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Summary. This paper studies a deterministic one-sector growth model with a
constant returns to scale production function and endogenous labor supply. It
is shown that the distribution of capital among the agents has an effect on the
level of per-capita output. There exists a continuum of stationary equilibria with
different levels of per-capita output. If the elasticity of intertemporal substitution
is large, a higher output level can be achieved when income inequality is great,
that is, when the income distribution is strongly dispersed. If the elasticity of
intertemporal substitution is low, the reverse relation holds. The paper shows
that countries with identical production technologies and identical preferences
may have different GDP levels because wealth is distributed differently among
their inhabitants.
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1 Introduction

This paper addresses two questions:

(i) Why do economies with similar demographic and technological charac-
teristics often experience quite different economic developments?

(ii) What is the relation between the distribution of income or wealth and the
level (or the growth rate) of gross domestic product in a closed economy?

? This research was partly supported by grants P10850-SOZ and F010 from the Austrian Science
Foundation.
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To this end we study a deterministic one-sector growth model with a constant
returns to scale production function and endogenous labor supply. In this frame-
work it is shown that the distribution of capital among the agents has an effect on
the level of per-capita output. There exists a continuum of stationary equilibria
with different levels of per-capita output. The paper shows that countries with
identical production technologies and identical preferences may have different
per-capita GDP levels if wealth is distributed differently among their inhabitants.

Since both of the questions mentioned above have been dealt with before
we start by giving a brief survey of the literature in order to demonstrate how
our approach and our results differ from previous work in this area. The first
question was one reason for the development of the so-called new growth the-
ories. According to traditional neoclassical growth theories, the growth rates of
similar economies should asymptotically converge to each other (conditional con-
vergence), whereas new growth theories include mechanisms which may work
against convergence.1 The most prominent mechanisms rely on differences in
human capital development or knowledge formation (see, e.g., Romer [25] or
Lucas [20]). Another branch of this literature is concerned with growth models
in which the aggregate production technology exhibits increasing returns to scale.
To accomodate this feature to a general equilibrium framework these models as-
sume the presence of external effects or some form of imperfect competition. Here
we refer in particular to the two symposium volumes of theJournal of Economic
Theory (see Benahbib and Rustichini [10] and Benhabib [7]) and to the survey
by Benhabib and Gali [9]. All these models usually describe economies that
are populated by a large number of homogeneous, infinitely-lived households.
Since it is commonly assumed that all households own identical initial stocks of
wealth, they all behave identically throughout the planning period and, conse-
quently, distributional considerations do not play any role. In the present paper
we study a model that is very similar to many of those mentioned above, except
that we allow for heterogeneous capital endowments of the (otherwise identical)
households. The key features of our model are the endogenous labor supply, a
constant returns to scale production function, a single capital stock (only physical
capital exists but no human capital), no externalities, and perfect competition in
all markets. It turns out that in this framework the distribution of wealth matters
for the dynamic evolution and the long-run level of per-capita output. Depending
on the parameter values, our model can predict both a positive and a negative
relation between income dispersion and per-capita output. Formally, the model
has a continuum of stationary equilibria differing in terms of their per-capita
GDP levels and in terms of the income and wealth distribution. If the elasticity
of intertemporal substitution is large, a higher output level can be achieved when
income inequality is great, that is, when the income distribution is strongly dis-
persed. If the elasticity of intertemporal substitution is low, the reverse relation
holds.

1 For an excellent exposition of traditional and new growth theories as well as a discussion of the
convergence hypothesis we refer to Barro and Sala-i-Martin [5].
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Now let us consider the second question mentioned above. There are a number
of models of capital accumulation and growth that can explain non-degenerate in-
come distributions. Many of these models assume heterogeneity of households.
Becker [6] and Lucas and Stokey [21], for example, derive a non-degenerate
wealth and income distribution from the assumption that agents differ in terms
of their time preferences. Other models assume that (otherwise identical) house-
holds face idiosyncratic risks (for example concerning their labor endowment);
an example for this approach is Aiyagari [3]. Yet another explanantion is based
on the presence of credit market imperfections, see, e.g., Aghion and Bolton [1],
Galor and Zeira [17], or Piketty [23]. A model that is quite similar to the one
studied here was presented in Chatterjee [13]. In that study, however, labor
supply is exogenous and the development as well as the long-run level of per-
capita output is independent of the distribution of wealth. This follows from the
particular form of households’ preferences that is assumed. Contrary to our ap-
proach, Chatterjee’s model does not identify the income or wealth distribution
as an important determinant of the long-run per-capita GDP level. Concerning
the question whether income inequality is growth enhancing or growth reducing,
theoretical models yield ambiguous results. Incentive consideration seem to point
to a positive influence of inequality on growth, but capital market imperfections
may mitigate or even reverse this influence. Persson and Tabellini [22] emphasize
that strong inequality is harmful for growth (in democratic societies) because it
triggers political decisions that promote redistribution at the expense of growth.
As for the influence of development on income dispersion, the most prominent
hypothesis stems from Kuznets [19]. It says that during the initial phases of de-
velopment, income dispersion should increase, but eventually income inequality
will be reduced again. For an enlightening discussion of these matters we refer to
Aghion and Howitt [2, Chapter 9]. It has to be emphasized that our model does
not have any of the features mentioned above. Households are homogeneous
(except for their initial endowments), all markets are perfectly competitive, and
no idiosyncratic risks are present. The only mechanism that creates the existence
of a continuum of heterogeneous stationary equilibria is the interplay between
the households’ saving decision and their optimal labor supply. The endogenous
determination of the labor supply is in fact crucial for our results, as it allows
that the same capital-labor ratio and, hence, the same interest rate can occur at
different levels of the aggregate capital stock.2

The empirical investigation of the relation between income dispersion and
GDP has also a long tradition. The Kuznets hypothesis mentioned above as well
as related questions have been tested with varying results (see, e.g., Bourguignon
and Morrisson [11] and Fields [16, Chapter 4]). Strong empirical evidence on a
negative relation between income inequality and growth is reported in Persson
and Tabellini [22], who use both historical panel data and cross sectional data. An

2 Other implications of an endogenous labor supply were derived by, e.g., de Hek [14] and
Eriksson [15]. These papers, however, use a representative agent framework such that distributional
influences are assumed away.
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analogous negative relation between income inequality and the level of per-capita
GDP was found by Kravis [18].

