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Summary. We study the implications of random discount rates of future gen-
erations for saving behavior and capital holdings in a steady state competitive
equilibrium with heterogeneous population. A well-known difficulty in determin-
istic economies with heterogeneous households is that in steady state only the
most patient households hold capital. In this paper we state conditions under
which this random discounting is sufficient for households other than the most
patient ones to save. We thus provide a simple and natural way of overcoming
the aforementioned difficulty.
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1 Introduction

The analysis of infinite-horizon, deterministic, dynamic models in which individ-
uals face borrowing constraints shows that in steady-state equilibrium only the
most patient households hold capital. All other households have wages as their
only source of income (Becker, 1980). This conclusion is contradicted by the
most casual observations. To overcome this difficulty Becker and Zilcha (1997)
analyze the saving behavior and the ownership of capital in an economy with

? Work on this paper began during a visit of the second author to the Department of Economics,
Johns Hopkins University and was completed during a visit of the first author to the Berglas School
of Economics, Tel Aviv University. We are grateful to both institutions for their hospitality and to
an anonymous referee for useful comments.
Correspondence to: E. Karni



552 E. Karni and I. Zilcha

stochastic aggregate production. The random shocks to aggregate output imply
that interest rate, the wage rate and, consequently, income are random variables.
They show that, in stationary equilibrium, precautionary savings induces capital
holdings by households other than the most patient.

In the present paper we examine the steady-state saving behavior and the
ownership of capital when the rates of discount implicit in the preferences of
future generations are random. We assume that these idiosyncratic variations in
tastes average out in the aggregate so that the aggregate capital stock, output,
wages and interest rates arenonrandom.We show that, in general, random varia-
tion in tastes is sufficient to assure that, in stationary equilibria, each generation’s
savings and asset holding are not restricted to households with the highest dis-
count factor. We thus provide a way of overcoming the difficulty posed by the
analysis of the deterministic model which is both simple and natural.

The apparent shortcomings of representative agent models has increased, in
recent years, the interest in dynamic models with heterogenous agents (e.g., Kir-
man, 1992). For example, in macroeconomic models, the interest in stochastic
heterogenous households economies stems from the persistent inconsistencies be-
tween the solutions attained in complete markets representative agent stochastic
equilibria (based on the Brock-Mirman, 1972, framework) and the observations
from macroeconomic and individual consumption data (Aiyagari, 1994, 1995).
Incorporating precautionary savings and liquidity constraints into a life cycle
model results in a framework which is more compatible with the existing em-
pirical evidence (Deaton, 1992). We see the contribution of the present paper as
a further step in this direction. In particular, our analysis emphasizes the impor-
tance of the variability of the rate of time preference, especially when we consider
future generations (see Laibson, 1997; Schelling, 1995; Weitzman, 1994, 1998)
and its impact on the economy.

Our main idea is rather simple. In steady-state equilibrium the aggregate
capital stock is constant. However, in each generation there are individuals that
inherit capital and whose rate of time preference is sufficiently high that they
dissave. Therefore, to sustain the steady-state equilibrium, it is necessary that
individuals whose rate of time preference is low save and that the resulting capital
accumulation is sufficient to make up the decumulation of the capital stock by
individuals of the first type. If the set of individuals with the lowest rate of time
preference (the most patient households) is small they are unable, by themselves,
to create sufficient additional capital to maintain the steady-state equilibrium. This
implies that the interest rate must reach a level that will induce positive levels
of saving by individuals whose rate of time preference is not the lowest. This
logic implies that, in general, positive saving should take place among individuals
with different rates of time preference. In addition, the stochastic process itself
implies that, in each generation, capital is held by all types of individuals and that
it is possible that individuals that have the same rate of time preference display
different saving behavior. More specifically, given a rate of time preference, it is
possible that individuals who inherit large fortunes dissave while individuals who
inherit small fortunes save. We also show that the differences among discount
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factors play a role in determining which individuals save and which individuals
dissave in a stationary equilibrium.

We would like to emphasize that our objective is limited to developing suf-
ficient conditions for the existence of saving in steady-state equilibrium among
individuals with different discount rates. Clearly, the actual process of capital
accumulation is more complicated and involves additional factors not modeled
in this paper.

The remainder of paper is organized as follows: The model appears in Sec-
tion 2. In Section 3 we discuss the saving behavior of households who differ in
their current rate of time preference in stochastic stationary equilibria. Concluding
remarks appear in Section 4. The Appendix contains the proofs.

