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Summary. We investigate the existence and implications of competitive
equilibria when two ®rms o�er the same electronic goods under di�erent
pricing policies. One charges a ®xed subscription fee per period; the other
charges on a per-use basis. Two models are examined when ®rms' marginal
costs are negligible and they can revise prices periodically. Both show that
competition often leads to ruinous price wars in the absence of collusion.
However, stable pricing equilibria exist in special cases. The ®ndings are
robust even when customers are willing to pay a ®xed-subscription
premium.
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1 Introduction

The purpose of this paper is to analyze competitive pricing for electronically
transmitted information goods, such as news stories, software, entertainment
items, and databases, that are o�ered by competing ®rms that have di�erent
pricing policies. With a few exceptions noted later, it is assumed that po-
tential subscribers are cost minimizers, marginal costs to the ®rms are neg-
ligible, and each ®rm seeks to maximize its revenues from subscribers. We
focus on the simple but revealing scenario of a single good or goods package
o�ered by two ®rms, one of which charges a ®xed subscription fee per unit
time while the other charges a constant cost each time the good or package is
accessed. The ®rms can announce new prices periodically, and subscribers
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are free to switch at the beginning of each period. Subscriber choices and
competitive price dynamics will be considered within two models with
somewhat di�erent emphases that we describe shortly. Our primary concern
is the existence of a competitive equilibrium at which neither ®rm gains an
advantage by changing its price. Although situations that have competitive
equilibria will be noted, most instances of the models lack this property and
give rise to ruinous price wars in the absence of collusion.

Our analysis of competitive dynamics is set against a background of
research on strategies for pricing electronic goods by a monopolist or single
®rm, for example [1, 2, 3, 8, 10, 11]. Summary discussions of that work
appear in [4, 9]. The present research, which is overviewed in [4], was
prompted by the question of what might transpire when competing ®rms
o�er similar products but use di�erent pricing policies. A more speci®c
motivating question arose from the observation [5, 6, 7] that subscribers
often prefer ®xed-fee or ¯at-rate pricing to per-use pricing, for reasons such
as overestimation of usage and avoidance of worrying about occasional large
bills or whether each usage is worth it, even when the ®xed-fee option costs
more over time. The speci®c question we address in this paper is whether
®xed-fee has an advantage over per-use pricing when the above psychological
factors are disregarded and both subscribers and ®rms make economically
optimal decisions under conditions of complete information. A broad answer
that we elaborate on later is that ®xed-fee pricing sometimes enjoys a slight
advantage, but that other considerations such as the lack of competitive
equilibria and price wars tend to overwhelm any such advantage. Moreover,
the latter ®nding persists when subscribers are willing to pay a premium for
the ®xed-fee option that is driven by psychological factors omitted in the
main part of our analysis.

Almost all of the existing literature on trade in information goods is
concerned with monopoly suppliers. The reason is that with zero marginal
costs, classical theory predicts price wars that lead to zero prices. However,
in practice we do observe seemingly stable competitive situations in a variety
of markets, for example for certain types of software or news reports. Much
more elaborate models than are available today will be required to under-
stand how this happens, models that will incorporate dynamic elements of
technological change and consumer behavior. Our work is an initial step in
this direction.

We assume throughout that ®rms A and B o�er the same information
good or package. Firm A charges a subscription fee of a per period, and B
charges a fee of b for each use or hit. Amounts a and b are ®xed in each time
period, whose length equals the time unit for A's ®xed fee, but the ®rms can
change their fees from period to period. We assume that such changes are
announced prior to each new period, simultaneously and without collusion,
so that the dynamic pricing situation can be viewed as a two-person non-
cooperative repeated game.

E�ects of collusion on the ®rms' revenues, which can be dramatic, are
considered later in an example. Our basic assumption, that the two ®rms
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stick to ®xed pricing policies, can also be thought of as a form of indirect
collusion. We make that assumption in order to create the possibility of a
stable equilibrium without unduly complicating the model.

When the ®rms' fees are announced for the next period, each potential
subscriber has three options:choose A, choose B, choose neither. Thus, over a
sequence of periods, a potential subscriber might choose A, then A again,
then B, then neither A nor B, then B, and so forth.

We investigate the consequences of two models that characterize the
population of potential subscribers and their period-to-period decisions.
Both models assume that the potential subscriber population is described by
a probability density function l on �0;1� with R10 l�x�dx � 1, where l�x�dx
is the population proportion with usage rates between x and x� dx. We
assume that l is known by both ®rms and is invariant over time. The usage
rate x for a potential subscriber is the number of times it would access the
information provided by A and B in one period if it actually subscribed and
did not curtail its usage for economic reasons. We assume that each potential
subscriber knows its x for the next period, which can vary over time subject
to the collective restriction that l remains unchanged.

Our models di�er in how a potential subscriber makes its choice from
fA;B; neitherg in each period and whether it curtails its usage if it subscribes.
Model 1 is a full-usage model in the sense that if a potential subscriber with
usage rate x chooses A or B then it will access the information x times. The
choice between A and B is made to minimize cost, and the decision to sub-
scribe or not subscribe depends on whether that minimum is below a will-
ingness-to-pay threshold. We model the latter feature by a probability
function P on x � 0, where P �y� denotes the probability that a potential
subscriber will actually subscribe when it would pay y if it does so. We
assume that P is known by each ®rm.

Model 1 may be appropriate when a third party (parent, company) pays
for the usage of a consumer (teenager, employee) but does not control that
usage. It neglects situations in which subscribers limit usages to less than
their usage rates because of budget constraints or limits on their willingness
to pay more than certain amounts for the service.

Model 2 accounts for the latter factor by assuming that each potential
subscriber has a budget constraint w, which is the most it would pay for the
service during each period. With x denoting usage rate, our second model
assumes that �w; x� has a joint probability density function f �w; x� over the
population, with

R1
0

R1
0 f �w; x�dwdx � 1. The function l used in the ®rst

model can be thought of as the marginal of f on x. We assume for Model 2
that both ®rms know f .

Potential subscribers who choose neither ®rm in Model 2 can be char-
acterized by a probability mass for f at w � 0, but as a technical convenience
we will assume that f is continuous and applies only to potential subscribers
who choose A or B. Hence the default option, modeled by 1ÿ P �t� in Model
1, is not used directly in Model 2 although it can be accommodated indirectly
by probability mass in the neighborhood of w � 0. As in the ®rst model, the
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choice between A and B in the second model is made by each subscriber to
minimize its cost.

In both models, A�a; b� denotes the average revenue per potential sub-
scriber paid to ®rm A, and B�a; b� denotes the average revenue per potential
subscriber paid to B over one period in which charges �a; b� obtain. If there
are N potential subscribers, A earns NA�a; b� and B earns NB�a; b� during any
period in which a and b are in e�ect.

The rest of the paper is organized as follows. Section 2 elaborates on
notions of dynamic behavior, competitive equilibria, and price wars. Sec-
tions 3 and 4 focus on Model 1. Section 3 outlines the basic structure of the
model and discusses an extended example that has both stable competitive
equilibria and price wars that are di�erentiated by the value of a parameter k
in the de®nition of l. Section 4 presents a modestly general result for the
nonexistence of a competitive equilibrium, compares four pricing schemes
designed to avert a price war, and notes an example of multiple equilibria.
Section 5 outlines the basic structure of Model 2, proves a theorem that
accounts in part for the predominance of price wars for the model, and gives
an example of a situation with a competitive equilibrium. Section 6 concludes
with a brief summary, remarks on ®xed subscription fee premiums, and
challenges for future research.

