A,∀ω′ /∈ A, T(ω, ω′) = 0.

(2) ∀ω ∈ A, ω′ ∈ A,∃m ∈ N such thatT (m)(ω, ω′) > 0.

If in period t some firms choose different strategies in one of the groups, at least
one firm has a chance to change its strategy with positive probability without
mutation, and all firms in each group may choose the same strategy in periodt +1.
Thus such a state can not be included in any limit set, and in any state included
in some limit set all firms in each group must choose the same strategy. On the
other hand, in any state in which all firms in each group choose the same strategy
no firm has incentive to change its strategy except for mutation. Therefore a limit
set is identified as a set which include a single state in which all firms in each
group choose the same strategy3. We need no mutation to move from any state,
which is not included in a limit set, to a state in some limit set. Thus a long run
equilibrium must be in some limit set. According to Kandori and Rob (1995) I
consider a reduced Markov chain defined on the limit sets. Denote the state in
which all low cost firms choosex and all high cost firms choosey by ω(x, y).
The number of the states (including the states wherex = 0 or y = 0) is (v + 1)2.

Now construct a directed graph which contain the directed paths fromω(x, y)
to ω(x∗, y∗) for all (x, y) /= (x∗, y∗), and the path fromω(x∗, y∗) to some state
ω(x′, y′), (x′, y′) /= (x∗, y∗). Denote this graph byG.

Eliminating the path fromω(x, y) to ω(x∗, y∗) in G we get anω(x, y)-
tree. Similarly, eliminating the path fromω(x∗, y∗) to ω(x′, y′) in G we get
a ω(x∗, y∗)-tree. Anω(x, y)-tree is a collection of directed branches (ω(x1, y1),
ω(x2, y2)), ω(x2, y2) is the successor ofω(x1, y1), which satisfy the following
conditions4,

(1) Except forω(x, y), each state has a unique successor.
(2) There is no closed loop.

Denote the total number of mutations in anω(x, y)-tree (orω(x∗, y∗)-tree) by
C(x, y) (or C(x∗, y∗)). Based on the results in Freidlin and Wentzel (1984), in
their Proposition 4 Kandori and Rob (1995) showed that the long run equilibria
comprise the states having minimumC(x, y).

From the arguments in the previous section we see that, sincex∗ andy∗ are
the finite population ESS outputs, one mutation is not sufficient and we need at
least two mutations to move from the stateω(x∗, y∗) to any other state. Therefore
C(x, y) = (v + 1)2 for ω(x, y) /= ω(x∗, y∗).

Next we examine how many mutations we need to move from a state
ω(x, y), (x, y) /= (x∗, y∗), to the stateω(x∗, y∗). Consider a state in which all low
cost firms choosex′, all high cost firms choosey′, andx′ /= x∗(y′). x∗(y′) is the

3 This result is similar to Proposition 1 in Vega-Redondo (1997).
4 For more details about a tree see Kandori et al. (1993) and Vega-Redondo (1996, 1997).
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ESS output for the low cost firms relative toy′ defined in the previous section.
If one low cost firm (mutant firm) choosesx∗(y′), the profit of this mutant firm
is given by

πl
j (x

∗(y′), X + Y) = p(X + Y)x∗(y′) − c(x∗(y′)). (10)

And the profits of the other low cost firms are

πl
i (x

′, X + Y) = p(X + Y)x′ − c(x′) for i /= j , (11)

where

xj = x∗(y′), andxi = x′ /= x∗(y′) for all i /= j andY = n2y′.

Comparing Eq. (10) and Eq. (11), we obtain

πl
j (x

∗(y′), X + Y) − πl
i (x

′, X + Y)

= p(x∗(y′) + (n1 − 1)x′ + n2y′)[x∗(y′) − x′] − c(x∗(y′)) + c(x′).

Now we can show

Lemma 1.
πl

j (x
∗(y′), X + Y) − πl

i (x
′, X + Y) > 0. (12)

Proof. x∗(y′) maximizesϕl in Eq. (3) givenY . It means

p((n1 − 1)x∗(y′) + x′ + n2y′)[x∗(y′) − x′] − c(x∗(y′)) + c(x′) > 0 (13)

Consider two cases.

1. If x∗(y′) > x′, sincep is decreasing we have

p((n1 − 1)x∗(y′) + x′ + n2y′) < p(x∗(y′) + (n1 − 1)x′ + n2y′).

Then, we find that Eq. (13) implies Eq. (12) becausex∗(y′) − x′ > 0 .
2. If x∗(y′) < x′, sincep is decreasing we have

p((n1 − 1)x∗(y′) + x′ + n2y′) > p(x∗(y′) + (n1 − 1)x′ + n2y′).

Then, we find that Eq. (13) implies Eq. (12) becausex∗(y′) − x′ < 0.

(Q.E.D.)
This lemma means that we can move from a stateω(x′, y′), x′ /= x∗(y′), to

the stateω(x∗(y′), y′) by one mutation.
Similarly, consider a stateω(x′, y′), y′ /= y∗(x′). If one high cost firm chooses

y∗(x′), its profit is

πh
j (y∗(x′), X + Y) = p(X + Y)y∗(x′) − λc(y∗(x′)). (14)

And the profits of the other high cost firms are

πh
i (y′, X + Y) = p(X + Y)y′ − λc(y′) for i /= j , (15)

where
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yj = y∗(x′), andyi = y′ /= y∗(x′) for all i /= j andX = n1x′.

