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Summary. A social welfare function for a denumerable society satisfies
Pairwise Computability if for each pair (x,y) of alternatives, there exists an
algorithm that can decide from any description of each profile on {x,y}
whether the society prefers x to y. I prove that if a social welfare function
satisfying Unanimity and Independence also satisfies Pairwise Comput-
ability, then it is dictatorial. This result severely limits on practical grounds
Fishburn’s resolution (1970) of Arrow’s impossibility. I also give an inter-
pretation of a denumerable “‘society.”
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1 Introduction
1.1 Overview

Computability analysis of social choice is concerned with algorithmic
properties of social decision-making. It aims at identifying which social
choice rules can be algorithmically executed, and at determining how com-
plex such rules are. This paper reconsiders Arrow’s Impossibility Theorem [3]
from a viewpoint of computability analysis of social choice.

Arrow’s Impossibility Theorem states that there is no social welfare
function that satisfies the Unanimity, the Independence and the Non-
dictatorship axioms. Here, a social welfare function maps each profile of
individual preferences into a “social preference.” The preferences are defined
on a set of at least three (social) alternatives and there are no restrictions on
the preferences beyond the usual ordering properties. Unanimity says that
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when all individuals prefer an alternative x to another alternative y, then
society must “prefer’” x to y. Independence means that the only information
relevant for determining “social preference” on a set {x,y} is the individual
preferences on the set. Nondictatorship rules out an individual such that
whenever he prefers x to y, society must “prefer”” x to y. Henceforth, I apply
the word “preferences” and related expressions to society as well as to in-
dividuals without the quotation marks.

In this paper, I intend to study feasibility of centralized decision-
making such as voting. I will interpret feasibility of executing a social
choice rule by a central authority as algorithmic computability of the rule.
This is in effect the same as regarding such an authority as an algorithm
(or a digital computer) that computes the rule. Support for this comes
from several sources. First, well-known schemes (for variable, finite num-
ber of voters), such as the simple majority rule, the unanimity rule, and the
Condorcet and the Borda rules, are all algorithms. Noncomputable social
choice rules cannot be carried out systematically no matter how well-
specified. (Kelly [10] gives examples of noncomputable social choice rules.)
Second, the use of the language by social choice theorists suggests that the
social welfare functions they consider are in fact computable ones. For
example, Arrow defined a social welfare function to be a “process or rule”
which, for each profile of individual preferences, “states’ a corresponding
social preference [3, p. 23], and called the function a “procedure” [3, p. 2].
Indeed, he later wrote [4, p. S398] in a slightly different context, “The next
step in analysis, I would conjecture, is a more consistent assumption of
computability in the formulation of economic hypotheses.” Finally, there
is a normative reason for supporting algorithmic computability. Algo-
rithmic social choice rules specify the procedures in such a way that the
same results will be obtained irrespective of who carries out a computa-
tion. They leave no room for personal judgments by the authority. In this
sense, computability of social choice rules formalizes the notion of “due
process.”

However, social choice theory has not traditionally paid much attention
to formal problems of computability. This is understandable, for comput-
ability of social welfare functions is automatically satisfied by assuming a
fixed, finite set of alternatives and a fixed, finite set of individuals—a com-
mon assumption in the literature. Computability is satisfied since, in such
cases, a finite table can be constructed expressing the function.

As a modification to Arrow’s setting, I discard the finite framework.
Fishburn [7] and Kirman and Sondermann [11] showed that when there are
infinitely many individuals in a society, there is a social welfare function
satisfying the axioms of Unanimity, Independence, and Nondictatorship.
Armstrong [1, 2] proved that this result is unaffected even when profiles are
restricted to those measurable with respect to a Boolean algebra of coali-
tions. Here, a profile is said to be measurable with respect to a Boolean
algebra if for all alternatives x and y, the coalition that prefers x to y belongs
to it.
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I apply Armstrong’s framework to a particular set of individuals and a
particular Boolean algebra of coalitions suitable for considering comput-
ability, namely the set N of nonnegative integers and the Boolean algebra of
all recursive coalitions. The recursive coalitions are the coalitions for which
there is an algorithm to decide their membership. The domain restriction
thus requires the members of a coalition to be algorithmically identifiable.
We can name recursive coalitions using the Gédel numbers (codes) of these
algorithms. We can then describe each measurable profile restricted on a set
{x,y} by giving names to (i) the coalition that prefers x to y, (ii) the coalition
that prefers y to x, and (iii) the coalition that is indifferent between x and y.

Suppose that a social welfare function for a denumerable (i.e., countably
infinite) society satisfies Independence. The social welfare function satisfies
Pairwise Computability if for each pair (x,y) of alternatives, there exists an
algorithm that can decide, for each measurable profile of individual pre-
ferences and for each description of the profile on {x,y}, whether the society
prefers x to y, from the description. I prove (Theorem 1) that if a social
welfare function satisfying Unanimity and Independence also satisfies Pair-
wise Computability, then it must be dictatorial. A more desirable notion of
computability (““‘Strong Pairwise Computability’’) for a social welfare func-
tion satisfying Independence could be introduced [15]; however, the negative
result of Theorem 1 implies that strengthening the condition of comput-
ability is not very interesting. On the other hand, the proof of Proposition 1
shows through examples that while there are some dictatorial social welfare
functions that satisfy Pairwise Computability, not all do.

Pairwise Computability requires neither a finite set of alternatives, nor
computable individual preferences. Also, the information necessary for
computation is readily obtainable, being a description of a profile only on a
set {x,y}. Theorem 1 severely limits on practical grounds Fishburn’s resolu-
tion, re-establishing Arrow’s negative result even for denumerable societies.

