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Abstract
We develop a piecewise deterministic control model to study optimal lockdown and
vaccination policies to manage a pandemic. Lockdown is modeled as an impulse
control that allows the decision maker to switch from one level of restrictions to
another. Vaccination policy is a continuous control. Decisions are taken under the risk
of mutations of the disease, with repercussions on the transmission rate. The decision
maker follows a cost minimization objective. We first characterize the optimality
conditions for impulse control and show how the prospect of a mutation affects the
decision maker’s choice by inducing her to anticipate the net benefit of operating
under a different lockdown state once amutation occurs. The problem admits infinitely
many value functions. Under some parametric conditions, we show the existence of a
minimum value function that is a natural candidate solution. Focusing on this specific
value function, we finally study the features of the optimal policy, especially the timing
of impulse control. We prove that uncertainty surrounding future “bad” versus “good”
mutation of the disease expedites versus delays the adoption of lockdown measures.
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1 Introduction

The onset of the COVID-19 pandemic marked the renewed interest of economists for
the analysis of the impacts of epidemics and the design of public policies to cope with
them. This is best illustrated by the impressive number of papers that have been pub-
lished on these topics over the last couple of years. Most contributions in Economics
throughout the first year of the pandemic have been devoted to the analysis of lock-
down, or quarantine or more generally restriction measures, as the main instrument
to control the evolution of the epidemic. This was of course primarily motivated by
the absence of alternative intervention (before the discovery of vaccines, and in the
absence of cure). But even after thewidespread use of vaccination, lockdownmeasures
remain a credible policy tool in the eyes of policy-makers, and are considered as such
in the current paper.

Specifically, our aim is to develop an original piecewise deterministic optimal con-
trol model to study optimal lockdown and vaccination policies tomanage an infectious
disease. Our approach is original in that it combines the following three main ingre-
dients. First, we consider two alternatives to control the spread of the pandemic:
vaccination and lockdown. Second, we take lockdown measures as impulse controls
to echo the evidence that policy makers are subject to a wide set of (administrative,
political, economic) constraints that prevent them from changing the level of restric-
tions on a daily basis. Last but not least, we account for the uncertainty that surrounds
the severity of the disease and results from the frequent mutations of the virus. As
perfectly outlined by Boucekkine et al. (2021), this together with policy interventions,
are the fundamental drivers of the rate of transmission of the disease, and resulting
economic and health impacts. In this setting, our primary concern is to study the impact
of mutations—modeled as random and discrete shifts in the virus contagiousness—on
health policy. We especially seek to determine whether lockdown should be used as a
prevention policy in the prospect of handling better a future (potentially more severe)
mutation, or as an adaptation policy to such event, once and if realized. In addition, we
are interested in the effect of possible mutation on the timing of the lockdown policy:
does the prospect of a mutation delay, or on the contrary expedite, the lockdown pol-
icy? The final issue we want to address is about the interplay between the vaccination
and lockdown policies: Are they substitute or complement tools in the hands of the
policy makers?

It goes without saying that any attempt to provide a comprehensive review of the lit-
erature on epidemics andCOVID-19would be a vain exercise given how fast it grows.1

Rather, we more reasonably give an overview of both the economic “classics”, that
is, the pre-COVID reference papers merging epidemiological and economic models,
and the most recent post-COVID papers relevant to our problem.

Gersovitz andHammer (2004) are the first to investigate the connection between the
spread of an infectious disease and economic outcomes. By comparing a representative

1 There is of course a vast literature on epidemics in mathematical biology, that is left aside here. This is
because this literature, by contrast with the one in economics and operations research, does not incorporate
decision problems and optimization. It generally focuses on the pandemic dynamics and on the features of
endemic vs disease-free steady states.
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agent problem with the optimal solution, they discuss how standard economic instru-
ments work to internalize the externalities surrounding the epidemic propagation. In
a series of excellent papers, Goenka and Liu (2012, 2020) and Goenka et al. (2014)
develop full-fledged analyses of the impact of an epidemic on the macro-economy.
For that purpose, they consider several versions of a model merging SIS dynamics and
neoclassical growth. Goenka and Liu (2012) focus on the impact of the pandemic on
endogenous labor supply, show how the pandemic dynamics can generate chaos and
cycles, and discuss the type of policy intervention capable of stabilizing endogenous
fluctuations. Goenka et al. (2014) go a step further by taking account of the two-way
interaction between the economy and the pandemic. On the one hand, the disease
negatively affects the (exogenous here) labor supply and production, while health
expenditure are meant to slow down the virus transmission. Both papers adopt a social
planner perspective by characterizing either the optimal growth path, or the optimal
policy. Finally, in a similar framework, Goenka and Liu (2020) analyze the decentral-
ized equilibrium when private agents also invest in human capital. They emphasize
the existence of multiple balanced growth paths, with very distinct features in terms
of economic performance and disease prevalence.

As to the post-COVID-19 lature, our attention was drawn to the contributions that
consider lockdown measures as the single instrument to control the evolution and
severity of the epidemic situation. Alvarez et al. (2021) is an excellent representative
of this line of research. The authors study the optimal control of a pandemic thanks to
lockdown restrictions. They consider lockdown as a continuous control, the decision
maker choosing the intensity of the lockdown, or the share of population subject to a
lockdown, at every instant. They capture the basic trade-off between the economic cost
and health benefit of lockdown (reduction of the transmission rate). In addition, they
model the pandemic dynamics with the SIR model, and adopt a short run perspective
by assuming that the planning horizon is finite but unknown as it is determined by the
arrival of a vaccine. They investigate the features—timing, duration and intensity—of
the optimal policy both analytically and by means of a calibrated model. Another
very interesting piece of work is due to Dobson et al. (2023). The authors develop an
hybrid economic-epidemiological model to analyze the optimal control of a pandemic,
when in its early stage, when instruments available to the policy makers are lockdown,
testing and isolation. One important result is that combining testing with isolation is
more effective in terms of the balance between health and economic impacts, than
lockdowns. Other related papers differ from this approach along several ways.2 The
most relevant to our analysis are those i/ that depart from the modeling of lockdown

2 Goenka et al. (2022) study optimal lockdown by accounting for the waning immunity (thereby using
a SIRS model). They keep working with a neoclassical growth model and focus on long run outcomes.
Loerstcher and Miur (2021) do not take an optimal policy perspective. Rather they assume that the decision
maker’s objective is to make sure that the health system capacity cannot be overwhelmed because of the
increase in the number of infected people requiring special care. The limited capacity constraint of the
health system is also present in Jones et al. (2021), where the authors compare the representative agent
equilibrium with the optimal solution. They use an aggregate transmission rate defined as a function of
consumption and working decisions and analyze the reactions, in terms of social distancing and remote
working, following the announcement of an outbreak of the pandemic. See Eichenbaum et al. (2021) for
a similar approach but with different perspective. Caulkins et al. (2021) also consider the optimal design
of lockdown policy by incorporating several novelties such as dealing with the level of economic activity
and lockdown “fatigue” as additional states of the system. The analysis of the quite complex dynamics
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as a continuous control, and ii/ that introduce uncertainty in the analysis. Aspri et al.
(2021) observe that in the real world, policies such as lockdown cannot be revised
instantaneously and further, cannot be revised before a certain amount time elapses.
Based on this observation, they study the optimal design of lockdown policies, when
available policies remain constant along some time interval, within a SEIRAD model
(that is they also take care of the asymptomatic health status). In a more standard
model, Caulkins et al. (2020) also choose to deal with lockdown policies as impulse
rather than continuous controls. Adopting this perspective, they are able to address
the issue of the optimal timing, onset and exit, of a one-shot lockdown regime. This is
also the perspective adopted by Huberts and Thijssen (2023), in a deterministic SIR
model. Finally, there also exist a few recent contributions that consider vaccination as
an alternative to lockdown restrictions, to control a pandemic. For instance, Federico
et al. (2022) develop a comprehensive analysis of the optimal vaccination policywithin
a SIRSmodel and show the conditions under which this policy succeeds in eradicating
the disease eventually.

As mentioned above, uncertainty seems like an essential feature not only for the
management of pandemic situations, but also andmore generally for the understanding
of both individuals behaviors and policy performance in many economic problems
(ranging from finance, to investment and resource management problems). Yet there
are very few studies that have incorporated this dimension into the analysis of optimal
policy to fight against COVID-19. Exceptions are Gollier (2020b), Bandyopadhyay
et al. (2021), Federico and Ferrari (2021), and La Torre et al. (2023). Gollier (2020b)
studies the impact of uncertainty surrounding the transmission rate when lockdown
restrictions are lifted and the role of learning about it on the optimal lockdown policy
within a two-stage decision problem. He shows that introducing uncertainty tends to
reduce the optimal rate of lockdown by lowering the expected cost of a less strict
lockdown. Bandyopadhyay et al. (2021) conduct the same kind of analysis in terms
of uncertainty and learning in a three-period problem. They consider that imposing a
lockdown prevents the decision maker from learning about the actual contagiousness
of the disease. Moreover, they introduce an additional cost of delaying lockdown,
namely the lost opportunity of habit formation.3 On the other hand, Federico and
Ferrari (2021) develop a stochastic optimal control problem where the decision maker
has to choose the lockdown policy while being subject to an uncertainty not about
the level but the evolution of the transmission rate. For that purpose, they model the
dynamics of the transmission rate thanks to a diffusion (Wiener) process and take
lockdown as a means to reduce the trend (deterministic part) of the process. In this
setting, they conduct numerical experiments that help highlight the features of the
lockdown policy. Focusing on treatment measures affecting the spread of a disease,

Footnote 2 continued
generated by their model notably show the existence of multiple Skiba points. It is also worth mentioning
the contribution of Acemoglu et al. (2021) who develop a multi-group SIR model where the population
is divided into three age classes (youth, middle age, old) to assess the performance of targeted lockdown
policy. Gollier (2020a) investigates the very same topic. He does not analyze the optimal solution, though.
Rather he considers two types of lockdown interventions, strong vs. softer.
3 Their argument being that habit formation should normally take place during a lockdown and give people
incentives to behave more cautiously once it ends.
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La Torre et al. (2023) look at the optimal policy when accounting for the occurence
of random shocks. These shocks correspond to new virus strains that affect both the
growth rate and number of infected people. Interestingly, the probability of realization
of these shocks is endogenous and depends on the number of infectives, which is the
state of the system. In this setting, they characterize the stochastic steady state, i.e.,
the invariant distribution of the disease over a positive support, and notably show how
the intensity of treatment measures shapes this distribution.

In sum, there is no study that combines lockdown as an impulse control, uncertainty
surrounding the evolution of the transmission rate, and consider both lockdown and
vaccination policies. This exactly where the contribution of our paper lies. Precisely,
we first develop a stochastic optimal control model to study optimal lockdown and
vaccination policies in pandemic times. Lockdown is modeled as an impulse control
that allows the decision maker to switch from one level of restrictions to another
(stricter or softer). Vaccination policy, on the other hand, is a continuous control.
Decisions are taken under the risk of mutations of the disease, with repercussions
on the transmission rate. The decision maker follows a cost minimization objective.
Considering a simplified model where the virus can mutate only once and there exist
only two lockdown levels, with the possibility to go back and forth between them,
allows us to draw a series of interesting results. We first characterize the optimality
conditions for impulse control and show how the prospect of a mutation affects the
decision maker’s choice. In fact, it induces her to anticipate the relative benefit of
a regime change after a mutation has occurred, which may or may not increase the
incentive to set a lockdown.Our problemadmits infinitelymanyvalue functions.Under
some parametric conditions, we show the existence of a minimum value function that
is a natural solution candidate to the solution. Focusing on this specific value function,
we finally study the features of the optimal policy, especially the timing of impulse
control. We prove that uncertainty about future possible “bad” vs. “good” mutation
(in terms of contagiousness) of the disease tends to expedite vs. delay the adoption
of lockdown measures. This conclusion closely parallels those of the two strands of
literature on decision making under uncertainty. The first one analyzes the impact of
the occurrence of randomcostly events (Crepin 2020, for a review),whereas the second
one emphasizes the role of uncertainty, irreversibility, and learning (Dixit and Pindyck
1994). Finally, a numerical analysis based onHuberts andThijssen (2023)’s calibration
highlights the impact of the risk of (a bad) mutation on the optimal management of the
pandemic. Lockdown can be worth before mutation only, when the share of infected
population is quite low. Combined with high vaccination rates, it allows the decision
maker to control the pace at which the virus spreads. However, lockdown measures,
if any, are lifted eventually, as the decision maker is able to manage the pandemic by
means of vaccination only.

The paper is organized as follows. Section2 is devoted to our modeling strategy.
Section3 deals with the optimality conditions for impulse controls and emphasizes the
difference of deciding before or after a mutation. Section4 analyzes the impact of the
risk of mutation on lockdown measures. Section5 addresses the issue of the interplay
between lockdown, reopening and the evolution of the pandemic. Section6 conducts
a numerical analysis based on the calibration of the model, and Sect. 7 concludes.
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2 Model

We adopt the fully centralized perspective of a decision maker (DM) who has to
manage a pandemic (as in Goenka and Liu 2012; Alvarez et al. 2021; Federico and
Ferrari 2021, among others). It means that we do not address externality problems
associated with the disease transmission. It sounds like a natural starting point for the
study of the optimal management of epidemics.

2.1 Pandemic evolution and policy interventions

Most analyses of the optimal control of an epidemic make use of SIS and SIR mod-
els, and some variations of these. The main pre-COVID-19 contributions, that merge
epidemiological and economic models, were mainly based on the SIS model (Goenka
and Liu 2012; Goenka et al. 2014). In the SIS model, the (constant) population is split
into two health states, the “susceptible” and the “infected,” and corresponding state
equations describe changes in the health status. Early papers following the COVID-19
outbreak rather rely on the SIR model, whereby upon infection people get full immu-
nity and enter the third “recovery” status, or die (Acemoglu et al. 2021; Jones et al.
2021). More recent contributions use the more general SIRS model to account for
a waning immunity. In the latter model, recovered people become susceptible again
after a while (Caulkins et al. 2021; Goenka et al. 2022).

