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Summary. Boldrin and Montrucchio [2] showed that any twice continuously
differentiable function could be obtained as the optimal policy function for
some value of the discount parameter in a deterministic neoclassical growth
model. I extend their result to the stochastic growth model with non-de-
generate shocks to preferences or technology. This indicates that one can
obtain complex dynamics endogenously in a wide variety of economic
models, both under certainty and uncertainty. Further, this result motivates
the analysis of convergence of adaptive learning mechanisms to rational
expectations in economic models with (potentially) complicated dynamics.

JEL Classification Numbers: D90, C61.

1 Introduction

Boldrin and Montrucchio [2] showed that an arbitary twice continuously
differentiable function defined on a compact subset K of the positive orthant
could be the optimal policy function for some value of the discount parameter
in a neoclassical optimal accumulation model. Thus every kind of behavior is
potentially possible in a neoclassical growth model. In particular, the as-
sumption of maximizing behavior on the part of economic agents cannot rule
out complicated dynamics (even chaos) in the time path of capital.

The result obtained by Boldrin and Montrucchio [2] is in the context of a
deterministic model. In this paper I extend their result to a stochastic growth
model with non-degenerate shocks to preferences or technology. This shows
that the Boldrin-Montrucchio [2] result is actually true for a wider class of
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models than they considered. In particular, one can think of the Boldrin-
Montrucchio [2] result as a special case of the more general result in this
paper.

There is another reason to be interested in such a result. The literature on
convergence of adaptive learning mechanisms to rational expectations
equilibria in dynamic economic models has seen a tremendous growth over
the last decade or so. In the beginning this issue was analyzed in linear
economic models (see for instance Bray [3] and Marcet and Sargent [8, 9]).
Learning in nonlinear models has been studied by Grandmont and Laroque
[6]. More recently, Evans and Honkapohja [5] and Kuan and White [7]
establish conditions for local convergence to rational expectations equilibria
in stochastic nonlinear models.

In general, however, there is no guarantee that trajectories under learning
converge to a rational expectations equilibrium. For instance, Grandmont
and Laroque [6] mention ‘‘. . . adaptive learning might generate endogenously
complex nonlinear trajectories, along which forecasting errors would never
vanish’’. When the possibility of complex dynamics is shown in the context of
some model, it is often (implicitly) assumed that one cannot converge to
rational expectations.

The study of chaos in economic models till recently, to the best of my
knowledge, has been exclusively confined to deterministic models. But a
study of chaos in economic models with noise is also potentially interesting.
Mitra ([10] and [11]) considers a model where the equilibrium law of
motion of some variable is given by the quadratic map. The focus is on finite
sample results. It is shown that it is possible that agents with a fixed
sample size may be closer to rational expectations when the underlying
dynamics is chaotic than when the underlying dynamics is converging to a
fixed point.

Although the dynamics induced by learning may be complex, the reader
can, nevertheless, ask whether such a phenomenon is robust or not? The
possibility of complex dynamics (even chaos) has been shown in models of
overlapping generations, both in a deterministic framework (for instance, see
Benhabib and Day [1] and Carrera and Moran [4]) and in a stochastic
framework (as in Mitra [10]). While the possibility of complicated dynamics
in a neoclassical growth model has been shown in a deterministic framework,
an extension of the result obtained in Boldrin and Montrucchio [2] to a
stochastic framework indicates that there exist a wide variety of economic
models (ranging from models of overlapping generations with finitely lived
agents to infinite horizon growth models) where complicated dynamics can
arise endogenously. The occurence of complex dynamics, therefore, seems to
be a widespread phenomenon in economic models and cannot be dismissed
as accidental.

With this motivation for the importance of analyzing learning in models
with potentially complicated dynamics, we now proceed to extend the result
of Boldrin and Montrucchio [2] to a stochastic growth model. The proof very
closely follows the one in the deterministic case.
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2 Statement of the problem

We let �K; f� and �Z; v� be measurable spaces, and let �S; #� � �K � Z; f� v�
be the product space. K is the set of possible values of the endogenous
state variable, the capital stock, Z is the set of possible values for the exog-
eneous shock, and S is the set of possible states for the system. The evolution
of the stochastic shocks is described by a stationary transition function Q on
�Z; v�:

The neoclassical stochastic growth model with discounting is described by
problem (P) and the subsequent assumption (A.1)–(A.3):

�P�Wd�k0; z0� � MaxE
X1

t�0

V �k; k0; z�dt subject to �k; k0; z� 2 !; t � 0; 1; 2; . . .