Since speaking of infinitely many people involved in social choice might
seem unrealistic, I discuss a natural example of a denumerable “society”
derived from only finitely many people. The example does not assume people
extending into the indefinite future. I postpone a concrete example to Section
2.1.3 and give an abstract version here.

Consider a social choice problem in which there are finitely many people
and there is uncertainty expressed by a denumerable set of states of the
world. Assume that it cannot be known which state will be realized by the
time social choice is made. Then, it is reasonable to suppose that people
express their preferences conditioned on states: “person j prefers social al-
ternative x to y if the state is s”—which is denoted by x > y.

A denumerable “society” is derived from the society of people facing un-
certainty as follows. Regard person j's preference >} in state s as the pre-
ference >, ;) of the newly named individual ( j,s). Since there are only finitely
many people and denumerably many states, we have a denumerable set of
individuals ( /, s). This derivation of an infinite ““society’’ as well as the domain
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restrictions might seem artificial. However, they are in fact natural and even
have some advantages. First, inter-state comparisons are avoided, in the same
sense that inter-personal comparisons are avoided in Arrow’s setting. Second,
in this formulation, people can express their preferences without estimating
probabilities. Third, the domain restriction requires, for example, that each
person can identify (in a finite way) the set {s : x =} y} of states in which he
prefers x to y, for each x and y. This is a natural epistemological condition
since, instead of having to make infinitely many statements (whether x >~ y for
infinitely many s) without any recognizable pattern among the statements, he
does have a finite rule that can make those infinitely many statements.

Hayek [9] points out that economic data, or knowledge, is dispersed:
assuming data to be given to a single mind is a trivialization of social pro-
blems. This paper gives an example of a ‘“‘trivialized” problem that is im-
possible to solve nevertheless once feasibility of information processing is
formally required. In this sense, the paper strengthens Hayek’s thesis about
the difficulty of informationally centralized decision-making.

The negative result (Theorem 1) suggests relaxing the notion of Pairwise
Computability to see if the resulting condition can be met by a social welfare
function satisfying Arrow’s axioms. A positive result, using oracle Turing
programs, is discussed in my dissertation [15]. (In a paper [17] attempting to
avoid the Gibbard-Satterthwaite impossibility, I use the essence of the proof
of the positive result to construct a coalitionally strategyproof social choice
function.)

The paper is organized as follows. The rest of the Introduction surveys
the related literature. The main results are stated in Section 3, which is
preceded by informal discussion in Section 2. Section 3 assumes a few ter-
minologies in Appendix B on recursion theory (the study of algorithms).
Appendix A discusses two notions of computability not covered in the main
body. The proofs of the main results are given in Appendix C where the
knowledge of recursion theory covered in Appendix B is assumed.

1.2 Related literature

The modern paradigm of social choice theory began with Arrow’s Im-
possibility Theorem [3] in 1951. Surveys (e.g., Sen [19]) of later developments
in social choice reveal that issues relating to computability in social choice
have largely been ignored. This lack of interest is surprising, given that social
choice theory has had a significant impact on philosophy and economics [8]:
Philosophers have been concerned about algorithmic computability in their
study of logical reasoning processes; economists have witnessed [12] the so-
cialist calculation debate among Mises, Hayek [9], Lange, and Lerner.

Algorithmic (Turing) computability has been studied in the related areas
by Canning [5] in game theory, by Spear [21] on learning rational expecta-
tions, by Wong [22] in general equilibrium theory, and by Lewis [13] in
individual choice theory.
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In social choice theory, computability is studied from the recursion the-
oretic point of view by the following authors.

Kelly [10] considers computability of variable-voter social choice rules.
He is interested in finding a noncomputable rule satisfying a subset of axioms
characterizing the simple majority rule (which is computable), since he wants
to see which properties of the rule lead to computability.

The paper most closely related with the present study is Lewis [14], which
is motivated by constructive mathematics. It discusses Arrow’s Theorem
“within the recursion theoretic setting.”” Although the set of individuals he
considers is the same as mine (the set of natural numbers), our frameworks
are different:(i) the set of alternatives in Lewis is a countable set that contains
at least three elements, while my set of alternatives can be uncountable; (ii)
his set of preferences is countable, while mine can be uncountable; (iii) Lewis
restricts profiles to be recursive (i.e., there is an algorithm to determine for
each individual and each pair of alternatives, his preference on the pair)—
such profiles form a strict subclass of my REC-measurable profiles to be
defined later; (iv) Lewis assumes that coalitions are recursively enumerable,
while in my framework each coalition that prefers one alternative to another
is recursive. Lewis states that in his “recursive” setting, there is a “dictator.”
But, in his theorems, he is using the word “dictator” in a much weaker sense
than mine: in essence, he claims that for each profile, there is a “dictator”
whose preference determines the social preference for that particular profile;
by contrast, I prove existence of a single dictator for all profiles. (Although
he presents the result without referring to the Unanimity or the In-
dependence axioms, I suppose it is an oversight.)

2 Discussion

This Section is an informal exposition of the framework and the results in
Section 3.

In the rest of the paper, I informally use the word person (people) o refer to
a person in the ordinary sense, a human being. The word individual is used in a
technical sense. An individual may be either a person or a name representing
a person at a certain date or state.

2.1 Domain restrictions

In this Section, I introduce for a social welfare function a domain suitable for
consideration of computability issues in the setting of Arrow’s Theorem. The
treatment is based on Armstrong’s extensions [1] of Arrow’s Impossibility
Theorem [3] and of Fishburn’s resolution [7].