Which is the best model to use is a difficult question because of the usual trade-off
between realism and tractability. However, nearly three years after the onset of the
pandemic, we have learnt a few lessons from COVID-19. One advantage of the SIR
model, over the SIS, is that it takes account of disease induced mortality. But since we
do not account for demographic aspects and the average death rate by COVID-19 is
very low, the SIS alternative may seemmore attractive. Indeed, it allows us to keep the
state spaceone-dimensional. In addition, there is clear evidence that immunity acquired
through an infection lasts for a short period of time only. This makes the standard SIR
model inadequate to reproduce the dynamics of pandemic such as COVID-19. One
may then opt for the more general SIRS model. Here again the SIS model looks like
an acceptable simplification of the problem because of the tractability argument.

The last important point is how to incorporate vaccination policy. In epidemio-
logical models, the vaccination control usually shows up in the state equation of the
susceptible, either as a rate proportional to the state (Bolzoni et al. 2017; Di Giamber-
ardino and Iacoviello 2017) or as an absolute rate (Barrett and Hoel 2007). Then either
vaccinated people become an additional state of the system (Choi and Shim 2020), or
join the recovery state, with waning immunity (Federico et al. 2022). Now, we know
that COVID-19 vaccines do not obtain long lasting immunity, especially in the event of
a mutation of the virus. Moreover, if they are efficient to protect the populations at risk
from severe forms of the disease, they poorly protect the general population against
infection. So, in effect, and as long as one does not capture the severity dimension,
the vaccine works as a treatment that allows for containing the spread of the disease.

Basedon these observations,we abstract away frommortality, recovery, anddevelop
a model whose features are alike a SIS model with treatment. Precisely, the dynamics
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reduce to a single logistic differential equation in the state of infected, I (t) ∈ [0, 1],
of the following form4:

İ (t) = θ(t)I (t)

[
1 − r (t) − I (t) − K

θ(t)

]
, (1)

where θ(t) is the infection (transmission) rate, K is the quality of the health system
(recovery rate), and r(t) ≥ 0 is the (effective) vaccination rate. The DM controls the
vaccination rate, and can progressively make people get vaccinated by means of a
wide set of more or less coercive measures and incentives (Geoffard and Philipson
1997). Unlike the typical approach in the literature, vaccination applies to the state of
infected because it is ultimately taken as ameans to control the evolution of the disease.
The quality of the health system encompasses both the qualitative and quantitative
dimensions of hospital infrastructure andmedical staff that, of course, partly determine
the ease with which a country can cope with the pandemic.5

The key variable in Eq.(1) is the transmission rate of the pandemic, θ(t) ∈ M ,
a finite or countable set. This rate changes across time thanks to the DM’s decision
of lockdown and virus mutation. This echoes Jones et al. (2021)’s observation that
“infected people transmit the virus to susceptible people at a rate that depends on the
nature of the virus and the frequency of social interactions.”

The DM can decide on the lockdown level (of restriction) imposed upon the econ-
omy, Lk , with k ∈ K, a countable set. This decision is modeled as an impulse control.
Therefore when tomake a change and towhich level of restriction are controlled by the
DM. The reason for this modeling option is twice. Most of the literature on lockdown
defines this policy as a continuous control (Acemoglu et al. 2021; Alvarez et al. 2021;
Goenka et al. 2022). This means that the DM chooses, at every instant, the intensity
of the lockdown, or the share of the population subject to it.6 However, it is clear that
policy makers cannot adjust such policy decisions on a daily basis. This is perfectly
acknowledged by Aspri et al. (2021) who argue that policies are not adjusted instanta-
neously, and further that there exists some inertia. Considering lockdown measures as
impulse controls follows this observation. This is also the avenue taken by Caulkins
et al. (2020). This is finally the option chosen by Huberts and Thijssen (2023) who
model lockdown controls, and related costs and benefit, exactly the same way as we
do.

Moreover, about three years after its outbreak, it is fair to say that many (sanitary,
economic) uncertainties have surrounded and continue to surround the COVID-19
pandemic. However most contributions on the optimal design of lockdown policies
get rid of uncertainty (or at best conduct sensitivity analyses of calibrated models).

4 This is a very convenient feature especially if one wants to derive analytical results, which is the aim of
the paper.
5 The role of the quality and/or capacity of the health system has been analyzed in a series of contributions
by Goenka et al. (2014), Caulkins et al. (2021), Jones et al. (2021) and Loerstcher and Miur (2021), among
others. In the coming analysis, it is taken as given because we choose to focus on policies and shocks
affecting the infection rate. So we do not consider any other type of control capable of changing K , like
investment in the health system. But this is a potential interesting extension of the analysis.
6 This introduces an additional quadratic term in the dynamical system, which is crucial to understand the
effect of such a policy on the epidemic and the economy.
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Noticeable exceptions are Gollier (2020b), Bandyopadhyay et al. (2021) and Federico
and Ferrari (2021). In different settings, the first two contributions account for the
uncertainty in the transmission rate and analyze how uncertainty and the possibility
of learning about the exact severity of the disease shape policy intervention. Federico
and Ferrari (2021) model the transmission rate as a random variable whose evolution
is driven by a stochastic process (where lockdown measures affect the trend part of it).
Dealing with the random evolution of the disease seems to be very important, again
in light of the COVID situation. We however believe that significant virus mutations,
that is occurrences of new variants, are better described by jump processes, as they
do not occur continuously but at certain points in time.7 Accordingly, let us denote as
Z j the j th mutation or virus variant, with j ∈ J , another countable set. The set M
thus comprises values of transmission rate, θ jk , associated with mutations Z j (alpha,
delta, omicron, etc. for COVID-19) and lockdown levels Lk .8

In the remainder of the analysis, a regime is defined by a pair (Z j , Lk) and is
associated with a single infection rate θ jk ∈ M . We also take θ as a second state
variable, whose evolution is then driven by either mutation or impulse control.9

2.2 Regime change bymutation and impulse control

Hereafter, we precisely explain how the θ can change as a result of random mutations
and DM’s actions.

Regime change by mutation We consider that the DM, when designing her policy,
may be subject to two kinds of uncertainty. They have to do with both the severity
and the evolution of the pandemic. Specifically, we take account of the possibility that
the virus mutates, while spreading across the population, with repercussions on its
infectious power. As a result, there is uncertainty surrounding not only the timewhen a
mutation occurs, but also the nature of thismutation (contagiousness ofmutated virus).
We model mutations in the framework of piecewise-deterministic process, which has
been set up in, e.g., Davis (1984) and Vermes (1985). An excellent exposition can be
found in Chapter 8 of Dockner et al. (2000). Following Davis (1984), Section 3, let
Xt = (θ(t), I (t)) represent the state of the piecewise deterministic process for any
time t ≥ t0. The state space is defined by

E = M × [0, 1] .

7 There exists a quite vast literature in mathematical Biology that analyzes the features of epidemiological
models with mutations. There are two ways to incorporate mutations. Either they result from the time
varying nature of human interactions that implies that infection rates are also varying, thus mutating (Gracy
et al. 2021). Or, in multi-strain models, mutations capture switches, for infected people; from one strain of
the virus to another (Dobie 2022; Martcheva 2009; Meehan et al. 2018). These are different perspectives
that do not deal with mutations as random processes.
8 We can list the elements of M in the form of a |J | × |K| matrix whose j th row consists of the θ jk for
k ∈ K etc.
9 There is an analogy between our approach (see the Eq. 1) and the representation of capital accumulation
in the stochastic Ramsey model. In this model, the state equation for the capital stock depends on two state
variables, capital itself and the TFP, which follows an exogenous stochastic process (typically a stationary
AR1 process). The resolution is based upon discretization in a finite numbers of “regimes” of values for
the TFP (see, for example, Tauchen 1990).

123



Optimal lockdown and vaccination policies to contain the… 83

Let B denote the Borel sets of [0, 1]. Define E as

E = {(θ, A) : θ ∈ M, A ∈ B} .

Then (E, E) is a Borel space. The probability law of X = (Xt )t≥t0 is determined by
the following objects:

1. Vector fields (Hθ , θ ∈ M) associated with the differential equation (1). For each
θ ∈ M the vector fieldHθ determines a unique integral curve φθ (t, I0) satisfying
(1) and with the initial value I (t0) = I0.

2. A measurable function λ : E �→ R+ which defines a survival function Fθ by

Fθ (t) = exp

[
−

∫ t

t0
λ (θ, φθ (τ, I0) dτ)

]
.

3. A transitionmeasure Q : M×E �→ [0, 1]. For any θ ∈ M , Q (θ, ·) is ameasurable
function and for any Xt ∈ E , Q (·, Xt ) is a probability distribution over M .

For given lockdown level Lk , the motion of the process X proceeds as follows.
Starting from the initial state X0 = (θ0, I0) ∈ E , with θ(t0) = θ0, the trajectory of the
infected population follows φθ0 (t, I0) until a mutation occurs at some date t1, with
the probability

Pr [t1 > t] = Fθ0 (t) .

At t1 the state jumps to regime θ(t1) ∈ M with the probability distribution Q
(·, Xt1

)
.

The value of I at jump is unchanged, i.e.,

I (t1) = φθ0 (t1, I0) .

Starting from Xt1 = (θ(t1), I (t1)) the process repeats so that next inter-jump time
t2 − t1 and the post-jump location (θ(t2), I (t2)) are selected in a similar way. This
gives a piecewise deterministic trajectory X = (Xt )t≥t0 with jump times t1, t2, . . .. In
the rest of this paper, for the piecewise deterministic stochastic processes X , we use
the natural filtration F := (F X

t )t≥t0 .
Regime change by impulse control Not only mutations cause regime changes, but

also the DM’s impulse action regarding the lockdown level. The two kinds of change
have similar impacts on the system. Changing the restriction level, Lm → Ln , with
m, n ∈ K, also affects the transmission rate of the disease, θ . By convention, we say
that lockdown regime Ln is stricter than Lm if and only if Lm < Ln and the diffusion
rate θ is smaller in a stricter state. This is consistent with evidence that imposing a
stricter lockdown allows health authorities to reduce the infection rate and slow down
the virus diffusion. For given virus mutation, Z j , lockdown level Lm , and initial state
of the system X0 = (θ0, I0), if the DM chooses to change the lockdown to another
level Ln at date T1, then this results in a new regime θ(T1) �= θ0 etc.

To sum up, the mappings from E into itself by mutations and impulse controls can
be categorized as follows. A jump caused by mutation from Z j to Zi , j, i ∈ J , j �= i ,
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leads to the mapping
(
θ jk, I

) → (θik, I ) in E if the mutation occurs when the system
operates under Lk . On the other hand, a jump caused by the impulse control Lm → Ln

changes
(
θ jm, I

)
to

(
θ jn, I

)
in E .

2.3 Objective function

To capture the cost-benefit analysis underlying the choice of the vaccination and lock-
down policies under a pandemic, we follow the vast majority of the literature by
adopting a cost minimization perspective (see, for instance Aspri et al. 2021; Federico
and Ferrari 2021; Gollier 2020b). The DMwants to minimize the total discounted cost
of the pandemic. The instantaneous cost is regime dependent and typically encom-
passes two dimensions. First, policy interventions, through vaccination and lockdown
measures, are costly. Second, the economy incurs a cost that is increasing in the
number of infected people. The trade-off associated with the vaccination policy is as
follows: Vaccination policy is costly because it requires to purchase vaccine doses, and
develop temporary vaccination infrastructure (see Barrett 2003, for a review of vacci-
nation costs). But it allows the DM to reduce the social cost of sickness by reducing
the spread of the pandemic.10 The benefit of the lockdown policy is of the same nature,
while its economic cost depends on the level of restrictions, and captures expenditure
to take care of people working remotely or no longer working, the fact that the level
of economic activity shrinks etc.

Following again the literature (Di Giamberardino and Iacoviello 2017; Okosun
et al. 2011; Huberts and Thijssen 2023), we shall work with a separable quadratic cost
function:

C(r , Lk, I ) = r2

2
+ hk + β

I 2

2
, (2)

where hk ≥ 0 captures the constant economic cost inherent in operating under
lockdown level Lk . Beside the instantaneous cost of lockdown, we also introduce
a lump-sum (sunk) cost incurred when switching the lockdown state from Lm to Ln .
This cost actually depends on the intensity of the change, captured by the difference
Ln − Lm , and is denoted by �(Ln − Lm) ≡ �n ≥ 0. It is in essence of political
or social nature. Huberts and Thijssen (2023) provide justifications for considering
this additional cost. Arguably, there exists asymmetry between imposing a lockdown
measure and removing the very same measure that we should take into account when
modeling lockdown as an impulse control. Moreover, this is in the line with the “lock-
down fatigue” approach developed by Caulkins et al. (2021), or with the argument of
“political backlash” put forward by Bandyopadhyay et al. (2021).

10 Infected people incur both economic (reduced income) and psychological costs. They may also impose
a cost to society, especially where the health care system is publicly funded.
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Within any regime θ , characterized by a pair (Lk, Z j ), holding at instant t , the
general optimization problem can be written as:

V (θ, I ) = min
r ,{(Ti ,L(Ti ))}i≥1,t�Ti�∞

EZ

{∑
i

e−ρ(Ti−1−t)

[∫ Ti

Ti−1

C(r , L(Ti−1), I )e
−ρ(τ−Ti−1)dτ + �i e

−ρ(Ti−Ti−1)

]}

where the expectation operator refers to randommutations, T0 = t , L(T0) = Lk , �i is
the lump-sum cost associated with the change in intensity of lockdown from L(Ti−1)

to L(Ti ), the lockdown level chosen at Ti , ρ > 0 is the discount rate, and V (.) is the
value function. The optimization is subject to (1) with initial state Xt = (θ(t), I (t)),
θ(t) = θ and I (t) = I , given.