2 The model

2.1 Preliminaries

Consider an infinite horizon, discrete-time, one-good economy consisting of a
sequence of generations and suppose that in every generation each individual
belongs to a distinct dynasty. Individuals in this economy live for one period
during which they work, consume, and save. At the end of the period each
individual’s saving is bequeathed to a (single) offspring. There is continuum of
dynasties represented by the unit interval [0, 1]. Denote byGt the set of all the
individuals living in periodt and letω ∈ [0, 1] denote the name of a dynasty.
Since there is no population growth,Gt is time invariant and may be identified
with [0, 1] . Generationt ’s member of dynastyω is denotedω ∈ Gt .

In every generation individual preference relations are defined on the infinite
“downstream” consumption corresponding to their dynasties. To formalize this
idea assume that, for eachω ∈ Gt , the discount factor takes one of a finite
number of values,{δ1, δ2, ..., δn} ≡ D , where 1> δ1 > δ2 > ... > δn > 0 and
n > 2. Let ∆ = Π∞

−∞Dt , whereDt = D for all t . Elements of∆, denoted by
δ (ω) , ω ∈ [0, 1] , describe the dynastic evolutionary path of the discount factors
and δt (ω) ∈ D , the t th coordinate ofδ (ω) , is the discount factor ofω ∈ Gt .
We assume thatδ(ω) is a sequence of stochastically independent and identically
distributed random variables. Formally, the random variables{δt (ω)}∞

t=−∞ are
distributed like a random variablẽδ, for all t andω ∈ Gt . For eachδ (ω) ∈ ∆,
we denote bŷδt (ω) = (....δt−2 (ω) , δt−1 (ω)) and δt (ω) = (δt (ω) , δt+1 (ω) , ...),
respectively, the “history” and a “future” at timet of dynastyω.

A cylinder in ∆ is a subset of∆ of the form C = Π∞
−∞Cj , whereCj ⊆ D

for all j and Cj = D except for finite number ofj s. Let F be the Borelσ-
field generated by the set of cylinders in∆. Denote byF k the Borelσ- field
generated by cylinder sets in∆ with Cj = D for all j > k (to be denoted
by ∆k), namely all sequencesδ(ω) which depend upon histories up to datek
only. The distribution ofδ̃ induces a probability measure,µ, on the Borelσ-
field F . Let µt be the probability measure induced byµ on ( ∆t , F t ). Also
denote byZt the set of allF t−measurable functions defined on∆ into R. Let
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C(δ̂t (ω), .) ⊂ ∆ be aF −measurable set containing all elements in∆ such that
δ (ω) = (δ̂t (ω) , ....). Let T be a shift operator on∆ defined by:T (δ)k = δk+1 for
all k and allδ ∈ ∆. Under our assumptionsT andT−1 are measure preserving
(Breiman, 1968, Proposition 6.18) andTκ(δ̂t (ω) , δt (ω))t , k = 1, 2, ..., describes
the evolution of the discount factors of dynastyω from periodt onwards. Denote
by F the set ofF -measurable, real-valued functions on∆ and defineT̂ : F → F
by T̂ (f ) (δ) = f (T (δ)) for all f ∈ F andδ ∈ ∆.

Generationt ’s member of dynastyω is endowed with the history-dependent
quantity, bt−1(δ(ω)), where bt−1 ∈ Zt−1, of a single good received from his
parent and one unit of labor. The good (wheat) may be consumed or used as
capital in the production process.

Given a dynastic history,̂δt (ω), the corresponding transfer,bt−1(δ̂t (ω), .),
and the current realization of the random discount factor,δt (ω) , generation
t ’s member of dynastyω chooses his current consumptionct (ω) and, thereby,
the level of savingbt which depends onbt−1(δ̂t (ω), .) and δt (ω) ; in partic-
ular, bt ∈ Zt . In addition, he makes contingency consumption plans for the
periods t + 1, t + 2, ... that depend on the evolution of the discount factors in
subsequent generations. To formalize this idea letΓ : R → R be a corre-
spondence whose values,Γ (b) , describe the feasible bequests values of the
next period if the current endowment isb. Then, given the dynastic history,
δ̂t (ω), and the corresponding bequest,bt−1(δ̂t (ω), δt (ω)), a consumption-saving
plan as of period tof ω ∈ Gt is a sequence ofF t+k−measurable functions
bt+k : C(Tk(δ̂t (ω) , δt (ω))) → R, k = 1, 2, .... representing the intergenerational
transfer that is chosen in periodt + k if the dynastic history from periodt to
period t + k is given by{Tt+j (δ̂t (ω) , δt (ω))t}k

j =1. A consumption saving plan as

of period t of ω ∈ Gt is said to befeasible given the bequest bt−1(δ̂t (ω), .) if
bt+k(Tk(δ̂t (ω) , δt (ω))) ∈ Γ (bt+k−1(Tk(δ̂t (ω) , δt (ω)))) for all k = 1, 2, ..., .