2.1.1 Naming individuals

Since Arrow’s impossibility persists for any finite set of individuals (a cor-
ollary of Proposition 2 in Appendix C), I consider as a set / of (the names of)
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individuals one of the simplest infinite sets, namely the set N of nonnegative
integers. A denumerable set of individuals arises naturally in social choice.

For example, a denumerable set of individuals may arise when a national
government is evaluating alternative policies that can affect future genera-
tions. We can, for example, assign a name to each person as follows: if a
person is a female, she is given a name starting from a nonzero even number;
otherwise, an odd number. Likewise, economic, social, political classifica-
tions can be coded into a name.

Another example of a denumerable set of individuals is given by the case
of finitely many people facing a set X of alternatives and uncertainty ex-
pressed by a denumerable set S of states of the world. This was discussed in
the Introduction.

2.1.2 Coalitions

I assume that only some coalitions (sets of individuals) are observable. In-
tuitively, the observations are made by an agent, called a social planner, a
human or machine that executes a social welfare function. Since an ob-
servation is a cognitive activity, it seems natural to introduce a structure for
observable coalitions. Following Armstrong [1], I require that the family of
observable coalitions form a Boolean algebra. Namely, if two coalitions are
observable so must be their union, intersection, and complements. For in-
stance, (i) the family of all subsets of 7 = N and (ii) the family of all finite sets
and cofinite sets (i.e., the complements of a finite set) of / = N, each forms a
Boolean algebra.

Since I am concerned with algorithmic computability, I restrict coalitions
to those which can be recognized by some algorithm. Then, we will see that
(1) becomes too broad a family, being uncountable, while (ii) is unnecessarily
restrictive, excluding the intuitively “describable” coalition of even numbers,
for example. The observable coalitions that I propose are the recursive sets of
individuals. These are the coalitions whose membership is effectively decid-
able, i.e., the ones for which there is an algorithm that can decide for each
name i, whether individual i is in the coalition. The algorithmically decidable
nature of recursive coalitions seems to capture the idea of what we mean by a
coalition that is “observable” or “recognizable” or “‘identifiable.” The re-
cursive coalitions form a Boolean algebra.

2.1.3 Social welfare functions

A social welfare function (formally, an REC-social welfare function) maps a
profile (list) p= (=? );e; of individual preferences =P (on a set X of alter-
natives) to a social preference >P. I assume that the set / of individuals is N,
and that the domain includes all those profiles p such that for any x and y,
the coalition {i:x ="y} that prefers x to y is recursive. Such profiles are
called measurable (with respect to the Boolean algebra REC of recursive
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coalitions). Measurable profiles are understood to be the ones for which the
social planner will be required to give a social preference.

Remark. The measurability condition might appear unreasonable since it
implies that the preferences of different individuals are correlated in some
way. To defend the condition, I give two interpretations. The first is given by
the uncertainty example in the Introduction, where there are only finitely
many people facing denumerably many states. In this case, the measurability
condition simply reflects the reasonable epistemological requirement that
each person can identify the set of states in which he prefers an alternative to
another alternative. The second interpretation is when a society is made up
of infinitely many people extending into the indefinite future. In this case, it is
reasonable to suppose that we are dealing with imagined preferences rather
than actual preferences. The measurability condition reflects the reasonable
requirement that what is imagined should be describable. &

Example. Suppose that the Administration of Food, Drug, Cosmetics, and
Medical Devices (FDCA) is to adopt a usage policy for a newly developed
medicine. The FDCA consults some selected set of people, or “experts”
about their preferences among alternatives policies such as ‘““prescription
only” or “experimental use only on nonhumans.” These policies form the set
X of alternatives. The experts are not comfortable with giving definite an-
swers since the medicine is new and so there are uncertainties that cannot be
resolved by the time a policy has to be adopted. So, the FDCA decides to
specify conditions on which experts may base their opinions. These condi-
tions constitute the set of states of the world that may involve with, for
example, (i) the potential benefits s; of research for the next dozen years in
case only experimental use is allowed or (ii) the cost s, in terms of human
lives for the next decade in case a unrestrictive policy is adopted. Each state s
specifies a value to these variables s; and s, among others. It is natural to
assume that the set S of states is denumerable. The discussion of finitely
many people facing uncertainty (Section 1.1) applies to this example. &

2.2 Computability

Proposition 3 in Appendix C implies that if the set / of individuals is N and a
social planner only observes measurable profiles (with respect to REC, the
Boolean algebra of recursive coalitions), then a social welfare function (not
necessarily computable) exists that satisfies Arrow’s conditions. In this sec-
tion, I introduce a modest condition for computability of social welfare
functions and consider whether there is a computable social welfare function
satisfying Arrow’s axioms.

2.2.1 Naming restricted profiles

My notion of computability will be weak in the sense that they are only local
requirements: they are concerned about how to obtain, for each pair (x, y),
the social preference on (x,y) from a description of a profile restricted to the
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set {x,y}. For this purpose, I describe the restriction (-! ﬂ{x,y}z)ieN of a
measurable profile p € Q’EEC to a set {x,y} by a natural number e (as in
Section 3.2). When this is done, I say that e represents p at (x,y). A natural
number e is illegitimate if e does not represent any measurable profile at (any)
(x,v); e is legitimate otherwise. (If e represents a profile at (x,y), then it
represents all the profiles (at (x,y)) whose restriction to the set {x,y} is
identical. In this sense, each natural number represents at most one restricted
profile.)

2.2.2 The notion of computability

I only consider social welfare functions > satisfying Independence (so that
social preference on a pair {x, y} is determined by the profile restricted to the
pair).