At this stage, one cannotice that our problem is very similar toHuberts andThijssens
(2023)’s analysis of the optimal timing of lockdown measures during a pandemic.
However, our approach is original in that it combines both impulse controls (which
they do consider), that is controlled regime shifts, and random shifts (which they
don’t). So we study a stochastic counterpart of the problem and consider an additional
continuous control.11

On the mathematical side, it is clear that this model of controlled piecewise
deterministic Markov process is a controlled deterministic dynamical system plus
a compounded Poisson jumping process. Specifically, the evolution of the state of the
system, Xt = (θ(t), I (t)), between consecutive impulse controls follows

d

(
θ(t)
I (t)

)
=

(
0

θ(t)I (t) (1 − r(t) − I (t)) − I (t)K

)
dt +

(
q (θ(t), I (t))

0

)
d Jt ,

for Ti < t < Ti+1, for some function q (θ, I ), and where

Jt =
Nt∑
i=1

Yi ,

is a compound Poisson process where the jump sizes Yi are i.i.d random variables,
and Nt is a Poisson process with jump intensity λ. This is a special case of controlled
stochastic processes with jump diffusion. Therefore, well-developed methods for the
latter can be applied for mathematical analysis of the processes. In particular, Chapter
8 in Okensdal and Sulem (2007) provides an excellent theoretical framework and
analytical techniques, such as the existence of viscosity solutions and the verification
theorem.

Before moving to the analysis, one should note that this paper aims at studying the
interplay between the two relevant characteristics of the optimal control of pandemics,

11 These novelties comes at the expense of the description of the disease dynamics: they use a SIR(S)
model, while we stick to a SIS model.
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i.e., vaccination and lockdown. Given this objective, we now present a series of sim-
plifications that will help us to gain analytical insights into the fundamentals drivers of
the solution. We restrict the analysis to a limited number of pandemic and lockdown
states. We assume that there exist two variants of the virus only. For ease of notation,
under lockdown level Lk , we denote these variants and corresponding transmission
rates as Z , Z , θ̄k and θk . Without loss of generality, whatever the lockdown level,
the pandemic situation under Z is supposed to be worst than under Z , which implies
that θ̄k > θk . More importantly, we assume that mutation can occur at most once.
In addition, we also consider that the DM can choose between two lockdown levels
only, so K = {m, n} and the variation of intensity of lockdown is given.12 Thus, M
consists of four regimes,

{
θ̄m, θ̄n, θm, θn

}
. This means that we switch-off the second

source of uncertainty (when a mutation occurs, its nature is known).13 We allow the
DM to go back and forth between these two restriction levels, Lm and Ln . Moreover,
we take λ (θ, I ) as a positive constant: λ (θ, I ) = λ. Finally, hereafter, the function
V k (I ) (resp., V k (I )) denotes the value function in regime θ̄k (resp., θk), for k ∈ K.
When keeping track of the virus variant is not required, we use the generic notations
θk , Vk (I ) etc. to refer to a regime with lockdown level Lk .

3 Optimality conditions

We first state the optimality conditions for both continuous and impulse control, par-
ticular attention being paid to the ones characterizing the latter. All of the proofs are
gathered in the Appendices.

3.1 Continuous, impulse controls and the quasi variation inequality

For any state I , regime θ , corresponding to the pair (Lm, Z), either stays as it is
or switches to a new one by DM’s impulse control or virus mutation. If no regime
changes happen, then it must be that (a) the value function satisfies the Hamilton-
Jacobi-Bellman (HJB) equation, and (b) regime change is not profitable for the DM.
Therefore, in a regime with

(
Lm, Z

)
, by dynamic programming, the stationary value

function Vm (I ) satisfies the inequality

ρVm (I ) ≤ H
∗
m

(
I , V

′
m (I )

)
(3)

where

12 Huberts and Thijssen (2023) actually analyze the same case in the first part of their paper. It allows
to simply oppose two situations: The one in which the economy is locked-down and the one where it is
“opened.”.
13 Some results of this special case can be generalized to themore general case where the nature ofmutation
is unknown (see “Appendix A.9”).
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H
∗
m

(
I , V

′
m(I )

)
= I V

′
m(I )

[
θm (1 − I ) − K

]

−
[
θm I V

′
m(I )

]2
2

+ hm + β

2
I 2 (4)

is the current valueminimizedHamiltonian associatedwith optimal vaccination rate14

r∗
m = V

′
m (I ) θm I . (5)

For the solution (5) to be well-behaved, one must have V
′
m (I ) ≥ 0. Then, how

exactly the vaccination rate changeswith I depends on the particular shape of the value
function. If it is convex, then the larger the infection rate, the larger the vaccination
rate. In addition, any impulse control Lm → Ln , satisfying Lm < Ln (case of a stricter
lockdown), will induce a drop in the vaccination rate. This is the first evidence of the
substitutable nature of the two controls.

The DM does not take the impulse control Lm → Ln if doing so is not profitable.
Hence, Lm continues if

Vm (I ) ≤ V n (I ) + �n . (6)

Since at least one of the inequalities (3)-(6) must hold true, we can formulate the
quasi-variational inequality (QVI) associated with the decision problem in regime(
Lm, Z

)
:

max
{
ρVm (I ) − H

∗
m

(
I , V

′
m (I )

)
, Vm (I ) − V n (I ) − �n

}
= 0 for I ∈ (0, 1) .

(7)

Similarly, we get a second QVI characterizing regime
(
Lm, Z

)
:

max
{
(ρ + λ) Vm (I ) − H∗

m

(
I , V ′

m (I ) , λVm (I )
)
, Vm (I ) − V n (I ) − �n

} = 0

for I ∈ (0, 1) . (8)

with H∗
m(.) the current value minimized Hamiltonian corresponding to this regime.

TheseQVIs are equivalent to theHJBequations holding for standard optimal control
without impulse. Their boundary conditions are given at the switching state. More
precisely, at a value I ∗

n where the impulse control Lm → Ln is taken, we have

14 The minimized vaccine rate r∗
k , in lockdown state Lk and for any virus state, satisfies

r∗
k = V ′

k (I ) θk I .
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Vm
(
I ∗
n

) = Vn
(
I ∗
n

) + �n . (9)

We now prove the following criteria for the decision to take an impulse control.

Theorem 1 Suppose the DM takes the impulse control Lm → Ln after mutation at an
interior point I

∗
n ∈ (0, 1). If value functions Vm (I ) and V n (I ) are both differentiable

in (0, 1), then I
∗
n satisfies the equation

ρ
[
V n

(
I
∗
n

)
+ �n

]
= H

∗
m

(
I
∗
n, V

′
n

(
I
∗
n

))
. (10)

Similarly, suppose the impulse control is taken before mutation at an interior point
I ∗
n ∈ (0, 1). If V m (I ) and V n (I ) are differentiable in (0, 1), then I ∗

n is defined by

(ρ + λ)
[
V n

(
I ∗
n

) + �n
] = H∗

m

(
I ∗
n, V

′
n

(
I ∗
n

)
, λVm

(
I ∗
n

))
. (11)

Conditions (10) and (11) are essentially transversality conditions that govern the
optimal transition between different regimes. In (deterministic) optimal control liter-
ature, they are usually stated in terms of the maximized Hamiltonians, holding before
and after the regime change (see for instance Boucekkine et al. 2013). In the absence of
lump-sum cost, these optimality conditions impose the continuity of the Hamiltonians
at the date of regime switching, when the impulse control is taken, and the continuity of
the co-state variable(s) as long as the level of the state variable(s) at which the decision
is taken is free. In dynamic programming, these correspond to the well-known value
matching and smooth pasting conditions, expressed in terms of value functions and
their first order derivative. Here, we merge both approaches because of the specificity
of our problem. Indeed, the comparison between conditions (10) and (11 ) reveals
how the prospect of a mutation affects the impulse control. We observe that both the
hazard rate and the value function after a mutation, in regime (Lm, Z), show up in the
optimality condition before any mutation.

For further discussion, let us express these conditions in the specified model. We
obtain:

I
∗
nV

′
n

(
I
∗
n

) (
θn − θm

) (
1 − I

∗
n

)

−1

2

[
I
∗
nV

′
n

(
I
∗
n

)]2 (
θ
2
n − θ

2
m

)
+ hn − hm + ρ�n = 0, (12)

and

I ∗
nV

′
n

(
I ∗
n

) (
θn − θm

) (
1 − I ∗

n

) − 1

2

[
I ∗
nV

′
n

(
I ∗
n

)]2 (
θ2n − θ2m

)
+hn − hm + λ

(
V n

(
I ∗
n

) − Vm
(
I ∗
n

)) + (ρ + λ) �n = 0,
(13)

respectively.
We immediately notice that the optimality condition before amutation ismodified in

twoways, compared to the condition after. First,weget that being subject to uncertainty
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induces the DM to use an augmented discount rate, that is the sum of the pure rate
of time preference and the hazard rate. This is a well-known effect of considering the
occurence of stochastic (exogenous) events in optimal control problems. To stay close
to the topic under scrutiny, this is actually similar to what is obtained in the “short-term
analyses” of optimal lockdown policy that assume that the planning horizon is finite
but uncertain (Alvarez et al. 2021; Jones et al. 2021 etc.), except that the source of
uncertainty is different.15 Second, there is an extra term that involves the difference of
the value functions obtained in the two lockdown states, after the mutation. This term
represents the net (positive or negative) gain of operating under lockdown regime Ln ,
instead of Lm . It means that when contemplating the opportunity to take a lockdown
measure before a mutation, the DM has to take into account the net gain to be in a
different lockdown state if and once a mutation occurs. This feature is very much in
line with what Long et al. (2017) have shown in different context.16

In what follows, we provide necessary conditions for lockdown measures and
discuss them.

3.2 Necessary conditions for impulse control

We further investigate the parametric conditions under which the DM may want to
take an impulse control Lm → Ln , whatever the pandemic state. That is, we provide
necessary conditions for the existence of threshold levels of the state variable for an
impulse control.

Theorem 2 If the impulse control Lm → Ln is taken for some I
∗
n ∈ (0, 1) after

mutation, then

θm − θn

2(θm + θn)
≥ hn − hm + ρ�n . (14)

If the impulse control Lm → Ln is taken for some I ∗
n ∈ (0, 1) before mutation, then

θm − θn

2(θm + θn)
≥ hn − hm + (ρ + λ) �n + λ

(
V n

(
I ∗
n

) − Vm
(
I ∗
n

))
(15)

After a mutation, the necessary condition involves the net total cost, which is the
sum of the lump-sum cost and of the difference between operation costs (hn − hm),
and the health net gain (θm − θn) of switching the lockdown state. Then, we observe
that using the impulse control after a mutation has occurred can be worth only when
the health gain is sufficiently large and/or the cost imposed to society is low enough.

15 These papers typically assume that the horizon is given by the arrival of a vaccine, modeled as a Poisson
process, which boils down to working with a deterministic infinite horizon optimal control problem with
an increased discount rate (equal to the sum of the rate of time preferences and the constant hazard rate)
and salvage value function.
16 The authors analyze a two-player differential game with impulse, or regime switching, strategies and
show how the prospect of a future regime switching by one player affects the regime switching strategy of
the other.
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Before amutation, the necessary condition is changed since we know by Theorem 1
that the DM should take care of what comes next. Suppose first that the value functions
after mutation are the same. The eventuality of a lockdown regime switching in that
scenario requires the health gain be much larger. With different value functions, what
happens after the mutation also matters. If the DM expects that the overall cost of the
pandemic is going to be larger (V n (.)−Vm(.) > 0 ), once the mutation occurs, in the
new lockdown state Ln , then the necessary condition becomes even harder to meet. If
on the contrary, the DM considers that the economy will be better prepared to handle
the pandemic with the new regime (V n (.)−Vm(.) < 0 ), then the necessary condition
for impulse control is less demanding.17

The influence of stochastic mutation on impulse control raises a series of questions:
how does the DM adapt her policy to the risk of virus mutation? Is there an incentive to
use lockdown as a prevention to a potential mutation, or as an adaptation to an actual
one? Does the prospect of a mutation hasten, or on the contrary, delay lockdown mea-
sures? What is the joint effect of lockdown measures and mutations on the dynamics
of the pandemic? The next sections address these important issues.

4 Effect of mutation on lockdown and reopening

From now on, for the ease of exposition, we consider the following specific scenario
(and replace general indexes m, n with 0, 1):

Assumption 1

h1 > h0, �1 > 0 = �0, θ0 > θ1, θ0 > θ1.

All in all, this means that L0 is the reference situation with no lockdown constraints
imposed upon society, while L1 refers to the situation in which the economy is locked-
down. Accordingly, the move L0 → L1 corresponds to a lockdown of the economy
(introduction of some constraints), whereas L1 → L0 captures a reopening (removal
of these constraints). The ranking between cost and infection rate parameters follow
directly from this characterization.

We need to introduce a couple of additional notations for the coming analysis. Based
on Theorem 2 and conditions (14)–(15), we first define critical levels for lockdown in
any regime, for k = 0, 1:

δk = 2
θ0 + θ1

θ0 − θ1
[h1 − h0 + ρ�k] ,

δk = 2
θ0 + θ1

θ0 − θ1

[
h1 − h0 + ρ�k + λ max{0≤I≤1}

(
V 1 (I ) + �k − V 0 (I )

)]
.

(16)

17 In “Appendix A.3”, we also provide sufficient conditions for an impulse control in any regime.
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Next, we denote byUk (I ), for k = 0, 1, the solution to the followingHJB equation:

ρUk (I ) = H∗
k

(
I ,U ′

k (I )
)
, for I ∈ (0, 1) , (17)

that holds before a mutation, or after a mutation for λ = 0.18

In what follows, we draw some conclusions about the features of the solution,
especially the possibility of occurrence and timing of impulse controls under a risk of
mutation.

4.1 Connection between lockdown and reopening

We first obtain some general results, that hold regardless of the pandemic state,19

connecting the occurrence of lockdown vs. reopening type of impulse controls
(“Appendix A.4”).