In each generation individuals choose their consumption and bequest (i.e.,
saving) as part of a feasible consumption-saving plan that maximizes the (ex-
pected) sum of discounted utilities from current consumption and the consump-
tion of all forthcoming generations. In other words, eachω ∈ Gt evaluates the
future consumption streams (ct , ct+1, ...) by:

∞∑
τ=t

ξt,τ (ω) u (cτ ) ,

where u (.) is a utility function, ξt,τ is defined for t ≤ τ by ξt,τ (ω) =∏τ−1
k=t δk(ω) and ξt,t (ω) ≡ 1, and cτ denotes the consumption ofω ∈ Gτ .

We assume throughout thatu (.) is monotone increasing, strictly concave and
twice differentiable, and thatu′(0) = ∞ andu′(∞) = 0.

Given bt−1(δ̂t (ω), .) the set of feasible consumption streams available toω ∈
Gt depends on the wage rates,w0 = (wt )

∞
t=0 , and the interest rates,r 0 = (rt )

∞
t=0.

In other words, givenbt−1(δ̂t (ω), .) and δt (ω) individual ω ∈ Gt chooses the
consumption-saving plan{bτ (.)}∞

τ=t , where eachbτ ∈ Zτ , so as to maximize his
expected utility which is given by:
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V
(

bt−1

(
δ̂t (ω), .

)
, δt (ω) ; w0, r 0

)
=

u
(
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(
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))
+ δt (ω)

∫
C
(
δ̂t (ω),.

) ∞∑
τ=t+1
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(

cτ

(
δ̂τ (ω), .

))
dµ (δ(ω)),

subject to the constraints: For allτ = t , t + 1, t + 2, ...

cτ

(
δ̂τ (ω), .

)
= (1 + rτ )bτ−1

(
δ̂τ (ω), .

)
+ wτ − bτ

(
δ̂τ+1(ω), .

)
≥ 0,

bτ

(
δ̂τ+1(ω), .

)
≥ 0, cτ

(
δ̂t (ω), .

)
≥ 0.

Note that the assumption that all individuals in each generation have the same
utility function but may differ in their rate of time preference, introduced to
simplify the exposition, strengthens the results below.

Firms in this economy produce a single good using capital and labor and are
competitive. We take the production technology to satisfy the usual neoclassical
assumptions. It is represented by a constant returns-to-scale, increasing, concave
and continuously differentiable aggregate production function,F (K , L), where
K denotes the aggregate capital stock andL denotes the aggregate supply of
labor. Assume that each factor is essential (i.e.,F (0, L) = F (K , 0) = 0,) and that
FK > 0, FL > 0, FKK < 0, FLL < 0, FKL > 0, FK (∞, L) = 0, FK (0, L) = ∞.
The capital stock depreciates completely every period. Since the supply of labor
is inelastic and there is no population growth the aggregate supply of labor,L̄,
is constant. We shall writef (K ) = F (K , 1).

2.2 Consumption-saving behavior

For the purpose of our analysis the individual optimization problem described
in subsection 2.1 may be simplified due to the fact that, in each period, the
relevant aspects of each dynastic history is summarized by the bequest. Thus,
without risk of ambiguity we occasionally writebt (ω) instead ofbt (δ̂t+1(ω), .).
Assuming that individuals are price takers the problem of choosing an optimal
consumption-saving plan faced by individualω ∈ G0, given the transfer received
from his parent,b−1(δ̂0(ω), .), the realization of his discount rate,δ0 (ω) , and the
current and future wage rates and interest rate (w0, r 0) may be stated as follows:
Choose (cτ (δ(ω)))∞τ=0 , cτ ∈ Zτ for all τ , so as to maximize

u (c0) + δ0 (ω)
∫

∆0

∞∑
τ=1

ξ1,τ (ω)u (cτ ) dµ
(
δ̂0(ω), δ1

)
(2.1)

subject to

cτ = (1 + rτ )bτ−1(ω) + wτ − bτ (ω) ≥ 0, (2.2)

bτ (ω) ≥ 0, cτ (ω) ≥ 0 , τ = 0, 1, 2, ...
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Assuming that (w0, r 0) are bounded (a property that holds in equilibrium
under our assumptions) the solution for the optimization problem (2.2)-(2.3)
exists and is unique. Henceforth we denote this solution by (c∗

t , b∗
t )∞t=0. Note

that, in the deterministic case (i.e., the discount factor is nonrandom for each
dynasty) our model generalizes that of Becker (1980) and Becker and Foias
(1987).