I say that a social welfare function >~ satisfies Pairwise Computability
(PC) if for each pair (x, y), there exists an algorithm that can decide, for each
measurable profile p and for each legitimate representation e of the profile at
(x,y), whether the society prefers x to y according to >P, from the re-
presentation e. (If such an algorithm can be chosen so that it works uni-
formly for all (x, y), then I say that the social welfare function satisfies Strong
Pairwise Computability [15].) Note that the computability condition implies
that the value given by a deciding algorithm must be invariant over different
e that represent the same profile at (x, y). Also, note that PC does not require
that a single algorithm work for all pairs.

The main result, Theorem 1, states that if a social welfare function sa-
tisfying Unanimity and Independence also satisfies PC, then it must be
dictatorial.! The Introduction interprets this result as strengthening both
Arrow’s Theorem and Hayek’s thesis.

On the other hand, Proposition 1 shows that while there are some dic-
tatorial social welfare functions that satisfy PC, not all do. Precisely dicta-
torial social welfare functions (where social preference is always identical
with the dictator’s preference) are examples that do satisfy (Strong) PC.

3 Theorem
3.1 Framework

1 is a set of individuals, which is either finite or infinite. An example of / is the
set N of nonnegative integers. X is a set of alternatives, which has at least
three elements. 2 is the set of (strict) preferences, i.e., asymmetric and ne-
gatively transitive binary relations on X.

A Boolean algebra % consisting of subsets of [ satisfies the following: (i) 0,
1€ %;@G)AB, AN\B, A€ Bif A, B € # (where A denotes the complement
of A). If I denotes the set of individuals, then intuitively, an element of a
Boolean algebra is a coalition observable by the planner. For example, let

! The PC here should not be confused with “Political Correctness.”
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REC consist of all recursive subsets of N. Then REC forms a Boolean al-
gebra.

A profile is a list p = (»?)ie, € 2! of individual preferences =Piel A
weak preference =? is the negation of <! (defined from ~! in the obvious
manner), and the indifference relation ~! is the symmetric part of =P. A
profile (7)., is #-measurable if {i € I : x =? y} € # for allx, y € X. Denote
by 2, the set of all #-measurable profiles.

A #B-social welfare function is a function >: ,@_{5, — & mapping each profile
p = (1), to a social preference > (p) = >P. (Using the notation > for a
function would not cause a confusion since preferences are expressed in the
form =P or =P, with profile p always present as a superscript.) Social rela-
tions =P, ~P <P etc., are defined in the obvious manner.

I list Arrow’s conditions for #-social welfare functions:

Unanimity For any x, y € X,andp € 2, if {icI:x >y} =1 thenx ~P y.

Independence For any x, y € X, and p, p’ € 2., if (x #y and) =P N{x,
=" N{x,y}* for all i € I, then =P N{x,y}* = =¥ N{x,»}*.

Nondictatorship There is no i € I such that for all x, y € X and all p € 2.,
x =P y=x =P y.

A %-social welfare function violating Nondictatorship is called dictatorial.

3.2 Computability

I will define computability for social welfare functions using Turing
computability. Turing computability is (one of several equivalents of) the
generally accepted formalization of the intuitive notion of algorithmic
computability. Informally, an algorithm is a finite list of instructions that,
given a symbolic input, yields after a finite number of steps a symbolic
output. According to this intuition, a computation by an algorithm is exact,
deterministic and performed in a discrete manner; inputs and outputs are
finitely describable (equivalently, describable by natural numbers); and so on
[18, pp. 1-5]. Turing computability meets all these intuitive requirements.

The basic idea of a social welfare function is that it maps each profile p to
a social preference >P. So, when one accepts Turing computability, the first
approach that one might attempt in introducing a condition of computability
for social welfare functions is to represent profiles p and social preferences by
integers, and then, to define computability in terms of these integers. This
approach is unsatisfactory in general (for example, it is problematic even
when I restrict attention to REC-social welfare functions) unless X is finite.
The reason is that when X is infinite, the domain of a social welfare function
is not necessarily countable (e.g., ,@gEC is uncountable [15]), while only
countably many profiles p can be represented by a natural number. This
implies a possibility that any algorithm used for obtaining social preferences
fails to compute an output for “almost all”” profiles in the domain. One way
out of this problem would be to consider only countable domains for social
welfare functions.
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However, there is a different solution, which does not require countable
domains. To describe the solution, I henceforth let the set 7 of individuals be
the set N of nonnegative integers and I let the Boolean algebra # of coali-
tions be REC, the Boolean algebra of recursive sets. (So, I am considering
only REC-social welfare functions >: @EEC — 2.)

A key assumption that I make for my solution is the Independence axiom:
I suppose that > is an REC-social welfare function satisfying Independence.
Corresponding to each profile p is the social preference ~P, which determines
for each pair (x,y) of alternatives, whether x >P y or not. By Independence,
all that is needed to determine that, is the restriction of profile p to {x,y}. The
Definition below introduces a method of representing such restricted profiles
by a natural number e. Such representation (by integers) enables me to apply
the notion of Turing computability. The notion of computability for social
welfare functions will be introduced afterward.

Remark. Restricting my attention to REC-social welfare functions satisfying
Independence is reasonable since my main purpose is to determine whether
there is a nondictatorial social welfare function among those satisfying
Unanimity and Independence. Furthermore, the Independence axiom can be
regarded as a part of the computability condition. After all, Independence is
a stringent form of an informational viability condition, which requires fi-
niteness in some aspects of information to be processed. <

A characteristic index for a recursive set 4 is the G6del number (name) of
an algorithm computing the characteristic function for 4. When a char-
acteristic index for 4 is known, one can effectively recover the algorithm from
the index; using this algorithm, one can decide, for any number e; € N,
whether ¢ is in 4. Recall from Appendix B that e = (e}, e5,e3) is the coding
(by integer) of a triple (ej,es,e3) of integers.