Proposition 1 Under Assumption 1,

(2.1) If lockdown occurs at a point I ∗
1 ∈ (0, 1), then δ1 < 1. In this case, I ∗

1 satisfies

I ∗
1 ≤ 1 − √

δ1. (18)

Conversely, if lockdown does not occur at an interior point, then V0 (I ) = U0 (I )
for all I ∈ [0, 1]. In this case, either V1 (I ) = V0 (I ) for all I ∈ [0, 1], or there
is I ∗

0 ∈ (0, 1) such that

V1 (I ) = V0 (I ) for I ≤ I ∗
0 ,

V1 (I ) < V0 (I ) ≤ V1 (I ) + �1 for I ∗
0 < I ≤ 1.

(19)

In the latter case reopening occurs at I = I ∗
0 .

(2.2) If reopening occurs at a point I ∗
0 ∈ (0, 1), then δ0 < 1. In this case, I ∗

0 satisfies

I ∗
0 ≤ 1 − √

δ0. (20)

Conversely, if reopening does not occur at an interior point, then lockdown also
does not happen at an interior point. In this case

V1 (I ) = V0 (I ) = U0 (I ) for 0 ≤ I ≤ 1. (21)

18 Note that Uk (I ) needs not be the value function of our problem. This is the optimal value without
possibility of impulse control. Hence, by optimality of the value functions, it is necessary that

Vk (I ) ≤ Uk (I ) , k = 0, 1.

19 Remember that we use no lower or upper bar for variables or functions in this generic case.
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Proposition 1 has two parts, divided into two claims. The first claim in each part
(conditions for lockdown and reopening at an interior point) follows directly from
Theorem 2. Let us then discuss the second one. If a lockdown does not happen at
an interior point where some individuals are infected, then the DM does not impose
lockdown in the current regime. In this case, by definition, the value function U0(I )
yields the lowest social cost (V0(I ) = U0(I )) as lockdown is never beneficial. Then,
there are two possibilities. Either the social cost of lockdown is higher than thatwithout
lockdown, or the social cost of lockdown is lower but adding the lump-sum start up
cost the total cost is too high. In the former case naturally the DM will never impose
lockdown in the current regime, and if the regime is after mutation and the state is
locked down before mutation, oncemutation occurs, the DMwill immediately reopen.
The latter case can only happen if the share of the infected population is already high
(I ∗
0 < I ≤ 1). In the case where lockdown is imposed before mutation when the

infected population is low, i.e., at some I ≤ I ∗
0 , the DM would immediately reopen

when the mutation occurs. If the mutation occurs with high infected population, i.e.,
at some I > I ∗

0 , since the social cost with lockdown is lower, the DM will keep the
state locked down until the share of the infected people drops to I ∗

0 , and then reopen
at this moment.

Finally, if reopening does not occur at an interior point, the only possibility is that
I ∗
0 = 1. This means even if the entire population is infected, lockdown is not a choice.
So, certainly lockdown does not happen for any size of infected population.

4.2 Risk of mutation and timing of lockdown

The most important part of our analysis deals with the impact of the prospect of
mutation on both types of impulse control decisions, before mutation.

At first, we look at the impact of the mutation risk on the critical levels defined in
(16). For an impulse control L0 → L1 to occur at an interior point, it is necessary that
δ1 < 1. Since by (7)–(8)

V 1 (I ) ≤ V 0 (I ) ≤ V 1 (I ) + �1

for all I ∈ [0, 1], it follows that δ0 is nonincreasing in λ whereas δ1 is nondecreasing
in λ. Hence, reopening at an interior point before mutation can be impossible without
mutation, but becomes possible with mutation, and lockdown can be possible without
mutation, but becomes impossible with mutation. To be more precise, based on the
above results, we see that if reopening at an interior point is not possible after mutation,
then

δ0 = 2
θ0 + θ1

θ0 − θ1
(h1 − h0)

is independent of λ, but

δ1 = 2
θ0 + θ1

θ0 − θ1
[h1 − h0 + (ρ + λ) �1]
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is strictly increased by a multiple of λ. This means lockdown before mutation can
become less possible.

Admittedly, this is not informative enough because the δk are just upper bound on
the threshold levels I ∗

k . So, we have no option but to study the impact of mutation on
these levels. For that purpose, we conduct an analysis that is based on the comparison
between critical thresholds for lockdown I ∗

k , in the conditions before a mutation but
with no risk of mutation, and after a mutation. In the case λ = 0, and when θk > K ,
we can show the existence of a minimum value function and exploit its features to get
to the result.

Indeed, when θk > K and for our specified model, the value function (17) is not
unique. There are two reasons for the non-uniqueness of the value function. The first
one is in line with standard optimal control problems where the HJB equations without
boundary conditions generally have infinitely many solutions.20 The second reason
comes directly from the special setting of the current study. The value function solves

ρUk(I ) = IθkU
′
k (I ) (Ik − I ) −

[
θk IU ′

k (I )
]2

2
+ ρqk (I ) ,

with qk (I ) = hk
ρ

+ β

2ρ
I 2, and Ik = 1 − K

θk
, (22)

which has twopositive solutions inU ′
k(.), associatedwith twovaccination rates accord-

ing to (5). The DM can use one of the roots on some intervals of I and the other root on
other intervals of I . There is no constraint and each choice leads to a value function.
As there are infinitely many possible partitions of the interval of I , there are infinitely
many value functions. Nonetheless, it can be shown that there exists a minimum
solution among all possible solutions to the HJB equation.

Lemma 1, in the “Appendix A.5”, constructs this minimum value function under
lockdown state Lk when λ = 0. Let Uk

(
I ; I ′

k

)
be this function, it is defined by

U ′
k

(
I ; I ′

k

) = 1

θk I

[
Ik − I −

√
(Ik − I )2 + 2ρ

[
qk (I ) −Uk

(
I ; I ′

k

)]]
,

with I ′
k = 2Ik

1 +
√
1 + 2β

ρ
θk Ik

. (23)

This particular value function has the advantage of generating very neat dynamics
(second part of the same “Appendix”). The system admits a unique globally stable
steady state (StS), I ′

k ∈ (0, 1).21 Making use of this, we can show that the prospect of
mutation actually affects both lockdown and reopening (“Appendix A.6”).

20 To solve this issues, in the linear-quadratic optimal control case, affine optimal strategy is one possible
choice. Dockner and Long (1993) provide one example of this kind, where they study both linear and
nonlinear strategies.
21 We have İ < 0 if and only if I < I ′k . In addition, I (t) reaches I ′k ∈ (0, 1) in finite time from any point
I > 0.
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Proposition 2 (3.1) Suppose lockdown occurs before mutation at an interior point
I ∗
1 (0) ∈ (0, 1) with λ = 0 which is less than the least positive steady state. If after

mutation lockdown does not occur at some I
∗
1 ≤ I ∗

1 (0), then there is ε > 0 such that
lockdown occurs at some I ∗

1 (λ) > I ∗
1 (0) for 0 < λ < ε. If after mutation lockdown

occurs at some Ī ∗
1 < I ∗

1 (0), then there is ε > 0 such that lockdown occurs at some
I ∗
1 (λ) ≤ I ∗

1 (0) for 0 < λ < ε.

(3.2) Suppose θ1 < K and that reopening occurs before mutation at an interior
point I ∗

0 (0) ∈ (0, 1) with λ = 0. If after mutation reopening occurs at some
Ī ∗
0 < I ∗

0 (0), then there is ε > 0 such that reopening occurs at some I ∗
0 (λ) <

I ∗
0 (0) for 0 < λ < ε. If after mutation reopening occurs at some Ī ∗

0 > I ∗
0 (0),

then there is ε > 0 such that reopening occurs at some I ∗
0 (λ) ≥ I ∗

0 (0) for
0 < λ < ε.

As mentioned before, the proof is built on the comparison between threshold levels
for impulse control, in the absence of uncertainty, in the pandemic conditions of before
vs. after a mutation. Based on this comparison, we can then determine whether being
subject to a risk of mutation makes one delay or on the contrary expedite impulse
control. We further consider scenarios in which in the absence of policy intervention,
the share of infected would increase in every pandemic regime. The first part of Propo-
sition 2 deals with the impact of uncertainty about the virus on the lockdown decision.
We obtain that if in the absence of uncertainty, it would be optimal for the DM to take
the lockdown decision “sooner” in the worst case scenario (in terms of infectivity)
than in the best case one, then uncertainty expedites lockdown. Put differently, the
prospect of a “bad mutation” at some uncertain future date induces the DM to act
more cautiously. In this particular context, this boils down to imposing a lockdown
sooner (than in the absence of risk of mutation) in order to be better prepared to the
future likely event of a mutation. Here the DM acknowledges that the economy would
be better-off under lockdown following the occurrence of a bad mutation. There is
an additional gain of being under lockdown that shows up in the optimality condition
(11) and increases the incentives to impose such restrictions for low levels of infection
in the population.

On the contrary, the risk of experiencing a good mutation delays lockdown mea-
sures. In this case, given the costs of this policy (that are known for sure) and its
uncertain, yet likely low, benefit, the DM prefers to wait and see the evolution of
the pandemic situation before taking this kind of decision. The second part of the
Proposition provides symmetric results for reopening decision: a bad mutation delays
reopening before it happens and then decision is surrounded by uncertainty, and a
good one does the opposite.

We can draw a parallel between our conclusions and the two main strands of the
literature on decision making under uncertainty. First and foremost, there is a long
tradition of papers studying the impact of the occurrence of random events on optimal
decision making dating back to Dasgupta and Heal (1974) and Cropper (1976). Many
papers precisely ask how being subject to costly (sometimes catastrophic) events
shapes decisions, with many applications in environmental and resources economics
(see Crepin 2020, for a recent overview of the literature). One of the main messages
is that the optimal response to a risk of costly event is to behave more cautiously (in

123



Optimal lockdown and vaccination policies to contain the… 95

terms of resource extraction or polluting emissions for instance). Our result in the bad
mutation case clearly echoes those obtained in the literature, and extends them to the
class of impulse controls. Second, these results also have a connection with the real
option value literature (Dixit and Pindyck 1994) that emphasizes the role of uncertainty
and learning in forming decisions under irreversibility (seeBandyopadhyay et al. 2021;
Gollier 2020b, for contributions on the control of epidemics).22 In our setting, because
the DM can take the lockdown and reopening decisions whenever she wants, there
exists (at least in the good mutation case) an incentive to wait and possibly experience
the mutation before acting, as upon a mutation, the information about the disease
contagiousness is revealed.

5 Evolution of the pandemic

This section discusses the link between impulse controls and the evolution of the
pandemic. This discussion is conducted whatever the pandemic regime. It starts with
a brief overview of the general features of the dynamics, that is of the features that
hold whatever the value function.

5.1 Dynamics: general insights

The share of infected people, under lockdown state Lk , is governed by the following
differential equation

İ = I
[
θk (1 − I ) − K − θ2k I V

′
k (I )

]
, for k = 0, 1. (24)

Since V ′
k ≥ 0, from (5), I (t) is decreasing over time if θk (1 − I ) ≤ K . Hence, if

θk ≤ K and the corresponding regime is terminal, then I (t) monotonically decrease
to 0, the disease-free StS, as t → ∞. In this case, the efficiency of the health system
is so high that the share of infected people decreases no matter what, i.e., even in the
absence of vaccination policy, r . This implies that vaccination is only useful to control
the speed of decrease of the contagion. This situation may arise if θk falls below K
as a result of the lockdown measure. If on the contrary, θk > K , the dynamic and the
StS analyses are more complicated as they depend on the shape of the value function,
vaccination policy, and of course are regime-dependent. The disease-free StS is always
unstable. In addition, there exist an odd number of endemic StS, i.e., StS featuring
positive I (see “Appendix A.7”). The infimum and the supremum of the set of endemic
StS, Îk , Ĩk , are such that 0 < Îk ≤ Ĩk < Ik , with Ik defined in (22),23 and

lim
t→∞ I (t) = Îk if 0 < I (0) < Îk, and lim

t→∞ I (t) = Ĩk if Ĩk < I (0) ≤ 1.

22 Because lockdown decision involves a sunk-cost, it is at least partly irreversible.
23 Since Ĩk is a positive root of the function on the right-hand side of (24), it follows that θk

(
1 − Ĩk

)
≥ K ,

which yields an upper bound on the supremum, and on the entire set of StS.
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Next we examine how lockdown controls shape the pandemic dynamics, and vice-
versa.

5.2 Interplay between lockdown, reopening, and the pandemic dynamics

Under Assumption 1, by (7) and (8),

V1 (I ) ≤ V0 (I ) ≤ V1 (I ) + �1, for I ∈ [0, 1] ,

for both before and aftermutation.We can be a littlemore precise regarding the ranking
of the value functions, for different states, I , and depending on whether there exist
threshold levels I ∗

k for switching to lockdown state Lk . Indeed, since h1 > h0, and

Uk (0) = hk
ρ

for k = 0, 1,

it follows that

V1 (0) ≤ V0 (0) ≤ h0
ρ

< U1 (0) .

Hence, V1 (I ) �= U1 (I ) for small I . This implies that

V1 (I ) = V0 (I ) (25)

for I sufficiently small. Either (25) holds for all I ∈ [0, 1] or there is I ∗
0 ∈ (0, 1) such

that (25) holds only for 0 ≤ I ≤ I ∗
0 . In case I ∗

0 exists,

V1 (I ) < V0 (I ) < V1 (I ) + �1 (26)

holds for I > I ∗
0 and is near I ∗

0 . Either (26) holds for all I ∈ (I ∗
0 , 1] or there is I ∗

1 < 1
such that (26) only holds for I ∗

0 < I < I ∗
1 . For I > I ∗

1 the relation

V0 (I ) = V1 (I ) + �1

must hold. With this in mind, it is possible to assess the possible outcomes, in any
pandemic regime. There are three possible scenarios whether I ∗

0 and/or I ∗
1 exist(s).

Hereafter, we only discuss the most general one where both thresholds exist, the two
others being postponed to the “Appendix A.10”.24

In this case, as illustrated in Fig. 1, for I ≤ I ∗
0 , V1 (I ) = V0 (I ). For I ∗

0 < I < I ∗
1 ,

(26) holds, and for I ∗
1 ≤ I ≤ 1, V0 (I ) = V1 (I ) + �1.