2 Dynamic behavior, equilibria, and price wars

As indicated earlier, we assume that A and B can change their fees prior to
each period, but no generality would be lost if changes were allowed less
often, say every fourth period. Because a ®rm could gain a competitive ad-
vantage if it knew the other ®rm's new fee before it set its own, we assume
that new fees are announced simultaneously. Barring collusion, each ®rm
must estimate or guess what the other will charge when it sets its new fee, so
price-changing behavior is modeled as a noncooperative repeated game in
which the ®rms' pricing strategies could have various forms.

One of these, referred to as a naive strategy, occurs when a ®rm sets its
new fee to maximize its revenue under the assumption that the other ®rm will
not change its fee for the next period. A naive strategy is clearly myopic and
can result in very di�erent revenues than anticipated when the other ®rm
does in fact change its fee. More sophisticated strategies arise when the ®rms
anticipate each other's change. Carried to an extreme, they might engage in a
succession of changes and counterchanges `on paper' before arriving at their
to-be-announced new fees.

We will not assume explicit methods of new fee determination, but in-
stead will base our analysis on changes and counterchanges to suggest how
the ®rms' fees might evolve over time, or how they might be a�ected by
sophisticated computation in a single period. Our approach begins with a fee
pair �a0; b0� and determines a series of optimal new fees on an alternating
basis under the assumption that the other ®rm retains its `old price' for at
least `one more period.' Thus, if A goes ®rst, it computes a1 to maximize
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A�a; b0�, then B computes b1 to maximize B�a1; b�, then A computes a2 to
maximize A�a; b1�, and so forth to produce a sequence

S�a0; b0� � a0; b0; a1; b1; a2; b2; . . .

of potential changes and counterchanges.
We consider the behavior of S�a0; b0� as n for an and bn gets large, and

write S�a0; b0� ! �a0; b0� if �an; bn� converges to �a0; b0�. Thus, S�a0; b0� !
�a0; b0� if for every � > 0 there is an n��� such that jan ÿ a0j � jbn ÿ b0j < � for
all n > n���. When S�a0; b0� ! �a0; b0� for a unique �a0; b0� that is the same for
every initial position �a0; b0� � �0; 0�, we write S ! �a0; b0� and say that S
converges uniquely to �a0; b0�. Experience with an array of assumptions about
l and P for Model 1 and f for Model 2 indicates that unique convergence
usually occurs although other behaviors are possible. We comment on
exceptions later and focus here on unique convergence.

Two forms of unique convergence are possible. The ®rst has

S ! a�; b�� � with a� > 0 and b� > 0 ;

and in this case we refer to �a�; b�� as a strong equilibrium point, or SEP for
short. It typically occurs when

A a�; b�� � > A�a; b�� for all a 6� a� ;
B a�; b�� � > B�a�; b� for all b 6� b� ;

and �a�; b�� is the only fee pair with this property. If �a�; b�� is the initial
position then neither ®rm has an incentive to change its fee and
S�a�; b�� � a�; b�; a�; b�; . . .; if �a0; b0� 6� �a�; b��, then a succession of reve-
nue-maximizing calculations typically drives �an; bn� toward �a�; b��.

The second form of unique convergence is

S ! �0; 0� :
Under natural assumptions about l and P for Model 1, or f for Model 2, the
intermediate cases of S ! �a�; 0� with a� > 0, and S ! �0; b�� with b� > 0,
are impossible. For example, B�a�; 0� � 0 by de®nition since b � 0 means
that B o�ers its service free, whereas B�a�; b� > 0 for small positive b. For a
similar reason, S ! �0; 0� never identi®es �0; 0� as an SEP. We refer to
S ! �0; 0� as a price war because its typical behavior for S�a0; b0� with
positive a0 and b0 has a0 > a1 > a2 > � � � and b0 > b1 > b2 > � � � with
�an; bn� ! �0; 0�. In this case, each ®rm reduces its fee to increase market
share and, hopefully, its revenue, but the long-run result is that A�an; bn� and
B�an; bn� are driven toward zero.

To avoid the ruinous competitive result of S ! �0; 0�, the ®rms might
revert to pricing schemes that bypass our presumption of competitive reve-
nue maximization. This could involve covert or overt collusion, perhaps with
a revenue-sharing agreement. We will not speculate on the legality of such
schemes, but will note e�ects of collusion or `cooperation' as an aside to our
analysis of non-collusive competitive pricing.
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An SEP but not a price war is an example of an equilibrium point in the
pricing game. Following usual practice, we de®ne �a�; b�� as an equilibrium
point if, for all nonnegative �a; b�,

A a�; b�� � � A�a; b�� and B a�; b�� � � B�a�; b� :
Our ensuing analyses of Models 1 and 2 generally assume smoothness
properties for l, P and f which imply that A�a; b� is at least twice di�eren-
tiable with respect to a, and B�a; b� is at least twice di�erentiable with respect
to b. Then the ®rst-order conditions for an equilibrium point �a�; b�� are

@A�a; b�
@a

����
a�;b�� �
� 0 and

@B�a; b�
@b

����
a�;b�� �
� 0 :

The usual second-order conditions for maxima require concavity, i.e.,
@2A�a; b�=@a2 < 0 and @2B�a; b�=@b2 < 0 at �a; b� � �a�; b��, but to ensure
that the de®ning inequalities for an equilibrium point hold globally and not
just in the vicinity of �a�; b��, it may be necessary to look beyond local
concavity.

3 Model 1: Formulation and example

For convenience here and later we refer to a potential subscriber as a cus-
tomer. Calculations apply to a single period unless stated otherwise. Conti-
nuity and di�erentiability properties will be noted in context.

This section begins our analysis of Model 1. The next few paragraphs
describe the essentials of the model. We then discuss an example with speci®c
forms for l and P in which both SEPs and price wars arise depending on a
parameter k used in the de®nition of l. The latter part of the section is
devoted to proofs of the SEP and price war cases. Further observations on
the model appear in the next section.

A customer with usage rate x in Model 1 pays a to ®rm A if it uses A's
service, and pays bx to ®rm B if it uses B's service. Cost minimization implies
that such a customer

pays a to A if a � bx; and
pays bx to B if bx < a ;

given that it uses the service. We assume that l has no mass spikes, or is
atomless, so that it makes no di�erence to the ®rms' revenues whether a � bx
is attributed to A, as done here, or to B.

In Model 1, P �t� is the probability that a customer actually subscribes
when it would pay t to do so. We assume that P is di�erentiable, and an-
ticipate that the likelihood of subscribing decreases as the cost of doing so
increases, in which case P 0�t� < 0. It should be noted that P is de®ned in-
dependently of x, which is unrealistic when heavy-use customers are willing
to pay more for the service. The possibility of such dependence is incorpo-
rated in Model 2.
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A customer with usage rate x in Model 1 will subscribe with probability
P �minfa; bxg�, and will not subscribe, hence pay nothing to A or B, with
probability 1ÿ P �minfa; bxg�. It follows that the average revenues to A and
B for a period in which �a; b� applies are

A�a; b� � aP �a�
Z 1

x�a=b
l�x�dx �1�

B�a; b� �
Z a=b

x�0
bxP �bx�l�x�dx : �2�

Assuming that the ®rms know l and P , we are interested in their choices of
the fee under their control ± a for A, b for B ± when they desire to maximize
their own revenues.