To describe the restriction of a measurable profile p on a pair {x, y}, I first
describe each of {i : x = y}, {i : y =P x}, and {i : x ~F y} by its characteristic
index and then aggregate the three indices using the above coding for triples.
Formally, I have the following definition:

Definition. e = (ey, 2, e3) € N represents a profile p = (=!),.y € PREc at a
pair (x,y) € X x X if ey, 3, and e; are characteristic indices for {i : x =? y},
{i:y=Px}, and {i:x~P y} respectively.

If e represents p € ?gEC at (x,y), then e describes the restricted profile
= N{x, y}z)ieN of p on {x, y} completely (in the sense that one and only one
restricted profile corresponds to e). Note that I need at least two of the three
characteristic indices above to describe the restricted profile completely.
The following definition of computability requires that the process of
determining whether x P y holds, be an algorithmic process; it uses as input
a representation e of the restricted profile. Pairwise Computability allows
different algorithms to be used for different pairs (x, y). (In contrast, Strong
Pairwise Computability [15] requires a single algorithm to work for all pairs.)
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Pairwise computability (PC). For each pair (x,y) € X2, there is a partial re-
cursive function y such that

(a) for each profile p € @gEC and for each integer e € N, if e represents p at
(x,y), then

x =Py = vy(e) =1, and
—x>-Py = y(e) =0.

Obviously, “=""1n (a) above can be replaced by ““ <= .”” But notice that
e is restricted to those representing some p € QEEC at (x,y).

Remark. In order to appreciate the above notion, it is instructive to consider
several other notions of computability. 1 give two alternative notions of
computability in Appendix A. O

I now give the main theorem, whose proof appears in Appendix C. It re-
establishes Arrow’s negative result even for denumerable societies.

Theorem 1. Let >: 5011\(156 — P be an REC-social welfare function satisfying
Unanimity and Independence. Then > is dictatorial if it satisfies Pairwise
Computability.

While Theorem 1 asserts necessity of dictatorship for computability, the
next proposition shows that it is not sufficient.

Proposition 1. Among the REC-social welfare functions satisfying Unanimity
and Independence, there are (1) a dictatorial function satisfying Pairwise
Computability, and (i) a dictatorial function not satisfying Pairwise Com-
putability.

Proof. Items (i) and (ii) are proved by Examples 1, 2 respectively. Details are
in Appendix C. U

Example 1. Let
Uy={4€REC:0€4}

and define by Proposition 3 the social welfare function =: 2R}y — 2 for
p € PRgc, and for x, y € X by

x>ty = {i:x=Py} ew,.

That is, the individual 0 is the “precise dictator.”” Proposition 3 establishes
that > satisfies Unanimity and Independence. Appendix C shows that >
satisfies (Strong) Pairwise Computability. &

Example 2. Let %, be as in Example 1 and let % be an arbitrary free ultra-
filter (Appendix C) on REC. Define a map > from p € Q’EEC into a binary
relation >P on X as follows: for p € WEEC, and for x, y € X,

x =Py iff (@) {i:x =Py} € uyor A
O {i:x~ytewuy&{i:x-Pyte.
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It can be shown [2, 16] that > is a dictatorial REC-social welfare function
satisfying Unanimity and Independence. The proof that > does not satisfy
Pairwise Computability appears in Appendix 3. &

A Strengthening pairwise computability

A minor problem with the definition of Pairwise Computability occurs when
an input number e for a deciding algorithm (for a partial recursive function y
in (a) in PC) for a social welfare function is illegitimate, so that it does not
represent any measurable profile at the pair. In this case, application of the
algorithm might give a social preference on (x, y) improperly. This problem is
minor since I can safely think of a scenario in which a planner only processes
inputs whose legitimacy she can prove. While there is no algorithmic pro-
cedure to give a proof of legitimacy for every input, there is no inconsistency
in assuming that only numbers for which legitimacy can be proved are input
to the social welfare function.

Having said that, let me consider some ways of avoiding obtaining social
preferences for illegitimate inputs, for a planner might incorrectly believe
that her input is legitimate. Computability A below requires illegitimate in-
puts to be indicated by a certain output; Computability B requires that
outputs are given only for legitimate inputs. Though these notions may be
appealing on intuitive grounds, they are both stronger than Pairwise Com-
putability, and therefore, the main Theorem 1 applies a fortiori. However, 1
show here that no social welfare function satisfying Independence meets ei-
ther of these computability conditions. These impossibility results further
justify the use of PC (or Strong PC) as a notion of computability.

Suppose in the following that =: #}.. — # is an REC-social welfare
function satisfying Independence.

1. In the definition of Pairwise Computability, it is required that an algo-
rithm exist that can decide the restricted social preference given a repre-
sentation e of a profile at a pair of alternatives. However, there is no
requirement as to what the algorithm should do for an integer e € N that
is illegitimate (i.e., that does not represent any REC-measurable profile at
the pair). It would be desirable if the algorithm could decide for each
integer e whether e is legitimate or not, in addition to deciding the re-
stricted social preference. This leads to the following definition:

Computability A. For each pair (x,y) € X2, there is a recursive function y
suchthat the condition (a) in Pairwise Computability is satisfied, and (b) for
each integer e € N, if e does not represent any p € .WEEC at (x,y), then
7(e) =2.

