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Abstract
A mechanism allocates one unit of an infinitely divisible commodity among agents
reporting a number between zero and one. Nash, Pareto optimal Nash, and strong
equilibria are analyzed for the case where the agents have single-dipped preferences.
One main result is that when the mechanism satisfies anonymity, monotonicity, the
zero–one property, and order preservation, then the Pareto optimal Nash and strong
equilibria coincide and result in Pareto optimal allocations that are characterized by
so-called maximal coalitions: members of a maximal coalition prefer an equal coali-
tion share over obtaining zero, whereas the outside agents prefer zero over obtaining an
equal share from joining the coalition. A second main result is an axiomatic character-
ization of the associated social choice correspondence as the maximal correspondence
satisfying minimal envy Pareto optimality, equal division lower bound, and sharing
index order preservation.
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1 Introduction

We consider the problem of allocating one unit of an infinitely divisible commodity
among agents with single-dipped preferences. A single-dipped preference has a worst
point, the dip, and preference strictly increases in both directions away from the dip.
Such a preference may arise from maximizing a strictly quasiconvex utility function
on a (budget) line, and reflects that an agent prefers extremes over combinations.

Suppose, for instance, that the teaching load of a specific day has to be distributed
among a few university employees who each prefer either only teaching or only
research over a combination of the two, because it is more efficient to concentrate
on just one task: each employee has a single-dipped preference on the interval (day)
[0, 1], with t ∈ [0, 1] being teaching time and 1 − t research time. Another example
is a common-pool resource allocation problem, as in Inoue and Yamamura (2023): a
fixed amount of fish f can be caught from a lake by fishers who have linear revenue
but concave cost functions, so that their profit functions are convex: maximizing these
over [0, f ] results in single-dipped preferences, and the amount f has to be distributed
among the fishers.1

Our approach in this paper is twofold: we consider a specific class of mechanisms,
and we axiomatically characterize the main correspondence implemented by these
mechanisms.

The mechanisms we consider, are as follows: each agent reports a number between
zero and one, and a mechanism assigns an allocation of the commodity among the
agents,which is evaluated by the agents according to their preferences.Under a number
of conditions on mechanisms, we analyze the Nash, Pareto optimal Nash, and strong
equilibria for each single-dipped preference profile and the resulting allocations in
the induced game. These mechanisms are related to but simpler than social choice
functions, which assign an allocation to each profile of preferences.2 Amechanism can
be interpreted as asking each agent what that agent wishes to have, and more generally
it provides agents with actions to achieve their goals in a non-cooperative way. This
is also reflected by the fact that, almost throughout, we assume that a mechanism is
monotonic. This means that if an agent reports a higher (resp. lower) number, then
that agent’s share increases (resp. decreases), if possible. This condition makes sense
especially given the interpretation of a mechanism as asking agents what they want. A
monotonic mechanism provides the agents with ample possibilities to influence their
shares—thus, making the mechanism sufficiently sensitive to their strategies. Besides
monotonicity, we also impose anonymity of mechanisms almost throughout.

After preliminaries in Sects. 2, 3 we discuss the Nash equilibria of games induced
by a mechanism and single-dipped preference profiles. A first insight here is that
in every Nash equilibrium each agent plays 0 or 1, and we characterize all Nash
equilibria (Theorem 3.5). If there are two agents then a Nash equilibrium always
exists (Proposition 3.10), but this is no longer true for more than two agents. This part
of our paper is closely related to Inoue and Yamamura (2023), who consider what they

1 A related problem is the distribution of waste, having negative externalities, as in for instance Sakai
(2012).
2 Similar simple mechanisms are also used in You and Juarez (2021), who consider the distribution of a
good under quasilinear preferences.
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call the binary mechanism: agents report either 0 or 1, and the commodity is equally
distributed among the agents who report 1, so that the agents who report 0 also receive
0. They characterize the Nash equilibria of the associated games in their Theorem 1.
Our main result in this respect, Theorem 3.5, generalizes this since, first, we allow
that agents who report 0 can receive more than 0, and, second, our mechanisms are
not binary. As to the latter, although, indeed, in Nash equilibrium agents do report
only 0 or 1, considering more general mechanisms allows for a comparison with
mechanisms/rules for possibly different preferences (e.g. single-peaked preferences,
see below).

The focus in our paper is not so much on Nash equilibrium but rather on Pareto
optimal Nash equilibrium and on strong equilibrium. In Sect. 4 we consider Pareto
optimal Nash equilibria, and we show that the additional condition on a mechanism
imposed also by Inoue and Yamamura (2023), namely that when every agent plays
0 or 1 the agents who play 0 receive 0 and the agents who play 1 equally share
the commodity, is necessary and sufficient for the existence of a Pareto optimal Nash
equilibrium for all games, i.e., all preference profiles.We call this condition the ‘zero–
one property’. If a mechanism satisfies this property, then the Pareto optimal Nash
equilibria are exactly those strategy profiles where agents in a so-called maximal
coalition play 1 and the other agents play 0. ‘Maximal’ means that as many agents as
possible (given the restrictions of best reply and Pareto optimality) play 1 and get a
positive share. Equivalently, members of a maximal coalition prefer an equal coalition
share over obtaining zero, whereas the outside agents prefer zero over obtaining an
equal share from joining the coalition.Under the further condition of order preservation
on amechanism—meaning that playing a higher number than some other agent results
in obtaining a higher share than that agent—these Pareto optimal Nash equilibria are,
moreover, strong equilibria (Aumann 1959): no coalition can profitably deviate. As a
consequence, under the mentioned conditions on a mechanism, a subcorrespondence
M of the Pareto social choice correspondence is implemented in strong equilibrium:M
picks those Pareto optimal allocations that are characterized by maximal coalitions.3

In Sect. 5 we provide an axiomatic characterization of this social choice correspon-
dence M . We show that M is the maximal correspondence satisfying minimal envy
Pareto optimality, equal division lower bound, and sharing index order preservation.
The first mentioned condition requires that allocations are Pareto optimal and, within
the set of Pareto optimal allocations, only those are selected from at which the number
of envious agents—agents who prefer some one else’s share over their own—is as
small as possible. The second condition requires that each agent (weakly) prefers its
share over an equal division of the commodity. The third condition says that if an agent
i is willing to equally share the commodity with more other agents than some agent j
does, then agent i does not receive less than agent j .

Sprumont (1991) shows that under a few natural conditions, the so-called uniform
rule is the unique strategy-proof (Gibbard 1973; Satterthwaite 1975) rule for division
problems with single-peaked preferences—a preference is single-peaked if there is a
unique best point, the peak, and preference decreases in both directions away from

3 Inoue and Yamamura (2015)—which is an earlier version of their 2023 paper—also consider strong
equilibria for the binary mechanism and single-dipped preferences. In Sects. 4.2 and 5 we show how their
results are related to ours. In particular our results about strong equilibria are closely related to their results.
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this peak. Bochet et al. (2021)—combining work of Bochet and Sakai (2009) and
Thomson (1994)—show that under similar assumptions as ours, equilibria (Nash,
Pareto optimal Nash, strong) end up in the allocation assigned by the uniform rule—
see our concluding Sect. 6. See also Thomson (1995, 2010).While the uniform rule for
single-peaked preferences is strategy-proof, we show in Sect. 6 that no selection from
the implemented correspondence M for single-dipped preferences is strategy-proof.
Further, the uniform rule satisfies the first two of the three conditions characterizing
M , as described above.

Single-dipped and single-peaked preferences were already studied by Inada (1964).
For single-dipped preferences in division problems, see Klaus et al. (1997), who
characterize Pareto optimal allocations (we use their result in Sect. 4), and study
strategy-proofness of rules. For strategy-proofness in problems with indivisible goods
and single-dipped preferences see Klaus (2001a, b) and Tamura (2023), and for prob-
abilistic rules see Ehlers (2002). Doghmi (2013) considers Nash implementation of
social choice correspondences when preferences are single-dipped.

There is a relatively large literature on single-dipped preferences and public goods
(in this context also sometimes called public bads), including Peremans and Storcken
(1999), Barberà et al. (2012), Bossert and Peters (2014), Öztürk et al. (2013, 2014),
Manjunath (2014), Ayllón and Caramuta (2016), Tapki (2016), Yamamura (2016),
Lahiri et al. (2017), and Feigenbaum et al. (2020).

2 Preliminaries

In this sectionwe introduce allocations, preferences,mechanisms, rules, and equilibria.

2.1 Allocations, preferences, mechanisms, and equilibria

For n ∈ Nwith n ≥ 2, let N = {1, . . . , n} be the set of agents. Among these agents one
unit of a perfectly divisible commodity has to be distributed. The set of all allocations
is denoted by A = {

x ∈ [0, 1]N ∣∣ ∑
i∈N xi = 1

}
. A subset of agents is also called a

coalition.
An agent’s preference is a transitive and complete binary relation R on the interval

[0, 1]. We denote by P strict preference, and by I indifference: αPβ if αRβ and not
βRα, and α Iβ if αRβ and βRα, for α, β ∈ [0, 1]. By RN = (Ri )i∈N we denote a
profile of preferences (for N ).

An allocation x ∈ A is Pareto optimal at a preference profile RN if there is no
x ′ ∈ A such that x ′

i Ri xi for all i ∈ N and x ′
i Pi xi for at least one i ∈ N .