Di�erentiation of A�a; b� with respect to a and B�a; b� with respect to b in
(1) and (2) yields the following ®rst-order conditions for an equilibrium point:

a
b

P �a�l a
b

� �
� P �a� � aP 0�a�� �

Z 1
x�a=b

l�x�dx �3�

a
b

� �2
P �a�l a

b

� �
�
Z a=b

x�0
P �bx� � bxP 0�bx�� �xl�x�dx ; �4�

where P 0�x� � dP�x�=dx. If �a�; b�� is an equilibrium point then (3) and (4)
must hold when �a; b� � �a�; b��.

We have considered a variety of speci®cations of l and P for which (3)
and (4) have no positive �a; b� solution. In most of these, S ! �0; 0� for a
price war. However, some speci®cations have equilibrium points that are
SEPs. The following example is illuminating because it has both SEPs and
price wars that are governed by a parameter in the speci®cation of l.

Example 1. Let P �x� � eÿcx with c > 0. Then P �0� � 1 and P 0 < 0 with
P �x� ! 0 as x gets large. Changes in c allow us to calibrate the probability
that a customer will actually subscribe. For example, if x � 10, then
P �10� � 0:905 when c � 0:01, and P �10� � 0:607 when c � 0:05.

Let l be a negative power function with parameters k and a:

l�x� � �k ÿ 1�akÿ1

�a� x�k ; a > 0 and k � 2 :

The case of k � 2 is of limited interest, for then the population's expected
usage rate, de®ned by E�x� � R10 xl�x�dx, is in®nite. When k > 2,
E�x� � a=�k ÿ 2�. For example, if a � 20 and k � 2:5, the average number of
hits per customer during a period is 40.

We simplify (3) and (4) by combining scale parameters c and a with the
decision variables a and b to de®ne p and q by

p � ca and q � acb :

Substitution of the speci®c forms for P and l in (3), integration, and re-
duction, shows that (3) is equivalent to
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q � p�p � k ÿ 2�=�1ÿ p�; 0 < p < 1 : �5�
Beginning from B�a; b� given by (2), we make the variable substitution y � bx
to change the limits of integration to y � 0 to y � a, then di�erentiate with
respect to b under the integral sign to obtain

@B�a; b�=@b � 0,
Z a

y�0

y y�k ÿ 1� ÿ ab� �
�y � ab�k�1 eÿcydy � 0 :

Another change of variable to z � cy shows that (4) is equivalent toZ p

z�0

z��k ÿ 1�zÿ q�
�z� q�k�1 eÿzdz � 0 : �6�

Hence the ®rst-order conditions (3) and (4) for an equilibrium point reduce
to (5) and (6), which leave k as the only free parameter. Its value determines
whether there is an SEP or a price war.

The second-order conditions for maxima with (5) and (6) also hold
for every k � 2. In particular, given q > 0, there is a unique p in �0; 1�
that satis®es (5), and @2A�a; b�=@a2 < 0 for the corresponding a � p=c.
Similarly, given 0 < p < 1, there is a unique q > 0 that satis®es (6), and
@2B�a; b�=@b2 < 0 for the corresponding b � q=�ac�. We shall not go into the
details of the second-order conditions but will verify uniqueness of an
equilibrium point �p; q� as a function of k when 2 � k < 3.

Theorem 3.1 Given P and l as above, (5) and (6) have a unique joint positive
solution �p�; q�� as a function of k when 2 � k < 3, and this solution de®nes an
SEP for each such k with S ! �p�=c; q�=�ac��. If k � 3, then (5) and (6) have
no positive solution and S ! �0; 0�.

We comment on the e�ects of k in the SEP region 2 � k < 3 before
turning to a proof of the theorem. As k increases from 2 toward 3, ®rm A's
equilibrium fee a� � p�=c decreases from approximately 0.3/c to 0. This is
shown on the left part of Figure 1. The equilibrium fee b� � q�=�ac� for B
also decreases steadily via (5) as we approach the price-war region of k � 3.
At the same time, the revenue ratio at equilibrium, A�a�; b��=B�a�; b��, favors
®rm A slightly but approaches parity as k approaches 3: see the right part of
Figure 1. We note also that both ®rms' equilibrium revenues go to 0 as
k ! 3. Speci®c calculations show that A's revenue at k � 2:5 is 42% of its
revenue at k � 2; at k � 2:75, A's revenue is 22% of its revenue at k � 2.

The rest of this section outlines the proof of Theorem 3.1. We omit
several algebraic and computational details but will pay close attention to the
main steps in the proof.

We begin by substituting the value of q given by (5) into (6), and then
change the variable z in (6) to v � z=p so that the integral goes from v � 0 to
v � 1. The integral in (6) then becomes ��1ÿ p�k=pkÿ2�G�p; k�, where

G�p; k� �
Z 1

v�0

v�v�k ÿ 1��1ÿ p� ÿ �p � k ÿ 2��
�v�1ÿ p� � �p � k ÿ 2��k�1 eÿpv dv : �7�
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Given k, (5) and (6) hold for some 0 < p < 1 if and only if G�p; k� � 0 for
some p in �0; 1�.

Because k � 2 and we want 0 < p < 1, the bracketed part of the nu-
merator in (7) is negative for v < �p � k ÿ 2�=��k ÿ 1��1ÿ p�� and is positive
for v > �p � k ÿ 2�=��k ÿ 1��1ÿ p��. Hence G�p; k� � 0 only if
1 > �p � k ÿ 2�=��k ÿ 1��1ÿ p��, i.e., only if p < 1

k, for otherwise G�p; k� < 0.
Since G�1k ; k� < 0, continuity of G in p assures the existence of an equi-

librium p, given k, if G�0; k� > 0, where G�0; k� � lim
p!0

G�p; k�. At k � 2,
where the integral of (6) equals �1ÿ p�kG�p; 2�, we have G�0; 2� �R 1

v�0 dv=v � lnv�10 � 1. For k > 2, we set p � 0 in (7) and integrate to get

G�0; k� � 1

�k ÿ 2�kÿ2 ÿ
3k ÿ 5

�k ÿ 1�kÿ1
" #,

��k ÿ 1��k ÿ 2��; k > 2 :

Let k � k ÿ 2, so

G�0; k� > 0, 1

kk >
1� 3k

�k� 1�k�1 :

The inequality here holds when 0 < k < 1, i.e. when 2 < k < 3, but
G�0; 3� � 0 and G�0; k� < 0 for k > 3. Consequently, we are assured of an
equilibrium point when 2 � k < 3 but not when k � 3.