Comparing Eq. (14) and Eq. (15), we obtain

πh
j (y∗(x′), X + Y) − πh

i (y′, X + Y)

= p(n1x′ + y∗(x′) + (n2 − 1)y′)[y∗(x′) − y′] − λc(y∗(x′)) + λc(y′). (16)

Now we can show

Lemma 2.
πh

j (y∗(x′), X + Y) − πh
i (y′, X + Y) > 0. (17)

Proof. Similar to Lemma 1.

This lemma means that we can move from a stateω(x′, y′), y′ /= y∗(x′), to
the stateω(x′, y∗(x′)) by one mutation.

(x∗, y∗) is obtained from Eq. (8) and Eq. (9).x∗(y′) andy∗(x′) are obtained
from Eq. (5) withy = y′ and Eq. (7) withx = x′. Now we can show

Lemma 3.
|x∗(y′) − x∗| <

n2

n1
|y′ − y∗|, (18)

and

|y∗(x′) − y∗| <
n1

n2
|x′ − x∗|. (19)

Proof. See Appendix.

Eq. (18) implies

|x∗(y∗(x′)) − x∗| <
n2

n1
|y∗(x′) − y∗|. (20)

Combining Eq. (19) and Eq. (20), we find

|x∗(y∗(x′)) − x∗| < |x′ − x∗|.

Similarly, we obtain
|y∗(x∗(y′)) − y∗| < |y′ − y∗|.

Thus, there is a sequence of the states which starts fromω(x′, y′), passes through
ω(x∗(y′), y′), throughω(x∗(y′), y∗(x∗(y′))), throughω(x∗(y∗(x∗(y′))), y∗(x∗(y′)))
and so on. The sequence approaches toω(x∗, y∗). If the grid of the firms’ outputs
is sufficiently fine, this sequence of the states converges to some limit state which
is in some neighbourhood ofω(x∗, y∗). We can move from one state to the next
state by only one mutation. Then we obtain the following proposition.

Proposition 2. For everyη > 0, there is someδ′ > 0 such that if the grid stepδ
is no larger thanδ′, the long run state of the corresponding finite-state process is
in someη-neighborhood of the ESS stateω(x∗, y∗).
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Denote a limit state of some sequence byω(x0, y0), which may be different
for different starting states. Asδ → 0, any ω(x0, y0) converges toω(x∗, y∗).
Then we findC(x∗, y∗) = (v + 1)2 − 1, which is the number of the states other
thanω(x∗, y∗). It is smaller thanC(x, y) for (x, y) /= (x∗, y∗).

From Proposition 1 and these results we obtain

Proposition 3. The long run equilibrium output of the low cost firms and that of
the high cost firms are equal to the competitive output for each group in the limit
as the output grid step approaches to zero.

4 Conclusion

In this paper I have considered an evolutionary game theoretic model of asym-
metric oligopoly with two groups (populations) of firms in which the low cost
firms and the high cost firms choose their outputs. I have shown that the finite
population evolutionarily stable strategies (ESS) of the low cost and the high
cost firms are equal to the competitive outputs. And I have shown that, under the
assumption that the marginal cost is increasing, the ESS output in each group of
firms is the long run equilibrium strategy in the stochastic evolutionary dynamics.

Appendix: Proof of Lemma 3

Rewriting Eq. (8), Eq. (9), Eq. (5) withy = y′ and Eq. (7) withx = x′,

p(n1x∗ + n2y∗) − c′(x∗) = 0, (21)

p(n1x∗ + n2y∗) − λc′(y∗) = 0, (22)

p(n1x∗(y′) + n2y′) − c′(x∗(y′)) = 0, (23)

and
p(n1x′ + n2y∗(x′)) − λc′(y∗(x′)) = 0. (24)

Consider two cases.

1. If y′ > y∗, sincep(·) is decreasing andc′(·) is increasing, from Eq. (21), Eq.
(23) we havex∗(y′) < x∗ andc′(x∗(y′)) < c′(x∗). Then we find

p(n1x∗(y′) + n2y′) < p(n1x∗ + n2y∗),

and
n1x∗(y′) + n2y′ > n1x∗ + n2y∗.

Arranging this expression, we obtain

x∗(y′) − x∗ > −n2

n1
(y′ − y∗). (25)
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2. If y′ < y∗, similarly we havex∗(y′) > x∗ andc′(x∗(y′)) > c′(x∗). Then we
find

p(n1x∗(y′) + n2y′) > p(n1x∗ + n2y∗),

and
n1x∗(y′) + n2y′ < n1x∗ + n2y∗.

Arranging this expression, we obtain

x∗(y′) − x∗ < −n2

n1
(y′ − y∗). (26)

Since Eq. (25) holds wheny′ > y∗ and x∗(y′) < x∗, and Eq. (26) holds
wheny′ < y∗ andx∗(y′) > x∗, we obtain

|x∗(y′) − x∗| <
n2

n1
|y′ − y∗|.

By similar procedures, using Eq. (22) and Eq. (24), we obtain

|y∗(x′) − y∗| <
n1

n2
|x′ − x∗|.

(Q.E.D.)
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