The analysis below makes use of the value function corresponding to the
optimization problem (2.1)-(2.2). Givenbt−1(ω), δt (ω) and (w0, r 0) define, for
eacht ≥ 0 andω ∈ Gt ,

Vt (bt−1(ω), δt (ω); w0, r 0)

= Max

{∫
∆t

∞∑
τ=t

ξt,τ u(cτ (ω))dµ (δ(ω)) | (2.2) holds for allτ ≥ t

}
(2.3)

Under our assumptions onu (.) Vt is well-defined. Moreover it is mono-
tone increasing and strictly concave function ofbt−1. Sincew0 andr 0 are fixed,
henceforth, when there is no room for ambiguity, we suppress them and write
Vt (bt−1, δt ). Given the solution to the problem (2.1)-(2.2), (c∗

t )∞t=0, and the corre-
sponding bequests (b∗

t )∞t=0, we use the Bellman equation to rewrite equation (2.3)
as follows:

Vt (b
∗
t−1(ω), δt (ω)) = u(c∗

t (ω)) + δt EVt+1(b∗
t (ω) , δt+1(ω)), (2.4)

whereb∗
t (ω) = (1+rt )b∗

t−1(ω)+wt −c∗
t (ω) andE is the time invariant expectation

operator with respect to the distribution ofδt+1 (ω) (which is distributed likeδ̃).

2.3 Competitive equilibrium

Define competitive equilibrium, CE, from given initial conditions.

Definition 1. Given some initial endowments,{b−1(ω)}ω∈[0,1] , and discount fac-
tors, {δ0(ω)}ω∈[0,1] , {(b∗

t (ω), c∗
t (ω))∞t=0; (w∗

t , r ∗
t )∞t=0} , is a competitive equilib-

rium if:

(i) Given (w0, r 0), b−1(ω), and δ0(ω), {(b∗
t (ω) , c∗

t (ω))}∞
t=0 is the solution to

(2.1)-(2.2) for almost allω ∈ G0. Moreover, b∗t (ω), c∗
t (ω) ∈ Zt for all t.

(ii) The aggregate capital stock at date t, denoted Kt , equals the aggregate sav-
ings at date t− 1, i.e.,

Kt =
∫

∆

b∗
t−1(δ(ω))dµ(δ(ω)) t = 0, 1, 2, .... (2.5)

(iii) Given the aggregate capital stock in date t, Kt , the interest rate r∗t and
wage ratew∗

t are given by the marginal product of capital and the marginal
product of labor, respectively, i.e.,
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(1 + r ∗
t ) = f ′(Kt ), t = 1, 2, ... (2.6)

and
w∗

t = f (Kt ) − Kt f
′(Kt ), t = 1, 2, ... (2.7)

Note that labor income is equal across individuals since they are all endowed
with the same amount of labor.

A competitive equilibrium isstationary, or a steady-state, if the optimal
consumption-saving plan is generated by some fixed functions, namely, for some
functionsb∗ and c∗ in Z0, b∗

t (ω) = b∗(Tt (δ (ω))) and c∗
t (ω) = c∗(Tt (δ (ω))) for

all ω ∈ [0, 1] and, hence, for allt , w∗
t = w∗, r ∗

t = r ∗. This definition uses the
fact that the only relevant aspect of a dynastic history is the current transfer.

Definition 2. A steady-state(or a stationary CE) is a pair of functions c∗, b∗ in
Z0 and a pair of numbers(w∗, r ∗) such that the following is a competitive equi-
librium: For all t , (a) c∗

t (δ (ω)) = c∗(Tt (δ (ω)) ), (b) b∗
t (δ (ω)) = b∗ (

Tt (δ (ω))
)
,

(c) wt = w∗, and (d) rt = r ∗.

Notice that the value function in steady-state is defined as follows:

V
(
b∗ (

T−1 (δ (ω))
)
, δ0 (ω) ; w∗, r ∗) = E

∞∑
t=0

ξ0,t (ω) u
(
c∗ (

Tt (δ (ω))
))

.

Theorem 1.Under the above assumptions there exists a steady-state competitive
equilibrium.