�k0; z0� given in K � Z; d 2 �0; 1�:

(A.1) The set of feasible capital stocks K � Rn
�

is a convex, compact Borel set
in Rn

�
with its Borel subsets f and with nonempty interior. Let C : S ! K be a

correspondence describing the technology constraints which is nonempty,
compact-valued and continuous; let ! be the graph of C; i.e.,
! � f�k; k0; z� : k0 2 C�k; z�g and C�k; z� � fk0 2 K; s.t. �k; k0; z� 2 !g: Also,
we assume that Z is a compact (Borel) set in Rk

; with its Borel subsets v; and
the transition function Q on �Z; v� has the Feller property.

(A.2) The return function V : ! ! R is continuous and concave for each
z 2 Z; V �k; :; z� is strictly concave for each �k; z� 2 �K; Z�:

(A.3) V �k; k0; z� is strictly increasing in k; and strictly decreasing in k0; for
each z 2 Z:

The functional (Bellman) equation is:

�1�Wd�k; z� � MaxfV �k; k0; z� � dEfWd�k0; z0� j �k; z�g s.t. k0 2 C�k; z�g

The optimal policy correspondence sd : K � Z ! K is defined as

�2�sd�k; z� � ArgMaxfV �k; k0; z� � dEfWd�k0; z0� j �k; z�g s.t. k0 2 C�k; z�g

Note: EfWd�k0; z0� j �k; z�g :�

R
Z Wd�k0; z0�Q�z; dz0�

Under the above assumptions, it can be shown, for instance, that the
function W is the unique fixed point of the Bellman equation and for each
z 2 Z; sd�:; z� : K ! K is a continuous function.

Lemma 1. A map h : K � Z ! K is the policy function sd of (P) under (A.1)
and (A.2), for a fixed d 2 �0; 1�; if and only if, the following two conditions
are satisfied:

(i) There exists a real function, W �k; k0; z�; (concave on K � K; for each
z 2 Z�; such that MaxfW �k; k0; z�; s.t. k0 2 C�k; z�g � W �k; h�k; z�; z�

(ii) Setting W�k; z� � W �k; h�k; z�; z�; the real function W �k; k0; z� ÿ dEfW
��k0; z0� j �k; z�g; satisfies (A.2).
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Proof. Necessity. Let the polity function sd be equal to h for a given return
function V �k; k0; z� and a given technology set ! satisfying (A.1) and (A.2).
By the Bellman equation, we must have

�10�MaxfV �k; k0; z� � dEfW �k0; z0� j �k; z� s.t. k0 2 C�k; z�g � w�k; z� and
�20� h�k; z� � ArgMaxfV �k; k0; z� � dEfW �k0; z0� j �k; z�gs.t. k0 2 C�k; z�g

Put: W �k; k0; z� � V �k; k0; z� � dEfW �k0; z0� j �k; z�g; to obtain
MaxfW �k; k0; z� s.t. k0 2 C�k; z�g � W �k; h�k; z�; z�;

so that (i) is satisfied. Moreover, if we set W�k; z� � W �k; h�k; z�; z�; we obtain
W�k; z� � W �k; z�; by �10�: In this way we have

W �k; k0; z� ÿ dEfW�k0; z0� j �k; z�g � V �k; k0; z� � dEfW �k0; z0� j �k; z�g

ÿ dEfW �k0; z0� j �k; z�g � V �k; k0; z�

which is continuous and concave in �k; k0� and strictly concave in k0 by (A.2).
Hence (ii) is satisfied. Also, note that the concavity of W on K � K; for each
z 2 Z; follows from the concavity of v on k � k, for each z � z:

Sufficiency: Define the short-run return function of problem (P) as
V �k; k0; z��W �k; k0; z�ÿdEfW�k0; z0� j �k; z�g; which satisfies (A.2) by (ii). Then
MaxfV �k; k0; z� � dEfW�k0; z0� j �k; z� s.t. k0 2 C�k; z�g � MaxfW �k; k0; z� s.t.
k0 2 C�k; z�g � W�k; z� and

ArgMaxfV �k; k0; z� � dEfW�k0; z0� j �k; z� s.t. k0 2 C�k; z�g

� ArgMaxfW �k; k0; z� s.t. k0 2 C�k; z�g � h�k; z�;

by hypothesis (i).
This, in turn, implies that h is the optimal policy function of a problem

(P) where we have V �k; k0; z� � W �k; k0; z� ÿ dEfW�k0; z0� j �k; z�g; as the
short-run return function, the discount parameter d is given and the value
function defined in �10� is exactly W�k; z� � MaxfW �k; k0; z� s.t. k0 2 C�k; z�g:
Q.E.D.