The paper is organized as follows. Section 2 introduces the model and states
and discusses the equilibrium conditions. Section 3 proves the existence of a
continuum of stationary equilibria and Section 4 states results on the stationary
income distributions. These two sections contain the main results of the paper.
Section 5 presents a few results on the transitional dynamics and Section 6
concludes.

2 Model formulation and equilibrium conditions

We consider a continuous-time model of a one-sector economy in which at each
time t ∈ [0,∞) outputY(t) is produced from capitalK (t) and laborL(t) by the
Cobb-Douglas technology

Y(t) = K (t)αL(t)1−α. (1)

Output is the numeraire good and we denote byr (t) andw(t) the rental rate of
capital and the wage rate at timet . At every instantt , the representative firm
maximizes profits

Π(t) = Y(t) − r (t)K (t) − w(t)L(t)

taking factor prices as given. There are no production externalities, no techno-
logical progress, andα ∈ (0, 1) is constant.

There exists a continuum of measure 1 (identified with the unit intervalI =
[0, 1]) of households.3 At time t , householdi ∈ I consumes at the rateci (t) ≥ 0
and supplies labor at the ratèi (t) ∈ [0, 1] to the firms. All households have
identical preferences described by the utility functional

Ji =
∫ +∞

0
e−ρt U (ci (t), `i (t)) dt ,

whereρ > 0 denotes the time preference rate. We assume that the instantaneous
utility function has the form

U (c, `) =




c1−1/θ − 1
1 − 1/θ

+ β ln(1 − `) if θ ∈ (0, 1) ∪ (1, +∞),

ln c + β ln(1 − `) if θ = 1.

The parameterθ > 0 is the elasticity of intertemporal substitution, andβ > 0
measures how much weight the households attach to the disutility of working.4

Denoting byδ > 0 the constant depreciation rate of capital, the interest rate is
given by r (t) − δ and householdi ’s flow of income at timet is

3 When we use measure theoretic concepts we considerI as endowed with the Borelσ-algebra
and Lebesgue measure.

4 The caseβ = 0 would describe a situation where households inelastically supply 1 unit of labor
per unit of time.
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yi (t) = [r (t) − δ]ki (t) + w(t)`i (t), (2)

where ki (t) is the wealth of householdi at time t . A negative value ofki (t)
would mean that householdi is indebted at timet . We denote the household’s
initial wealth at time 0 byki 0. With these notations, the intertemporal budget
constraint of householdi can be written as

k̇i (t) = [r (t) − δ]ki (t) + w(t)`i (t) − ci (t) , ki (0) = ki 0, (3)

lim
t→+∞ e−

∫ t

0
r (s)−δ dski (t) = 0. (4)

Equation (3) is the wealth accumulation equation and (4) is a no-Ponzi-game
condition. Note that we assume that households are identical in terms of their
preferences, but that they may have different initial endowmentski 0. The function
i 7→ ki 0 can be any measurable function such that aggregate initial wealthK0 =∫ 1

0 ki 0 di is positive.
The factor markets are in equilibrium if

K (t) =
∫ 1

0
ki (t) di , L(t) =

∫ 1

0
`i (t) di (5)

holds for all t . The output market is in equilibrium if

Y(t) = K̇ (t) + δK (t) + C(t) (6)

for all t , whereC(t) =
∫ 1

0 ci (t) di denotes aggregate consumption.

Definition 1. A family of functions

E = (Y(·), K (·), L(·), C(·), r (·), w(·), {ki (·), ci (·), `i (·) | i ∈ I })

is called anequilibrium if
(i) the functionsi 7→ ki (t), i 7→ ci (t), and i 7→ `i (t) are measurable for all
t ∈ [0, +∞),
(ii) for all t ∈ [0,∞), the pair (K (t), L(t)) maximizes profitΠ(t) subject to the
technological constraint (1) and non-negativity constraints on the inputs,
(iii) for all i ∈ I , (ki (·), ci (·), `i (·)) is an optimal solution to the problem of
maximizingJi subject to (3) - (4),
(iv) the market clearing conditions (5) and (6) hold for allt ∈ [0, +∞).
An equilibrium is calledstationary if it consists of constant functions, and it is
calledhomogeneousif the conditionski (t) = K (t), ci (t) = C(t), and`i (t) = L(t)
hold for all t ∈ [0, +∞) and all i ∈ I .

Because the population in the economy has the constant measure 1, we can
interpret the variablesY(t), K (t), L(t), and C(t) either as aggregate variables
or as per-capita variables. Note, however, that they need not coincide with the
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corresponding individual variablesyi (t), ki (t), `i (t), andci (t) for any particular
agenti .5

In a homogeneous equilibrium, wealth and income are uniformly distributed
among the agents. This is the case typically considered in growth theory and
real-business-cycle theory. In this paper we are particularly interested in equi-
libria displaying non-homogeneous wealth and income distributions. For some
questions addressed in this paper it will not be useful to distinguish between
equilibria which differ from each other only by a relabelling of households, or
between equilibria which are identical except for the behavior of households in
a set of measure 0. We formalize these ideas in the following definition.

Definition 2. Two equilibriaE and Ẽ are calledequivalentif there exists a bi-
jective and measure-preserving mappingp : I 7→ I such that (̃ki (t), c̃i (t), ˜̀

i (t)) =
(kp(i )(t), cp(i )(t), `p(i )(t)) for all t ∈ [0, +∞) and for almost alli ∈ I .

It is straightforward to see that the aggregate variablesY(t), K (t), L(t), and
C(t) as well as the factor pricesr (t) andw(t) in two equivalent equilibria must
coincide.