The uniqueness of the steady-state equilibrium involves two arguments: The
first concerns the uniqueness of the invariant distributions of bequest and con-
sumption, and the second the uniqueness of the steady state capital stock. The
uniqueness of the invariant distribution functionsb∗(.) andc∗(.) , is guaranteed
by the assumptions in the hypothesis of Theorem 1 (see the proof). The unique-
ness of the steady-state capital stock requires additional restrictions. For instance,
to guarantee the uniqueness of the fixed point capital stockK we need to assure
that the mapping describing the evolution of the capital stock is monotone non-
decreasing and that some “mixture” property of this process holds as well (see,
for example, Theorem 12.12 in Stokey and Lucas, 1989). Further study of this
issue is beyond the scope of this paper.

3 Stationary saving behavior

To study the properties of stationary CE we begin by characterizing the stationary
consumption behavior. Letw∗ and r ∗ denote steady-state equilibrium wage and
interest rates. Then, using equation (2.4), we can derive a stationary optimal
consumption function. Write,

V (b, δi ; w∗, r ∗) = max
0≤c≤(1+r ∗)b+w∗

{
u(c) + δi EV

[
(1 + r ∗)b

+w∗ − c, δ̃; w∗, r ∗]} (3.1)
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Note that the right-hand side of equation (3.1) is a strictly concave function
of c. Thus, for each givenb ≥ 0 the maximum is attained at somec∗ and it is
unique. The optimal consumption function,g, is defined by:

c∗ = g(b, δi ; w
∗, r ∗) (3.2)

The optimal saving function,H , in this stationary equilibrium is defined by:

H (b, δi ; w∗, r ∗) = b(1 + r ∗) + w∗ − g(b, δi ; w
∗, r ∗).

Sincew∗ and r ∗ are fixed we suppress them in the sequel.

Lemma 1. For a given b> 0 andδi ∈ D , V1(b, δi ) = ∂
∂b V (b, δi ) exists and

V1(b, δi ) = (1 + r ∗)u′(g(b, δi )). (3.3)

The proof of Lemma 1 follows the same arguments as in Mirman and Zilcha
(1975, Lemma 1) and is omitted.

If c∗ < (1 + r ∗)b + w∗ (i.e., the optimal level of saving is positive) then
differentiating equation (3.1) and using (3.3) we obtain fori = 1, ..., n,

u′(g(b, δi )) = δi (1 + r ∗)Eu′(g((1 + r ∗)b + w∗ − g(b, δi ), δ̃ )). (3.4)

If c∗ = (1 + r ∗)b + w∗ (i.e., boundary solution) the equality in equation (3.4)
is replaced by inequality≥ .

Next we derive some properties of the optimal consumption function,g(b, δi ),
using (3.4). In particular we show that, regardless of the rate of time prefer-
ence, both consumption and saving increase with the level of bequest received.
Moreover, except of the case in which individuals consume their entire income,
consumption is a decreasing function of the discount factor.

Proposition 1. Given(w∗, r ∗) then, under our assumptions:

(a) g(b, δi ) is strictly monotone increasing in b and H(b, δi ) is monotone increas-
ing in b, for all δi .

(b) Unlessg(b, δ) ≡ b(1 + r ∗) + w∗, g(b, δ) is monotone decreasing inδ.

Remark 1.By Proposition 1(a)H (b, δi ) is monotone increasing inb and by
Proposition 1(b) it is monotonic increasing inδi . Thus, except of the case in
which individuals consume all their income, we have:

H (b, δ1) > H (b, δ2) > ... > H (b, δn).

To present our next result we introduce the following additional notations
and definitions: For eacht , let

(
Ai ,t

)n

i =1
be a partition of[0, 1] where,

Ai ,t = {ω ∈ Gt | δt (ω) = δi }.
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Given a steady state (c∗, b∗; w∗, r ∗) let b̄i ,t the average transfer received by
individuals of generationt with δt (ω) = δi . This is equal, for all i, (due to the i.i.d.
assumption about the random discounting) to the average transfer to generation
t , denotedbt . Similarly, let b̄∗

t be the average transfer made by generationt to
generationt + 1 (i.e., b̄∗

t =
∫

H (b∗(Tt (δ(ω)))dµ(δ(ω))). Next observe that, since
the stochastic processδt (ω), ω ∈ Gt , is i.i.d across dynasties and over time, we
haveb̄i ,t = b̄∗

t = b̄∗, for all i and t .
Denote byb̂i ,t the average transfer that individuals who drawδi in period t

(i.e., members of dynastiesω belonging toAi ,t ) bequeath to their offsprings in
period t . Formally,

b̂i ,t =
∫

Ai ,t

H (b∗(δ̂t (ω)), δi , δ
t+1 (ω))dµ((δ̂t+1(ω), .)). (3.5)

Next we show that, in each generation, individuals with the highest discount
factor transfer on average more than they received from their parents, and indi-
viduals with the lowest discount factor transfer less than they received from their
parents. Formally, assuming thatn > 1,

Proposition 2. In a steady statêb1,t > b̄∗ > b̂n,t holds for all t.