If at t = 0 the state is locked down and I (0) ≤ I ∗
0 , reopening immediately occurs.

After that, either I (t) approaches a StS and the state remains un-locked down, or I (t)

24 In order to have a full picture of the optimal solution, one would then have to combine the properties
of the solution before mutation, given that a mutation will occur eventually (i.e. before the steady state is
achieved), with the ones of the solution after, when there is no more room for a mutation of the virus.
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Fig. 1 Both I∗0 and I∗1 exist

approaches I ∗
1 , triggering lockdown. In the latter case, either I (t) approached a StS

while the state remains locked down, or it reaches I ∗
0 triggering reopening. In the latter

case I (t)will approach to I ∗
1 and trigger lockdown again. The pattern repeats until the

virus mutates if one considers the situation before a mutation. So in the case, we obtain
a quite sophisticated policy whereby the DM adapts to the evolution of the pandemic
by switching-on and off the lockdown button. As expected, beside the vaccination
policy, the DM uses the impulse control to manage the spread of the virus across the
population. When the situation gets worse, the DM take the lockdown decision that is
later removed when it improves. Overall, many things can happen depending on the
respective locations of StS and threshold levels. To dig deeper into this issue, we need
to proceed to numerical simulations.

Before that, let us conclude this discussion with an additional result regarding the
asymptotic behavior of the system (“Appendix A.8”).

Proposition 3 Under Assumption 1, if θ0 > K, then I (t) does not converge to the
disease-free StS. If θ0, θ1 ≤ K, then the state is un-locked down for large t and I (t)
converges to zero.

This confirms that the ranking between the θks, and especially θ0 the infection rate
in the absence of lockdown, and K is crucial to characterize the asymptotic behavior
of the optimal solution. When θ0 > K , the share of infected people will converge to a
positive value whatever the case. The public policy proves itself worth for controlling
the pandemic, but it never allows the system to erase it. By contrast, in the best
case scenario where the health system is very efficient, θ0, θ1 ≤ K , the pandemic
will necessary vanish eventually, making the vaccination and lockdown policy less
essential.

6 Calibration

Hereafter, we perform a numerical analysis by borrowing the following set of
parameters from Huberts and Thijssen (2023) (see their table 1):

K = 0.1, ρ = 0.1/365, β = 4, �1 = 2, h0 = 0, h1 = 0.01884.
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A couple of remarks are in order here. These authors run simulations based on a
proper calibration of their SIR model to UK for COVID-19. Since their basic model is
the same as ours, we simply take their values for the parameters we share.25 The unit of
time is the day and costs are all measured inMillionGBP. Themain difference between
our approach and theirs is that they consider neither mutation, nor vaccination. So,
the first thing to do is to attribute their estimates of the infection rates to the situation
before or after mutation. We choose to use them for depicting the situation before
mutation

θ0 = 0.3, θ1 = 0.15.

This likely corresponds to a pandemic regime dominated by the variant Alpha. Then,
the situation after mutation corresponds to what happened when the next variant Delta
became prevalent. Experts’ estimates point toDelta being nearly 80%more contagious
than Alpha.26 Thus, as for the infection rates after mutation, we suppose that

θ̄0 = 0.3 × 1.8 = 0.54, θ1 = 0.15 × 1.8 = 0.27,

andwill consider amilder increase later for robustness check.We also have to calibrate
the hazard rate, or the rate of arrival of a new variant. There is no compelling evidence
for this. However, proceeding to simple back-to-envelope calculations, we take λ =
0.015,which represents 5 to 6mutations per year.27 Finally, ourmodel does not include
a parameter for the quadratic cost of vaccination.We add one for the numerical analysis
and normalize it to one for the benchmark scenario, as we found no estimate of the
daily total cost of vaccination policy in the UK. For robustness, we will also analyze
the features of the solution for a lower value of this parameter.

In “Appendix A.11”, we determine the expressions of the minimum value functions
after and before mutation. Their representation is shown in Fig. 2. One observes that it
is never optimal for the DM to lockdown the economy since Ū1 > Ū0 for I ∈ [0, 1].
Therefore, after mutation the economy must converge to the StS Ī ′

0 ≈ 0.01425 in
finite time. One can also notice that the vaccination rate is maintained at a relatively
high level in mode 0, which certainly explains why the share of infected at the StS is
actually lower than the one that would be reached under lockdown ( Ī ′

1 ≈ 0.01762).

25 In their SIR model, their recovery rate is the rate at which people move from the infected to the recovery
state. We keep this value and interpret it literally. As to the daily cost of infected people, β, we have to make
a conversion because they use a linear cost in I , whereas we use a quadratic one. In addition we normalize
the population size to 1, while they use a value of 500. We compare the cost if the entire population is
infected. In Huberts and Thijssen (2023), each person costs 0.004 million pounds per day and there are
500 people. So if the entire population is infected, the cost is 2 million per day. In our model, if the entire
population is infected, I = 1 and the cost is β/2 million per day. So β=2*2=4. Finally note that we cannot
directly compare our results to theirs as they use a SIR model and make sure the system converges to the
disease-free StS.
26 See https://www.yalemedicine.org/news/covid-19-variants-of-concern-omicron. Admittedly, different
variants also feature different severity, which we do not capture here.
27 To get this figure, divide the number of variants of concerns, in World Health Organization’s words,
that have occurred between Nov. 2021 and Nov. 2022, by the number of days (Alpha, Beta, Gamma, Delta,
Omicron).
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Fig. 2 Value functions (left) and vaccination rates (right) after mutation

Fig. 3 Value functions (left) and vaccination rates (right) before mutation

Moreover, if at the moment of mutation the state were locked down, the DM would
reopen immediately while if it is already open, it remains so.

Let us now have a look at the situation before mutation. Based on the comparison
between minimum value functions, we get U 0 (I ) < U 1 (I ) for some I ∈ (0, 1). So,
there exists a reopening point, at I ∗

0 ≈ 0.01788. We have V 1 (I ) = V 0 (I ) = U 0 (I ),
and r1 (I ) = r0 (I ) for I > I ∗

0. In addition, one can check that there is no lockdown
point, I ∗

1 (as V 1 + �1 > U 0 for all I ). This means that V 0 (I ) = U 0 (I ) for all
I ∈ (0, 1). The value functions and the vaccination rates before mutation are shown
in Fig. 3 (see also the “Appendix”).

Next the question is: how does this reopening point compare to the potential StS of
the system? For the given parameter values, we find

I ′
0 ≈ 0.06915, I ′

1 ≈ 0.05861.
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The StS before mutation are both much lower than after. In addition, the StS under
lockdown is smaller than under an open economy. This is certainly driven by the lower
infection rate.

More importantly, these numbers imply that, depending on the initial state I0, three
situations may occur before mutation. Suppose that no mutation takes place. First, if
at the initial time the state is not locked down, it will remain unlocked all the time.
In this case, for any value of I0 ∈ (0, 1), I (t) reaches I ′

0 in finite time. Next, if at
the initial time the state is locked down, there are two cases depending on whether
I0 ≥ I ∗

0 or I0 < I ∗
0. When I0 ≥ I ∗

0, the DM reopens the economy immediately, and
I (t) moves toward I ′

0. When I0 < I ∗
0, the DM does not immediately reopen and

I (t) increases. The DM lifts the lockdown when I (t) achieves I ∗
0. After that, I (t)

continues to increase until it reaches I ′
0. Of course, whenever mutation occurs, the

DM immediately reopens and I (t) goes to Ī ′
0 in finite time.

Themost interesting case is the one where there is a lockdown initially and I0 < I ∗
0.

In this case, lockdown is a means to slow down the evolution of the disease. Quite
noteworthy, lockdown measures are combined with pretty high vaccination rates (at
least higher as those of an open economy). This further reinforces the capacity of the
DM to keep the pandemic under control. It also highlights that the two instruments
display some complementarity. But this is not sufficient to stop the pandemic progres-
sion. As time goes by, the share of infected increases, which triggers reopening. This
may sound quite counterintuitive. This is not, though. Indeed, once the lockdown is
lifted, the DM can rely on vaccination, at pretty low rates, to control the spread of the
disease, to put the system onto the path of the StS with a positive yet low share of
infected population. This points to vaccination being the preferable policy to deal with
the pandemic eventually. Overall, the numerical analysis emphasizes the qualitatively
different features of the optimal policy, depending on whether the DM takes action
before or after mutation.

Finally note that for robustness check, we have conducted two additional analyses.
First, we have considered the case where the virus after mutation is only 20% more
contagious than before and obtained the same general pattern.28 Second, we have
run the simulations by using a parameter value of 0.4 (10% of β) for the cost of
vaccination. Of course, considering a lower cost of vaccination makes this control
even more attractive, compared to lockdown. This could ultimately lead to a full
management of the pandemic thanks to vaccination only, even before mutation. This
is indeed what we obtain in this scenario.29

28 The DM keeps the state unlocked all the time after mutation, and I (t) reaches Ī ′0 ≈ 0.01639. Before
mutation, there is a reopening point at I∗0 ≈ 0.01830, but no lockdown point. The StS before mutation is
I ′0 ≈ 0.04129, which is reached in finite time regardless whether initially the state is open or locked down.
Compared with the original case, the StS and the reopening point before mutation are both slightly lower,
and the StS after mutation is slightly higher.
29 Here the reopening point is I∗0 = 1, i.e., the DM immediately opens the economy if locked and keeps it
opened otherwise.
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7 Conclusion

This is the first paper that combines lockdown as an impulse control, vaccination and
uncertainty surrounding the evolution of the transmission rate to analyze the optimal
control of a pandemic. The aim of the paper is to analyze the impact of random muta-
tions of the disease on policy interventions, especially lockdown decisions. Lockdown
is modeled as an impulse control that allows the system to switch from one level of
restrictions to another (stricter or softer). This can be a valuable option, together with
vaccination, to control the spread of the disease. More fundamentally, in our setting,
lockdown can serve as a way to anticipate a mutation or to respond to it. Indeed,
decisions are taken under the risk of mutations of the disease, with repercussions on
the transmission rate. The decision maker follows a cost minimization objective. In
a simplified model where the virus can mutate only once and there exist only two
lockdown levels, we first characterize the optimality conditions for impulse control
and show how the prospect of a mutation affects the decision maker’s choice. In fact,
it induces her to anticipate the relative benefit of a regime change after a mutation has
occurred, which may or may not increase the incentive to set a lockdown. Our problem
admits infinitely many value functions. Under some parametric conditions, we show
the existence of a minimum value function that is a natural candidate to the solution.
We then study the features of the optimal policy and notably prove that uncertainty
surrounding future mutation of the disease expedites lockdown intervention when-
ever mutation increases contagiousness. This conclusion strikingly echoes those of
the literature dealing with the impact of the occurrence of (random) costly events on
decision making, and extends them to the class of impulse control. We finally conduct
a numerical analysis that shows how the management of the pandemic is influenced
by the prospect of a bad mutation. Lockdown control can be valuable only before
mutation (even if thee infection rate is lower) and should be combined with pretty
high rates of vaccination to control the pace of diffusion of the pandemic. However,
lockdown measures should be removed in finite time and the pandemic controlled
by means of vaccination eventually. Several avenues can be taken for future works.
Modeling an endogenous hazard, a larger number of mutations and lockdown levels,
and regime-dependent costs and recovery rates are promising future lines of research,
among others.

A Appendix

A.1 Proof of Theorem 1

Suppose DM takes the impulse control Lm → Ln after mutation at I ∗ ∈ (0, 1). Then
the value function Vm (I ) satisfies the HJB equation

ρVm (I ) = H
∗
m

(
I , V

′
m (I )

)
(27)
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with

H
∗
m (I , p) = I p

[
θm (1 − I ) − K

] −
[
θm I p

]2
2

+ hm + β

2
I 2.

The differential equation is supplemented by the boundary condition (9). The HJB
equation is quadratic in V

′
m (I ). Let Qm (I , ν) be the minimum positive root, ν, of the

equation

ρν = H∗
m (I , p) .

If solution exists, we can write the equation in the form

V
′
m (I ) = Qm

(
I , Vm (I )

)

Thus Vm (I ) satisfies the integral equation

Vm (I ) = V n
(
I ∗) + �n +

∫ I

I ∗
Qm

(
u, Vm (u)

)
du

for I on the side of I ∗ onwhich theHJB equation holds equal. Since theDMchooses I ∗
to maximize Vm (I ), the derivative of the right-hand side with respect to I ∗ vanishes.
Hence

V
′
n

(
I ∗) − Qm

(
I ∗, Vm

(
I ∗)) = 0.

By the terminal condition (9), we also have

V
′
n

(
I ∗) − Qm

(
I ∗, V n

(
I ∗) + �n

) = 0

which is equivalent to (10). This proves the first part of the theorem.
Suppose the impulse control Lm → Ln is taken before mutation at I ∗ ∈ (0, 1).

Then for I on the side of I ∗ the value function Vm (I ) satisfies the HJB equation

(ρ + λ) Vm (I ) = H∗
m

(
I , V ′

m (I ) , Vm (I )
)

(28)

for I on the side of I ∗ before the impulse control is taken, with

H∗
m (I , p,W ) = I p

[
θm (1 − I ) − K

] −
[
θm I p

]2
2

+ hm + β

2
I 2 + W , (29)

and Vm satisfying the boundary condition:

Vm

(
I ∗
n

) = V n

(
I ∗
n

) + �n .
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Let Q
m

(I , ν,W ) be the minimum positive root, ν, of the equation

(ρ + λ) ν = H∗
m (I , p,W ) ,

if the root exists. Then

Vm (I ) = V n

(
I ∗) + �n +

∫ I

I ∗
Q

m

(
u, Vm (u) , Vm (u)

)
du.

Differentiate the right-hand side with respect to I ∗. It follows from the terminal
condition that

V ′
n

(
I ∗) − Q

m

(
I ∗, V n

(
I ∗) + �n, Vm

(
I ∗)) = 0.

This leads to (11). The proof is complete.