Unfortunately, Computability A cannot be met by any REC-social wel-
fare function that satisfies Independence. To see why, fix (x,y) and suppose a
recursive y satisfies (a) and (b). Then it must be that S = {e: y(e) = 1 or 0} is
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r.e. (in fact, recursive). This is because S is the domain of the partial recursive
function 9" which is defined by y'(e) = y(e) iff y(e) =1 or 0, and y'(e) T iff
p(e) = 2. (That ¢y’ becomes partial recursive is straightforward from the
Graph Theorem.) However, Lemma 3 in Appendix C shows that S = {e: e
represents some p € QEEC at (x,y)} is not r.e.

2. One of the most obvious conditions of computability that one might think
of is the following. It requires existence of a deciding algorithm (for the
restricted social preferences) that gives an output only for legitimate re-
presentations of a profile at a pair.

Computability B For each pair (x,y) € X2, there is a partial recursive function
y such that the condition (a) in Pairwise Computability is satisfied, and (c) for
each integer e € N, if e does not represent any p € Q”EEC at (x,y), then y(e) 1.

The same argument (that S is not r.e.) shows that no REC-social welfare
function that satisfies Independence can satisfy Computability B.

B Recursion theory

This appendix reviews the definitions and results from recursion theory ne-
cessary for understanding technical sections of the present paper. I mostly
follow the notations and terminologies in Soare [20]. Other references on
recursion theory include Rogers [18] and Davis and Weyuker [6].

In this appendix, x, y and z denote nonnegative integers. For sets 4 and B,
A denotes the complement of 4; A — B denotes the set theoretic difference
ANB.

B.1 Partial functions

A partial function on N", where n > 1 is an integer, is a function (into natural
numbers) whose domain is a subset of N”. If the domain of a partial function
on N" is N”, then it is called total. For partial functions ¢ and 0, ¢(x) |
denotes that ¢(x) is defined; ¢(x) 7 denotes that ¢(x) is undefined; ¢ = 0
denotes that for all x, ¢(x) | iff 6(x) |, and if ¢(x) | then ¢(x) = 0(x); dom ¢
denotes the domain of ¢.

B.2 Algorithms
Informally, an algorithm (for a partial function ¢ on N) is a finite list of
instructions that, given an input x, yields an output y = ¢(x) after a finite
number of steps if ¢(x) is defined. (It should not yield an output if ¢(x) is
undefined.) The algorithm must specify how to obtain each step in the
computation from the previous steps and from the input. Informally, if a
partial function is computed by an algorithm, it is called partial recursive.
We accept Church’s Thesis which identifies the informal class of algor-
ithmically computable partial functions with the class of partial functions
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computed by a Turing program. Turing programs can be defined precisely,
but we do not do that here. For our purpose, it suffices to know that we
can list all Turing programs in such a way that for any program we can
algorithmically find its place (the code number) in the list and conversely.
We choose one such algorithmic listing (or coding or Gddel numbering) and
fix it.

B.3 Computability theory

Code (Godel number) all Turing programs. For e € N, let (pe ) be the partial
function of n variables computed by the eth Turlnﬁg program. A partial
function ¢ of n variables is partial recursive if ¢ = q)e for some e. A partial
recursive function is recursive if it is total. Write ¢, for (pe .

A set A C N is recursive (A € REC) if the characteristic function for 4 is
recursive. e is a characteristic index for A4 if ¢, is the characteristic function
for 4. (The characteristic function for 4 takes the value 1 iff an input belongs
to 4; it takes 0 otherwise.)

Let W, =dom ¢, = {x: ¢,(x) |}. A set 4 C N is recursively enumerable
(r.e.) if A = W, for some e. W, is the eth r.c. set.

The Enumeration Theorem states [20, p. 15] that there is a partial recursive
function ¢? of two variables such that ¢? (e, x) = ¢,(x) for all e and x.

The Parameter Theorem (s-m-n Theorem) states [20, p. 16] that for every
m, n > 1, there exists a one-to-one recursive function s/’ of m + 1 variables

such that for all x, y1, ..., Vi,

(pE';)(X.J)lM.J’m)(Zla s 7Zn) = (pi‘m-&-n) O}lv e Vmy 21y e 7271)

for any zy, ..., z,.

The Graph Theorem states [20, p. 29] that a partial function is partial
recursive iff its graph is r.e.

We let (x,y) denote the image of (x,y) under the standard pairing func-
tion (x? + 2xy +3*+ 3x+y)/2, which is a one-to-one recursive function
from N x N onto N. Let (x,y,z) denote {{(x,y),z).

B.4 Lemmas
The following two lemmas will be used in the proofs of Theorem 1 and of
Proposition 1.

Lemma 1. There is a one-to-one recursive function r such that for all e and u,

1 ife,(u) =0,
(Pr(e)(u) = 0 lf(pe(u) l and (pe( ) 7é 05 (1)
T ife,(u) 1.

In particular, if e is a characteristic index for a set 4, then r(e) is a char-
acteristic index for its complement 4.
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Proof. The right hand side is equal to y(e,u) =1 — ¢,(u), where — is the
limited subtraction. Since the limited subtraction is recursive, i is partial
recursive by the Enumeration Theorem. Then by the Parameter Theorem,
there is a one-to-one recursive function r such such that @, (u) = ¥(e,u).

Details. Since  is partial recursive, y = qogz) for some z. By the Parameter
Theorem, there is a one-to-one recursive function s such that

(ps(z,e) (M) = (p§2) (e7 u) = ‘//(ea Ll)
Let r(e) = s(z, e). Then r is one-to-one and recursive. o ad

Lemma 2. Let
CRec = {e € N : e is a characteristic index for a recursive set }.