In this paper we assume that there is a decision maker who does not know the
preferences of the agents, and we focus on mechanisms in order to select allocations.
A mechanism is a map g : [0, 1]N → A. Such a mechanism, often also called game
form, equips the agents with tools to solve the problem of dividing the commodity in
a non-cooperative way. Indeed, a preference profile RN and a mechanism g induce
a non-cooperative game (RN , g) in the usual way, as follows. Each agent i ∈ N has
strategy set [0, 1]. A profile of strategies r = (ri )i∈N ∈ [0, 1]N results in an allocation
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g(r) ∈ A, evaluated by each agent i via Ri . For a coalition S we denote by rS the
restriction of r to S, i.e., rS = (ri )i∈S ; if S = N\{i} for some i ∈ N , we also write
r−i instead of rN\{i}. A profile r∗ is a Nash equilibrium of the game (RN , g) if for all
i ∈ N and ri ∈ [0, 1],

gi (r
∗)Ri gi (ri , r

∗−i ).

ANash equilibrium r∗ is a Pareto optimal Nash equilibrium of the game (RN , g) if
g(r∗) is Pareto optimal at RN . A profile r∗ is a strong equilibrium of the game (RN , g)
if there are no ∅ �= S ⊆ N and r ′

S ∈ [0, 1]S such that

gi (r
′
S, r

∗
N\S)Ri gi (r

∗) for all i ∈ S and gi (r
′
S, r

∗
N\S)Pi gi (r∗) for some i ∈ S.

In most of this paper we focus on single-dipped preferences. A preference R is
single-dipped if there is a dip d(R) ∈ [0, 1] such that for all α, β ∈ [0, 1],

α < β ≤ d(R) ⇒ αPβ and α > β ≥ d(R) ⇒ αPβ.

The set of all single-dipped preferences is denoted by D, and DN is the set of all
single-dipped preference profiles.

A preference R is single-peaked if there is a peak p(R) ∈ [0, 1] such that for all
α, β ∈ [0, 1],

p(R) ≥ α > β ⇒ αPβ and p(R) ≤ α < β ⇒ αPβ.

The set of all single-peaked preferences is denoted by P , and PN is the set of all
single-peaked preference profiles.

2.2 Conditions onmechanisms

In most of what follows, we impose the following additional conditions on a mecha-
nism g:

• anonymity: gi (rπ ) = gπ(i)(r) for all r ∈ [0, 1]N and every permutation π of N ,
where rπ = (rπ(i))i∈N .

• monotonicity: for all r ∈ [0, 1]N , i ∈ N and r ′
i ∈ [0, 1],

r ′
i > ri and gi (r) < 1 ⇒ gi (r

′
i , r−i ) > gi (r),

r ′
i < ri and gi (r) > 0 ⇒ gi (r

′
i , r−i ) < gi (r).

The set of all anonymous and monotonic mechanisms is denoted by G.
The monotonicity condition is closely related to the condition of ‘strict own-peak

monotonicity’ in Bochet et al. (2021) when the latter is applied to social choice func-
tions (assigning allocations to single-peaked preference profiles) that are peaks-only.
The difference is that the condition in Bochet et al. (2021) allows that an agent i
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receives 0 when that agent’s strategy ri is positive. Under our monotonicity condi-
tion this is not possible (see Lemma 3.2). Our monotonicity condition is also related
to the ‘respect for monotonic preferences’ condition in Inoue and Yamamura (2015)
when formulated for mechanisms. In a different vein, instead of monotonicity also the
reversewouldwork, that is, reporting a higher number leads to a strict decrease in share
when possible. While such variations are clearly possible, they do not substantially
add to the results of the paper.

We conclude this section with two examples of mechanisms in G.

Example 2.1 Let N = {1, 2} and let g : [0, 1]N → A be defined by for each r ∈
[0, 1]N ,

g(r) =
(
1 + r1 − r2

2
,
1 − r1 + r2

2

)
.

Then g is anonymous and monotonic, and thus g ∈ G. �
Example 2.2 Let g : [0, 1]N → A be defined by for each r ∈ [0, 1]N and i ∈ N ,

gi (r) =
{ ri∑

j∈N r j
if

∑
j∈N r j ≥ 1

1 − (n−1)(1−ri )∑
j∈N (1−r j )

if
∑

j∈N r j ≤ 1.

This mechanism corresponds to the ‘symmetrized proportional rule’ in Bochet et al.
(2021). Again, g is anonymous and monotonic, and therefore g ∈ G. �

In the next two sections we analyze Nash equilibria, Pareto optimal Nash equilib-
ria, and strong equilibria in games induced by single-dipped preference profiles and
mechanisms in G.

3 Nash equilibrium

Before stating the main results, we formulate two elementary lemmas concerning
single-dipped preferences and mechanisms, respectively. The first lemma recalls the
well-known fact (Inada 1964) that if an agent with a single-dipped preference prefers
α to β in [0, 1], then this agent prefers α to each γ between α and β. This will be used
several times in the sequel.

Lemma 3.1 Let R ∈ D and let α, β ∈ [0, 1] with αRβ. Then αRγ for all γ ∈ [0, 1]
with min{α, β} ≤ γ ≤ max{α, β}.
Proof If d(R) ≤ min{α, β}, then d(R) ≤ β ≤ α, so αRγ for all β ≤ γ ≤ α. If
d(R) ≥ max{α, β}, then d(R) ≥ β ≥ α, so αRγ for all α ≤ γ ≤ β. If min{α, β} <

d(R) < max{α, β}, then we have αRγ for all min{α, d(R)} ≤ γ ≤ max{α, d(R)},
and αRβRγ for all min{β, d(R)} ≤ γ ≤ max{β, d(R)}. Therefore, αRγ for all
min{α, β} ≤ γ ≤ max{α, β}. 
�
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The next lemma shows that a monotonic mechanism assigns 0 to an agent only if
its strategy is 0, and assigns 1 to an agent only if its strategy is 1.

Lemma 3.2 Let g be a monotonic mechanism and let r ∈ [0, 1]N . Then ri = 0 for
each i ∈ N with gi (r) = 0, and ri = 1 for each i ∈ N with gi (r) = 1.

Proof For each i ∈ N with gi (r) = 0, if ri �= 0, then gi (r ′
i , r−i ) = 0 for all 0 ≤ r ′

i < ri ,
which contradicts monotonicity of g. For each i ∈ N with gi (r) = 1, if ri �= 1, then
gi (r ′

i , r−i ) = 1 for all ri < r ′
i ≤ 1, which again contradicts monotonicity of g. 
�

The following two lemmas are about properties of Nash equilibria for single-dipped
preference profiles.We first show that for a monotonic mechanism and a single-dipped
preference profile, no agent receives its dip in a Nash equilibrium.

Lemma 3.3 Let RN ∈ DN and let g be a monotonic mechanism. If a strategy profile
r∗ ∈ [0, 1]N is a Nash equilibrium of (RN , g), then gi (r∗) �= d(Ri ) for all i ∈ N.

Proof Let i ∈ N . Assume, to the contrary, that r∗ ∈ [0, 1]N with gi (r∗) = d(Ri ), is
a Nash equilibrium of (RN , g). Then we have gi (ri , r∗−i ) = d(Ri ) for all ri ∈ [0, 1],
which is a contradiction to monotonicity of g. 
�

Next, we show that, in a Nash equilibrium, an agent’s strategy is 0 if that agent
receives less than its dip, and is 1 if that agent receives more than its dip.

Lemma 3.4 Let RN ∈ DN , let g be a monotonic mechanism, and let strategy profile
r∗ ∈ [0, 1]N be a Nash equilibrium of (RN , g). Then r∗

i = 0 for all i ∈ N with
gi (r∗) < d(Ri ), and r∗

i = 1 for all i ∈ N with gi (r∗) > d(Ri ).

Proof Let i ∈ N with gi (r∗) < d(Ri ). If gi (r∗) = 0, then r∗
i = 0 by Lemma

3.2. If gi (r∗) > 0 with r∗
i �= 0, then from monotonicity, we have gi (ri , r∗−i ) <

gi (r∗) < d(Ri ) for all 0 ≤ ri < r∗
i . This implies that gi (ri , r∗−i )Pi gi (r

∗), which is a
contradiction to the assumption that r∗ is a Nash equilibrium. Hence, r∗

i = 0.
The case gi (r∗) > d(Ri ) is analogous. 
�
We now introduce some additional notation for a mechanism g ∈ G. For each

S ⊆ N , define eS ∈ R
N by eSi = 1 for all i ∈ S, and eSj = 0 for all j ∈ N\S. Then,

by anonymity we have gi (e∅) = gi (eN ) = 1
n for all i ∈ N , and there exist numbers

p1(g), . . . , pn−1(g) ∈ [0, 1] such that for each ∅ �= S � N and i ∈ S,

gi (e
S) = ps(g),

where s = |S|. It follows that for each ∅ �= S � N and j ∈ N\S,

g j (e
S) = qs(g),

where sps(g) + (n − s)qs(g) = 1 for all s = 1, . . . , n − 1. When no confusion
arises, the notations ps(g) and qs(g) are abbreviated to ps and qs , respectively. For

123



D. Gong et al.

convenience, we denote p0 = pn = q0 = qn = 1
n . Then, by monotonicity and

Lemma 3.2, it holds that for each i ∈ N , S ⊆ N\{i}, and s = 0, . . . , n − 1

ps+1 = gi (e
S∪{i}) > gi (e

S) = qs .