Profit maximization under perfect competition implies that capital and labor
earn their marginal products, that is

r (t) = α[K (t)/L(t)]−(1−α) , w(t) = (1 − α)[K (t)/L(t)]α. (7)

Conditions (1), (3), (5), and (7) imply that (6) is satisfied (Walras’ law).
Thus, we may disregard condition (6). The first order optimality conditions for
the optimization problem of householdi are

ci (t) = [w(t)/β]θ[1 − `i (t)]θ (8)

and
ċi (t)/ci (t) = θ[r (t) − δ − ρ]. (9)

Condition (8) shows thatci (t) is a strictly concave function of̀ i (t) if
θ ∈ (0, 1), whereas it is a strictly convex function of`i (t) if θ ∈ (1, +∞).
In the borderline case of logarithmic consumption utility (θ = 1), ci (t) is a linear
function of `i (t). These curvature properties as well as their dependence on the
parameterθ will turn out to be essential for most of the results in this paper.
In the following lemma we summarize the equilibrium conditions and draw a
simple conclusion.

Lemma 1. (i) A family of functions(Y(·), K (·), L(·), C(·), r (·), w(·), {ki (·), ci (·),
`i (·) | i ∈ I }) is an equilibrium if and only if the conditions (1), (3) - (5), and (7)
- (9) hold for all t ∈ [0, +∞) and all i ∈ I .
(ii) In every equilibrium and for every household i∈ I there exist constants
µi > 0 andνi > 0 such that ci (t)/c0(t) = µi and [1 − `i (t)]/[1 − `0(t)] = νi for
all t ∈ [0, +∞).

5 Note also thatY(t) is gross domestic product whereasyi (t) denotes individual income net of

depreciation. Thus, one has
∫ 1

0
yi (t) di = Y(t)−δK (t). The other three aggregate variables are simply

the integrals overI of the corresponding individual variables.
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Proof. Statement (i) is well known. From condition (9) follows ˙ci (t)/ci (t) −
ċ0(t)/c0(t) = 0. It is straightforward to see that this implies thatci (t)/c0(t) is
constant with respect to time. Together with (8) this shows that [1− `i (t)]/[1 −
`0(t)] is constant, too. �

For every measurable functionν : I 7→ (0, +∞) let us define6

B(ν) =

∫ 1
0 νθ

i di(∫ 1
0 νi di

)θ
.

It follows from Jensen’s inequality thatB(ν) ≤ 1 if θ ∈ (0, 1), B(ν) = 1
if θ = 1, andB(ν) ≥ 1 if θ ∈ (1, +∞). The inequalities hold strictly if and
only if there does not exist any constant function which coincides withν almost
everywhere.

The next lemma presents a set of equilibrium conditions which is different
from the one stated in Lemma 1(i). The advantage of these alternative conditions
is that the equilibrium dynamics of the two variablesK (t) andL(t) are isolated,
and that all other variables are expressed in terms ofK (t) andL(t).

Lemma 2. A family of functions (Y(·), K (·), L(·), C(·), r (·), w(·), {ki (·), ci (·),
`i (·) | i ∈ I }) is an equilibrium if and only if there exists a measurable function
ν : I 7→ (0, +∞) such that the differential equations

K̇ (t) = K (t)αL(t)1−α − δK (t)

−
(

1 − α

β

)θ

B(ν)
K (t)αθ[1 − L(t)]θ

L(t)αθ
, K (0) = K0, (10)

L̇(t) =
L(t)[1 − L(t)]

L(t) + α[1 − L(t)]

{
(1 − α)δ + ρ − α

(
1 − α

β

)θ

×B(ν)
K (t)αθ−1[1 − L(t)]θ

L(t)αθ

}
, (11)

k̇i (t) =

[
α

K (t)α−1

L(t)α−1
− δ

]
ki (t) + (1 − α)

{
1 − νi [1 − L(t)]∫ 1

0 νj dj

}
K (t)α

L(t)α
(12)

−
(

1 − α

β

)θ
νθ

i K (t)αθ[1 − L(t)]θ(∫ 1
0 νj dj

)θ

L(t)αθ

, ki (0) = ki 0

hold for all i ∈ I and conditions (1), (4), and (7) as well as

C(t) =

(
1 − α

β

)θ

B(ν)
K (t)αθ[1 − L(t)]θ

L(t)αθ
, (13)

ci (t) =

(
1 − α

β

)θ
νθ

i K (t)αθ[1 − L(t)]θ(∫ 1
0 νj dj

)θ

L(t)αθ

, (14)

6 The value ofν at i ∈ I will be denoted byνi .
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`i (t) = 1 − νi∫ 1
0 νj dj

[1 − L(t)], (15)

1 > L(t) ≥ 1 −
∫ 1

0 νj dj

νi
(16)

hold for all i ∈ I and all t ∈ [0, +∞).

Proof. We first proof necessity. Condition (15) follows from Lemma 1(ii) and
(5). Condition (16) follows from (15) and 0≤ `i (t) < 1. Condition (14) follows
from (7), (8), and (15). Integrating (14) overi ∈ I yields (13). Substituting (7),
(14), and (15) into (3) yields (12). Integrating (12) overi ∈ I and using (5) yields
(10). To prove (11) it will be convenient to use the variablesxi (t) = 1 − `i (t)
and X(t) = 1 − L(t). Note thatX(t) =

∫ 1
0 xi (t) di and Ẋ(t) = −L̇(t). From (15),

(8), and (7) we obtain

Ẋ(t)
X(t)

=
ẋi (t)
xi (t)

=
ċi (t)
θci (t)

− ẇ(t)
w(t)

=
ċi (t)
θci (t)

− α
K̇ (t)
K (t)

− α
Ẋ(t)
L(t)

.

Solving this equation foṙX(t) and using (9), (6), and (7) one gets

Ẋ(t) =
L(t)[1 − L(t)]

α + (1 − α)L(t)

[
r (t) − δ − ρ − α

K̇ (t)
K (t)

]

=
−L(t)[1 − L(t)]
α + (1 − α)L(t)

[
(1 − α)δ + ρ − α

C(t)
K (t)

]
.

SubstitutingC(t) from (13) into this equation one obtains (11). Thus, we
have proved the necessity of the conditions stated in the lemma. Since all steps
are reversible, sufficiency follows as well. �

3 Multiplicity of stationary equilibria

In the following two sections we deal with stationary (i.e. time-independent)
equilibria. We shall therefore omit the time argumentt whenever this is possible.
For notational simplicity we define the constantξ by

ξ =

(
β

1 − α

)θ (
α

δ + ρ

)α(1−θ)/(1−α) (1 − α)δ + ρ

δ + ρ
.