Corollary 1. A set of sufficient conditions in order to obtain a map h : K � Z
! K as the optimal policy function sd of problem (P) under (A.1), (A.2) for a
given d 2 �0; 1� is:

(i) h�k; z� 2 C�k; z�; for every k 2 K; for each z 2 Z; i.e, h�k; z� 2 C�k; z� for
all �k; z� 2 K � Z

(ii) There exists a real function, W �k; k0; z�; concave on K � K; for each
z 2 Z; such that

MaxfW �k; k0; z�; s.t. k0 2 Kg � W �k; h�k; z�; z�

(iii) W�k; z� � W �k; h�k; z�; z�; the real function W �k; k0; z� ÿ dEfW�k0; z0� j
�k; z�g is concave in �k; k0�; for each z 2 Z; and strictly concave in k0; for
each �k; z� 2 K � Z:

The family of functions corresponding to (3) in Boldrin and Montrucchio [2]
is:
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(3) W �k; k0; z�;� ÿ0:5kk0k2
� < k0 ÿ kÿ; h�k; z� > ÿ0:5Lkk0k2

; where kÿ is a
given point in K:

Note: ArgMaxfW �k; k0; z�; s.t. k0 2 Kg � h�k; z�

Definition 1. W is called ak0-concave if W �k; k0; z� � 0:5akk0k2 is concave over
K � K; for each z 2 Z:

Lemma 2. Consider the family (3) for a given map h : K � Z ! K; h is of
class C2

: Then for any a 2 �0; 1�; there exists a positive constant L; such that
the corresponding W is ak0-concave. More precisely, it is enough to put
L � lr� c2

=�1 ÿ a�;

where: Maxfk Dh�k; z� ks.t. �k; z� 2 K � Zg � c; Maxfk D2h�k; z� ks.t.
�k; z� 2 K � Zg � r;Maxfkk1 ÿ k2k; k1; k2 2 Kg � l; where D is the deriva-
tive operator.

Note: Since h is C2 and defined on a compact domain, the maximum
values above are finite.

Proof. The proof exactly follows the one in Boldrin and Montrucchio [2]
by simply (re)defining W �

�x; y; z� � ÿ0:5�1 ÿ a� kyk2
� < y ÿ yÿ; h�k; z�

> ÿ�L=2� kxk2
; and

f �t� � W �

�x0 � tx1; y0 � ty1; z0�

with x0; y0 fixed in K and z0 fixed in Z and �x0 � tx1�; �y0 � ty1� 2 K; t 2 R:

Theorem 1. Let h : K � Z ! K be any C2-map as in Lemma 2. Then for every
given a 2 �0; 1�; there exists a C2-function W : K � K � Z ! R such that

(i) MaxfW �k; k0; z� s.t. k0 2 Kg � W �k; h�k; z�; z�; for each z 2 Z:
(ii) W �k; k0; z� is ak0 -concave over K � K; for each z 2 Z:

Proof. Let W �k; k0; z� be defined by the family (3). Then (i) follows by the first
order conditions and (ii) has been proved in Lemma 2. Q.E.D.

Definition 2. W is called concave-b if W�k; z� � 0:5bkkk2 is convex over K; for
each z 2 Z:

Lemma 3. If W is the same as in (3) then, for each z 2 Z; the function:

W�k; z� � MaxfW �k; k0; z� s.t. k0 2 Kg � W �k; h�k; z�; z�

is concave-b for all b � L � lr:
Proof. In analogy with Lemma 2 in Boldrin and Montrucchio [2], just re-
define

F �k; z� � W�k; z� � 0:5bkkk2
� 0:5kh�k; z�k2

ÿ < kÿ; h�k; z� > �0:5�bÿ L�kkk2
:

and f �t� � F �k0 � tk1; z0�:
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Lemma 4. Let W �k; k0; z� be ak0-concave (for each fixed z 2 Z� with b � a:
Then W �k; k0; z� ÿ EfW�k0; z0� j �k; z�g is �aÿ b�k0-concave on K � K; for each
fixed z 2 Z:

Proof. By assumption, W �k; k0; z� � 0:5akk0k2 is concave over K � K; for
each fixed z 2 Z:

W�k; z� � W �k; h�k; z�; z�; where W is C2 defined on a compact domain. By
Lemma 3, we know that W is concave-b for all b � L � lr which in turn
implies that EfW�k0; z0� j �k; z�g is concave-b; too, under the same condition,
for each z 2 Z: (By Lemma 9.5 of Stokey and Lucas [12]).

Hence, W �k; k0; z� ÿ EfW�k0; z0� j �k; z�g � 0:5�aÿ b�kk0k2 is concave over
K � K; for each z 2 Z: Q.E.D.