The following theorem characterizes the Nash equilibria in games induced by
single-dipped preference profiles and mechanisms in G.
Theorem 3.5 Let RN ∈ DN , g ∈ G, and r∗ ∈ [0, 1]N . Then r∗ is a Nash equilibrium
of (RN , g) if and only if r∗ = eS for S ⊆ N such that ps Riqs−1 for all i ∈ S and
qs R j ps+1 for all j ∈ N\S.
Proof For the if-part, assume that r∗ = eS for S ⊆ N such that ps Riqs−1 for all i ∈ S
and qs R j ps+1 for all j ∈ N\S. We prove that r∗ is a Nash equilibrium.

For each i ∈ S, we have r∗
i = 1 and ps Riqs−1, which means that gi (1, r∗−i )Ri gi (0,

r∗−i ). With monotonicity, it holds that gi (0, r∗−i ) ≤ gi (ri , r∗−i ) ≤ gi (1, r∗−i ) for all
ri ∈ [0, 1]. According to Lemma 3.1, we conclude that gi (r∗)Ri gi (ri , r∗−i ) for all
ri ∈ [0, 1]. For each j ∈ N\S, we have r∗

j = 0 and qs R j ps+1, which means
that g j (0, r∗− j )R j g j (1, r∗− j ). From monotonicity and Lemma 3.1 again, it holds that

g j (r∗)R j g j (r j , r∗− j ) for all r j ∈ [0, 1]. So, r∗ = eS is a Nash equilibrium.
For the only-if part, assume that r∗ is a Nash equilibrium. From Lemmas 3.3 and

3.4, we have r∗ = eS for some S ⊆ N . In view of gi (r∗)Ri gi (0, r∗−i ) for all i ∈ S
and g j (r∗)R j g j (1, r∗− j ) for all j ∈ N\S, it holds that ps Riqs−1 for all i ∈ S and

qs R j ps+1 for all j ∈ N\S. 
�
Remark 3.6 In order to relate this result to the theory of implementation, as we will
also do for Pareto optimal Nash equilibrium and strong equilibrium in the next section,
we observe the following. For a given mechanism g ∈ G and the resulting numbers
ps associated to g one can define the correspondence, say Kg , assigning the Nash
equilibrium allocations as in Theorem 3.5, and then by definition Kg is implemented
inNash equilibriumby g. In order to avoid the dependence on g in this formulation, one
can also start from the numbers ps for which there is a g ∈ G giving these ps . It is an
open question for which choices of the numbers ps this holds. Nevertheless, obviously
there is not a unique correspondence that is Nash implemented by all g ∈ G. �
Remark 3.7 Theorem 1 in Inoue andYamamura (2023) can be retrieved fromTheorem
3.5 by assuming that ps = 1

s and qs = 0 for every s = 1, . . . , n − 1. �
The following example shows that a Nash equilibrium is not necessarily unique.

Example 3.8 Let g ∈ G, N = {1, 2, 3}, ps = 1
s and qs = 0 for s = 1, 2 (for instance,

take the symmetrized proportional rule from Example 2.2). Let RN ∈ DN be such that
d(R1) = 0, 0I2 12 , and d(R3) = 1. Then both (1, 0, 0) and (1, 1, 0) are Nash equilibria
of (RN , g). �

Theorem 3.5 can also be used to show that a Nash equilibrium does not have to
exist, as for instance in the following example.
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Example 3.9 Let N = {1, 2, 3} and let g ∈ G satisfy that p2 > p1. By this assumption
and monotonicity, it follows that q2 < q1 < 1

3 < p1 < p2. Consider RN ∈ DN such
that q2P1q1P1 p2P1 p1P1 13 , p

2P2q2P2q1P2
1
3 P2 p

1 and q1P3 p2. Then e∅ is not a Nash
equilibrium in view of p1P1 13 ; e

{1} and e{3} are not Nash equilibria in view of p2P2q1;
e{2} is not a Nash equilibrium in view of 1

3 P2 p
1; e{1,2} and e{1,3} are not Nash equilibria

in view of q1P1 p2; e{2,3} is not a Nash equilibrium in view of q1P3 p2; and eN is not
a Nash equilibrium in view of q2P1 13 . From Theorem 3.5 it follows that the game
(RN , g) has no Nash equilibrium.

A possible mechanism g ∈ G to which this example applies is as follows. For each
r ∈ [0, 1]N and distinct i, j, k ∈ N let

gi (r) = 8 + 2ri − r j − rk + 2rir j + 2rirk − 4r j rk
24

.

Since g(1, 0, 0) = ( 1024 ,
7
24 ,

7
24 ) and g(1, 1, 0) = ( 1124 ,

11
24 ,

2
24 ), we have q2 = 2

24 <

q1 = 7
24 < 1

3 < p1 = 10
24 < p2 = 11

24 . �
We conclude this section with the result that for two agents a Nash equilibrium

always exists. This result can also be derived from Yamamura (2016, Proposition 1),
since our two-agent private good single-dipped case is equivalent to the two-person
public good single-dipped case, studied in that paper. The “Appendix” provides an
independent proof.

Proposition 3.10 Let N = {1, 2}, RN ∈ DN and g ∈ G. Then the game (RN , g) has
a Nash equilibrium.

4 Pareto optimal Nash equilibrium, strong equilibrium, and
implementation

In this section, we first consider Pareto optimal Nash equilibria, i.e., Nash equilibria
resulting in Pareto optimal allocations. Next, we consider strong equilibria: no subset
of agents can profitably deviate, in the sense that every member is at least as well
off, and at least one member is better off. Third, we discuss the related issue of
implementation: which social choice correspondence, i.e., multi-valued rule, collects
exactly the Pareto optimal Nash equilibria or strong equilibria for a given mechanism?

4.1 Pareto optimal Nash equilibrium

Pareto optimal allocations for single-dipped preference profiles were characterized by
Klaus et al. (1997). For each RN ∈ DN , we denote by N+(RN ) = {i ∈ N | 1Pi0}
the set of agents who strictly prefer 1 to 0, by N0(RN ) = {i ∈ N | 0Ii1} the set of
agents who are indifferent between 0 and 1, and by N−(RN ) = {i ∈ N | 0Pi1} the
set of agents who strictly prefer 0 to 1. The characterization by Klaus et al. (1997) is
as follows.

Lemma 4.1 Let RN ∈ DN . An allocation x ∈ A is Pareto optimal at RN if and only if
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(i) If N+(RN ) �= ∅, then xi = 0 for every i ∈ N\N+(RN ), and for every i ∈ N+(RN )

either xi = 0 or xi Pi0.
(ii) If N+(RN ) = ∅ and N0(RN ) �= ∅, then x = e{i} for some i ∈ N0(RN ).
(iii) If N−(RN ) = N, then for every i ∈ N either xi = 1 or xi Pi1.

We first introduce so-called sharing indices and maximal coalitions, which are
useful to describe Pareto optimal Nash equilibria.

Definition 4.2 (a) Let i ∈ N and Ri ∈ D. The sharing index of i at Ri is the number
m(Ri ) defined by4

m(Ri ) =
⎧
⎨

⎩

0 if 0Ri1
max

{
k ∈ N | 1

k Pi0
}
if 1Pi0 and d(Ri ) > 0

∞ if d(Ri ) = 0.

(b) Let RN ∈ DN . A coalition S ⊆ N is a maximal coalition at RN if the following
holds.

(i) If N+(RN ) �= ∅, then S ⊆ N+(RN ) such that m(Ri ) ≥ |S| for every i ∈ S
and m(R j ) ≤ |S| for every j ∈ N\S.

(ii) If N+(RN ) = ∅ and N0(RN ) �= ∅, then S = {i} for some i ∈ N0(RN ).
(iii) If N−(RN ) = N , and { j ∈ N | 1R j

1
n } �= ∅, then S = {i} for some i ∈ N with

1Ri
1
n .

(iv) If N−(RN ) = N , and { j ∈ N | 1R j
1
n } = ∅, then S = ∅.

The collection of all maximal coalitions at RN is denoted byM(RN ). �
The sharing index of an agent i who strictly prefers 1 over 0, is the maximal number

of agents, including i , with whom equally sharing the commodity is preferred by i
over receiving 0; possibly unrestricted if i’s dip is 0, in which case m(Ri ) = ∞.
Under the same interpretation, the sharing index of an agent i /∈ N+(RN ) is zero. In
Case (i) of (b), a maximal coalition consists of agents who strictly prefer 1 over 0 at
RN . Such a coalition is formed by starting with the agent(s) with maximal sharing
index, next adding agent(s) with second maximal sharing index, etc., until the size
of the coalition exceeds the sharing indices of the remaining agents. See Example
4.3 for an illustration. In a similar spirit, in Case (ii), a maximal coalition consists of
any arbitrary single agent indifferent between 0 and 1. In Case (iii), where all agents
strictly prefer 0 over 1, a maximal coalition consists of an arbitrary single agent who
(weakly) prefers 1 over 1

n . If there are no such agents, then Case (iv) applies and the
only maximal coalition is the empty coalition.

Example 4.3 Let N = {1, 2, 3} and let RN satisfy 1
3 P10P1

1
4 ,

1
2 Pi0Ri

1
3 for i = 2, 3.