The following lemma summarizes some properties that hold in every stationary
equilibrium (whether it is homogeneous or not).

Lemma 3. (i) In every stationary equilibrium it holds that

r = δ + ρ , w = (1 − α)

(
α

δ + ρ

)α/(1−α)

,

K
L

=

(
α

δ + ρ

)1/(1−α)

,
Y
L

=

(
α

δ + ρ

)α/(1−α)

.
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(ii) In every stationary equilibrium and for all i∈ I it holds that

ki =
1
ρ

[(
1 − α

β

)θ (
α

δ + ρ

)αθ/(1−α)

(1 − `i )
θ − (1 − α)

(
α

δ + ρ

)α/(1−α)

`i

]
(17)

and

yi = ci =

(
1 − α

β

)θ (
α

δ + ρ

)αθ/(1−α)

(1 − `i )
θ. (18)

(iii) In every stationary equilibrium it holds that

B(ν) = ξL/(1 − L)θ (19)

whereν : I 7→ (0, +∞) is the function mentioned in Lemma 2.

Proof. The results stated in (i) follow easily from the stationarity assumption
ċi (t) = 0 and conditions (1), (7), and (9). The results stated in (ii) follow from
those stated in (i), the stationarity assumptionk̇i (t) = 0, and conditions (2), (3),
and (8). The condition stated in (iii) follows from the results in (i) and from (11)
upon settingL̇(t) = 0. �

The first part of Lemma 3 shows that the factor prices, the capital-labor ratio,
and the output-labor ratio are the same in all stationary equilibria. The second
part of the lemma expresses wealth, income, and consumption of householdi in
a stationary equilibrium in terms of the household’s labor supply. These relations
are also independent of which particular stationary equilibrium is considered. It is
obvious from (17) and (18) that wealth, income, and consumption are negatively
related to the labor supply. Households who provide much labor hold less capital
and have a lower income than households who provide only little labor. The third
part of Lemma 3 is merely of technical nature and will be used later.

We denote byL∗ the unique value in the interval [0, 1] which satisfies the
equation7

(1 − L∗)θ = ξL∗ (20)

and we define
L̄ = 1/(1 + ξ). (21)

Note thatL̄ < L∗ if θ ∈ (0, 1), L̄ > L∗ if θ ∈ (1, +∞), and L̄ = L∗ if θ = 1.8

In the following we shall restrict ourselves to the caseθ /= 1. To simplify the
notation we denote the open interval of all values betweenL∗ and L̄ by 〈L∗, L̄〉,
that is,

〈L∗, L̄〉 =

{
(L̄, L∗) if θ ∈ (0, 1),

(L∗, L̄) if θ ∈ (1, +∞).

Before we can prove the main result of this section we establish the following
auxiliary result.

7 The left-hand side of (20) is strictly decreasing and the right-hand side is strictly increasing.
This proves uniqueness ofL∗. Existence follows by a standard continuity argument.

8 The definitions ofL∗ andL̄ are explained in more detail in the proof of Lemma 4 and illustrated
in Figure 1. The properties mentioned in this paragraph are obvious from that figure.
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Figure 1. a Proof of Lemma 4 forθ < 1. b Proof of Lemma 4 forθ > 1

Lemma 4. Assumeθ /= 1 and L ∈ 〈L∗, L̄〉. There exists a continuum of triples
(`a, `b, λ) such that0 ≤ `a < L < `b < 1, λ = (L − `a)/(`b − `a) ∈ (0, 1),
(1 − λ)`a + λ`b = L, and(1 − λ)(1 − `a)θ + λ(1 − `b)θ = ξL.

Proof. The proof is illustrated in Figure 1. Part (a) of the figure illustrates the
caseθ ∈ (0, 1) whereas part (b) illustrates the caseθ ∈ (1, +∞). The downward
sloping parabolic curve in the figure is the graph of the function` 7→ (1−`)θ, the
upward sloping straight lineOS is the graph of̀ 7→ ξ`. The unique intersection of
the two graphs determines the value` = L∗ (see Equation (20)). The straight line
connecting the points (0, 1) and (1, 0) is the graph of the functioǹ 7→ 1− `. Its
unique intersection withOS occurs at the valuè = L̄ (see Equation (21)). Now
fix anyL ∈ 〈L∗, L̄〉 and choose a sufficiently small non-negative value`a. Find the
point onOS with ` = L (point X) and the point on the parabolic curve with` = `a

(point A). The intersection of the parabola and the straight line throughA andX
to the right ofX is calledB. It is straightforward to verify that pointB exists and
has à -coordinate smaller than 1 if̀a < ¯̀

a(L) := 1− [(1−L)/(ξL)]1/(1−θ). Point
B’s uniqueness is ensured by the parabolic shape of the curve. We denote the
`-coordinate ofB by `b. Finally defineλ = (L − `a)/(`b − `a). This construction
ensures that all conditions stated in the lemma are satisfied. Because¯̀

a(L) > 0
wheneverL ∈ 〈L∗, L̄〉, there exists a continuum of triples (`a, `b, λ) with the
desired properties. �

We are now ready to characterize the set of stationary equilibria.

Theorem 1. Assumeθ /= 1.
(i) There exists a unique homogeneous stationary equilibrium. In this equilibrium,
per-capita (and aggregate) labor supply is given by L∗.9

(ii) Every stationary equilibrium in which the per-capita labor supply is equal
to L∗ is equivalent (in the sense of Definition 2) to the homogeneous stationary
equilibrium.

9 Per-capita capital and per-capita output can be computed from the results stated in Lemma 3(i).
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(iii) For every L ∈ 〈L∗, L̄〉 there exists a continuum of non-equivalent stationary
equilibria in which per-capita labor supply is equal to L.9

(iv) There does not exist a stationary equilibrium in which per-capita labor supply
satisfies L6∈ 〈L∗, L̄〉 ∪ {L∗}.