Support for the nonexistence of an equilibrium when k � 3 comes from
the derivative of G with respect to p near p � 0. Let G1�p; k� � @G�p; k�=@k,
and let G1�0; k� � lim

p!0
G1�p; k�. At k � 2, G1�0; 2� � ÿ1, and at k � 3,

G1�0; 3� � 1:25ÿ 2ln2 � ÿ0:136. For other k > 2, we ®nd that

G1�0; k� �
8k2�6k�2
�k�1�k�1 ÿ 1�3k

kk

h i
�kÿ 1�k�k� 1� ; k 6� 1; k 6� 0 :

Figure 1. SEP illustrations for Example 1
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When 0 < k < 1, the numerator is positive and the denominator is negative;
when k > 1, the numerator is negative and the denominator is positive.
Therefore

G1�0; k� < 0 for all k > 2 :

In particular, G�p; k� begins at or below zero at p � 0 whenever k � 3, then
decreases.

We con®rm the nonexistence of an equilibrium point for k � 3 by con-
sidering a crude but informative approximation of the integral in (7) that
ignores the exponential factor eÿpv, which equals 1 at v � 0 and decreases to
eÿp at v � 1: for example, eÿ0:1 � 0:905 and eÿ0:3 � 0:741. Denote by H�p; k�
the integral obtained from (7) by replacing eÿpv by 1. Integration shows that
H�p; k� � 0 with k ÿ 2 � k > 0 if and only if

�p � k�k k p2 ÿ 3p � 3
ÿ �� 1

� � � �k� 1�k�1 : �8�
This applies also to k � 2 by letting k! 0. Rewriting (8) as

k� 1

k� p
� k p2 ÿ 3p � 3

ÿ �� 1

k� 1

� �1=k
� 1� p2 ÿ 3p � 2

n� 1

� �n

; n � 1=k ;

and letting k! 0, we get 1=p � ep2ÿ3p�2. The unique solution to this equa-
tion for 0 < p < 1

2 is, approximately, p � 0:3162. We denote this solution
value by p0�2� for k � 2.

We claim that (8) also has a unique p solution in �0; 1=k� that we denote
by p0�k� for every 2 < k < 3, i.e., for every 0 < k < 1. Di�erentiation of the
left side of (8) with respect to p shows that the derivative equals 0 at two
points, namely p � 1=k and p � 1. For 0 < k < 1, the left side of (8) equals
kk�1� 3k� at p � 0, which we noted earlier is less than �k� 1�k�1, increases to
a maximum at p � 1=k, then decreases to �k� 1�k�1 at p � 1. It follows for
each such k that there is a unique p � p0�k� � p0�k� 2� in �0; 1=k� that
satis®es (8) (see Fig. 2).

Figure 2. Illustration of solution to (8) for 0 < k < 1
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It must be true for 2 � k < 3 that G�p0�k�; k� < 0 because our H�p; k� � 0
computation ignored eÿpv in (7), and the negative part of G�p; k� for
v < �p � k ÿ 2�=��k ÿ 1��1ÿ p�� is weighted by larger values of eÿpv than the
positive part for v > �p � k ÿ 2�=��k ÿ 1��1ÿ p��. It follows that the actual
equilibrium point p��k� for G�p��k�; k� � 0 is slightly less than p0�k� to cor-
rect for the exponential factor. Percentagewise, the correction is fairly
modest, and is very small for k near 3, where p0 is near to 0 and there is little
variation in eÿp0v as v goes from 0 to 1.

Suppose k � 3, where G�0; k� � 0 and G1�0; k� < 0. Then H�p; k� � 0 for
no 0 < p < 1. For example, when k � 3 �k � 1�, the left side of (8) increases
from 4 at p � 0 up to a maximum and then decreases to 4 � �k� 1�k�1 at
p � 1: alternatively, (8) reduces to p�p ÿ 1�2 � 1. When k > 3, the left side of
(8) begins above �k� 1�k�1, increases, and then decreases to �k� 1�k�1 at
p � 1. If k � 3 had an equilibrium p� for G�p; k� � 0, 0 < p < 1=k, then the
inverse of the argument in the preceding paragraph shows that there must be
a p0 slightly larger than p� at which H�p0; k� � 0. Since no such p0 exists, we
conclude that (5) and (6) have no equilibrium point when k � 3.

For 2 � k < 3, we have seen that there is a unique p � p0�k� in �0; 1=k� at
which H�p; k� � 0. We have not yet proved, however, that G�p; k� � 0 for a
unique p � p��k� for 2 � k < 3. To prove uniqueness, we consider the ratio of
the two main pieces of (7) as follows:

R�p; k� �
R 1

v�0
v2�kÿ1��1ÿp�eÿpv

�v�1ÿp��p�kÿ2�k�1 dvR 1
v�0

v�p�kÿ2�eÿpv

�v�1ÿp��p�kÿ2�k�1 dv
:

Point p is an equilibrium point if and only if R�p; k� � 1. We claim that
@R=@p < 0 for 2 � k < 3 and p 2 �0; 1=k�, which is clearly su�cient for
uniqueness. Di�erentiation shows that @R=@p < 0 if and only ifZ 1

v�0
v2�1ÿ p� v�1ÿ p� � s� �V

Z 1

v�0
v �k � 1�s�1ÿ v� � v�1ÿ p� � s� ��svÿ 1�� �V

<

Z 1

v�0
vs v�1ÿ p� � s� �V

Z 1

v�0
v2 �v�1ÿ p� � s��1� v�1ÿ p���

� �k � 1��1ÿ p��1ÿ v��V ;

where s � p � k ÿ 2 and V � feÿpv=�v�1ÿ p� � s�k�2gdv. Omitting V , which
is understood to be part of every integral [e.g.,

R
v3 denotes

R 1
v�0 v3V ], the

preceding inequality rearranges to

s�1ÿ p�3
Z

v3
Z

v3 � s�1ÿ p� k�3ÿ 2p� ÿ �2ÿ p�2
h i Z

v3
Z

v

< s�1ÿ p�3
Z

v4
Z

v2 � s2�1ÿ p�2
Z

v4
Z

v

� �1ÿ p�2 k ÿ 1ÿ s2
ÿ � Z

v3
Z

v2
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� s�1ÿ p� k�3ÿ 2p� ÿ �2ÿ p�2 � 2�k ÿ 1�
h i

�
Z

v2
Z

v2 � s2�k ÿ 1�
Z

v2
Z

v1 :

All coe�cient multipliers of the integrals are positive, except that
k ÿ 1ÿ s2 < 0 when p is near 1

k. BecauseZ
v4
Z

v2ÿ
Z

v3
Z

v3 �
Z 1

v�0

Z v

u�0

v2u2�vÿ u�2eÿp�u�v�

�v�1ÿ p� � s��u�1ÿ p� � s�� �k�2 du dv > 0 ;

we have s�1ÿ p�3 R v3
R

v3 < s�1ÿ p�3 R v4
R

v2. Hence @R=@p < 0 if it is true
also that

s�1ÿ p� k�3ÿ 2p� ÿ �2ÿ p�2
h i

< s2�1ÿ p�2
R

v4R
v3
� �1ÿ p�2 k ÿ 1ÿ s2

ÿ � R v2R
v

� s�1ÿ p� k�3ÿ 2p� ÿ �2ÿ p�2 � 2�k ÿ 1�
h i R v2

R
v2R

v3
R

v
� s2�k ÿ 1�

R
v2R
v3

;

where
R

v4=
R

v3 < 1,
R

v2=
R

v < 1,
R

v2=
R

v3 > 1, and
R

v2
R

v2=
R

v3
R

v < 1.
Analysis of the preceding inequality shows that it holds for 0 � p � 1

k and
2 � k < 3. For example, when p � 1

k, it reduces to

3k3 ÿ 6k2 � 4k ÿ 1
ÿ �� k3 ÿ 4k2 � 3k ÿ 1

ÿ � R v2R
v
< �k ÿ 1�3

R
v4R
v3

� 5k3 ÿ 8k2 � 4k ÿ 1
ÿ � R v2

R
v2R

v3
R

v
� k4 ÿ 2k3 � k2
ÿ � R v2R

v3
:

It is not hard to show for this special case that
R

v2
R

v2=
R

v3
R

v > 1
2 andR

v2=
R

v3 > 5
4, which in conjunction with

R
v2=
R

v < 1 is enough to validate
the inequality for all k 2 �2; 3�. We omit further details.