Then N+(RN ) = N , m(R1) = 3, and m(R2) = m(R3) = 2. To construct a maximal
coalition we start with agent 1 and then add either agent 2 or agent 3, to obtain {1, 2}
and {1, 3} as maximal coalitions. Coalition {2, 3} is not maximal since m(R1) = 3 >

4 In this definition, alternatively the last case can be left out if in the second case we take ‘k ∈ {1, . . . , n}’.
The present version, however, makes the sharing index independent of the number of agents.
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2 = |{2, 3}|, and coalition N is not maximal since m(R2) = 2 < 3 = |N |. Also
singleton coalitions are not maximal: {1} is not maximal since m(R2) = 2 > |{1}|,
{2} is not maximal since m(R1) = 3 > |{2}|, and {3} is not maximal since m(R1) =
3 > |{3}|. �

The basic reason why maximal coalitions play a role in our analysis, especially in
the case where N+(RN ) �= ∅, is that a member of such a coalition prefers receiving an
equal share over receiving 0 and therefore would not deviate and leave the coalition;
on the other hand, there is no outside agent who would gain by joining the coalition.
This will be made precise in Theorem 4.5.

We first formulate an additional property for a mechanism g:

• zero–one property: g(eS) = 1
|S|e

S for every ∅ �= S ⊆ N .

If g satisfies the zero–one property, then ps = 1
s and q

s = 0 for each s = 1, 2, . . . , n−
1. The mechanisms in Examples 2.1 and 2.2 satisfy this property, but the mechanism
in Example 3.9 does not.5

We show that the zero–one property of a mechanism is a necessary and sufficient
condition for each game based on this mechanism to have a Pareto optimal Nash
equilibrium.

Lemma 4.4 Let g ∈ G and suppose that (RN , g) has a Pareto optimal Nash equilib-
rium for each RN ∈ DN . Then g satisfies the zero–one property.

Proof For each S ∈ 2N\{∅, N }, we consider RS
N ∈ DN such that d(RS

i ) = 0 for all
i ∈ S and d(RS

j ) = 1 for all j ∈ N\S. Then N+(RS
N ) = S. From Lemmas 3.3 and 3.4,

it follows that the onlyNash equilibrium in the game (RS
N , g) is r∗ = eS . FromLemma

4.1, we have g j (r∗) = 0 for all j ∈ N\N+(RS
N ) = N\S. It follows that gi (r∗) = 1

|S|
for all i ∈ S. Together with g(eN ) = 1

|N |e
N , we conclude that g(eS) = 1

|S|e
S for all

S ∈ 2N\{∅}. This implies that g satisfies the zero–one property. 
�
Lemma 4.4 says that the zero–one property of the mechanism is a necessary con-

dition for a Pareto optimal Nash equilibrium to exist in every game induced by this
mechanism. The sufficiency part follows from the following theorem, which is a main
result of this paper.

Theorem 4.5 Let RN ∈ DN and let g ∈ G satisfy the zero–one property. A strategy
profile r∗ ∈ [0, 1]N is a Pareto optimal Nash equilibrium of (RN , g) if and only if
r∗ = eS for some S ∈ M(RN ).

Proof For the if-part, let S ∈ M(RN ). We prove that r∗ = eS is a Pareto optimal
Nash equilibrium.
Case (i) N+(RN ) �= ∅.

Let i ∈ S, hence m(Ri ) ≥ |S|. Then r∗
i = 1 and gi (r∗) = 1

|S| . If m(Ri ) < ∞ then
1

m(Ri )
Pi0 and hence 1

|S| Pi0. If m(Ri ) = ∞, i.e., d(Ri ) = 0, then obviously 1
|S| Pi0.

5 A weaker version of this property for social choice functions occurs under the name ‘least richness’ in
Inoue and Yamamura (2015).
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Hence in both cases gi (r∗)Pi gi (0, r∗−i ). Monotonicity then implies gi (0, r∗−i ) ≤
gi (ri , r∗−i ) ≤ gi (r∗) for all ri ∈ [0, 1], and by Lemma 3.1, gi (r∗)Ri gi (ri , r∗−i ) for
all ri ∈ [0, 1].

If i ∈ N+(RN )\S, then r∗
i = 0 and gi (r∗) = 0. Since m(Ri ) ≤ |S| it follows

that 1
|S|+1 ≤ 1

m(Ri )+1 . Together with 0Ri
1

m(Ri )+1 , by Lemma 3.1, we have 0Ri
1

|S|+1 ,
which implies that gi (r∗)Ri gi (1, r∗−i ). With monotonicity and Lemma 3.1 again, we
can similarly verify that gi (r∗)Ri gi (ri , r∗−i ) for all ri ∈ [0, 1].

For i ∈ N\N+(RN ), in view of S ⊆ N+(RN ), we have i ∈ N\S, r∗
i = 0 and

gi (r∗) = 0. In view of 0Ri1, by Lemma 3.1, we have gi (r∗)Ri gi (ri , r∗−i ) for all
ri ∈ [0, 1].

Thus, gi (r∗)Ri gi (ri , r∗−i ) for all i ∈ N and ri ∈ [0, 1], which implies that r∗ = eS

is a Nash equilibrium.
Case (ii) N+(RN ) = ∅ and N0(RN ) �= ∅.

Let S = {i} with i ∈ N0(RN ). Then gi (r∗) = 1 and g j (r∗) = 0 for all j ∈ N\{i}.
For agent i , in view of 1Ri0, by Lemma 3.1, it holds that gi (r∗)Ri gi (ri , r∗−i ) for all
ri ∈ [0, 1]. For each agent j ∈ N\{i}, in view of 0R j1, by Lemma 3.1 again, we have
g j (r∗)R j g j (r j , r∗− j ) for all r j ∈ [0, 1]. So, r∗ = e{i} is a Nash equilibrium.
Case (iii) N−(RN ) = N .

If S = {i} for some i ∈ N , then 1Ri
1
n . Then r∗

j = 0 and g j (r∗) = 0 for all
j ∈ N\{i}. In view of 0Pj1, by Lemma 3.1, we have g j (r∗)R j g j (r j , r∗− j ) for all

r j ∈ [0, 1]. With monotonicity, we have gi (ri , r∗−i ) ≥ 1
n for all ri ∈ [0, 1]. In view

of 1Ri
1
n , by Lemma 3.1 again, we have gi (r∗)Ri gi (ri , r∗−i ) for all ri ∈ [0, 1]. So,

r∗ = e{i} is a Nash equilibrium.
If S = ∅, then 1

n Pi1 for all i ∈ N . For each i ∈ N , if ri > 0, with monotonicity,
we have gi (ri , r∗−i ) > gi (0, r∗−i ) = 1

n . Together with
1
n Pi1, by Lemma 3.1, we have

gi (r∗)Ri gi (ri , r∗−i ) for all ri ∈ [0, 1]. So, r∗ = e∅ is a Nash equilibrium.
Combining these three cases, we conclude that for each S ∈ M(RN ), r∗ = eS is a
Nash equilibrium. Lemma 4.1 implies that g(r∗) is Pareto optimal at RN .

For the only-if part, assume that r∗ is a Pareto optimal Nash equilibrium. From
Theorem 3.5, it follows that r∗ = eS for some S ∈ 2N . We prove that S ∈ M(RN ).
Case (i) N+(RN ) �= ∅.

Assume, to the contrary, that S /∈ M(RN ). Let T ∈ M(RN ). First, we prove that
|S| = |T |.

Since g(eS) and g(eT ) are Pareto optimal at RN , from Lemma 4.1, we have 1
|S| Pi0

for all i ∈ S, and 1
|T | Pi0 for all i ∈ T . Since eS (by assumption) and eT (from

the if-part) are Nash equilibria of (RN , g), we have 0R j
1

|S|+1 for all j ∈ N\S, and
0R j

1
|T |+1 for all j ∈ N\T . If |S| < |T |, then there exists k ∈ T \S such that 1

|T | Pk0
and 0Rk

1
|S|+1 . However, in view of |S| < |T |, we have |S|+1 ≤ |T |, i.e., 1

|T | ≤ 1
|S|+1 .

From Lemma 3.1, it follows that 0Rk
1

|T | , which is a contradiction. If |S| > |T |, we
similarly obtain a contradiction. Thus, |S| = |T |.

Then, since S /∈ M(RN ) and |S| = |T |, there exist i ∈ S and j ∈ N\S such
that m(Ri ) < m(R j ). By Lemma 4.1, we have 1

|S| Pi0. It follows that |S| ≤ m(Ri ).

So, |S| < m(R j ), hence 1
|S|+1 ≥ 1

m(R j )
. If m(R j ) = ∞, hence d(R j ) = 0, then
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1
|S|+1 Pj0, and otherwise, since 1

m(R j )
Pj0, we also have 1

|S|+1 Pj0. This implies that

g j (1, eS− j )Pj g j (eS), which contradicts the assumption that eS is a Nash equilibrium.
Thus, S ∈ M(RN ).
Case (ii) N+(RN ) = ∅ and N0(RN ) �= ∅.

From Lemma 4.1, g(eT ) is not Pareto optimal for all T ∈ 2N\M(RN ). Thus,
S ∈ M(RN ).
Case (iii) N−(RN ) = N .

If there exists i ∈ N such that 1Ri
1
n , then e∅ is not a Pareto optimal Nash equi-

librium, hence S �= ∅. Since 0Pj1 for all j ∈ N , it follows that eT is not a Nash
equilibrium for each T ∈ 2N with |T | ≥ 2. Hence, |S| = 1. For j ∈ N such that
1
n Pj1, it is easily seen that e{ j} is not a Nash equilibrium. Thus, S ∈ M(RN ).