Proof. (i) Homogeneity of an equilibrium implies that`i (t) = `j (t) for all i , j ∈ I
and, because of (15),νi = νj for all i , j ∈ I . Thus,ν must be constant which
impliesB(ν) = 1. Stationarity of an equilibrium implieṡL(t) = 0 andK (t)/L(t) =
[α/(δ + ρ)]1/(1−α); see Lemma 3(i). Together with (11) these conditions imply
that L(t) must satisfy equation (20) so thatL(t) = L∗ for all t . The values of the
other variables can easily be computed from Lemma 3 and they satisfy all the
conditions in Lemma 2. This proves statement (i).

(ii) Stationarity impliesL̇(t) = 0 andK (t)/L(t) = [α/(δ + ρ)]1/(1−α). Substi-
tuting these two properties as well asL(t) = L∗ into (11) it follows thatB(ν) = 1.
Becauseθ /= 1 this implies thatν coincides with a constant function almost ev-
erywhere. It is easy to see that this can be the case only if the equilibrium is
equivalent to the stationary homogeneous equilibrium.

(iii) Define the functionν : I 7→ (0, +∞) by

νi =

{
1 if i ∈ [0, 1 − λ),

(1 − `b)/(1 − `a) if i ∈ [1 − λ, 1],

where (̀ a, `b, λ) is specified in Lemma 4. Because of the properties stated in
Lemma 4 we have

B(ν) =
(1 − λ)(1 − `a)θ + λ(1 − `b)θ

[(1 − λ)(1 − `a) + λ(1 − `b)]θ
=

ξL
(1 − L)θ

.

Using this value forB(ν) one can easily verify thatL(t) = L andK (t) = L[α/(δ +
ρ)]1/(1−α) are constant solutions of (10) - (11). It is also straightforward to verify
that condition (16) holds. The values of the remaining variables can be computed
from (15) and Lemma 3 and they satisfy all equilibrium conditions stated in
Lemma 2.

(iv) Assume there exists an equilibrium with per-capita labor supplyL. Inte-
grating (17) overi ∈ I and using (5) one obtains

K =
1
ρ

[(
1 − α

β

)θ (
α

δ + ρ

)αθ/(1−α)

×
∫ 1

0
(1 − `i )

θ di − (1 − α)

(
α

δ + ρ

)α/(1−α)

L

]
.

Substituting this expression forK into K/L = [α/(δ + ρ)]1/(1−α) from
Lemma 3(i) yields after simplifications

∫ 1
0 (1 − `i )θ di = ξL. This condition and

(5) imply that the point (L, ξL) must be contained in the convex hull of the set
Γ = {(`, (1 − `)θ) | 0 ≤ ` < 1}. Note thatΓ is the graph of the parabolic curve
in Figure 1. Thus, (L, ξL) must be lying in the intersection of the lineOS and
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the convex hull of the parabola. This implies obviously thatL ∈ 〈L∗, L̄〉 ∪ {L∗}
and the proof is complete. �

A consequence of Theorem 1 is that the model does not predict a unique
value for the long-run per-capita output if we allow for non-homogeneous wealth
distributions. Note that by Lemma 3(i)Y = L[α/(δ + ρ)]α/(1−α) such that the
range of per-capita output levels in stationary equilibria is the interval between
L∗[α/(δ+ρ)]α/(1−α) andL̄[α/(δ+ρ)]α/(1−α). Therefore, differences between per-
capita output levels in different countries can (at least partly) be explained by
different wealth distributions. It is important to emphasize that we have assumed
that there are neither production externalities, nor increasing returns to scale
on the aggregate level, nor imperfect competition, nor any market distortions.
Theorem 1 therefore shows that none of these features (often assumed in the
new growth theories mentioned in Section 1) is necessary to explain different
GDP levels, if households have different initial wealth stocks and a labor/leisure
choice.

Example 1.To get an idea of how much variance in per-capita output levels can
be explained by the wealth distribution, we consider a simple numerical example.
Let us chooseα = 1/3, δ = 3/100, ρ = 2/100, andβ such thatL∗ = 1/3.10

Because of (20) this yieldsξ = 3(2/3)θ and, hence,̄L = 1/[1 + 3(2/3)θ]. For
example, if θ = 1/2, then the range of per-capita output levels in stationary
equilibria for these parameters isY ∈ (0.748513, 0.860663]. If θ = 2, the range
of per-capita output levels isY ∈ [0.860663, 1.10657). In both cases the variance
in per-capita output caused by different wealth distributions is substantial. For
values ofθ closer to 1, the variance becomes smaller and vanishes completely if
θ = 1 (becausēL = L∗ in this case).

At first sight, the existence of non-homogeneous stationary equilibria may
seem to be counterintuitive. After all, all households face exactly the same dy-
namic optimization problem, the same interest rate, and the same wage rate. They
differ only with respect to their initial wealth. How can it be that they find it
optimal to hold different wealth levels also in the long run? To understand this
seemingly paradoxical result, consider first the case of homogeneous equilibria.
From the familiar phase diagram in capital-consumption space we know that
optimally behaving households increase consumption and wealth (capital stock)
if the interest rater (t) − δ exceeds the time preference rateρ, and they decrease
consumption and wealth in the caser (t) − δ < ρ (c.f. the Euler equation (9)). In
the borderline case where the interest rate coincides with the time preference rate,
both consumption and wealth should optimally be kept constant. Note, however,
that this borderline case is exactly the situation that prevails in any stationary
equilibrium, also in a non-homogeneous one. Theorem 1(iii) demonstrates that
there may be situations (in fact, infinitely many of them) in which different
households have different wealth levels and find it optimal to keep their wealth
at those levels because they face an interest rate equal to their time preference

10 These parameter values are typically used in calibrations of real-business-cycle models.
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rate. So far, this intuitive explanation does not involve the endogenous labor
supply, and it is indeed true that there exists a continuum of stationary equilibria
in the model with fixed (exogenous) labor supply, too. However, if the labor sup-
ply is exogenous, all these stationary equilibria give rise to the same per-capita
output, whereas this is not true in the situation considered in this paper. To see
this, note that the output-labor ratio is the same in all stationary equilibria. If
the labor supply is fixed, the aggregate output level in a stationary equilibrium
is therefore uniquely determined. Theorem 1 shows that this result breaks down
if the labor supply is endogenous. In that case the same output-labor ratio can
occur for different output levels.