It is worth noting the differences in steady-state saving behavior between the
deterministic models and the present stochastic model. In the deterministic model
(e.g., Becker and Foias, 1987), given the steady state wage rate and interest rate,
the saving functionb∗, satisfies the following:

(a) H (b∗, δ1) = b∗.
(b) H (b, δi ) < b for b > 0 andH (0, δi ) = 0, i = 2, 3, ..., n.

Proposition 2 establishes that (a) does not hold in our model. In other words,
it is not true that in any given period individuals that have the highest discount
factor transfer to their respective offspring the exact amount of capital they
inherited from their parents. Theorem 2 below asserts that (b) may not hold either.
Put differently, not all the saving in any given generation is done by members
of the dynasty with the highest discount factor. The proof of this assertion is
based on the fact that, in our model, the steady-state rate of interest,r ∗, satisfies
(1 + r ∗)Eδ̃ > 1. Hence, unlike in thedeterministicmodel in which the equality
(1 + r ∗)δ1 = 1 holds in steady-state and, consequenlty,(1 + r ∗) δ2 < 1, in
the present model it may well be the case that(1 + r ∗) δ2 > 1. Consequently,
individuals in Gt whose discount factor isδ2 may save. The following Lemma
formalizes this feature of our model.

Lemma 2. Given a steady-state equilibrium,(c∗, b∗; w∗, r ∗) , we have(
1 + r ∗) Eδ̃ > 1.
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In addition to playing a key role in the proof of Theorem 2 the inequality
in Lemma 2 is analogous to the inequality (for a representative agent with-
out random discounting) that is used in Deaton’s (1992) study of consumption
behavior.1

Theorem 2.Let {δi }n
i =1, n ≥ 3, be the given set of discount factors. Then in each

of the following cases individuals belonging to dynasties in A2,t are net savers:

(a) if Pr
[
A1,t

]
is sufficiently small,

(b) if Pr
[
A1,t

]
is not too large andδ2 is sufficiently close toδ1.

Remark 2.Theorem 2 implies that, in general, asset accumulation in any given
period is not confined to the most patient individuals. If Pr[A1,t

⋃
A2,t ] is suffi-

ciently small, additional types of individuals will be included in the population
which has net positive saving. Notice that this claim is stronger than just showing
that some individuals withδi , i ≥ 2, have positive capital holdings in steady-
state equilibrium, which in our model, is an immediate implication of the random
process governing the evolution of the discount factors.

4 Concluding remarks

In this paper we examined the implications of random rate of time preference
for saving behavior and capital accumulation in steady-state competitive equilib-
rium. We developed a framework in which individuals face only one source of
uncertainty, namely, the time preference of future generations. We showed that
this is sufficient to guarantee that saving takes place among households other
than the most patient ones. Our analysis is based on the assumption that the
discount factors of future generations are independent and identically distributed
random variables. A widely held view of human nature suggests that rich fami-
lies “spoil” their children. If being spoiled is tantamount to being impatient then
the random process governing the evolution of the rates of discount will have
a regressive factor. High rate of discount will lead to accumulation of wealth
which increases the probability of low discount rate of future generations. Thus,
the observed rates of discount will display negative correlation. We conjecture
that this tendency will not alter our conclusions.

The main thrust of this paper was the study of the effect of random discount-
ing on saving behavior. In the process we established the existence of steady-state
equilibrium. We did not investigate the uniqueness of this equilibrium since this
issue is secondary to the main point of this paper. We believe, however, that under
mild assumptions regarding consumer preferences the steady-state equilibrium is
unique.