Finally, suppose that {i ∈ N | 1Ri
1
n } = ∅, i.e., 1

n Pi1 for all i ∈ N . If T �= ∅, then
since 0Pi1 and 1

n Pi1 for all i ∈ N , it follows that gi (eT \{i})Pi gi (eT ) for all i ∈ T ,
which implies that eT is not a Nash equilibrium. So, S = ∅ ∈ M(RN ), and the proof
of the theorem is complete. 
�

Theorem 4.5 shows that for a mechanism satisfying the zero–one property, the
Pareto optimal Nash equilibria are those strategy profiles in which all agents in a
maximal coalition play 1 and all other agents play 0. Since there exists at least one
maximal coalition for every single-dipped preference profile, Lemma 4.4 andTheorem
4.5 imply the result announced earlier.

Corollary 4.6 Let g ∈ G. There exists a Pareto optimal Nash equilibrium of (RN , g)
for every RN ∈ DN if and only if g satisfies the zero–one property.

The next example shows that for a game based on a mechanism satisfying the zero–
one property, besides Pareto optimal Nash equilibria, there may exist Nash equilibria
without Pareto optimal outcomes, or Pareto optimal outcomes, not obtained in any
Nash equilibrium.

Example 4.7 Let N = {1, 2} and let g ∈ G be as in Example 2.1.
(a) Consider RN ∈ DN such that 1P10P1 12 and 0P21P2 12 . Then, we have

g1(0, 1)P1g1(1, 1) and g2(0, 1)P2g2(0, 0). With monotonicity and Lemma 3.1, it
follows that g1(0, 1)R1g1(r1, 1) and g2(0, 1)R2g2(0, r2) for all r1, r2 ∈ [0, 1]. So,
e{2} = (0, 1) is a Nash equilibrium. However, g(e{2}) = (0, 1) is not Pareto optimal
at RN . In fact, Theorem 4.5 implies that the unique Pareto optimal Nash equilibrium
is e{1} = (1, 0).

(b) Consider RN ∈ DN such that d(R1) = d(R2) = 0. Then x = g( 12 ,
1
3 ) =

( 7
12 ,

5
12 ) is Pareto optimal at RN , but there is no S ∈ 2N such that g(eS) = x . Thus,

Theorem 3.5 implies that there is no Nash equilibrium r∗ such that g(r∗) = x . In
fact, m(R1) = m(R2) = ∞, and hence the unique maximal coalition is N . From
Theorem 4.5 (or direct inspection), the unique Pareto optimal Nash equilibrium is
eN = (1, 1). �
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4.2 Strong equilibrium

In this subsection we consider a further strengthening of Pareto optimal Nash equilib-
rium, namely strong equilibrium (Aumann 1959): no coalition can profitably deviate.
We show that the Pareto optimal Nash equilibria and strong equilibria coincide if,
besides anonymity, monotonicity, and the zero–one property, the mechanism g satis-
fies:

• order preservation: gi (r) ≥ g j (r) for all r ∈ [0, 1]N and i, j ∈ N with ri ≥ r j .6

Theorem 4.8 Let RN ∈ DN and let g ∈ G satisfy the zero–one property and order
preservation. Then a strategy profile is a Pareto optimal Nash equilibrium of (RN , g)
if and only if it is a strong equilibrium.

Proof We start with the only-if part. Let S ∈ M(RN ). By Theorem 4.5, it is sufficient
to verify that eS is a strong equilibrium. Assume, to the contrary, that there exist
T ∈ 2N\{∅} and rT ∈ [0, 1]T such that gi (rT , eSN\sT )Ri gi (eS) for all i ∈ T and

g j (rT , eSN\T )Pj g j (eS) for some j ∈ T . We consider three cases.
Case (i) N+(RN ) �= ∅.

If S ∩ T �= ∅, then for each i ∈ S ∩ T , it holds that gi (rT , eSN\T ) ≥ 1
|S| in

view of 1
|S| Pi0 from Theorem 4.5 and gi (rT , eSN\T )Ri gi (eS) by assumption. By order

preservation, it follows that g j (rT , eSN\T ) ≥ gi (rT , eSN\T ) ≥ 1
|S| for all j ∈ S\T .

So, we have gi (rT , eSN\T ) = 1
|S| = gi (eS) for all i ∈ S, and g j (rT , eSN\T ) = 0 =

g j (eS) for all j ∈ N\S, i.e., gk(rT , eSN\T )Ikgk(eS) for all k ∈ T , contradicting our
assumption.

If S ∩ T = ∅, then we claim that gi (rT , eSN\T ) ≤ 1
|S|+1 for each i ∈ T . If not, take

i ∈ T with gi (rT , eSN\T ) > 1
|S|+1 . Then g j (rT , eSN\T ) ≥ gi (rT , eSN\T ) > 1

|S|+1 for

all j ∈ S. It follows that
∑

k∈T∪S gk(rT , eSN\T ) > 1, which is not possible. In view

of 0Ri
1

|S|+1 for each i ∈ T from Theorem 4.5, together with Lemma 3.1, we have

gi (eS)Ri gi (rT , eSN\T ) for all i ∈ T , which contradicts our assumption.
Case (ii) N+(RN ) = ∅ and N0(RN ) �= ∅.

In this case, S = {i} for some i ∈ N0(RN ). Then g(eS) = e{i}. Since 1Ii0 and
0R j1 for all j ∈ N\{i}, by Lemma 3.1 we have gk(eS)Ri gk(rT , eSN\T ) for all k ∈ T ,
which is a contradiction to our assumption.
Case (iii) N−(RN ) = N .

If S = {i} for some i ∈ N , then 1Ri
1
n . It follows that g j (eS) = 0 for all j ∈ N\{i}.

Since e{i} is a Nash equilibrium, it holds that T �= {i}. For each k ∈ T \{i}, we have
gk(eS)Rkgk(rT , eSN\T ) from 0Pk1 and Lemma 3.1. Together with our assumption, it

follows that gk(rT , eSN\T ) = gk(eS) = 0 for all k ∈ T \{i}. By order preservation,

we have g j (rT , eSN\T ) = 0 for all j ∈ N\{i}. So, g(rT , eSN\T ) = g(eS), which is a
contradiction.

6 A similar condition also occurs in Bochet et al. (2021) under the same name. It is an open problemwhether
order preservation is implied by anonymity and monotonicity.
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If S = ∅, then 1
n Pi1 for all i ∈ N . For each k ∈ T , in view of gk(rT , eSN\T )Rkgk(eS)

and 0Pk 1
n Pk1, we have gk(rT , eSN\T ) ≤ 1

n . By order preservation, it holds that

g j (rT , eSN\T ) ≤ gk(rT , eSN\T ) ≤ 1
n for all j ∈ N\T and k ∈ T . So, gk(rT , eSN\T ) =

gk(eS) = 1
n for all k ∈ T , which is a contradiction. This concludes the proof of the

only-if part.
For the if-part, suppose that r∗ is a strong equilibrium of (RN , g). Obviously, r∗ is

a Nash equilibrium. By Theorem 3.5, there is a coalition S such that r∗ = eS . Since
g satisfies the zero–one property, we have g(eS) = 1

|S|e
S if S �= ∅. If S = ∅, then

g(eS) = 1
n e

N .
If S = ∅, then, if 1Ri

1
n for some i ∈ N , then N can deviate to e{i}, contradicting

that e∅ is a strong equilibrium. Hence, 1
n Pi1 for all i ∈ N , so that g(e∅) = 1

n e
N is

Pareto optimal by Lemmma 4.1.
If |S| ≥ 2, then, since eS is a Nash equilibrium, 1

|S| Ri0 for all i ∈ S; in this case,

if xi Ri gi (eS) for some x ∈ A and all i ∈ N , then in particular xi ≥ 1
|S| for all i ∈ S,

which implies x = g(eS) and, thus, g(eS) is Pareto optimal.
Finally, suppose that |S| = 1, say S = {n}.
If 1Pn0 then clearly g(eS) = (0, . . . , 0, 1) is Pareto optimal.
If 1In0 and there is some j �= n with 1Pj0, then { j, n} can profitably deviate by

r j = 1 and rn = 0, contradicting that eS is a strong equilibrium; hence, 0R j1 for all
j �= n, so that g(eS) = (0, . . . , 0, 1) is Pareto optimal.
If 0Pn1 and there is some j �= n with 1R j0, then { j, n} can profitably deviate by

r j = 1 and rn = 0, contradicting that eS is a strong equilibrium; hence, 0Pj1 for all
j �= n, so that g(eS) = (0, . . . , 0, 1) is Pareto optimal. This concludes the proof of
the if-part. 
�

From Theorems 4.5 and 4.8 we obtain the following corollary.

Corollary 4.9 Let RN ∈ DN and let g ∈ G satisfy the zero–one property and order
preservation. A strategy profile r∗ ∈ [0, 1]N is a strong equilibrium of (RN , g) if and
only if r∗ = eS for some S ∈ M(RN ).

We conclude this part with pointing out the relation between this result and a result
in Inoue and Yamamura (2015), in the following remark.