Theorem 2. Take any h which is C2 on K � Z such that h�k; z� 2 C�k; z� for
all k 2 K; for each z 2 Z: Then there exists a discount parameter d� 2 �0; 1�;
the value of which depends on h; such that for every fixed 0 < d < d�; we can
construct a return function Vd�k; k0; z� satisfying (A.2) and with the
following property: the optimal policy function sd solving (P) under (A.1),
(A.2) with V � Vd is the map h: Moreover, a lower bound for d� can be
estimated as

d� � d�� � fc2
� lrÿ c�c2

� 2lr�1=2
g=�2l2r2

� > 0:

Proof. Take any h which is C2 such that h�k; z� 2 C�k; z�; for every k 2 K; for
each z 2 Z: By Theorem 1, there exists a W �k; k0; z� such that for each z 2 Z:

MaxfW �k; k0; z�; s.t. k0 2 Kg � W �k; h�k; z�; z�:

By Lemma 2, we know it is sufficient to take W �k; k0; z� as defined in (3). The
same lemma implies that this function turns out to be ak0-concave over K � K
for each z 2 Z; when

�4� L � c2
=�1 ÿ a� � lr; a 2 �0; 1�

Let W�k; z� � MaxfW �k; k0; z�; s.t. k0 2 Kg; then W is concave-b; for each
z 2 Z; by Lemma 3, when

�5� b � L � lr

Corollary 1 will imply that the function, Vd�k; k0; z� � W �k; k0; z� ÿ dE
�fW�k0; z0� j �k; z�; is our desired return function if we can prove it is strictly
concave in k0: But Lemma 4 tells us that W �k; k0; z� ÿ dEfW�k0; z0� j �k; z�g is
�aÿ db�k0-concave on K � K; for each z 2 Z: So we need the three parameters
to satisfy

�6� aÿ db > 0

to have Vd�k; k0; z� concave on K � K; for each z 2 Z; and strictly concave in
k0; for each �k; z� 2 K � Z:
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Summing up: The theorem is proved if the conditions (4), (5), and (6) are
simultaneously satisfied by some values of the parameters L; a; b such that
d 2 �0; 1�: It can be shown that the set of solutions to the system (4)–(6) is not
empty and that the value:

d�� � Maxfa=b; s.t.c2
=�1 ÿ a� � bÿ 2lrg

is the largest value of the discount parameter which assures a nonempty
solution. Also, the solution of the latter maximization exercise is exactly the
value d�� given in the theorem. Q.E.D.

Till now the monotonicity conditions (A.3) on the return function V
have been ignored. This question is tackled in the following extension of
Theorem 2.

Theorem 3. Assume h is as defined in Theorem 2. Then for every d0 2 �0; d��;
with d� as given in Theorem 2, there exists a return function Vd0 depending on
d0 and satisfying (A.2), (A.3), such that h is the optimal policy function sd of
the associated problem (P) with V � Vd0 when d � d0:

Proof. Consider the following modified version of the family (3): �30�W �k; k0; z�
� ÿ0:5kk0k2

� < k0 ÿ kÿ; h�k; z� > ÿ0:5Lkk0k2
� < a; k > where a is a strictly

positive n-dimensional vector and kÿ is a given point in K:

Note that all the arguments on a-concavity and concavity-b we have been
using in Theorems 1 and 2 hold true even after the addition of the linear term
<a, k>. Thus, for d < d�; Vd�k; k0; z� � W �k; k0; z� ÿ dEfW�k0; z0� j �k; z�g sat-
isfies (A.2).

�@=@k� Vd�k; k0; z�� � � fDh�k; z�gT
�k0 ÿ kÿ� ÿ Lk � a

were f:gT is the transpose operator and

�@=@k0� Vd�k; k0; z�� � � ÿ�1 ÿ dL�k0 ÿ da � h�k; z� � dE

� fDh�k0; z0�gT
�kÿ ÿ h�k0; z0�� j �k; z�

h i

Let N � Maxfkk0k s.t. k 2 Kg and

M � MaxfkE�fDh�k0; z0�gT
�kÿ ÿ h�k0; z0�� j �k; z��k s.t.�k; k0; z� 2 K � K � Zg

(the maximum exists by an application of Lemma 9.5 of Stokey and Lucas
[12]).

So,
ai > LN � lc� N=d� M ; for all i � 1; 2; ::n

is sufficient to make �@=@k��Vd�k; k0; z�� > 0 and �@=@k0��Vd�k; k0; z�� < 0:
Finally because �@=@k0��W �k; k0; z�� � 0 implies that k0 � h�k; z�; in view of

the Bellman equation (2), we can conclude that h is the policy function sd of
this optimal growth model. Q.E.D.
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3 Concluding remarks

In this paper I have extended the result of Boldrin and Montrucchio [2] to the
case when allows for non-degenerate stochastic shocks to preferences or
technology. This confirms that one can indeed obtain complex dynamics
(even chaos) in a wide variety of economic models both under certainty and
uncertainty. However, one need not necessarily get non-convergence to ra-
tional expectations in models with complex dynamics. One should probably
pay more attention as to when one can get convergence results in such
models rather than simply assume non-convergence as is often (implicitly)
done.
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