To summarize, we have a unique equilibrium point �p��k�; q��k�� for each
2 � k < 3, where G�p��k�; k� � 0 and q� is computed from p� in (5). There is
no equilibrium for (5) and (6) when k � 3. The proof of Theorem 3.1 will be
completed by showing that �p�; q�� is an SEP in terms of p and q for k < 3,
and that a price war occurs if k � 3.

Given q, the unique positive solution in p for (5) is

p �
���������������������������
�k� q�2 � 4q

q
ÿ �k� q�

2
< 1 : �9�

This is the value of p that maximizes A�a; b� when q is given. As before,
k � k ÿ 2. When k � 1 �k � 3�, it is easily seen that p < q with p given by (9).
The same thing is true for k > 1, but not for k < 1 in the 2 � k < 3 range.

Similarly, given p in �0; 1�, there is a unique q > 0 that satis®es (6), and this
is the value of q that maximizes B�a; b� when p is given. When k � 3, (6) isZ p

z�0

z�2zÿ q�
�z� q�4 eÿzdz � 0 : �10�
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If we set q � p here and replace eÿz by 1, the resulting integral equals 0, and
because eÿz decreases in z it follows that the left side of (10) is negative when
q � p. The sign of the left side of (10) is the same as the sign of @B�a; b�=@b,
so when q is near p we have already exceeded the value of q that satis®es (10).
Consequently

k � 3) q < p when p is given and �10� holds :

The same conclusion holds for k > 3 and, as proved later, for 2 � k < 3.
Suppose k � 3, and assume without loss of generality that ®rm B begins

our iterative process described for S in Section 2 with q � q0. Then ®rm A's
best response is p1 < q0, where p1 is given by (9) when q � q0. Given p1, B's
best response via (10) is q1 < p1. Then A's best response to q � q1 is p2 < q1,
where p2 is given by (9) when q � q1. Continuation yields the best response
and counter-response sequence q0 > p1 > q1 > p2 > q2 > p3 > � � �. This se-
quence converges either to �p�; q�� > �0; 0� or to �0; 0�. However, it cannot
converge to �p�; q��, for suppose that p� > 0 and, at some n, pn � p� � � with
0 < � < 2�p��2=�1ÿ p��. Then qn < p� � �, so

pn�1 < 1� p� � �� �2�4 p� � �� �
h i1=2ÿ�1� p� � ��
� ��

2 :

But the right side of this inequality is less than p�, so pn�1 < p�, a con-
tradiction.

We conclude for k � 3 that S ! �0; 0�. Similar reasoning yields the same
conclusion for every k > 3, so there is a price war whenever k � 3.

Assume henceforth that 2 � k < 3. We will work with a ®xed k � k� 2
and denote its unique equilibrium pair by �p�; q��.

Let f1�q� be the value of p < 1 given by (9) that satis®es (5):

f1�q� �
���������������������������
�k� q�2 � 4q

q
ÿ �k� q�

2
:

It is easily checked that f1�0� � 0, f1�1ÿk
2 � � 1ÿk

2 , and f1 is concave increasing
with slope 1=k at 0:

f 01�0� �
1

k
:

Figure 3 shows f1 as the bowed curve through �1ÿk
2 ; 1ÿk

2 �.
Let f2�p� be the unique q that satis®es (6). Clearly, f2�0� � 0 and f2 is

increasing and continuous as shown in Figure 3. We verify three other
properties of f2:

[1] f2�p� < p for p > 0;
[2] f 02�0� � 1=r, where r > 1 is the unique positive solution to

ln�r � 1� � r�2r � 1�
�r � 1�2 when k � 2 ; �11�
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1

�r � 1�k
k ÿ 1

k ÿ 2
�r � 1�2 ÿ 2k ÿ 1

k ÿ 1
�r � 1� � 1

� �
� 1

�k ÿ 1��k ÿ 2� when k > 2 ;

�12�
[3] r < 1

k.

Property [1] says that f2 stays to the left of the 45� line on Figure 3. Property
[3] shows that the slope of f2 (viewed in the usual Cartesian orientation) is
less than the slope of f1 at the origin. It follows that f2 begins below f1 going
out from the origin, then crosses f1 at �p�; q��, and lies above f1 thereafter.
Because the equilibrium point is unique, there is exactly one point above the
origin at which f1 and f2 cross (our case) or touch without crossing.

Property [1] is proved as follows. Replace the upper limit of integration p
by q and replace eÿz by 1 in (6), then integrate to getZ q

z�0

z �k ÿ 1�zÿ q� �
�z� q�k�1 dz � 2k ÿ k2 � k ÿ 2

qkÿ22k�k ÿ 1��k ÿ 2�
when k > 2. (We omit the calculation for k � 2.) The preceding fraction is
negative for 2 < k < 3, i.e. 2k < k2 ÿ k � 2, and when eÿz is reconsidered, we
conclude that Z q

z�0

z��k ÿ 1�zÿ q�
�z� q�k�1 eÿz dz < 0 :

Figure 3. Zigzag approaches to SEP �p�; q�� from above �q0� and below �q00�, for a ®xed k in �2; 3�
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It follows that the upper limit of integration must be increased for the
integral to vanish, or that f2�p� < p.

To compute f 02�0� for [2], we disregard eÿz in (6) because it is virtually
constant in �0; p� when p is near 0 and has no e�ect on the limit as we take p to
0. A change of variable from z to v � z=q givesZ p

z�0

z �k ÿ 1�zÿ q� �
�z� q�k�1 dz � 1

qkÿ2

Z r

v�0

v �k ÿ 1�vÿ 1� �
�v� 1�k�1 dv; r � p

q
:

The integral on the right, when set equal to 0, yields (11) for k � 2 and (12)
for k > 2. The unique solution to (11) is, approximately, r � 2:16. Di�er-
entiation of the left side of (12) with respect to r shows that it decreases in
r � 1 and hence gives a unique r > 1 at which the left side equals
��k ÿ 1��k ÿ 2��ÿ1. Because the r solution approximates p=f2�p�, or
f2�p��: p=r, which becomes exact in the limit, f 02�p� is approximated by 1=r
and we have f 02�0� � 1=r.

Property [3] is trivial for k � 2 �k � 0�. For k > 2, the decreasing aspect
of the left side of (12) implies [3] if that side is less than ��k ÿ 1��k ÿ 2��ÿ1
when r is replaced there by 1=k. The desired inequality reduces to
1=kk > �1� 3k�=�k� 1�k�1. As noted earlier, this holds for 0 < k < 1.