A.2 Proof of Theorem 2

To prove (14), we note that equation (12) is quadratic in I
∗
nV

′
n

(
I
∗
n

)
. For this equation

to be solvable, it is necessary that

(
1 − I

∗
n

)2 + 2
θm + θn

θn − θm
[hn − hm + ρ�n] ≥ 0.

Or equivalently,

(
1 − I

∗
n

)2 ≥ 2
θm + θn

θm − θn
[hn − hm + ρ�n] .

As I
∗
n ∈ (0, 1), we further need to impose that the RHS is not greater than 1, which

leads to (14).
Similarly, equation (13) is quadratic in I ∗V ′

n

(
I ∗). To have a real root, it is necessary

that

(
1 − I ∗

n

)2 + 2
θm + θn

θn − θm

[
hn − hm + (ρ + λ) �n + λ

(
V n

(
I ∗
n

) − Vm
(
I ∗
n

))] ≥ 0.

Again, because I ∗
n ∈ (0, 1), the second term must be no greater than 1, so we get (15).

A.3 Sufficient condition for impulse control

For the sake of completeness, we can also provide sufficient conditions for an impulse
control in any regime. For that purpose, we need to introduce a couple of additional
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concepts. Let Uk (I ) and Uk (I ), for k = m, n, be the solutions to the following HJB
equations:

ρUk (I ) = H
∗
k

(
I ,U

′
k (I )

)
, for I ∈ (0, 1) , (30)

and

(ρ + λ)Uk (I ) = H∗
k

(
I ,U ′

k (I ) , λV k (I )
)

for I ∈ (0, 1) , (31)

where H
∗
k and H∗

k are defined in (4) and (29), and V k is the value function in mode
k after mutation. We remark that Uk (I ) and Uk (I ) need not be the value functions.
These are optimal values without possibility of impulse control. Hence, by optimality
of the value functions, it is necessary that

V k (I ) ≤ Uk (I ) , V k (I ) ≤ Uk (I ) for I ∈ (0, 1) , k = m, n.

Then, we can establish that30:

Theorem 3 Suppose �m + �n > 0. Let Uk be either Uk after mutation, or Uk before
mutation, for k = m, n. The following claims are true.

1. If

hn − hm + ρ�n < 0 (32)

and

Um (1) < Un (1) + �n . (33)

Then impulse control Lm → Ln must occur at some I ∗ ∈ (0, 1).
1. 2. If

hn − hm + ρ�n > 0 (34)

and

Um (1) > Un (1) + �n (35)

Then Lm → Ln must occur at some I ∗
n ∈ (0, 1).

These sufficient conditions all sound pretty natural. For an interpretation, it is
enough to focus on part 2. of Theorem 3. Consider that the impulse control Lm → Ln

corresponds a tightening of the lockdown policy. Then, logically the total net cost
of the measure should be positive (hn − hm + ρ�n > 0). Given this, condition (35)
simply states that the DM has to find it worth to place the economy under the most

30 Note that the results are presented in the most general way, i.e., hold for any pandemic regime.
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restrictive lockdown regime in the worst case scenario where a hundred percent of the
population gets infected.

Proof Part 1. Suppose (32) and (33) both hold but Lm → Ln does not occur at an
interior point I ∗ ∈ (0, 1). We first show that Vm (0) �= Um (0). From HJB equations
(30) and (31 ) we find

Um (0) = hm
ρ

, Um (0) = hm + λVm (0)

ρ + λ
for m = 0, 1. (36)

In the case after mutation, by (32) Vm (0) �= Um (0) since otherwise

Vm (0) = hm
ρ

>
hn
ρ

+ �n ≥ V n (0) + �n,

violating (7) at I = 0. In the case before mutation, since

Vm (0) = hn
ρ

+ �n, V n (0) = hn
ρ

,

by (36)

Um (0) = hm + Vm (0)

ρ + λ
>

hn
ρ

+ �n, Un (0) = hn + λhn/ρ

ρ + λ
= hn

ρ
.

Hence, we again have Vm (0) �= Um (0). Since the regime change does not occur, we
must have Vm (I ) = Vn (I ) + �n for I ∈ [0, 1]. This equivalent to

Vn (I ) = Vm (I ) − �n < Vm (I ) + �m .

By (7) or (8) with n and m interchanged, we have

ρV n (I ) = H
∗
n

(
I , V ′

n (I )
)

or ρV n (I ) = Hn

(
I , V ′

n (I ) , λV n (I )
)

(37)

for I ∈ (0, 1). Therefore, Vn (I ) = Un (I ) for I ∈ (0, 1). However, by (33),

Vm (1) ≤ Um (1) < Un (1) + �n = Vn (1) + �n .

This is a contradiction.
Part 2. Suppose (34) and (35) both hold but Lm → Ln does not occur at an interior

point. We show that Vm (0) �= Vn (0) + �n . If Vm (0) = Vn (0) + �n holds, then

Vn (0) = Vm (0) − �n < Vm (0) + �m .
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In the case aftermutation,V n (I ) satisfies the first equation in (37). ThereforeV n (0) =
hn/ρ. However, by (34)

Vm (0) ≤ Um (0) = hm
ρ

<
hn
ρ

+ �n = V n (0) + �n .

This is a contradiction. Hence Vm (0) < V n (0) + �n . In the case before mutation,
Since Vm (0) = hm/ρ and V n (0) = hn/ρ, by (36)

Um (0) = hm + λVm (0)

ρ + λ
= hm

ρ
, Un (0) = hn + λV n (0)

ρ + λ
= hn

ρ
.

Since V n (I ) satisfies the second equation in ( 37), it follows that V n (0) = Un (0) =
hn/ρ. This again leads to

Vm (0) ≤ Um (0) = hm
ρ

<
hn
ρ

+ �n = V n (0) + �n,

contradicting the assumption. Hence, in any case Vm (0) �= Vn (0) + �n .
By (7) and (8), Vm (I ) satisfies either

ρVm (I ) = H
∗
m

(
I , V

′
m (I )

)
or (ρ + λ) Vm (I ) = H∗

m

(
I , V ′

m (I ) , λVm (I )
)
(38)

for I near 0. Since Lm → Ln does not occur, it follows that Vm (I ) ≤ Vn (I ) + �n . In
particular, Vm (1) ≤ Vn (1)+�n . Furthermore, Vm (I ) satisfies (38) for all I ∈ (0, 1).
Thus Vm (I ) = Um (I ) for all I ∈ (0, 1). Therefore, by (35),

Vm (1) = Um (1) > Un (1) + �n ≥ Vn (1) + �n .

This is a contradiction. Thus Lm → Ln must occur at an interior point.
The proof is complete. �

A.4 Proof of Proposition 1

Relations (18) and (20) directly come from the definitions of the δs and conditions
stated in Theorem 2.

Suppose L0 → L1 does not occur at a finite time. Then V0 (I ) satisfies the HJB
equation (27) aftermutation or (28) beforemutation for all I ∈ (0, 1). Hence, V0 (I ) =
U0 (I ) for I ∈ [0, 1]. Moreover, by (7) or (8)

V1 (I ) ≤ V0 (I ) ≤ V1 (I ) + �1 for all I ∈ [0, 1] .
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From HJB equations (30) and (31) we find

Um (0) = hm
ρ

, Um (0) = hm + λVm (0)

ρ + λ
for m = 0, 1.

Since h1 > h0, it follows from V1 ≤ V0 that

V 1 (0) = V 0 (0) = h0
ρ

< U 1 (0) .

This leads to

U 0 (0) = h0 + λh0/ρ

ρ + λ
= h0

ρ
, U 1 (0) = h0 + λh1/ρ

ρ + λ
>

h0
ρ

.

Hence,

V 1 (0) ≤ V 0 (0) = h0
ρ

< U1 (0) .

Therefore, in any case, V1 (I ) �= U1 (I ) for small I . Hence V1 (I ) = V0 (I ) for small
I . If there is I ∈ [0, 1] such that V1 (I ) < V0 (I ), then the infimum of such I is
the transition point between locked down and unlockdown. That is, it is the point of
reopening, I ∗

0 . So, (19) holds. If there is no such point I ∈ [0, 1], then V1 (I ) = V0 (I )
for all I ∈ [0, 1]. This proves Part 1.

Suppose reopening occurs at a finite time. Furthermore, by (14),

δ0 ≡ 2
θ0 + θ1

θ0 − θ1
[h1 − h0] ≤ (

1 − I ∗
0

)2
< 1.

The above inequality also implies (20).
Suppose L1 → L0 does not occur at a finite time. Since h1 > h0, V1 (I ) does

not satisfy the HJB equation. Hence V1 (I ) = V0 (I ) for small I . It is not possible
that V1 (I ) < V0 (I ) for some I ∈ (0, 1), because, otherwise, at the infimum of such
I is L1 → L0 takes place. Hence, V1 (I ) = V0 (I ) for all I ∈ [0, 1]. This implies
that V0 (I ) < V1 (I ) + �1 for all I ∈ (0, 1). Hence, lockdown does not happen at
an interior point. Hence, by (7), V0 (I ) satisfies the HJB equation for all I . Therefore
V0 (I ) = U0 (I ) for I ∈ [0, 1]. This proves Part 2.
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A.5 Minimum value function

A.5.1 Existence

Lemma 1 Suppose θm > K and either the regime is after mutation or before mutation
with λ = 0. Let

I ′
m = 2 (θm − K )

θm

[
1 +

√
1 + 2β

ρ
(θm − K )

] .

Then, there is I ′′
m > I ′

m such that for any I0 ∈ (
I ′
m, I ′′

m

)
the HJB equation

ρUm (I ) = IU ′
m (I ) [θm (1 − I ) − K ] −

[
θm IU ′

m (I )
]2

2
+ ρqm (I ) (39)

has a solution Um (I ; I0) that satisfies

Um (I0; I0) = qm (I0) (40)

and

U ′
m (I ; I0) = 1

θm I

[
Im − I −

√
(Im − I )2 + 2ρ [qm (I ) −Um (I ; I0)]

]

for 0 < I < I0. (41)

Furthermore, Um (I ; I0) is increasing in I0.

To prove this, let

M = min
0≤I≤1

{
(Im − I )2

2ρ
+ qm (I )

}

with Im = 1 − K/θm , and let I ′′
m satisfies

qm
(
I ′′
m

) = M .

It can be shown that I ′
m < I ′′

m < Im . LetUm (I ; I0) be the solution to the HJB equation
(39 ) with the initial condition (40), where I0 satisfies I ′

m ≤ I0 ≤ I ′′
m .

We first show that Um (I ; I0) exists and is positive for all I ∈ (0, I0). To see that
Um (I ; I0) exists for all I ∈ (0, I0), it suffices to show that the right-hand side of (41)
is real for such I . If not, then there is some I1 ∈ (0, I0) such that the quantity in the
square root is positive for I1 < I < I0 and it becomes zero at I = I1. This implies
that

Um (I1; I0) = (Im − I1)2

2ρ
+ qm (I1) < Um (I0; I0) = qm (I0) .
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However, since qm (I ) is increasing and I0 ≤ I ′′
m , it follows that

qm (I0) ≤ qm
(
I ′′
m

) = min
0≤I≤1

{
(Im − I )2

2ρ
+ qm (I )

}
≤ (Im − I1)2

2ρ
+ qm (I1) .

This is impossible. Therefore, the right-hand side of (41) is real for all 0 < I ≤ I0.
We next show that Um (I ; I0) > qm (I ) for 0 < I < I0. If this is not true,

then there is I2 ∈ (0, I0) such that Um (I ; I0) > qm (I ) for I2 < I < I0 and
Um (I2; I0) = qm (I2). Therefore,

U ′
m (I2; I0) = lim

h→0

Um (I2 + h; I0) −Um (I2; I0)
h

≥ lim
h→0

qm (I2 + h) − qm (I2)

h
= q ′

m (I2) = β

ρ
I2 > 0.

However, by (41), U ′
m (I2; I0) = 0, contradicting the above inequalities.

This proves the existence and positivity of Um (I ; I0) for 0 < I < I0.
At I = I0, the right-hand side of (41) vanishes, while q ′

m (I0) > 0. Hence, if Um

continue to satisfy (41), one would have Um (I ; I0) < qm (I ) for I > I0 and is near
I0. However, this would lead to U ′

m (I ; I0) < 0. Hence it is necessary that

U ′
m (I ; I0) = 1

θm I

[
Im − I +

√
(Im − I )2 + 2ρ [qm (I ) −Um (I ; I0)]

]

for I > I0. (42)

It follows that

lim
I→I+

0

U ′
m (I ; I0) = 2 (Im − I0)

θm I0
.

To ensure Um (I ; I0) ≤ qm (I ) for I > I0, it is necessary that the above slope is less
than that of qm at I0. I.e.,

2 (Im − I0)

θm I0
≤ q ′

m (I0) = β

ρ
I0.

Hence

βθm I
2
0 ≥ 2ρ (Im − I0) .

This inequality leads to

I0 ≥ 2 (θm − K )

θm

[
1 +

√
1 + 2β

ρ
(θm − K )

] = I ′
m .
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We next show the solution of (42) with initial condition (40) exists for all I0 ≤ I ≤
1. We first show that Um (I ; I0) < qm (I ) for I > I0. If it is not true, then there is
I3 > I0 such that Um (I ; I0) < qm (I ) for I0 < I < I3 and Um (I3; I0) = qm (I3).
Hence

U ′
m (I3; I0) = lim

h→0

qm (I3) −Um (I3 − h; I0)
h

≥ lim
h→0

qm (I3) − qm (I3 − h)

h
= q ′

m (I3) = β

ρ
I3.

On the other hand, by (42)

U ′
m (I3; I0) = 2 (Im − I3)

θm I3
if I3 < Im or U ′

m (I3; I0) = 0 if I3 ≥ Im .

The latter case is obviously impossible. The former case leads to

θmβ I 23 ≤ 2ρ (Im − I3)

and so I3 ≤ I ′
m ≤ I0. It is also impossible. So, no such I3 exists.

Since Um (I ; I0) < qm (I ) for all I > I0, the right-hand side of (42) exists and is
positive for such I . This proves that Um (I ; I0) exists and is increasing for I > I0.