Remark 4.10 Corollary 4.9 is closely related to Theorem 6 in Inoue and Yamamura
(2015). In that theorem, social choice functions are considered—assigning allocations
to preference profiles—satisfying a number of conditions, but this setting and the
conditions can be reformulated in terms of mechanisms in our sense. More precisely,
these conditions are symmetry, least richness, and respect for monotonic preferences
(these are weaker versions of anonymity, the zero–one property, and monotonicity),
plus a property called ‘others oriented resource monotonicity’. The resulting set of
mechanisms characterized by these conditions is different from the set of mechanisms
to which Corollary 4.9 applies: neither of the two is contained in the other one. For
instance, the uniform rule (Sprumont 1991; see also Sect. 6 below), reformulated as
a mechanism, satisfies the conditions following from Inoue and Yamamura (2015),
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and satisfies our conditions except for monotonicity. On the other hand, consider the
following mechanism g, which is a variation on the ‘symmetrized proportional rule’
in Example 2.2 (cf. Bochet et al. 2021). Let N = {1, 2, 3} and (w.l.o.g.) (0 ≤) r1 ≤
r2 ≤ r3 (≤ 1), then

g(r) =
{

(r1(1+r2−r1),r2,r3)
r1(1+r2−r1)+r2+r3

if r1(1 + r2 − r1) + r2 + r3 ≥ 1

(1, 1, 1) − 2 (1−r1(1+r2−r1),1−r2,1−r3)
3−(r1(1+r2−r1)+r2+r3)

if r1(1 + r2 − r1) + r2 + r3 < 1.

The mechanism g is anonymous, monotonic, order-preserving, and satisfies the zero–
one property, i.e., it satisfies all the conditions in Corollary 4.9. It is obtained by
adapting the lower claim (strategy) in the direction of the median claim without,
indeed, changing the order. But g is not ‘others oriented resource monotonic’, the
condition mentioned above, which is related to ‘others oriented peak monotonicity’
in Bochet et al. (2021), and states that if one agent gets more, then all other agents
get (weakly) less. For instance, g(1/4, 1/2, 7/8) = (5/27, 8/27, 14/27), whereas
g(1/4, 3/4, 7/8) = (3/16, 6/16, 7/16): agent 2’s strategy has changed, agent 2 gets
more, but also agent 1 gets more.

Mechanisms satisfying either of the two sets of conditions result in the same strong
equilibrium allocations but these sets of conditions are, thus, logically independent.
The examples additionally show that neither (our)monotonicity nor the others oriented
resource monotonicity specifically drives this result. �

4.3 Implementation

In this subsectionwe reformulate ourmain results in terms of implementation. A social
choice correspondence F is a map assigning to each preference profile RN ∈ DN a
nonempty set of allocations. If this set always consists of exactly one allocation, then
F is a rule, as defined earlier in Sect. 2. We say that a mechanism g implements F in
Pareto optimal Nash equilibrium if

F(RN ) = {g(r) ∈ A | r is a Pareto optimal Nash equilibrium of (RN , g)}

for every preference profile RN ∈ DN . Mechanism g implements F in strong equilib-
rium if

F(RN ) = {g(r) ∈ A | r is a strong equilibrium of (RN , g)}

for every preference profile RN ∈ DN . For each S ⊆ N define the allocation êS ∈ A
by

êS =
{

1
|S|e

S if S �= ∅
( 1n , . . . , 1

n ) if S = ∅.
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Define the social choice correspondence M on DN by

M(RN ) = {êS ∈ A | S ∈ M(RN )}
for every RN ∈ DN . We now have the following consequence of Theorem 4.5, Corol-
lary 4.6, and Corollary 4.9.

Corollary 4.11 Let g ∈ G. Then g satisfies the zero–one property if and only if g
implements M in Pareto optimal Nash equilibrium. If g satisfies the zero–one property
and order preservation, then g implements M in strong equilibrium.

It is an open question whether the condition of order preservation can be left out in
this corollary, in particular since it is an open question whether order preservation is
implied by monotonicity and anonymity (cf. footnote 6).

5 An axiomatic characterization of the correspondenceM

In this section we present an axiomatic characterization of the correspondence M , i.e.,
the correspondence implemented in Pareto optimal Nash or strong equilibrium as in
Corollary 4.11.

Unless stated otherwise, F is a social choice correspondence defined on DN . In
order to formulate the first axiom we define the concept of an envious agent. Let
RN ∈ DN and x ∈ A. An agent i ∈ N is (an) envious (agent) at RN and x if x j Pi xi
for some j ∈ N . We denote by E(RN , x) the set of all envious agents at RN and x .
By PO(RN ) we denote the set of all Pareto optimal allocations at RN .

The first axiom requires that F assigns Pareto optimal allocations and, among those,
only allocations with a minimal number of envious agents.7

Minimal envy Pareto optimality x ∈ PO(RN ) and |E(RN , x)| ≤ |E(RN , y)| for
all RN ∈ DN , x ∈ F(RN ), and y ∈ PO(RN ).

The second condition requires that every agent (weakly) prefers an assigned allo-
cation over equal division. Under the same name, this condition occurs in Thomson
(2010) for the case of single-peaked preferences; it also occurs already in Pazner
(1977) under the name ‘per-capita-fairness’.
Equal division lower bound xi Ri

1
n for all RN ∈ DN , x ∈ F(RN ), and i ∈ N .

The third and final condition requires that a higher sharing index cannot result in
a lower share. A higher sharing index expresses more eagerness to receive a nonzero
share, and this should not result in a lower share.
Sharing index order preservation xi ≥ x j for all RN ∈ DN , x ∈ F(RN ), and
i, j ∈ N with m(Ri ) > m(R j ).

Our characterization result says that M is the maximal correspondence with these
three properties.

Theorem 5.1 A social choice correspondence F satisfies minimal envy Pareto opti-
mality, equal division lower bound, and sharing index order preservation, if and only
if F(RN ) ⊆ M(RN ) for all RN ∈ DN .

7 A somewhat related minimal envy condition occurs in Combe (2023) in the problem of assigning objects
to individuals.
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The proof of this theorem is based on a number of lemmas. We first show that M
satisfies the three axioms in the theorem.

Lemma 5.2 The social choice correspondence M onDN is minimal envy Pareto opti-
mal.

Proof Let RN ∈ DN and S ∈ M(RN ). Then, by Corollary 4.11, êS is Pareto optimal.
Denote

μ(RN ) = min
y∈PO(RN )

|E(RN , y)|.

We have to show that |E(RN , êS)| = μ(RN ). To this end, we distinguish four cases.
Case (i) N+(RN ) �= ∅.

Denote

S∗ = {i ∈ N+(RN )\S | m(Ri ) = |S|} .

We claim that E(RN , êS) = S∗.
To prove this claim, first observe that there is no envious agent in S since

1
|S| Ri

1
m(Ri )

Pi0 for all i ∈ S with d(Ri ) > 0, 1
|S| Pi0 for all i ∈ S with d(Ri ) = 0, and

there is also no envious agent in N\N+(RN ) since 0Ri
1

|S| for all i ∈ N\N+(RN ). For
the agents in N+(RN )\S, we consider the following three subcases.

(i.a) N+(RN )\S = ∅.
In this case, S = N+(RN ) and S∗ = ∅, and therefore there is no envious player,

i.e., E(RN , êS) = ∅ = S∗.
(i.b) N+(RN )\S �= ∅ and S∗ = ∅.
Let i ∈ N+(RN )\S. Then m(Ri ) < |S|, hence 1

m(Ri )+1 ≥ 1
|S| > 0. This and

0Ri
1

m(Ri )+1 , imply that 0Ri
1

|S| , hence there is no envious agent in N+(RN )\S. Hence,
again E(RN , êS) = ∅ = S∗.

(i.c) N+(RN )\S �= ∅ and S∗ �= ∅.
Every agent i ∈ S∗ is an envious agent in view of 1

|S| Pi0. If i ∈ N+(RN )\(S∪ S∗),
then m(Ri ) < |S|, and similarly as in case (i.b), i is not envious. Hence, also in this
case, E(RN , êS) = S∗.

Hence, E(RN , êS) = S∗ in all three subcases.
To complete the proof for Case (i), we show that μ(RN ) = |S∗|.
Assume, to the contrary, that there exists x ∈ PO(RN ) such that |E(RN , x)| <

|S∗|. If there exists j ∈ S ∪ S∗ such that x j > 1
|S| , then

|{i ∈ S ∪ S∗ | xi = max
k∈N xk}| ≤ |S| − 1.

Since 1
|S| Pi0 for all i ∈ S ∪ S∗, it follows that (max

k∈N xk)Pi xi for all i ∈ S ∪ S∗ with

xi �= max
k∈N xk . This means that at least |S∗|+1 agents in S∪ S∗ are envious at x , which

is a contradiction. Hence, xi ≤ 1
|S| for all i ∈ S ∪ S∗.
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Suppose there exists j ∈ N+(RN )\(S ∪ S∗) with x j > 0. Since m(R j ) < |S|
and 0R j

1
m(R j )+1 , we have 1

m(R j )+1 ≥ 1
|S| and 0R j

1
|S| . Hence, since x ∈ PO(RN ),

x j > 1
|S| . It follows that

∣∣{i ∈ S ∪ S∗ ∣∣ xi ≥ x j
}∣∣ ≤ |S| − 1,

which implies that at least |S∗| + 1 agents in S ∪ S∗ are envious at x , which is a
contradiction. Thus, x j = 0 and therefore

∑

i∈S∪S∗
xi = 1.