1 We owe this observation to our referee.
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Appendix

(A.1) Proof of Theorem 1.We shall not spell out all the minor details in this
proof. By our assumptions about the production function there exists a constant
M ∈ (0,∞) such thatF (M , 1) = M . Hence for allK > M we haveF (K , 1) <
K . Consider capital stocksK ∈ [0, M ]. For eachK in this interval there is
a corresponding interest rater (K ) and wage ratew(K ). Denote the function
H (b, δi , w(K ), r (K )) by H K (b, δi ). We shall chooseM large enough such that
for eachK > M

2 andb > M we haveH K (b, δi ) < b.
To simplify the notations, instead of defining the bequest function,H , on D

we define it directly on[0, 1] . Choose a functionb0(ω) such thatb0(ω) ∈ [0, M ]
a.s. andEb0(ω) = K . Define the following stochastic process staring from this
b0(ω) :

bt+1(ω) = H K [bt (ω), δt+1(ω)], t = 0, 1, 2, ... (A.1)

Since eachδt+1(ω) = δ̃ the existence of invariant distribution for this type
of dynamic stochastic process of our model follows from Stokey and Lucas
[(1989), Theorem 12.10.; see also Razin and Yahav (1979)]. This process maps
functions fromC [0, M ] into itself. Thus, for the givenK , let Ft (.) be the c.d.f.
of bt (ω), defined by the process (A.1),t = 0, 1, 2, ... then this sequence of c.d.f.’s
converges uniformly on [0, M ] to someF∗(.) as t → ∞ . Hence there exists
someb∗

K : [0, 1] → [0, M ] which is mapped into itself by the dynamic process
described above. By our assumptions we have :bK (ω) ≤ M for all ω.

There exists someM ∗ > 0 such that for any 0< K < M
2 and any 0< b <

M ∗ we have:g(b, δn, w(K ), r (K )) < b (since asK declinesw(K ) declines while
r (K ) increases). Thusin this range for K and b we have:H (b, δi ) > 0 for
all i . Moreover, if M ∗ is sufficiently small there exists someε∗ >0 such that :
H (b, δi ) ≥ b for 0 < b < ε∗ for i = 1, 2, ....., n. It is easy to see that this implies
that for any 0< K < M ∗ the fixed point corresponding to the above process
H K , denoted byb∗

K (ω) , is different from 0.
It can be shown that there exists a unique invariant probability distribution

corresponding to eachb∗
K (ω). This follows by direct verification of all the con-

ditions in Proposition 1 in Razin and Yahav (1979).
Consider now the mappingφ :[0, M ∗] −→ [0, M ∗] defined as follows:

φ(K ) =
n∑

i =1

∫
Ai

H K (b∗
K (ω), δi )dµ(δ(ω))

where Ai = {ω | δ0(ω) = δi }, i = 1, 2, ..., n. We claim that the mappingφ is
continuous on [0, M ∗]. To verify this claim one needs the following observa-
tions: The optimal consumption functiong(b, δi ; w, r ) is a continuous function
of w and r . Since 1 +r = f

′
(K ) and w = f (K ) − Kf

′
(K ) this implies that

g(b, δi ; w, r ) is continuous inK . Hence,H K (b, δi ; w, r ) is a continuous function
of K on [0, M ∗] . By Brouwer’s fixed point theorem there exist̂K such that
φ(K̂ ) = K̂ . In particular, the invariant function for the stochastic process in (A.1)
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b∗(.) which corresponds tôK satisfies :
∫ 1

0 b∗(ω)dω = K̂ . Thus, the aggregate
intergenerational transfer equals the aggregate capital stock and, at the same time,
the stationary wage rate and the interest rate correspond toK̂ . Now, it is clear
that a steady state witĥK and b∗(.) exists. Moreover, starting from b0(ω) > 0
a.s. the above arguments imply thatK̂ > 0. �
(A.2) Proof of Proposition 1.(a) If g(b, δi ) = b(1 +r ∗) +w∗, then it is clear that it
is increasing inb. Assume, therefore, thatg(b, δi ) < b(1+r ∗)+w∗. Thus equation
(3.4) holds. By the strict concavity ofV in b, V1 is a decreasing function ofb
for eachδi . Sinceu′ is a decreasing function, equation (3.3) implies thatg(b, δi )
is strictly increasing inb.

To show thatb(1 + r ∗) − g(b, δi ) increases inb as well (unlessg(b, δi ) ≡
b(1 + r ∗) + w∗) we use equation (3.4). Suppose thatb′ > b and (1 +r ∗)b′ −
g(b′, δi ) ≤ (1 + r ∗)b − g(b, δi ). Since g(b′, δi ) > g(b, δi ) for all δi and u is
concaveu′(g(b′, δi )) < u′(g(b, δi )), while Eu′(g((1 +r ∗)b′ +w∗ − g(b′, δi ), δ̃)) ≥
Eu′(g((1 + r ∗)b + w∗ − g(b, δi ), δ̃)).These inequalities contradict equation (3.4).
This completes the proof of part (a).