It remains to show that �p�; q�� is an SEP, i.e. that q0; p1; q1; p2; q2; . . . for
any q0 > 0 is such that pn ! p� and qn ! q� where

pn � f1�qnÿ1� and qn � f2�pn� for n � 1; 2; . . . :

Suppose q0 >
1ÿk
2 . We have pn < 1 by (9) for all n, and qn < pn by [1] for all n.

As long as 1ÿk
2 < qn, pn�1 < qn. After a ®nite number of iterations, which

depends on q0 and k, pn is su�ciently close to 1ÿk
2 so that qn <

1ÿk
2 . It su�ces

henceforth to suppose that 0 < q0 <
1ÿk
2 .

If q0 � q� then pn � p� and qn � q� for all n. If q� < q0 <
1ÿk
2 , we get the

arrowed zigzag pattern between f1 and f2 pictured above �p�; q�� on Figure 3.
If 0 < q0 < q�, we get the arrowed zigzag pattern between f1 and f2 pictured
below �p�; q�� on Figure 3. We claim that pn ! p� and qn ! q� for the
q0 6� q� cases. The only way convergence to �p�; q�� could fail is to get stuck
at some �p0; q0� 6� �p�; q��. Suppose this happens above �p�; q�� so that
p1 > p2 > p3 > � � � converges to p0 > p� and q0 > q1 > q2 > � � � converges to
q0 > q�. Then f1�qn� # p0 > p� and f2�pn� # q0 > q�, so continuity implies that
f1�q0� � p0 and f2�p0� � q0. This implies that �p0; q0� is an equilibrium pair,
contrary to �p�; q�� as the unique equilibrium. A similar contradiction obtain
below �p�; q��, and we conclude in all cases that �pn; qn� ! �p�; q��.

4 Model 1: Price wars and collusion

Example 1 demonstrates the sensitivity of equilibrium existence to the forms
assumed for l and P . The present section elaborates on this and related issues
in three ways.

First, we show that there is a general condition for P that invariably
implies a price war for forms of l. In particular, if xP�x� is concave increasing
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up to a maximum and decreases thereafter, and if l is a negative exponential
density, then S ! �0; 0�.

Second, we describe four pricing schemes that avoid a ruinous price war
when S ! �0; 0�. In two of these, one ®rm announces and maintains a ®xed
fee while the other maximizes its revenue given the announcement. The other
two schemes involve cooperative and perhaps covert collusion. We compare
the four schemes' revenues and note that a collusive scheme maximizes
overall revenues.

Third, we discuss implications of Model 1 that can occur when P is
positive and constant. Although unrealistic in practice, this allows us to
illustrate interesting cases of multiple equilibria.

Price wars

The following theorem shows that a price war can obtain under fairly general
conditions. Its assumptions for P hold for a wide variety of speci®c forms,
including that of Example 1. We let Q�x� � xP�x� for all x � 0.

Theorem 4.1 Suppose P is nonincreasing and twice di�erentiable, and Q is
concave increasing up to a maximum at x� and then decreases. If l�x� � ceÿcx

for some c > 0, then S ! �0; 0�.
Proof. The theorem's assumptions for P and Q imply that Q�x�=Q0�x�, whose
derivative for x 6� x� is 1ÿ Q�x�Q00�x�=Q0�x�2, increases from 0 at the origin
toward 1 as x! x�, and is negative thereafter. It follows from (1) that
A�a; b� is maximized at a < x� when a satis®es

Q�a�
Q0�a� �

b
c
:

We denote this a value by f1�b�. Clearly, b < b0 ) f1�b� < f1�b0� and
f1�b� ! 0 as b! 0. In addition, our assumptions imply Q�x�=Q0�x� > x for
x < x�, so f1�b� < b=c for all b. Thus

f1�b� < minfx�; b=cg :
Equation 2 implies that @B�a; b�=@b � 0 if and only ifZ a

y�0
Q�y��cy=bÿ 1�eÿcy=b dy � 0 ; �13�

where the sign of @B�a; b�=@b is the same as the sign of the left side of (13).
The derivative of the integral in (13) with respect to b equals 1=b timesZ a

y�0
Q�y��cy=b��cy=bÿ 2�eÿcy=b dy :

This approaches 0 as b! 0, it is positive for small b > 0, and it is negative
for b=c � a=2 because cy=bÿ 2 � 0 for all y 2 �0; a� when ca=b � 2. We shall
not prove that there is a unique b that satis®es (13), given a, but note that
some such b maximizes B�a; b� when a is given. Moreover, such a b satis®es
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b
c
<

2a
3

�14�

for the following reasons, assuming that a < x�. The argument
�cy=bÿ 1�eÿcy=b in (13) increases from ÿ1 at y � 0 up to y � 2b=c, passing
through 0 at y � b=c. Because Q is concave increasing on �0; x��, we consider
the limit of the case for Q that forces b=c to be as close to a as possible when
b=c is the (largest) solution to (13). This limit is Q�y� � c0y, where c0 is a
positive constant, because it makes the negative part of the integral (y from 0
to b=c) as absolutely small as possible while maximizing the positive part for
y > b=c, given a ®xed value of Q�b=c�. Set c0 � 1 with no loss of generality.
Then, with Q�y� � y, the left side of (13) isZ a

y�0
y2c=bÿ y
� �

eÿcy=b dy :

When eÿcy=b is replaced by 1, the resulting integral equals 0 if and only if
b=c � 2a=3. The derivative of the preceding integral is negative for all
b=c > a=2, and because eÿcy=b is larger for its negative part than its positive
part, it follows that the integral can equal 0 only if b=c < 2a=3. Hence (14)
holds when b maximizes B�a; b� for a given a.

Now suppose that ®rm B begins our iterative process with b � b0 > 0,
®rm A counters with a1 � f1�b0� that maximizes A�a; b0�, ®rm B counters this
with a b � b1 that maximizes B�a1; b�, and so forth. We have an < bnÿ1=c and
bn=c < 2an=3 for n � 1; 2; . . ., so �an; bn� ! �0; 0�. Hence the conditions of
the theorem induce a price war. (

Four pricing schemes

A particular case of Theorem 4.1 occurs when P �x� � eÿcx, as in the pre-
ceding section. We outline four pricing schemes for the ®rms that circumvent
a price war, and note their revenue implications for this P and l � ceÿcx.

Scheme 1. Firm A chooses a ®xed subscription fee per period and announces
that it will not deviate from this fee. When A's fee is a, ®rm B chooses
b � f2�a� to maximize B�a; b� and, knowing this, A chooses a to maximize
A�a; f2�a��. Computations show that a is approximately �0:7�=c and
f2��0:7�=c��: c=�2:86c�. To illustrate these fees, suppose c � 0:05 and
c � 1=10. Then a � 14 and b � 0:7, so if revenue in measurement in dollars,
A charges $14 per period and B charges 70 cents per hit. As one would expect,
®rm B gets the lions share of the business: the revenue ratio at the solution
point is A�a; f2�a��=B�a; f2�a�� � 0:325.