Then CRec is not r.e.

Proof. (This proof involves deeper recursion theory than that covered in
Appendix B.) Fix a X, set 4. Then, by [20, IV.3.2, p. 66], there is a recursive
function f such that

e€ A= ¢y (u) | for only finitely many u

and
e A= @ (u) =0 for all u.

It follows that

e€ A= f(e) ¢ CRec
and

e¢ A = f(e) € CRec.
This shows that 4 <,, CRec, namely, 4 is many-one reducible to CRec.

Now, suppose that CRec is r.e., that is, CRec € Z1. Then by [20, IV.1.3(v),

p. 61], 4 € X, ie., A € II;. This means that any X, set 4 is II;, a contra-
diction. Hence, CRec is not r.e. O

C Proofs

In this Appendix, we prove Theorem 1 and Proposition 1 in Section 3.
The following Lemma is used in Appendix A and in the proof of
Theorem 1.

Lemma 3. Let (x,y)€ X°. Then the set

S = {e: e represents some p € PRgcat (x,y)}

is not r.e.
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Proof. Fix > and (x,y). Suppose that S is r.e. Let ¢; be an arbitrary char-
acteristic index for an empty set. Let r be a recursive function satisfying (1) in
Lemma 1. Let CRec be the set of characteristic indices for some recursive set.

Claim. (e;,r(e1), ;) € S iff e; € CRec.

Details.(=>). Suppose that (e;,r(e1),e;) € S. Then e is a characteristic in-
dex for {i:x =P y}.

(«<=). Suppose that e; is a characteristic index for an 4 C N. Choose a
P € PRpc such that 4= {i:x =Py} and 4= {i:y =P x}. Then r(e) is a
characteristic index for 4 by Lemma 1. So, ey, r(e), and €} are characteristic
indices for {i:x =Py}, {i:y =P x}, and {i: x ~P y} = 0 respectively. %

Now since S is assumed to be r.e., Claim implies that CRec is r.¢.

Details. The function f defined by f(e;) = (e1,7(e1), €}) is recursive. Since S
is r.e., it is the domain of the partial recursive function ¢, for some z. We
have, by the above Claim, that e; € CRec iff f(e;) € domg,. But the latter is
equivalent with e; € dom(¢, o f). This means that CRec is the domain of
¢, o f; hence, r.e. &

However, this contradicts Lemma 2 which states that CRec is not r.e. (J

Before proving Theorem 1 and Proposition 1, we must introduce some
preliminary results and notions.

Let # be a Boolean algebra. A filter # on % is a family of sets in %
satisfying: (i) 0 ¢ #; (ii) if A € # and 4 C B, then B € &; (iii) if 4, B€ &,
then 4B € #. We may think of a filter as a family of “large” sets. An
ultrafilter is a filter % that satisfies: if 4 ¢ %, then A € %. If % is an ultrafilter,
then 4B € % implies that 4 € % or B € %. Suppose # contains all finite
sets of 1. We say an ultrafilter & is fixed if it is of the form
F ={A € % :ic A} for some i € I; otherwise, it is called free and does not
contain any finite sets.

Proposition 2 (Armstrong [1, Proposition 3.2]) Let % be a Boolean algebra on
1. Suppose a B-social welfare function > satisfies Unanimity and Independence.
Then there is a unique ultrafilter U.. on # such that for allp = (>-!),,€ 2,
and x, y € X,

{iel: x=Pyyeu. = x=-?y. (2)

Remark. The uniqueness follows from Proposition 3.1 of Armstrong [1].

Remark. Armstrong [2] corrects an error in Proposition 3.2 of his earlier
work [1]. Proposition 3 is the corrected version. &

Proposition 3 (Armstrong [1, Proposition 3.1]) Let % be a Boolean algebra on
1. Suppose U is an ultrafilter on . Then the map = on P’ defined for p € 2.,
and x, y € X by

x-Pye={iel:x-Pyleu
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is a #-social welfare function, satisfying Unanimity and Independence.

Let =: #Xpc — 2 be an REC-social welfare function satisfying Unani-
mity and Independence. Given >, let . be the partial function on N defined
by

1 if e; is a characteristic index for a recursive set in %,
p.(e1) =<0 if e; is a characteristic index for a recursive set not in %,
1 if e; is not a characteristic index for a recursive set,
(3)

where %. denotes the ultrafilter in Proposition 2. Note that S, is well-
defined since each e; € N can be a characteristic index for at most one set.

We define a computability condition for an REC-social welfare function
satisfying Unanimity and Independence using the partial function f. defined
by (3):

Decidability of Decisive Coalitions (DDC) f._ has an extension to a partial
recursive function.

Lemma 4. Let >-:5”11§EC — # be an REC-social welfare function satisfying
Unanimity and Independence. Then - is dictatorial if and only if it satisfies
DDC.

Proof. (=>). Suppose > is dictatorial. Then the ultrafilter %, in
Proposition 2 corresponding to > is principal; namely, for some iy € N,
U. ={W e REC:iye W}.

Define ' by

ﬁ/(e) — {@e(io) lf(pe(l()) =0 or 1»

T otherwise.

Then, clearly, ' is an extension of f_. Also, ¢,(ip) is a partial recursive
function of e by the Enumeration Theorem. Hence, f’ is partial recursive.

(«<=). Let > satisfy the hypothesis and suppose DDC is satisfied but > is
not dictatorial. In this case, the ultrafilter %, corresponding to > is free: it
does not contain any finite sets. Let ' be an extension of B, which is partial
recursive. Note that f,_(e) = 1 if e is a characteristic index for a cofinite set
since % is a free ultrafilter.