4 Stationary income distributions

It follows from Theorem 1 that the homogeneous stationary equilibrium is the
stationary equilibrium with the lowest per-capita output ifθ ∈ (1, +∞), and that it
is the stationary equilibrium with the highest per-capita output ifθ ∈ (0, 1). This
seems to indicate that the model predicts a positive relation between income
dispersion (inequality) and per-capita output if the elasticity of intertemporal
substitution is large, and a negative relation between income dispersion and output
if θ is small. In the remainder of this section we explore this question in more
detail.

There are various ways to measure income inequality or the dispersion of
the income distribution. By income distribution we mean the distribution of the
function y : I 7→ (0, +∞) with valuesyi given by (18).11 The most widely used
measure of income inequality is the Gini coefficient. The present model does
not predict an unambiguous relation between the Gini coefficientG and per-
capita output. Since in all stationary equilibria, per-capita output is proportional
to per-capita labor supply (with the factor of proportionality not depending on the
particular equilibrium), such a relation could be written in the formL 7→ G(L).
One can show thatG is multivalued, that is to a given level of per capita labor
supply (or, per capita output) there exist many different stationary equilibria with
different income Gini coefficients. It is possible, however, to determine the limits
of the Gini coefficients ifL approaches its extreme values, i.e., the boundaries
of the interval〈L∗, L̄〉. This is done in the following theorem.

Theorem 2. Assumeθ /= 1. Consider any sequence of stationary equilibria
(E(n))+∞

n=0 such that the corresponding sequence of labor supplies is(L(n))+∞
n=0

and the corresponding sequence of Gini coefficients of the income distribution
is (G(n))+∞

n=0.
(i) If limn→+∞ L(n) = L∗ then limn→+∞ G(n) = 0.
(ii) If limn→+∞ L(n) = L̄ then limn→+∞ G(n) = L̄.

Proof.(i) It can be seen from Figure 1 that, ifL(n) → L∗, then the labor supply dis-
tribution in E(n) converges to the degenerate distribution in which all households

11 Analogously, we shall talk about the labor supply distribution` : I 7→ [0, 1) or the wealth
distributionk : I 7→ R.
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provide L∗ units of labor per period. Because of (18), the income distribution
converges also to a degenerate distribution. Since the Gini coefficient depends
continuously on the underlying distribution and is obviously equal to 0 if the
distribution is degenerate, statement (i) follows.

(ii) Appealing again to Figure 1, convergence ofL(n) to L̄ implies that the labor
supply distribution inE(n) converges to a distribution in which a fraction 1−λ of
households provides no labor at all (`i = 0) and the remaining fractionλ provides
the maximal amount of labor (`i = 1). Since for this limit distribution

∫ 1
0 `i di =

L = L̄ must hold, it follows thatλ = L̄. In the corresponding income distribution
1 − λ households earn [(1− α)/β]θ[α/(δ + ρ)]αθ/(1−α) and the remainingλ
households earn 0 (see (18)). Using (21) it is straightforward to see that the Gini
coefficient of this limit distribution is̄L. �

If L /= L∗ then the labor supply distribution in a stationary equilibrium with
aggregate labor supplyL cannot be degenerate and, therefore, neither can the in-
come distribution. It follows that the Gini coefficient of the income distribution in
such an equilibrium must be positive. This means that there is income inequality.
Theorem 2 shows that, as the stationary labor supply converges to its extreme
valueL̄, the Gini index of the income distribution in any corresponding stationary
equilibrium must also converge tōL. If the stationary labor supply converges to
its other extreme, namelyL∗, the income distribution becomes more equal in the
sense that its Gini coefficient converges to 0. A complete characterization of the
set of all Gini coefficients that can occur in stationary equilibria with a given per
capita labor supplyL seems to be quite difficult. Figure 2 shows the graph of the
multivalued mappingL 7→ G2(L), whereG2(L) is defined as the set of all income
Gini coefficients in stationary equilibria with the following two properties: (i)
the per capita labor supply isL and (ii) the income distribution is a Bernoulli
distribution. Property (ii) means that there is a numberλ ∈ [0, 1] and two values
ya and yb such that the measure of the set{i ∈ I | yi = ya} is 1 − λ and the
measure of the set{i ∈ I | yi = yb} is λ. In other words, all households earn
either ya or yb whereby the fraction of households earningyb is λ. Figure 2a
shows the graph ofG2 over L ∈ 〈L∗, L̄〉 if the parameters are as in Example 1
andθ = 1/2, whereas Figure 2b shows the graph ofG2 for the same parameter
values butθ = 2. Figure 2(b) shows in particular that the Gini coefficient is not
monotonically related to the stationary labor supply. There may exist stationary
equilibria with L ∈ 〈L∗, L̄〉 and a Gini coefficient strictly larger than̄L. Since
the stationary equilibria with a Bernoulli income distribution form a subset of
all stationary equilibria, the graph ofG2 must be contained in the graph ofG. It
follows from Theorem 2 that the set of possible Gini coefficients of the income
distribution in stationary equilibria contains the interval [0, L̄]. Under the param-
eter specification of Example 1 this is the interval [0, 0.289898] if θ = 1/2 and
the interval [0, 0.428571] if θ = 2.

Income distributions can also be ranked according to second order stochastic
dominance, whereby it is useful to normalize the distributions such that they have
the same expected value. Thus, ify : I 7→ (0, +∞) is an income distribution, we
denote by ˜y : I 7→ (0, +∞) its normalization defined by
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Figure 2. a The graph ofΓ2 whenθ = 1/2. b The graph ofΓ2 whenθ = 2

ỹi =
yi∫ 1

0 yj dj
.

The following result proves that, when the (normalized) income distribution in
a stationary equilibriumE(1) dominates that ofE(2) in the sense of second order
stochastic dominance, then the per-capita output levelsY (1) andY (2) must satisfy
Y (1) ∈ 〈Y∗, Y (2)〉. Here,Y∗ denotes the per-capita output in the homogeneous
stationary equilibrium and〈Y∗, Y (2)〉 is the interval of values betweenY∗ and
Y (2).