Scheme 2. Firm B chooses a ®xed per-use fee and announces that it will not
deviate from this fee. When B's fee is b, ®rm A chooses a � f1�b� to maximize
A�a; b� and, knowing this, B chooses b to maximize B�f1�b�; b�. In this case b
is approximately c=c and f1�b��: �0:5�=c. When c � 0:05 and c � 1=10, A
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charges $10 per period and B charges $2 per hit. The revenue ratio at the
solution point is A�f1�b�; b�=B�f1�b�; b� � 2:784.

The sum of the ®rms' revenues per customer is �0:19�=c for scheme 1 and
�0:25�=c for scheme 2, or $3.80 and $5.00 respectively when c � 0:05. Greater
sums are possible when A and B collude, to the detriment of customers. This
is illustrated by two collusion schemes.

Scheme 3. The ®rms agree to set �a; b� so that their revenues are equal and as
large as possible. That is, they maximize

A�a; b� � B�a; b� � aeÿca
Z 1

x�a=b
ceÿcx dx�

Z a=b

x�0
cbxeÿ�cb�c�x dx

subject to A�a; b� � B�a; b�. The �a; b� solution here is approximately
�1:38=c; c=�0:6c�� with A�a; b� � B�a; b� � �0:3034�=c.

Scheme 4. The ®rms collude to maximize A�a; b� � B�a; b�, which would be
the monopolist solution if A and B were the same ®rm, and agree to split the
total revenue equally. The monopolistic maximum occurs when b is e�ec-
tively 1 and a � 1=c. The total revenue per customer, all of which comes
from A's ®xed subscription fee, is eÿ1=c � �0:368�=c, which is a 21% increase
over scheme 3 and a 94% increase over scheme 1. When c � 0:05, ®rm A
charges $20 per period in scheme 4.

The following table shows the revenues per customer per period for the
®rms when �c; c� � �0:05; 1=10�.

Firm A Firm B Total

Scheme 1 $0:93 $2:87 $3:80

Scheme 2 $3:68 $1:32 $5:00

Scheme 3 $3:03 $3:03 $6:06

Scheme 4 $3:68 $3:68 $7:36

Constant P and multiple equilibria

We conclude our present remarks for Model 1 by considering the unrealistic
but analytically informative case in which P is constant and positive. Assume
that P �x� � c0 > 0 for all x. Then the ®rst-order conditions (3) and (4) for an
equilibrium reduce to

tl�t� �
Z 1

x�t
l�x�dx ; �15�

t2l�t� �
Z t

x�0
xl�x�dx ; �16�

where t � a=b. The proof of Theorem 4.1 shows that if l is a negative ex-
ponential with l�x� � ceÿcx then S ! �0; 0�. When l is a negative power

464 P. C. Fishburn and A. M. Odlyzko



function as in Example 1 with parameters a > 0 and k � 2, a succession of
fee changes and counterchanges drives �ai; bi� toward �1;1�.

In some cases, (15) and (16) have a unique solution t� > 0. An example
arises when l is a particular convex combination of a negative exponential l1

and a negative power function l2 with k � 2, say l � k�l1 � �1ÿ k��l2, with
0 < k� < 1. The particular k� de®nes a stable knife-edge situation, for if
k > k� then the combination kl1 � �1ÿ k�l2 yields S ! �0; 0�, and if k < k�

then kl1 � �1ÿ k�l2 forces S ! �1;1�.
We consider further the particular case of l � k�l1 � �1ÿ k��l2, where

�a; b� is an equilibrium point if and only if a=b � t�, with
A�bt�; b� � B�bt�; b�. This case has a continuum of equilibrium points. If
�a0; b0� is not an equilibrium point, then a revenue-maximizing change by
one ®rm but not the other creates an equilibrium point at which neither ®rm
bene®ts by a further unilateral change. However, if both ®rms change naively
and simultaneously in every period, we get an alternating pattern in which
every other period has �a; b� � �a0; b0� and the in-between periods have
�a; b� � �b0t�; a0=t��. Finally, because t� is ®xed and A�a; b� � a

R1
t� l�x�dx

when a=b � t�, both ®rms have an incentive to collude and make a and b
arbitrarily large.

5 Model 2

Model 2 has two features not shared by Model 1. First, it allows direct
interdependence between a willingness-to-pay budget constraint w and usage
rate x in its joint probability density function f �w; x�. Second, it allows re-
stricted usage, as when a usage-rate-x customer makes only y < x hits during
a period because its cost otherwise would exceed w.

We assume that f is continuous and there is no explicit default option, so
f accounts for all customers. Our cost-minimization assumption implies that
a customer with parameter pair �w; x� in a period with fee pair �a; b� will

choose A and pay a to A if a � minfbx;wg; and
choose B and pay minfbx;wg to B if minfbx;wg < a :

Because of continuity, it makes no di�erence whether a � minfbx;wg is at-
tributed to A or B. If either the willingness-to-pay amount w is less than a, or
the full-usage per-hit-basis cost bx is less than a, then and only then will the
customer subscribe to ®rm B. If it does, and if w < bx, then the customer
limits its hits to y such that by � w. Alternatively, a customer with
a � minfbx;wg subscribes to A, uses its full hit rate x, and pays a. Figure 4
describes a customer's choice and payment under Model 2

It follows from Model 2 that the average revenues per customer to A and
B for a period in which �a; b� applies are

A�a; b� � a
Z 1

w�a

Z 1
x�a=b

f �w; x�dx dw �17�
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B�a; b� �
Z a

w�0

Z 1
x�w=b

wf �w; x�dx dw�
Z a=b

x�0

Z 1
w�bx

bxf �w; x�dw dx : �18�

We assume that each ®rm knows f and wants to maximize its own revenue
by choice of the fee under its control.

Di�erentiation of A�a; b� with respect to a and B�a; b� with respect to b in
(17) and (18) gives the following ®rst-order conditions for equilibrium:Z 1

w�a

Z 1
x�a=b

f �w; x�dx dw � a
Z 1

x�a=b
f �a; x� dx� a

b

Z 1
w�a

f w;
a
b

� �
dw �19�Z a=b

x�0

Z 1
w�bx

xf �w; x�dw dx � a2

b2

Z 1
w�a

f w;
a
b

� �
dw : �20�

We have examined many speci®c forms of f , both when w and x are bounded
above and when they are unbounded, and found in most cases that (19) and
(20) have no positive �a; b� solution. The predominant result is S ! �0; 0�.
The simplest examples of a price war in the normalized bounded case of
�w; x� 2 �0; 1�2 are f �w; x� � 1, f �w; x� � wx, and f �w; x� � c�1ÿ wx�. An
unbounded example is f �w; x� � c1c2eÿc1wÿc2x.

The propensity of Model 2 to induce a price war is explained in part by
considering situations in which f is separable. We say that f is separable if
there are probability density functions g for w and h for x such that

f �w; x� � g�w�h�x� :
Separability has the defect that the expected usage rate given w, E�xjw�, is
independent of w. We normally expect E�xjw� to increase in w since it seems
likely that customers who are willing to pay more for the service will, on

Figure 4. Customer behavior for Model 2
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average, have greater usage rates. However, we assume separability in what
follows because it simpli®es the analysis and still allows us to demonstrate
key points.