(b) Suppose thatδ′
i > δi while g(b, δ′

i ) > g(b, δi ). Thus,

u′(g((1 + r ∗)b + w∗ − g(b, δ′
i ), δj )) ≥ u′(g((1 + r ∗)b + w∗ − g(b, δi ), δj ))

for all j = 1, ..., n with strict inequality for somej . Hence,

Eu′(g((1 + r ∗)b + w∗ − g(b, δ′
i ), δ̃)) > Eu′(g((1 + r ∗)b + w∗ − g(b, δi ), δ̃)).

But δ′
i (1 + r ∗) > δi (1 + r ∗). Hence, if equation (3.4) holds with equality for

δi then it does not hold forδ′
i since the right-hand side is larger forδ′

i while the
left-hand side is smaller forδ′

i .
If g(b, δ′

i ) = b(1 + r ∗) + w∗ then g(b, δi ) = b(1 + r ∗) + w∗, by the argument
above,g(b, δ) is constant inδ. �
(A.3) Proof of Proposition 2.Suppose that̂b1,t ≤ b̄∗ for somet (and hence for
all t). Then, sinceb̄∗ > 0, Remark 1 implies that̂bi ,t < b̄∗, i = 2, 3, ..., n. But,
in steady state,̄b∗ =

∑n
i =1 b̂i ,t Pr(δ̃ = δi ). A contradiction. A similar argument

applies to the second inequality.�
(A.4) Proof of Lemma 2.To begin with observe that, by definition of the optimal
saving function we have:

b∗ (δ (ω)) = H
(
b∗ (

T−1(δ (ω)), δ0 (ω) ; w∗, r ∗)) .

Using these notations and equations (3.3) and (3.4) we can write, for steady state,

V1
(
b∗(T−1(δ (ω)), δ0 (ω)

)
= δ0 (ω)

(
1 + r ∗) E1V1

(
H (b∗(T−1(δ (ω)), δ0 (ω)), δ̃

)
which holds almost surely. Taking expectations on both sides of the last equation
conditional ont = 0 we get,

E0V1
(
b∗(T−1(δ (ω)), δ0 (ω)

)
=
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E0

[
δ0 (ω)

(
1 + r ∗) E1V1

(
H (b∗(T−1(δ (ω)), δ0 (ω)), δ̃

)]
But the last expression is equivalent to:

(
1 + r ∗) E0δ0 (ω) E0V1

(
H (b∗(T−1(δ (ω)), δ0 (ω)), δ̃

)
+

Cov
[
δ0 (ω) , E1V1

(
H (b∗(T−1(δ (ω)), δ0 (ω)), δ̃

)]
.

Since H (., .) is monotone increasing in both arguments andV1(·, ·) is de-
creasing in its first argument the covariance in the equation above is negative (or
zero in the case of a corner solution.) Thus,

E0V1
(
b∗(T−1(δ (ω)), δ0 (ω)

)
<

(
1 + r ∗) E0δ0 (ω) E0V1(H (b∗(T−1(δ (ω)), δ0 (ω)), δ̃). (A.2)

But T andT−1 are measure preserving hence,

E0V1
(
b∗(T−1δ (ω)), δ0 (ω)

)
= E0V1

(
b∗(δ (ω)), δ̃

)
. (A.3)

Thus,(1 + r ∗) E0δ0 (ω) > 1. SinceE0δ0 (ω) = Eδ̃, the last inequality implies
the conclusion. �

(A.5) Proof of Theorem 2.(a) By Lemma 2, in steady-state,

(1 + r ∗)Eδ̃ =
(
1 + r ∗) [δ1 Pr{A1} +

n∑
i =2

δi Pr{Ai }] > 1.

Thus, if Pr{A1} is sufficiently small then(1 + r ∗) δ2 > (1 + r ∗)Eδ̃. Hence, (A.2)
and (A.3) imply that

E0V1
(
b∗(T−1(δ (ω)), δ0 (ω)

)
<

(
1 + r ∗) δ2EV1(H (b∗(T−1(δ (ω)), δ0 (ω)), δ̃).

Consequently,H (b, δ2) > b, (i.e., individuals inA2,t are net savers). By the
same logic if(1 + r ∗) δi > (1 + r ∗)Eδ̃ then H (b, δi ) > b. Hence, for suchi ,
individuals inAi ,t are net savers.

(b) Assume thatδ2 is sufficiently close toδ1. By a similar argument as in
the proof of part (a), if Pr{A1,t} is not large then (1 +r ∗)δ2 > (1 + r ∗)Eδ̃ and
H (b, δ2) > b. Hence, individuals inA2,t are net savers.�
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