Theorem 3. Consider two stationary equilibria E(1) and E(2) and let ỹ(1) and
ỹ(2) be the corresponding normalized income distributions. Analogously, let L(1)

and L(2) be the per-capita labor supplies in the two equilibria. Assume thatỹ(1)

dominatesỹ(2) in the sense of second order stochastic dominance. Ifθ ∈ (0, 1)
then L(2) ≤ L(1) ≤ L∗, if θ ∈ (1, +∞) then L∗ ≤ L(1) ≤ L(2). These inequalities
hold strictly if the stochastic dominance relation is a strict one.

Proof. We first show that in every stationary equilibrium∫ 1

0
ỹ1/θ

i di =
1 − L

(ξL)1/θ
. (22)

To see this, note that (15) and (18) implyyi = Dνθ
i where the constantD is

independent ofi . This implies

∫ 1

0
ỹ1/θ

i di =

∫ 1
0 y1/θ

i di(∫ 1
0 yi di

)1/θ
=

∫ 1
0 νi di(∫ 1

0 νθ
i di
)1/θ

= B(ν)−1/θ.

Combining this equation with (19) yields (22). If ˜y(1) dominates ˜y(2) in the sense
of second order stochastic dominance, then the expected value ofW(ỹ(1)) must
be smaller than or equal to the expected value ofW(ỹ(2)) for every convex
function W. Now assumeθ ∈ (0, 1). In this case the functionW(y) = y1/θ

is strictly convex and it follows therefore from (22) that (1− L(1))/(ξL(1))1/θ ≤
(1−L(2))/(ξL(2))1/θ. Since the functionL 7→ (1−L)/(ξL)1/θ is strictly decreasing
we have proved the theorem in the caseθ ∈ (0, 1). The caseθ ∈ (1, +∞) can be
proved in an analogous way. �
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5 Dynamics

So far we have focussed on stationary equilibria. In this section we derive a
few results concerning the transitional dynamics of non-stationary equilibria. We
begin by analysing the dynamics of the aggregate variablesK (t) andL(t), which
are described by the two differential equations (10) and (11).

Lemma 5. For any given measurable functionν : I 7→ (0, +∞) the system (10)
- (11) has a unique fixed point(Kν , Lν) such that Kν > 0 and Lν > 0. This fixed
point is a saddle point.

Proof. From Lemma 3(i) we know that, if (Kν , Lν) is a fixed point, thenKν/Lν =
[α/(δ + ρ)]1/(1−α) must hold independently ofν. Substituting this into (11) it is
easily found that there exist unique steady state valuesKν > 0 andLν > 0. To
prove the second statement of the lemma, let us denote by

J (ν) =

(
JKK (ν) JKL(ν)

JLK (ν) JLL(ν)

)
=

(
dK̇ (t)/dK (t) dK̇ (t)/dL(t)

dL̇(t)/dK (t) dL̇(t)/dL(t)

)∣∣∣∣∣
K (t)=Kν ,L(t)=Lν

the Jacobian matrix of system (10) - (11) evaluated atK (t) = Kν andL(t) = Lν .
We have

JKK (ν) = ρ(1 − θ) − (1 − α)δθ,

JKL(ν) =

(
α

δ + ρ

)α/(1−α){
1 − α + θ

[(1 − α)δ + ρ][Lν + α(1 − Lν)]
(δ + ρ)(1 − Lν)

}
,

JLK (ν) = (1 − αθ)[(1 − α)δ + ρ]

(
α

δ + ρ

)−1/(1−α) 1 − Lν

Lν + α(1 − Lν)
,

JLL(ν) = θ[(1 − α)δ + ρ].

The trace ofJ (ν) is ρ and the determinant is

DetJ (ν) = − (1 − α)(δ + ρ)[(1 − α)δ + ρ][1 − Lν(1 − θ)]
α[Lν + α(1 − Lν)]

.

Sinceθ > 0 andLν < 1 it follows immediately that DetJ (ν) < 0. Obviously,
this implies that the JacobianJ (ν) has one negative and one positive eigenvalue
such that (Kν , Lν) is a saddlepoint. �

Lemma 5 shows that for every given functionν and every initial stock of
aggregate wealthK0 = K (0) there exists a unique initial valueL0 = L(0) such
that the trajectory of system (10) - (11) which starts in (K0, L0) converges to
(Kν , Lν).12 Note, however, that the functionν is also endogenously determined
by the model. The following lemma is a mirror image of Lemma 5 in the sense
that it takes a path (K (·), L(·)) as given and shows that there exists a unique

12 Actually, Lemma 5 implies this property only locally, that is for initial stocksK0 sufficiently
close toKν . One could prove the global saddlepoint stability of the system by carrying out a phase
diagram analysis.
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function ν such that the equilibrium conditions (12) and (4) hold. This result
requires that the initial capital stockski 0 are sufficiently large for alli ∈ I .13

Lemma 6. Assume that the initial wealth ki 0 is sufficiently large for all i∈ I .
Let (K (·), L(·)) be any given pair of positive functions such that L(t) < 1 holds
for all t , limt→+∞ L(t) exists, andlimt→+∞ K (t)/L(t) = [α/(δ + ρ)]1/(1−α). Then
there exists a unique measurable functionν : I 7→ (0, +∞) such that conditions
(12) and (4) as well as the normalization

∫ 1
0 νi di = 1 are satisfied.

Proof. We define ˜νi : I 7→ (0, +∞) by ν̃i = νi /
∫ 1

0 νj dj . For a given tra-
jectory (K (·), L(·)), equation (12) is a linear differential equation of the form
k̇i (t) = D(t)ki (t) + E(t , ν̃i ). From the assumptions of the lemma it follows that
limt→∞ D(t) = ρ and thatE(t , ν̃i ) is strictly decreasing with respect to ˜νi . If
ν̃i is close to 0, then the unique solution of (12) diverges exponentially fast to
+∞. The rate of divergence is asymptotically equal toρ. If ν̃i is sufficiently
large, then the unique solution of (12) diverges exponentially fast to−∞ and
the rate of divergence is asymptotically also equal toρ. None of these solutions
can satisfy the no-Ponzi-game condition (4). By continuity and by the mono-
tonicity of E(t , ν̃i ) with respect to ˜νi there exists a unique value ˜νi ∈ (0, +∞)
such thatki (t) defined by (12) has a finite limit. This defines a unique function
ν̃ : I 7→ (0, +∞). Measurability of ˜ν follows from the measurability of the initial
wealth endowmentki 0 with respect toi . Thus, the lemma is proved. �

Let N denote the set of positive and measurable functions defined onI
which have the porperty

∫ 1
0 νi di = 1. The above results can be used to define an

operatorT : N 7→ N in the following way. Starting from a given function
ν ∈ N one uses Lemma 5 to define the trajectory (K (·), L(·)) as the saddlepoint
path converging to (Kν , Lν). The unique element ofN defined by this trajectory
via Lemma 6 isTν. Every fixed point of the operatorT defines a equilibrium of
the economy. Existence and uniqueness (determinacy) of an equilibrium could
therefore be studied by investigating existence and uniqueness of a fixed point
of the operatorT. Instead of elaborating on this point, we now present a result
which shows that, along every equilibrium, the ordering of the households, which
is determined by their wealth level, is constant. In other words, in this model the
rich stay rich and the poor stay poor (both in relative terms).

Theorem 4. Consider any pair of households(i , j ) ∈ I × I . If ki 0 > kj 0 then
ki (t) > kj (t) for all t ∈ [0, +∞).

Proof. Assume the contrary. Then there must existt0 ∈ (0, +∞) such thatki (t0) =
kj (t0). Since householdsi andj have the same wealth at timet0 and since they are
identical in terms of their preferences, they must behave identically from timet0
onwards. From (15) follows thatνi = νj must hold. But then the two households’

13 The reason for this additional requirement is that there may not exist an equilibrium if a household
is too indebted. For example, if one household has a large initial debt whereas all other households
have positive initial wealth then the indebted household may not be able to satisfy the no-Ponzi-game
condition (4) even if it would not consume anything at all.
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behavior is identical not only fromt0 onwards but for allt ∈ [0, +∞). This is a
contradiction to the assumption that they have different initial wealth levels.�

Despite the above result it is difficult to determine the evolution of the in-
come (or wealth) distribution over time. In particular we were not able to derive
interesting results on the wealth distribution similar to those in Chatterjee [13].

6 Concluding remarks

In this paper we have demonstrated that in a simple one-sector growth model with
endogenous labor supply there is a relation between the distribution of income
(or wealth) and the level of per-capita output. Income inequality goes along with
higher output levels if the elasticity of intertemporal substitution is larger than
1, and it goes along with lower income inequality if this elasticity is smaller
than 1. Therefore, countries with identical production technologies and identical
preferences can have different per-capita output levels if wealth is distributed
differently in each country. This is a result which, to our best knowledge, has
not yet been proved in this framework.

Whereas the specific features of our results depend on the particular functional
forms chosen in our analysis, one can replicate the general features also in other
settings. In particular it seems that neither the assumption of a Cobb-Douglas
technology nor the specific form of the utility function matters much for the
existence of a continuum of stationary equilibria with different per-capita output
levels. The dynamic properties of equilibria for more general production and
utility functions, however, are likely to change considerably. This can be expected
from the results in de Hek [14].

One parametric example for which the analysis of the present paper can easily
be repeated is the case where the utility function has the form14

U (c, `) =




c1−1/θ − 1
1 − 1/θ

− `1+β

1 + β
if θ ∈ (0, 1) ∪ (1, +∞),

ln c − `1+β

1 + β
if θ = 1.

(23)

In this case labor has a slightly different effect on utility than in our model.
Assuming that preferences are described by (23) only a positive relation between
income inequality and per-capita output can be derived. That is, the results for
this utility function resemble those for the caseθ ∈ (1, +∞) in our analysis.
This follows from the fact that, independently ofθ, the consumption rate of a
household is in equilibrium always a strictly convex function of its labor supply.

In the economy described in this paper the marginal productivity of capital
goes to 0 as the capital-labor ratio approaches infinity. Since there are no other
produced input factors, permanent growth of per-capita output at a positive rate is
not possible. One can, however, easily extend the model to include endogenous
growth. The simplest way to do this is to introduce technological progress via

14 This utility function (with θ = 1) has been used for example by Benhabib and Farmer [8].
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learning-by-investing in the sense of Arrow [4] and Romer [25]. In such an ex-
tension one would naturally be interested in balanced growth paths, i.e. equilibria
along which all endogenous variables grow at constant (but not necessarily iden-
tical) rates. In the parametrization that was chosen in the present paper, balanced
growth can only occur ifθ = 1, which is exactly the borderline case between
a positive and a negative relation between income inequality and output. Using
the utility function (23), balanced growth can also only occur ifθ = 1 but, in
that case, there is a positive relation between income inequality and growth of
per-capita output. More specifically, there exists a continuum of balanced growth
paths with different growth rates of per-capita output. The relation between the
equilibrium growth ratesand the equilibrium income distribution resembles the
relation between equilibriumoutput levelsand the equilibrium income distribu-
tion described in Theorems 2 and 3 above for the caseθ ∈ (1, +∞). Details of
this analysis can be found in Sorger [26].

It is also possible to include a government in the model of the present pa-
per and to study issues concerning taxation and redistribution. In Sorger [27]
the government levies a proportional income tax and distributes the entire tax
revenue to the households in the form of lump-sum transfers. The government’s
budget is balanced in every point of time. The qualitative properties of the rela-
tion between the per-capita output level and inequality are not changed by this
modification. Moreover, it can be shown that in the case of a positive relation
between output and inequality (θ > 1), increasing the tax rate cannot reduce in-
come inequality without reducing per-capita output at the same time. For the case
θ < 1, the situation is more complicated and the possibility of growth-enhancing
and inequality-reducing tax policies depends in a non-trivial way on the model
parameters.

The model we have used is the deterministic, continuous-time version of
a standard real-business-cycle model (see, e.g. Romer [24, Chapter 4]). Our
results suggests that real-business-cycle models with heterogeneous households
might have solutions which differ in a substantial way from the solutions in
the homogeneous household case. The business cycle characteristics of income
distributions have only recently been studied by Castañeda et al. [12], whereby
their theoretical models do not allow for endogenous labor supply. We think that
the generalization of this approach to a model with endogenous labor supply is
an interesting topic for future research.
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