When f is separable, (19) and (20) reduce to

�1ÿ G�a�� 1ÿ H
a
b

� �h i
� ag�a� 1ÿ H

a
b

� �h i
� a

b
�1ÿ G�a��h a

b

� �
;Z a=b

x�0
x�1ÿ G�bx��h�x� dx � a2

b2
�1ÿ G�a��h a

b

� �
;

where G and H are the cumulative distribution functions of g and h, res-
pectively. Rearrangement of the ®rst equation and a change of variable to
v � bx in the second yield

1ÿ H
a
b

� �h i
�1ÿ G�a� ÿ ag�a�� � a

b
�1ÿ G�a��h a

b

� �
; �21�Z a

v�0
v�1ÿ G�v��h v

b

� �
dv � a2�1ÿ G�a��h a

b

� �
; �22�

which are tantamount to (19) and (20), respectively, under separability. We
refer to separable f as regular if for each b > 0, (22) holds for at most one
a > 0. When regularity holds and a0 is the unique solution to (22) for a given
b0, the left side of (22) is less than the right side for a < a0 and exceeds the
right side for a > a0. Regularity holds for many cases of g and h although it is
certainly possible to specify g and h that violate it.

The following theorem gives fairly general conditions under which (21)
and (22) have no positive �a; b� solution and hence no equilibrium. In most
such cases, S ! �0; 0�. Apart from regularity, the theorem focuses on the
usage rate density h.

Theorem 5.1 Suppose f is separable and regular, and h is di�erentiable with
derivative h0. If, in addition,

�h�x��2 � h0�x��1ÿ H�x�� � 0 �23�
for all x for which h�x� > 0, then (21) and (22) have no positive �a; b� solution.
Proof. Given the initial hypotheses of the theorem, we show that if (21) and
(22) have a positive �a; b� solution, then (23) is contradicted.

Assume that f is separable and regular, h is di�erentiable, and
�a; b� > �0; 0� satis®es (21) and (22). We parameterize the di�erence of the
two sides of (22) by replacing a by z and write

T �z� �
Z z

v�0
v�1ÿ G�v��h v

b

� �
dvÿ z2�1ÿ G�z��h z

b

� �
:

Clearly, T �0� � T �a� � 0 and h a
b

ÿ �
> 0. By regularity, T does not vanish

elsewhere. It is easily seen that T ��� < 0 for small � > 0 so, as z approaches a
from the left, T �z� increases with derivative T 0�z� > 0 at z � a, where

T 0�z� � z ÿ�1ÿ G�z�� h
z
b

� �
� z

b
h0

z
b

� �h i
� zg�z�h z

b

� �n o
:
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Then T 0�a� > 0 if and only if

ÿh
a
b

� �
�1ÿ G�a� ÿ ag�a�� > a

b
�1ÿ G�a��h0 a

b

� �
:

According to (21), this inequality is tantamount to

0 > h
a
b

� �h i2
�h0

a
b

� �
1ÿ H

a
b

� �h i
:

However, this contradicts (23). (

When x is bounded with domain �0;K�, we have found that (23) holds for
a variety of h densities, and it takes some imagination to formulate an h that
violates (23) on a subdomain of �0;K�. Even then there is no assurance that
(21) and (22) have a positive solution. In fact, we have no explicit example of
an SEP for Model 2 in which f is separable and w and x are bounded.

Plausible failures of (23) are easier to imagine when x is unbounded. A
case in point appears in our concluding example.

Example 2. Assume that

f �w; x� � �1:5�2
�1� w�2:5�1� x�2:5 for all w; x � 0 ;

where x and w have been scaled so that the additive constants in the de-
nominator are both 1. Then E�x� � E�w� � 2 in the units used for x and w.
For example, if each w unit represents $10, and each x unit represents 7 hits,
then the average willingness to pay is $20 per period and the mean usage rate
prior to budget-induced reductions is 14 hits per period.

The preceding f admits a unique positive solution for (21) and (22), at
approximately �a�; b�� � �0:15; 0:13�, that is an SEP. In the present case,

A�a; b� � a

�1� a�1:5�1� a=b�1:5 ;

which increases for ®xed b from 0 at a � 0 up to a maximum when a satis®es

b � a�1� 4a�
2ÿ a

and then decreases. The preceding equation is (21). Equation (22) isZ a

v�0

�1:5�v
�1� v�1:5�1� v=b�2:5 dv � �1:5�a2

�1� a�1:5�1� a=b�2:5 ;

which substitution from (21) reduces toZ a

v�0

v

�1� v�1:5 1� v�2ÿ a�=�a�1� 4a��� �2:5 dv � a2�1� 4a�2:5
32:5�1� a�4 :

The unique solution to this is approximately a � 0:15, and we then obtain
b � 0:13 from (21). A proof that is similar to aspects of the proof of Theorem
3.1 shows that the solution is an SEP.
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With a unit of w representing $10 and a unit of x representing 7 hits, the
equilibrium solution �a�; b�� � �0:15; 0:13� puts A's fee at $1.50 per period
and B's fee at about 19 cents per hit. The average revenues are
A�a�; b�� � 0:0385 and B�a�; b�� � 0:0365, so A has a slight edge over B.

These revenues translate into an average of 38.5 cents per customer for A
and 36.5 cents per customer for B. The total of 75 cents per customer seems
low in view of the average willingness to pay of $20, but is a consequence of
competition. If ®rm B stopped o�ering the service, leaving A without com-
petition, A would change a from 0.15 to 2, or $20, and realize a 10-fold
increase in revenue to $3.85 per customer on average. In other words, about
19% of the original customers would pay A the new $20 fee and the other
81% would stop using the service altogether.

6 Discussion

Our purpose has been to analyze competition between two ®rms that o�er
the same information service but use di�erent fee arrangements. Two models
were employed to investigate competitive pricing modeled as a noncooper-
ative repeated game. A predominant ®nding for both models was that
competition often leads to a ruinous price war. However, there are situations
that have stable equilibrium prices for the ®rms. When that occurs, the total
revenues of the ®rms are well below a monopolist's revenues, and the ®rm
which uses a ®xed subscription fee per period tends to do slightly better than
a ®rm which charges on a per-hit basis.

We noted earlier that potential subscribers often have a preference for the
®xed subscription fee arrangement, even when they would pay more this way
than for a per-hit arrangement. This can be factored into our models by
introducing subscription fee premiums. For example, a 20% premium in
Model 1 would change the customer's decision rule in Section 3 to

pay a to A if a � �1:2�bx; and

pay bx to B if �1:2�bx < a ;

given that the service is used. Revenue equations (1) and (2) would then be
changed by replacing x � a=b by x � a=�1:2b� in the integration limits. Such
changes appear to have relatively little e�ect on the status of competitive
equilibrium although they obviously alter the revenue ratio in A's favor when
an SEP exists.

We conclude with several challenges that could be addressed by future
research:

1. Extend Theorem 4.1 to usage rate densities other than the negative
exponential;

2. Construct a plausible separable f for Model 2 that has a bounded
domain and an SEP;

3. Construct an interesting nonseparable f for Model 2 of bounded or
unbounded domain that has an SEP;
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4. Determine for either model if it is possible to have A�a�; b�� < B�a�; b��
at an SEP �a�; b��. The SEP examples in the paper all have
A�a�; b�� > B�a�; b��, and if f in Example 2 is replaced by 1=��1� w��1� x��2,
we get an SEP for which A�a�; b�� � B�a�; b��. But we know of no case in
which A�a�; b�� < B�a�; b��.
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