It remains to show thatUm (I ; I0) is increasing in I0. Suppose I ′
m ≤ I ′

0 < I ′′
0 ≤ I ′′

m .
By definition,

Um
(
I ′
0; I ′

0

) = qm
(
I ′
0

)
< Um

(
I ′
0; I ′′

0

)
.

Suppose there is an I4 ∈ (0, 1) such that Um
(
I4; I ′

0

) = Um
(
I4; I ′′

0

)
. If I4 < I ′

0, then
both Um

(
I ; I ′

0

)
and Um

(
I4; I ′′

0

)
are solutions to the initial value problem

Y ′ (I ) = 1

θm I

[
Im − I −

√
(Im − I )2 + 2ρ [qm (I ) − Y (I )]

]
for I < I4,

Y (I4) = Um
(
I4; I ′

0

) = Um
(
I4; I ′′

0

)
.

This contradicts the uniqueness of solution. (Note that the right-hand side of the
differential equation satisfies the Lipschitz condition.) If I > I ′′

0 , then bothUm
(
I ; I ′

0

)
and Um

(
I4; I ′′

0

)
are solutions to the initial value problem

Z ′ (I ) = 1

θm I

[
Im − I +

√
(Im − I )2 + 2ρ [qm (I ) − Z (I )]

]
for I < I4,

Z (I4) = Um
(
I4; I ′

0

) = Um
(
I4; I ′′

0

)
,

again violating the uniqueness of solution. Finally, for any I ′
0 < I < I ′′

0 we have

Um
(
I ; I ′

0

)
< qm (I ) < Um

(
I ; I ′′

0

)
.
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So no such I4 exists. This proves the monotonicity of Um (I ; I0) with respect to I0.
The proof of the lemma is complete.
Based on the above lemma, Um

(
I ; I ′

m

)
is the minimum value function among all

solutions to the HJB equation with least nonnegative vaccination rate rm (I ) at all I .

A.5.2 Dynamics and steady state

We first show that İ < 0 for I > I ′
m . By (42) with I0 = I ′

m ,

θm IU
′
m

(
I ; I ′

m

) = Im − I +
√

(Im − I )2 + 2ρ
[
qm (I ) −Um

(
I ; I ′

m

)]
.

Hence,

θm IU
′
m

(
I ; I ′

m

) {
> 2 (Im − I ) if I ′

m < I ≤ Im
> 0 if I > Im .

In view of (24),

İ = θm (1 − I ) − K − θ2m IU
′
m (I ) < −θm [Im − I ] ≤ 0

if I ′
m < I ≤ Im , and

İ ≤ Im − I < 0

if I > Im . Furthermore,

lim
I→I ′+

m

θm IU
′
m (I ) = 2

(
Im − I ′

m

)
.

Hence,

lim
I→I ′+

m

İ = θm
(
1 − I ′

m

) − K − 2θm
(
Im I

′
m

)

= − (θm − K ) + 2 (θm − K )

1 +
√
1 + 2β

ρ
(θm − K )

< 0.

Hence, İ has negative upper bound for I > I ′
m . Consequently, I (t) decreases to I ′

m
in finite time from any initial value I (t0) > I ′

m .
We next show that İ > 0 if I < I ′

m . For such I ,

θm IU
′
m (I ) = Im − I −

√
(Im − I )2 + 2ρ [qm (I ) −Um (I )]

< Im − I
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if the regime is after mutation or before mutation with λ = 0. Hence,

İ = θm (1 − I ) − K − θ2m IU
′
m (I ) > 0 for I < I ′

m .

In addition, as I → I ′
m from left, θm IU ′

m (I ) → 0. Hence

İ → θm
(
Im − I ′

m

) = θm − K − 2 (θm − K )

1 +
√
1 + 2β

ρ
(θm − K )

> 0.

Hence, İ has a positive lower bound for I < I ′
m . Therefore, I (t) increases to I ′

m in
finite time.

A.6 Proof of Proposition 2

Part 1

We define a function F1 by

F1 (I ) = I V ′
1 (I ; λ) (1 − I )

(
θ1 − θ0

)
−1

2

[
I V ′

1 (I ; λ)
]2 (

θ21 − θ20

)
+ α (h1 − h0) + ρ�1

where V 1 (I ; λ) satisfies

(ρ + λ) V 1 (I ; λ) = H∗
1

(
I , V ′

1 (I ; λ) , λV̄ (I )
)
. (43)

Then (13) with m = 0 and n = 1 can be written as

F1
(
I ∗
1 (λ)

) + λ
[
V̄1

(
I ∗
1 (λ) ; λ

) − V̄0
(
I ∗
1 (λ) ; λ

) + �1
] = 0. (44)

Suppose after mutation lockdown does not occur at I ∗
1 (0), by (7),

V̄1 (I ) − V̄0 (I ) + �1 > 0 for I greater than and is near I ∗
1 (0) .

It follows that the second term on the left-hand side of (44) is positive for λ positive
and small. Hence

F1
(
I ∗
1 (λ)

)
< 0 (45)

for such λ. We show that F1 (I ) > 0 for I < I ∗
1 (0) and is near I ∗

1 (0). Once proven,
it would imply I ∗

1 (λ) > I ∗
1 (0) for λ positive and small.

In terms of H∗
1 and H∗

0 defined in (29), (44) with λ = 0 is equivalent to

H∗
1

(
I ∗
1 (0) , V ′

1

(
I ∗
1 (0) ; 0) , 0

) = ρV 1

(
I ∗
1 (0) ; 0)

H∗
0

(
I ∗
1 (0) , V ′

1

(
I ∗
1 (0) ; 0) , 0

) = ρ
[
V 1

(
I ∗
1 (0) ; 0) + �1

]
.
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The equations are quadratic in I ∗
1 (0) V ′

1

(
I ∗
1 (0) ; 0). We write the second equation as

V ′
1

(
I ∗
1 (0) ; 0) = Q

0

(
I ∗
1 (0) , V 1

(
I ∗
1 (0) ; 0) + �1, 0

)
.

Since I ∗
1 (0) is before any steady state, by “Appendix A.5.2”, I ∗

1 (0) < I ′
0 which is

the intersection of V 0 (I ) and

q
0
(I ) ≡ αh0

ρ
+ β

2ρ
I 2.

Hence, at

Q
0

(
I ∗
1 (0) , V 1

(
I ∗
1 (0) ; 0) + �1, 0

)

= 1

θ I ∗
1 (0)

[
I 0 − I −

√(
I 0 − I

)2 + 2αh0 + β I 2 − 2ρ
[
V 1

(
I ∗
1 (0) ; 0) + �1

]]
.

Since lockdown with λ = 0 occurs at I ∗
1 (0), it follows that

Q
0

(
I , V 1 (I ; 0) + �1, 0

)
> V ′

1 (I ; 0) for I < I ∗
1 (0) .

This inequality is equivalent to

H∗
0

(
I , V ′

1 (I ; 0) , 0
)

< ρ
[
V 1 (I ; 0) + �

]
for I < I ∗

1 (0) .

So

H∗
1

(
I , V ′

1 (I ; 0) , 0
) = ρV 1 (I ; 0) for all I ∈ (0, 1) .

Hence,

H∗
1

(
I , V ′

1 (I ; 0) , 0
) − H∗

0

(
I , V ′

1 (I ; 0) , 0
)

> −ρ�1 for I < I ∗
1 (0) .

By continuity of solutions with respect to parameters, we have

H∗
1

(
I , V ′

1 (I ; λ) , 0
) − H∗

0

(
I , V ′

1 (I ; λ) , 0
)

> −ρ�1 for I < I ∗
1 (0)

if λ is close to 0. This is equivalent to F1 (I ) > 0 for I < I ∗
1 (0) and is near I ∗

1 (0).
Hence, (45) follows.

Suppose after mutation lockdown occurs at some Ī ∗
1 < I ∗

1 (0). Then, by continuity,
Ī ∗
1 < I ∗

1 (λ) for λ near 0. Also by continuity, we have I ∗
1 (λ) less than the least steady

state before mutation. By (11),

(ρ + λ)
[
V 1

(
I ∗
1 (λ) ; λ

) + �1
] = H∗

0

(
I ∗
1 (λ) , V ′

1

(
I ∗
1 (λ) ; λ

)
, λV̄0

(
I ∗
1 (λ)

))
(46)
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holds for any λ ≥ 0. Since lockdown occurs at I = I ∗
1 (λ), it follows that

V 1 (I ; λ) + �1 > V 0 (I ; λ) , V ′
0 (I ; λ) > V ′

1 (I ; λ) for I < I ∗
1 (λ) .

Since I ∗
1 (λ) is less than the least steady state before mutation, we get

Q
0

(
I , V , λV̄0

)

= 1

θ0 I

[
I 0 − I −

√(
I 0 − I

)2 + 2αh0 + β I 2 + 2λV̄0 − 2 (ρ + λ) V

]

which is increasing in V . Hence,

Q
0

(
I , V 1 (I ; λ) + �1, λV̄0 (I )

)
> Q

0

(
I , V 0 (I ; λ) , λV̄0 (I )

)
= V ′

0 (I ; λ) > V ′
1 (I ; λ)

for I < I ∗
1 (λ). This inequality is equivalent to

H∗
0

(
I , V ′

1 (I ; λ) , λV̄0 (I )
)

< (ρ + λ)
[
V 1 (I ; λ) + �1

]
.

It can be written as

H∗
0

(
I , V ′

1 (I ; λ) , 0
)

< ρ
[
V 1 (I ; λ) + �1

] − λ
[
V̄0 (I ) − V 1 (I ; λ) − �1

]
for I < I ∗

1 (λ) . (47)

Furthermore, V 1 (I ; λ) satisfies the HJB equation

(ρ + λ) V 1 (I ; λ) = H∗
1

(
I , V 1 (I ; λ) , λV̄1 (I )

)
for any I ∈ (0, 1)

which is equivalent to

H∗
1

(
I , V 1 (I ; λ) , 0

) = ρV 1 (I ; λ) − λ
[
V̄1 (I ) − V 1 (I ; λ)

]
(48)

Note that by (7),

V̄0 (I ) = V̄1 (I ) + �1 for I ≥ Ī ∗
1 .

Subtracting the corresponding sides of (47) and (48) yields

H∗
1

(
I , V ′

1 (I ; λ) , 0
) − H∗

0

(
I , V ′

1 (I ; λ) , 0
)

> −ρ�1

for any I that satisfies Ī ∗
1 < I < I ∗

1 (λ) and for any λ near 0. However, I ∗
1 (0) satisfies

the equations (46) and (48) with λ = 0 and I = I ∗
1 (0). It follows that

H∗
1

(
I ∗
1 (0) , V ′

1

(
I ∗
1 (0) ; 0)) − H∗

0

(
I ∗
1 (0) , V ′

1

(
I ∗
1 (0) ; 0) , 0

) = −ρ�1.

Therefore, it is necessary that I ∗
1 (0) ≥ I ∗

1 (λ).
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Part 2

We define a function F0 by

F0 (I ) = I V ′
0 (I ; λ) (1 − I )

(
θ0 − θ1

) − 1

2

[
I V ′

0 (I ; λ)
]2 (

θ20 − θ21

)
+ α (h0 − h1)

where V 0 (I ; λ) satisfies

(ρ + λ) V 0 (I ; λ) = H∗
0

(
I , V ′

0 (I ; λ) , λV̄0 (I )
)
.

Then (13) with m = 1 and n = 0 can be written as

F0
(
I ∗
0 (λ)

) + λ
[
V̄0

(
I ∗
0 (λ) ; λ

) − V̄1
(
I ∗
0 (λ) ; λ

)] = 0. (49)

In the case where after mutation reopening occurs either immediately or at some
Ī ∗
0 ≥ I ∗

0 (0), then

V̄1 (I ) = V̄0 (I ) for I ≤ I ∗
0 (0) .

In the case where after mutation reopening occurs at Ī ∗
0 < I ∗

0 (0), by (7),

V̄0 (I ) − V̄1 (I ) > 0 for I near I ∗
0 (0) ,

it follows that the second term on the left-hand side of (49) is positive. Hence

F0
(
I ∗
0 (λ)

)
< 0. (50)

We show that F0 (I ) > 0 for I > I ∗
0 (0). Once proven, it would imply I ∗

0 (λ) < I ∗
0 (0)

for λ positive and small.
In terms of H∗

1 and H∗
0 defined in (29), (44) with λ = 0 is equivalent to

H∗
0

(
I ∗
0 (0) , V ′

0

(
I ∗
0 (0)

)
, 0

) = ρV 0

(
I ∗
0 (0) ; 0)

H∗
1

(
I ∗
0 (0) , V ′

0

(
I ∗
1 (0)

)
, 0

) = ρV 0

(
I ∗
0 (0) ; 0) .

The equations are quadratic in I ∗
0 (0) V ′

0

(
I ∗
0 (0) ; 0). We write the second equation as

V ′
0

(
I ∗
0 (0) ; 0) = Q

1

(
I ∗
0 (0) , V 0

(
I ∗
1 (0) ; 0) , 0

)

≡ 1

θ1 I
∗
0 (0)

[
− (

I + ε1
) +

√(
I + ε1

) + 2αh1 + β I 2 − 2ρV 0

(
I ∗
0 (0) ; 0)

]

where ε1 = K/θ1 − 1. Since reopening occurs at I ∗
0 (0), it follows that

Q
1

(
I , V 0 (I ; 0) , 0

)
< V ′

0 (I ; 0) for I > I ∗
0 (0)
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This inequality is equivalent to

H∗
1

(
I , V ′

0 (I ; 0) , 0
)

< ρV 0 (I ; 0) for I > I ∗
0 (0) .

Also,

H∗
0

(
I , V ′

0 (I ; 0) , 0
) = ρV 0 (I ; 0) for all I .

Hence

H∗
0

(
I , V ′

0 (I ; 0) , 0
) − H∗

1

(
I , V ′

0 (I ; 0) , 0
)

> 0

for I > I ∗
0 (0). By the continuity of solutions with respect to λ, we also have

H∗
0

(
I , V ′

0 (I ; λ) , 0
) − H∗

1

(
I , V ′

0 (I ; λ) , 0
)

> 0

This is equivalent to

F0 (I ) > 0 for I > I ∗
0 (0) .