Let K = {e: e € W,}; K is a nonrecursive r.e. set. Since K is r.e., there is
[20, II.1.2, p. 28] a recursive set R C N x N such that e € K <= JzR(e,z).
Using the Parameter Theorem, define a recursive function f by

{ 1 if 3z <uR(e,z),

qDf(e)(”): 0 otherwise.

Details. The function 4 defined by

h(@ 1/[) _ 1 if ElZSuR(e,Z),
’ 0 otherwise
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is recursive. Hence, for some z, & = q)gz). By the Parameter Theorem, there is
a recursive function s such that

Ds(z,e) (u) = ¢§2) (e7 u) = h(ea u)
Let f(e) = s(z,e). Then f is recursive. &
Now,
e € K = ¢, (u) =1 except for finitely many u’s

= f'(e) is a characteristic index for a cofinite set

= f(fle)) =B.(f(e)) =1,

but
e¢ K= ¢ (u) =0 for all u
= f(e) is a characteristic index for ()
= B(f(e)) = B.(f(e)) = 0.
This implies that K is recursive, contradiction. O

Proof of Theorem 1. (Preliminaries for this proof begin after the proof of
Lemma 3.) Let > satisfy the hypotheses and PC. Fix (x, y). There is a partial
recursive y that satisfies the condition (a) in PC. We will show that DDC is
satisfied.

Let ¢} be an arbitrary characteristic index for an empty set and let » be a
recursive function satisfying (1) in Lemma 1. Then

B-(e1) = 1((er,(e1), €5)) (4)

for all ¢; € CRec. ((4) means that when nobody is indifferent between x and y,
then to determine the social preference on (x, y), all the planner need to know
is the coalition {i € N :x =P y} that prefers x to y.)

Details. Suppose e; € CRec, the domain of .. Then by the Claim in the
proof of Lemma 3, e = (e, 7(e1), ¢;) represents some p € PRgc at (x,). In
particular, e; and r(e;) are characteristic indices for 4 = {i € N:x !y}
and 4 = {i : y =P x} respectively.

(i) Suppose that 8, (e;) = 1. Then by (3), {i € N:x =P y} € #.. Then (2)
in Proposition 2 implies that x >P y. So, (a) in PC implies that y(e) = 1.

(ii) Suppose f3, (e;) = 0. Then by (3), 4 ¢ %... Since .. is an ultrafilter, it
follows that 4 = {i:y =P x} € %.. By (2), y =P x. By asymmetry, we have
—x =P y. Hence y(e) = 0 by (a) in PC. &

Now, the partial function ¥ defined by y(e;) = y({e1,r(e1), €})) is clearly
partial recursive. By (4), . (e1) = ¥(e;) for all e; € CRec. Hence, the partial
recursive function ¥ is an extension of f5,_. So, DDC is satisfied. By Lemma 4,
it follows that > is dictatorial.
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Proof of Proposition 1. (Preliminaries for this proof begin after the proof of
Lemma 3.) (i) Let > be the social welfare function in Example 1. We show >~
satisfies PC. Since > is dictatorial, Lemma 4 implies that DDC is satisfied.
So, there is a partial recursive function ' that extends f, . Define a partial
function y by

y((er,e2,e3)) = f(er).

Then, for any natural number e = (e;,€2,€3), y(e) = f'(n(e)), where
m:erey. Since m and S’ are partial recursive, y is partial recursive.

We show that y satisfies (a) in PC for all (x,y). Fix (x,y) and suppose
e = (e}, ea,e3)} represents a p at (x,y). Then e; is a characteristic index for
{ie N:x ="y} and so B_(er) |.

e Suppose x =P y. Then by the definition of >, {i € N:x =P y} € %,.
This implies that y(e) = f'(e;) = B._(e1) = 1.
e Similarly, if —x =P y then y(e) = 0.

(1) Let > be the social welfare function in Example 2. To show > does not
satisfy PC, suppose otherwise. Choose (x,y) arbitrarily. Then there is a
partial recursive y that satisfies (a) in PC. Let g be a recursive function such
that if e is a characteristic index for a set 4 then g(e) is a characteristic index
for A — {0}. Such a g exists by [20, I1.2.3, p. 33]. Let r be a recursive function
satisfying (1) in Lemma 1 and let €5 be an arbitrary characteristic index for
an empty set. Define a partial recursive function ' by

Ber) =1({g(e1), e5,7(g(e1)))).
We show that f’ extends f.:, where =: 2} . — 2 is defined by
xPye={ie N:x-"yle.

Notice that % = .

e Suppose e; is a characteristic index for a recursive set 4 in %. Then
e = (g(e1),é5,r(g(er))) represents a p at (x, y); in particular, g(e;) being a
characteristic  index for {ie N:x>=Py}l=4-{0}. Clearly,
{i€ N:x ="y} does not belong to %, since it does not contain 0. Hence
its complement {i€ N:x~Py} belongs to #, Now, {i€ N:
x =Py} € % since {i € N : x =P y} and 4 are different at most by the finite
set {0} and 4 is in the free ultrafilter %. Hence, by the definition of -, it
follows that x =P y. This implies, by (a) in PC, that y(e) =1. So,
B'ler) = 1. A

e Similarly, if e; is a characteristic index for a recursive set not in %,
then f'(e;) = 0.

We have shown that f.- has an extension B’ that is partial recursive. This
means that = satisfies DDC, contradicting Lemma 4 since > is not dicta-
torial. O
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