Next, suppose there exists j ∈ S∗ with 0 < x j < 1
|S| . By Lemma 4.1(i), and since

m(R j ) = |S|, we have x j > 1
|S|+1 . Hence,

|{i ∈ S ∪ S∗ | xi = max
k∈N xk}| ≤ |S|,

and the number of envious agents at x is at least |S∗|, contradicting the assumption
|E(RN , x)| < |S∗|. Thus, μ(RN ) = |S∗|, and the proof of Case (i) is complete.
Case (ii) N+(RN ) = ∅ and N0(RN ) �= ∅.

In this case, S = {i} for some i ∈ N0(RN ), and |E(RN , êS)| = μ(RN ) = 0.
Case (iii) N−(RN ) = N and { j ∈ N | 1R j

1
n } �= ∅.

In this case, S = { j} for some j ∈ N such that 1R j
1
n . Since E(RN , êS) = { j}, it

follows that μ(RN ) ≤ 1. We show that μ(RN ) = 1.
Consider any x ∈ PO(RN ). If xi = 1 for some agent i , then i is an envious agent.

Otherwise, from Lemma 4.1(iii), we have x j Pj1 for all j ∈ N . Since ( 1n , . . . , 1
n ) /∈

PO(RN ), there exist distinct k, l ∈ N such that xk < xl . It follows that xk Pl xl Pl1,
which means that l is an envious agent. Hence, μ(RN ) = 1.
Case (iv) N−(RN ) = N and { j ∈ N | 1R j

1
n } = ∅.

Then S = ∅, and |E(RN , êS)| = |E(RN , ( 1n , . . . , 1
n ))| = 0 = μ(RN ).

This completes the proof of the lemma. 
�
Lemma 5.3 The social choice correspondence M onDN satisfies equal division lower
bound.

Proof Let RN ∈ DN and S ∈ M(RN ). We show that êSi Ri
1
n for all i ∈ N , by

considering four cases.
Case (i) N+(RN ) �= ∅.

For each i ∈ S, if m(Ri ) = ∞, i.e., d(Ri ) = 0, then 1
|S| Ri

1
n ; and otherwise this

holds since 1
m(Ri )

Pi0, 1
m(Ri )

≤ 1
|S| , and 0 < 1

n ≤ 1
|S| . For each i ∈ N+(RN )\S, we

have m(Ri ) < n, and thus 0Ri
1
n since 0Ri

1
m(Ri )+1 and 0 < 1

n ≤ 1
m(Ri )+1 . For each

i ∈ N\N+(RN ), 0Pi 1n . Thus, ê
S
i Ri

1
n for all i ∈ N .

Case (ii) N+(RN ) = ∅ and N0(RN ) �= ∅.
In this case, S = {i} for some i ∈ N0(RN ). Clearly, êSi Ri

1
n for all i ∈ N .

Case (iii) N−(RN ) = N and { j ∈ N | 1R j
1
n } �= ∅.

In this case, S = { j} for some j ∈ N such that 1R j
1
n . Since 0Ri1 for all i ∈ N\{ j},

we have êSi Ri
1
n for all i ∈ N .
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Case (iv) N−(RN ) = N and { j ∈ N | 1R j
1
n } = ∅.

Then S = ∅, and êSi Ii
1
n for all i ∈ N . 
�

Lemma 5.4 The social choice correspondence M onDN satisfies sharing index order
preservation.

Proof Let RN ∈ DN and S ∈ M(RN ). Let i, j ∈ N with m(Ri ) > m(R j ). Then
i ∈ N+(RN ). If i ∈ S, then êSi = 1

|S| ≥ êSj ∈ {0, 1
|S| }. If i ∈ N+(RN )\S, then also

j /∈ S, and hence êSi = 0 = êSj . 
�
Proof of Theorem 5.1 The if-part of the theorem follows from Lemmas 5.2–5.4 and
the observation that these lemmas also hold for any F with F(RN ) ⊆ M(RN ) for all
RN ∈ DN .

For the only-if part, assume that F satisfies minimal envy Pareto optimality, equal
division lower bound, and sharing index order preservation. Let RN ∈ DN and x ∈
F(RN ). We show that x ∈ M(RN ), by distinguishing four cases.
Case (i) N+(RN ) �= ∅.

Let S ∈ M(RN ), and S∗ = {i ∈ N+(RN )\S | m(Ri ) = |S|}. By Lemma 4.1(i),
xi = 0 for all i ∈ N\N+(RN ). If x j > 0 for some j ∈ N+(RN )\(S ∪ S∗), then by
Pareto optimality and m(R j ) < |S| it follows that x j > 1

|S| . By sharing index order

preservation, this implies xi > 1
|S| also for all i ∈ S ∪ S∗, but then

∑
i∈N xi > 1, a

contradiction. Therefore,
∑

i∈S∪S∗ xi = 1.
Denote S+ = {i ∈ S ∪ S∗ | xi > 0}. If |S+| > |S|, then Pareto optimality,

sharing index order preservation and 0Ri
1

|S|+1 for all i ∈ N+(RN ) with m(Ri ) = |S|,
imply that

∑
i∈S∪S∗ xi > 1, which is a contradiction. So, |S+| ≤ |S|, and therefore

maxi∈S∪S∗ xi ≥ 1
|S| . Since μ(RN ) = |S∗|, with μ(RN ) as defined in the proof of

Lemma 5.2, minimal envy Pareto optimality requires that |S+| = |S| and xi = x j for
all i, j ∈ S+. In turn, this implies that x ∈ M(RN ).
Case (ii) N+(RN ) = ∅ and N0(RN ) �= ∅.

Since in this case PO(RN ) = M(RN ), we have x ∈ M(RN ).
Case (iii) N−(RN ) = N and { j ∈ N | 1R j

1
n } �= ∅.

Equal division lower bound implies xi ≤ 1
n for each i ∈ N with 1

n Pi1. Equal
division lower bound and Pareto optimality imply xi ≤ 1

n or xi = 1 for each i ∈ N
with 1Ri

1
n . Since ( 1n , . . . , 1

n ) /∈ PO(RN ), this implies that x j = 1 for some j ∈ N
such that 1R j

1
n . Hence, x ∈ M(RN ).

Case (iv) N−(RN ) = N and { j ∈ N | 1R j
1
n } = ∅.

In this case, M(RN ) = {( 1n , . . . , 1
n )}, and therefore minimal envy Pareto optimality

implies that there are no envious agents at x . If y ∈ PO(RN ) with y �= ( 1n , . . . , 1
n ),

then there are i, j ∈ N such that yi < 1
n < y j . Since 0Pj

1
n Pj1, we have yi Pj y j ,

which means that player j is envious at RN and y, and thus y �= x . Thus, x =
( 1n , . . . , 1

n ) ∈ M(RN ). This completes the proof of the theorem. 
�
The following example shows that the axioms in Theorem 5.1 are logically inde-

pendent.

123



Mechanisms and axiomatics for division problems with…

Example 5.5 (a) Let n = 3 and let R̃N ∈ DN be a preference profile with d(R̃i ) = 1
3

and 1P̃i 12 P̃i0 for all i ∈ N . Define F by F(R̃N ) = {(1, 0, 0)} and F(RN ) = M(RN )

for all RN ∈ DN\{R̃N }. Then F satisfies equal division lower bound and, since
m(R̃1) = m(R̃2) = m(R̃3) = 2, also sharing index order preservation. However,
E(R̃N , (1, 0, 0)) = {2, 3}, E(R̃N , ( 12 ,

1
2 , 0)) = {3}, and both (1, 0, 0) and ( 12 ,

1
2 , 0)

are Pareto optimal at R̃N , so that F violates minimal envy Pareto optimality. Note that
M(R̃N ) = {( 12 , 1

2 , 0), (
1
2 , 0,

1
2 ), (0,

1
2 ,

1
2 )}, so that F � M .

(b) Let n = 2 and let R̃N ∈ DN be a preference profile with d(R̃1) = 1, d(R̃2) = 1
2 ,

and 0 P̃21. Define F by F(R̃N ) = {(1, 0)} and F(RN ) = M(RN ) for all RN ∈
DN\{R̃N }. Then F does not satisfy equal division lower bound. Since m(R̃1) =
m(R̃2) = 0, F satisfies sharing index order preservation. Since (1, 0) is Pareto optimal
at R̃N , E(R̃N , (1, 0)) = {1}, and at every Pareto optimal allocation at R̃N there is
exactly one envious player, F satisfies minimal envy Pareto optimality. Note that
M(R̃N ) = {(0, 1)}, so that F � M .
(c) Letn = 4 and let R̃N ∈ DN be a preference profilewithd(R̃i ) = 1

4 and1P̃i
1
3 P̃i0 for

i = 1, 2; and d(R̃i ) = 1
4 , 1P̃i

1
2 P̃i0, and 0 P̃i

1
3 for i = 3, 4. Thenm(R̃1) = m(R̃2) = 3

and m(R̃3) = m(R̃4) = 2. Define F by F(R̃N ) = {(0, 0, 1
2 ,

1
2 )} and F(RN ) =

M(RN ) for all RN ∈ DN\{R̃N }. Then F is not sharing index order preserving. Note
that M(R̃N ) = {( 12 , 1

2 , 0, 0)}. Since |E(R̃N , ( 12 ,
1
2 , 0, 0))| = |{3, 4}| = |{1, 2}| =

|E(R̃N , (0, 0, 1
2 ,

1
2 ))|, and (0, 0, 1

2 ,
1
2 ) is Pareto optimal at R̃N , we have that F satisfies

minimal envy Pareto optimality. Also, F satisfies equal division lower bound, but
F(R̃N ) � M(R̃N ). �

We conclude this section with pointing out the main connections with results in
Inoue and Yamamura (2015), besides the relation already discussed in Remark 4.10
between their Theorem 6 and our Corollary 4.9. They consider the binary mechanism
(agents can report only 0 or 1) which has the zero–one property: the commodity is
shared equally between the agents who report 1. In their Theorem 3, they show that
strong equilibria are Pareto optimal. This is consistent with our Theorem 5.1, which
implies (by minimal envy Pareto optimality) the same. They also show (their Theorem
4) that if there exist Pareto optimal allocations such that no player envies any other
player (i.e., there exist envy-free Pareto optimal allocations), then these are exactly the
strong equilibrium allocations. This is, indeed, also true for the correspondence M , as
is not hard to verify. If there are no envy-free Pareto optimal allocations, however, then
it is not necessarily true that M picks all minimal envy Pareto optimal allocations. For
instance, in part (b) of Example 5.5, {2} is the unique maximal coalition, M(R̃N ) =
{(0, 1)}, but (1, 0) is also a Pareto optimal allocation with one envious agent. In this
example, no agent strictly prefers 1 over 0. The following example shows that also if
there are agents who strictly prefer 1 over 0, then still M does not necessarily pick all
minimal envy Pareto optimal allocations.

Example 5.6 Let N = {1, 2} and let RN be a preference profile with 1
3 P10P1

1
4 and

1P20P2 12 . Then m(R1) = 3, m(R2) = 1, and therefore {1} is the unique maximal
coalition, M(RN ) = {(1, 0)}, agent 2 is envious, and (0, 1) is also Pareto optimal with
one envious agent, namely agent 1. �
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6 Concluding remarks

We have shown that in division problems with single-dipped preferences, the Pareto
optimal Nash and strong equilibria of games induced by a reasonable class of mech-
anisms, result in Pareto optimal allocations characterized by maximal coalitions.

An obvious counterpart, the case of single-peaked preferences, is extensively stud-
ied inBochet et al. (2021). The result that ismost closely related to our approach is their
Theorem 2, which applies to peaks-only rules—these are analogous to mechanisms
in our sense. Under conditions on rules (mechanisms g), partly similar to ours, they
show that the Pareto optimal Nash equilibria and strong equilibria in a game (RN , g)
coincide and result in the uniform allocation, for every RN ∈ PN . An allocation x ∈ A
is the uniform allocation at RN ∈ PN if there is a λ ∈ [0, 1] such that

xi =
{
min{p(Ri ), λ} if

∑
i∈N p(Ri ) ≥ 1

max{p(Ri ), λ} if
∑

i∈N p(Ri ) ≤ 1.

The uniform allocation is the allocation assigned by the uniform rule (social choice
function), characterized by Sprumont (1991). At the uniform allocation, either all
agents obtain at most their peaks or all agents obtain at least their peaks, or both, and
thus the uniform allocation is indeed Pareto optimal (it is ‘same-sided’).

For single-peaked preferences, Sprumont (1991) shows that the uniform rule is the
unique anonymous, Pareto optimal, and strategy-proof social choice function. Recall
that a social choice function F is strategy-proof if Fi (RN )Ri Fi (R′

i , RN\{i}) for every
preference profile RN , agent i ∈ N , and preference R′

i , where preferences are chosen
within a specific domain, for instance P or D. The following example shows that, in
the single-dipped case, social choice functions obtained by selecting from M are not
strategy-proof. Let F : DN → A such that F(RN ) ∈ M(RN ) for every RN ∈ DN .

Example 6.1 Let RN ∈ DN such that 0Pi1Ri
1
n for all i ∈ N . Then M(RN ) =

{{i} | i ∈ N }, and therefore F(RN ) = e{ j} for some j ∈ N (cf. Theorem 4.5).
Consider R′

j ∈ D such that 0P ′
j1 and 1

n P
′
j1. Then M(R′

j , R− j ) = {{i} | i ∈ N\{ j}},
and therefore Fj (R′

j , R− j ) = 0, so that Fj (R′
j , R− j )Pj Fj (RN ). Hence, F is not

strategy-proof. �

The uniform rule for single-peaked preference profiles is Pareto optimal and envy-
free (at the uniform allocation no agent envies any other agent), thus trivially satisfies
minimal envy Pareto optimality formulated for single-peaked preferences. It also sat-
isfies equal division lower bound (Thomson 2010). It is not hard to see that these
conditions do not uniquely characterize the uniform rule, but it is not obvious what
an analogue of sharing index order preservation for single-peaked preferences would
be. In this respect, also observe that M depends on preferences between 0, 1, and the
point in between indifferent to 0 or 1, whereas the uniform rule depends only on the
peaks.

Uniform rules for division problems with single-dipped preferences are studied by
Yamamura (2023), however under the assumption that the resource to be distributed is
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freely disposible: an allocation x satisfies
∑

i∈N xi ≤ 1. The main result in that paper
is that these uniform rules are envy-free, weakly Pareto optimal, and strategy-proof.

A natural extension of our analysis and the analysis in Bochet et al. (2021) is to other
domains of preferences, notably if both single-dipped and single-peaked preferences
in a profile are allowed, cf. Thomson (2023). Recently, this problem has been studied
for the public good/bad case by Alcalde-Unzu et al. (2023).

Appendix: Proof of Proposition 3.10

By ps+1 > qs for all s = 0, 1, . . . , n − 1, we have p1 > 1
2 > q1. We consider three

cases.
(a) Suppose that p1P1q1. Then, by Lemma 3.1, p1R1

1
2 .

(a1) First suppose that q1R2 p1. Then, by Lemma 3.1, q1R2
1
2 . It follows that

g1(1, 0)R1 g1(0, 0) and g2(1, 0)R2g1(1, 1). With monotonicity and Lemma 3.1 again,
it holds that g1(1, 0)P1g1(r1, 0) and g2(1, 0)P2g2(1, r2) for all r1, r2 ∈ [0, 1]. So,
r∗ = (1, 0) is a Nash equilibrium.

(a2) Second, suppose that p1R2q1. Then, by Lemma 3.1, p1R2
1
2 .

(a2.1) If 1
2 P1q

1 and 1
2 P2q

1, then g1(1, 1)P1g1(0, 1) and g2(1, 1)P2g2(1, 0). From
monotonicity andLemma3.1, it holds that g1(1, 1)R1g1(r1, 1) and g2(1, 1)R2g2(1, r2)
for all r1, r2 ∈ [0, 1]. So, r∗ = (1, 1) is a Nash equilibrium.

(a2.2) If q1R1
1
2 , together with p1R2

1
2 , then g1(1, 0)R1g1(0, 0) and g2(1, 0)R2g2

(1, 1). With monotonicity and Lemma 3.1 again, it holds that g1(1, 0)R1g1(r1, 0) and
g2(1, 0)R2g2(1, r2) for all r1, r2 ∈ [0, 1]. So, r∗ = (1, 0) is a Nash equilibrium.

(a2.3) If q1R2
1
2 , then similar to (a2.2), we can prove that r∗ = (0, 1) is a Nash

equilibrium.
(b) Suppose that p1 I1q1. Then, p1R1

1
2 and q1R1

1
2 .

(b1) If p1P2q1, then p1R2
1
2 . So, g1(0, 1)P1g1(1, 1) and g2(0, 1)P2g2(0, 0). With

monotonicity andLemma3.1, it holds that g1(0, 1)R1g1(r1, 1) and g2(0, 1)R2g2(0, r2)
for all r1, r2 ∈ [0, 1]. So, r∗ = (0, 1) is a Nash equilibrium.

(b2) If q1R2 p1, then q1R2
1
2 . Similar to (b1), we can prove that r∗ = (1, 0) is a

Nash equilibrium.
(c) Suppose that q1P1 p1. Then, by Lemma 3.1, q1R1

1
2 .

(c1) First, suppose that p1R2q1, then similar to (a1), it follows that r∗ = (0, 1) is
a Nash equilibrium.

(c2) Second, suppose that q1P2 p1. Then, q1R2
1
2 .

(c2.1) If 1
2 P1 p

1 and 1
2 P2 p

1, then g1(0, 0)P1g1(1, 0) and g2(0, 0)P2g1(0, 1). With
monotonicity andLemma3.1, it holds that g1(0, 0)R1g1(r1, 0) and g2(0, 0)R2g2(0, r2)
for all r1, r2 ∈ [0, 1]. So, r∗ = (0, 0) is a Nash equilibrium.

(c2.2) If p1R1
1
2 , together with q1R2

1
2 , we have g1(1, 0)R1g1(0, 0) and

g2(1, 0)R2g1(1, 1). With monotonicity and Lemma 3.1, it holds that g1(1, 0)R1g1
(r1, 0) and g2(1, 0)P2g2(1, r2) for all r1, r2 ∈ [0, 1]. So, r∗ = (1, 0) is a Nash equi-
librium.
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(c2.3) If, finally, p1R2
1
2 , then similar to (c2.2), it can be proved r∗ = (0, 1) is a

Nash equilibrium. 
�
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