This proves (50).
Suppose after mutation reopening occurs at some point Ī ∗

0 such that I ∗
0 (0) < Ī ∗

0 ≤
1. Then

V̄1 (I ) = V̄0 (I ) for I ≤ Ī ∗
0 . (51)

By continuity, we may suppose that λ is so small such that I ∗
0 (λ) < Ī ∗

0 . By ( 11),

(ρ + λ) V 0

(
I ∗
0 (λ) ; λ

) = H∗
1

(
I ∗
0 (λ) , V ′

0

(
I ∗
0 (λ) ; λ

)
, λV̄1

(
I ∗
0 (λ)

))
(52)

holds for any λ ≥ 0. Since reopening occurs at I = I ∗
0 (λ), it follows that

V 0 (I ; λ) > V 1 (I ; λ) , V ′
0 (I ; λ) > V ′

1 (I ; λ) for I > I ∗
0 (λ) .

Note that θ1 < K , it follows that

Q
1
(I , V , λW )

≡ 1

θ1 I

[
− (

I + ε1
) +

√(
I + ε1

) + 2αh1 + β I 2 + 2λW − 2 (ρ + λ) V

]

is decreasing in V . Hence,

Q
1

(
I , V 0 (I ; λ) , λV̄1 (I )

)
< Q

1

(
I , V 1 (I ; λ) , λV̄1 (I )

)
< V ′

1 (I ; λ) < V ′
0 (I ; λ)
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for I > I ∗
0 (λ). This inequality is equivalent to

(ρ + λ) V 0 (I ; λ) > H∗
1

(
I , V ′

0 (I ; λ) , λV̄1 (I )
)

for I > I ∗
0 (λ) ,

which is the same as

ρV 0 (I ; λ) > H∗
1

(
I , V ′

0 (I ; λ) , 0
) + λ

[
V̄1 (I ) − V 0 (I ; λ)

]
for I > I ∗

0 (λ) .

(53)

In addition, for any I ∈ (0, 1), we also have

(ρ + λ) V 0 (I ; λ) = H∗
0

(
I , V ′

0 (I ; λ) , λV̄0 (I )
)

which can be written as

ρV 0 (I ; λ) = H∗
0

(
I , V ′

0 (I ; λ) , 0
) + λ

[
V̄0 (I ) − V 0 (I ; λ)

]
. (54)

Subtracting the respective sides of (53) and (54) and using (51), we find

H∗
0

(
I ; V ′

0 (I ; λ) , 0
) − H∗

1

(
I , V ′

0 (I ; λ) , 0
)

> 0 if I ∗
0 (λ) < I < Ī ∗

0

for λ sufficiently close to 0. However, I ∗
0 (0) satisfies (52) and (54) with λ = 0. That

is,

H∗
0

(
I ∗
0 (0) , V ′

0

(
I ∗
0 (0) ; 0) , 0

) − H∗
1

(
I ∗
0 (0) , V ′

0

(
I ∗
0 (0) ; 0) , 0

) = 0.

This implies that I ∗
0 (0) ≤ I ∗

0 (λ) for λ sufficiently close to 0.
The proof is complete.

A.7 Steady states: general value functions

The other possible steady states solve

θk(1 − I ) = K + θ2k I V ′
k(I ).

Denote the left hand side as f (I ) = θk(1 − I ) and right hand side as g(I ) = K +
θ2k I V ′

k(I ). At I = 0, we have g(0) = K < f (0) = θk , while at I = 1, g(1) =
K + θ2k V

′
k(1) > K > f (1) = 0. So there exists at least one endemic StS (I �= 0) as

well. Furthermore f ′(I ) = −θk < 0, and

g′(I ) = θ2k V
′
k(I ) (1 − ε(I )) ≥ 0 ⇔ 1 ≥ ε(I )

where ε(I ) = − I V ′′
k (I )

V ′
k (I )

(> 0) is the elasticity of marginal value function with respect

to s. We observe that if this elasticity is sufficiently low for all I ∈ [0, 1], which means
that the DM is not too sensitive to a change in the number of infected, then g(I ) is
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monotonically increasing and thus the StS is unique, Îk ∈ (0, 1), and is at least locally
asymptotically stable. In general however, there exist an odd number of StS featuring
I > 0.

A.8 Proof of Proposition 3

Suppose θ0 > K . At t = 0, either the state is locked down or un-locked down. In
the former case, if I ∗

0 does not exist (Case 1), then reopen occurs immediately. After
reopening, the state remains open forever. Since θ0 > K , as discussed above,

lim inf
t→∞ I (t) ≥ Î0 > 0.

If I ∗
0 exists, then either I (t) converges to a StS while the state remains locked down,

or I (t) approaches to I ∗
0 , triggering reopening. In the former case,

lim inf
t→∞ I (t) ≥ I ∗

0 > 0,

In the latter case, as discussed above, I (t) does not converge to zero. Thus, in any
case I (t) does not converge to zero.

Suppose θ0, θ1 ≤ K . Then either locked down or un-locked down, I (t) is
decreasing. So, eventually the state will be un-locked down, and I (t) decreases to
zero.

A.9 Extension to unknownmutations

Some of the results for the above simple model of one possible mutation can be
extended to a more general case where the nature of the mutants is unknown. To be
specific, we denote the set of possible mutations by

{
Z j : j ∈ J }

with J a finite or
countable set, and denote the transmission rate of the j th mutation under Lm by θ jm .
We still assume that the regimes are either not locked-down or locked-down, and use
m = 0, 1 to represent the two types, respectively.

The transition measure Q : M × E �→ [0, 1] is the probability distribution

Q
(
θ jm, (θlm, I )

) = Pr
{
θ (ti ) = θlm |θ (

t−i
) = θ jm

}

where ti is a jump timewhen amutation occurs and θ
(
t−i

)
is the transmission rate right

before the mutation occurs. Let Vm
(
θ jm, I

)
be the value function with the lockdown

level Lm . By dynamic programming, we derive

(ρ + λ) Vm
(
θ jm, I

)
≤ I ∂Vm

∂ I

(
θ jm, I

) [
θ jm (1 − I ) − K

] − 1
2

[
θ jm I

∂Vm
∂ I

(
θ jm, I

)]2
+αhm + β

2
I 2 + λE [Vm]

(
θ jm, I

)
,

(55)
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where

E [Vm]
(
θ jm, I

) =
∑
l∈J

Vm (θlm, I ) Q
(
θ jm, (θlm, I )

)
.

In addition, the DM does not take the impulse control Lm → Ln if doing so is not
profitable. Hence, mode m continues if

Vm
(
θ jm, I

) ≤ Vn
(
θ jn, I

) + �n .

Let

Hm
(
I , p,W ; θ jm

) = I p
[
θ jm (1 − I ) − K

] − 1

2

[
θ jm I p

]2 + αhm + β

2
I 2 + λW .

(56)

The quasi-variational inequalities take the form

max
{
(ρ + λ) Vm

(
θ jm, I

) − Hm

(
I , ∂Vm

∂ I

(
θ jm, I

)
,E [Vm]

(
θ jm, I

) ; θ jm

)
,

Vm
(
θ jm, I

) − Vn
(
θ jn, I

) − �n
} = 0.

(57)

The following necessary condition for the DM to take the impulse control Lm → Ln

at an interior I ∗, where m, n ∈ {0, 1}, m �= n, is a counterpart of Theorem 1.

Theorem 4 Suppose that Vn is differentiable in I . If the DM takes the impulse control
Lm → Ln at an interior point I ∗, then

(ρ + λ) Vn
(
θ jn, I

∗) = Hm

(
I ∗, ∂Vn

∂ I

(
θ jn, I

∗) ,E [Vm]
(
θ jm, I ∗) ; θ jm

)
. (58)

Proof Note (57) is quadratic in ∂Vm/∂ I . Using the least positive root, we can write

∂Vm
∂ I

(
θ jm, I

) = Km
(
I , Vm

(
θ jm, I

)
,E [Vm]

(
θ jm, I

) ; θ jm
)

(59)

for some function Km . By the continuity of the value functions we also have

Vn
(
θ jn, I

∗) = Vm
(
θ jm, I ∗) . (60)

Hence,

Vm
(
θ jm, I

) = Vn
(
θ jn, I

∗) +
∫ I

I ∗
Km

(
u, Vm

(
θ jm, u

)
,E [Vm]

(
θ jm, u

) ; θ jm
)
du.

By optimality and the assumption that I ∗ is interior, we find

0 = ∂Vn
∂ I

(
θ jn, I

∗) − Km
(
I ∗, Vm

(
θ jm, I ∗) ,E [Vm]

(
θ jm, I ∗) ; θ jm

)
. (61)
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By (60), the second term on the right-hand side is the same as

Km
(
I ∗, Vn

(
θ jn, I

∗) ,E [Vm]
(
θ jm, I ∗) ; θ jm

)
.

Hence, (61) is equivalent to (58). This completes the proof of Theorem 4.

Observe that by differentiability, Vn
(
θ jn, I ∗) also satisfies Eq. (58) withm changed

to n and I changed to I ∗. Subtracting the respective sides, there follows that

Hn

(
I ∗, ∂Vn

∂ I

(
θ jn, I

∗) ,E [Vn]
(
θ jn, I

∗) ; θ jn

)

−Hm

(
I ∗, ∂Vn

∂ I

(
θ jn, I

∗) ,E [Vm]
(
θ jm, I ∗) ; θ jm

)
= 0.

In terms of the specific form of the Hamiltonian Hm in (56), we have

I ∗ ∂Vn
∂ I

(
θ jn, I

∗) (
θ jn − θ jm

) (
1 − I ∗) − 1

2

[
I ∗ ∂Vn

∂ I

(
θ jn, I

∗)]2 (
θ2jn − θ2jm

)

+α (hn − hm) + λ
{
E [Vn]

(
θ jn, I

∗) − E [Vm]
(
θ jm, I ∗)} = 0, (62)

Based on this criterion, one can derive conditions for the DM to take an impulse
control of lockdown or un-lockdown. For example, one necessary condition for the
impulse control Lm → Ln under the condition �m + �n > 0 is

α (hn − hm) + ρ�n <
β

2

− βρ

(ρ + λ) θ2jm

(
θ jm

K

) ρ+λ
θ jm−K

∫ K

0

(
K − v

θ jm − v

) ρ+λ
θ jm−K (

θ jm − v
)
dv (63)

if θ jm > K and

α (hn − hm) + ρ�n <
β

2

− βρ

(ρ + λ) θ2jm

(
K

θ jm

) ρ+λ
K−θ jm

∫ θm

0

(
θ jm − v

K − v

) ρ+λ
K−θ jm (

θ jm − v
)
dv (64)

if θ jm < K . The proof is too long, thus omitted. But it is available upon request.

A.10 Other cases

A.10.1 Case 1: neither I∗0 nor I
∗
1 exists

In this case, V0 (I ) = V1 (I ) for all I ∈ [0, 1]. If at t = 0 the economy is locked down,
then it is optimal for the DM to reopen immediately. This also means that there is no
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Fig. 4 Left: neither I∗0 nor I∗1 exists. Right: only I∗0 exists

room for reopening at an interior point, t0 ∈ (0,∞). In the un-locked down regime,
lockdown will never happen. If θ0 ≤ K , the I (t) decreases to zero as t → ∞. If
θ0 > K , then it converges to either the infimum Î0 (if I (0) < Î0), or to the supremum
Ĩ0 (if I (0) > Ĩ0). This is the situation in which the impact of the pandemic is not so
severe and/or the economic and social cost of a lockdown is too large for the DM to
find it optimal to place the economy under a lockdown for a non-degenerated period
of time (the reverse conditions of those imposed in Theorem 2 are sufficient to get this
case). See figure 4, left.

A.10.2 Case 2: only I∗0 exists

Now, for I ≤ I ∗
0 , we have V1 (I ) = V0 (I ), whereas for I ∗

0 < I ≤ 1, (26) holds. Then
depending on the initial state of the pandemic, the impulse control decision can be the
following.

If at t = 0 the state is locked down and I (0) ≤ I ∗
0 , reopening immediately occurs.

The state of the pandemic is so low that it is optimal to remove the lockdown as soon
as possible. Then I (t) → Î0 if I (0) < Î0 and I (t) → Ĩ0 if I (0) > Ĩ0, for θ0 > K .
On the other hand, if I (0) > I ∗

0 while the state is locked down, I (t) converges to
a StS or decreases to I ∗

0 . In the latter case reopening occurs as I (t) reaches I ∗
0 , and

then the state remains open and I (t) converges to a StS. So, when the initial share of
infected people is sufficiently high, it is optimal for the DM to keep the lockdown in
operation until the pandemic situation is under control again. Otherwise, a permanent
lockdown is possible otherwise only if θ1 > K . As in Case 1, if at t = 0 the state is
not locked-down, lockdown will not occur, and I (t)will converge to a StS, positive or
nil depending on θ0 � K . The corresponding value functions are depicted by Fig. 4,
right.
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A.11 Minimum value functions

A.11.1 After mutation

Wefirst construct theminimumvalue functions V̄0 and V̄1. Equation (27) with θ̄m > K
takes the form

ρV̄m (I ) = I θ̄mV̄
′
m (I )

[
Īm − I

] −
[
I θ̄mV̄ ′

m (I )
]2

2
+ hm + β

2
I 2. (65)

We differentiate the both sides with respect to I and change the dependent variable to
r̄m (I ) = I θ̄mV̄ ′

m (I ). The equation is

r̄ ′
m =

(
ρ + θ̄m I

)
r̄m − βθ̄m I 2

θ̄m I
[
Īm − I − r̄m

] . (66)

An initial condition for the minimum value function is

Ī ′
m = 2 Īm

1 +
√
1 + 2β

ρ
θm Īm

, r̄m
(
Ī ′
m

) = Īm − Ī ′
m . (67)

After solving r̄m (I ) from (66) and (67 ), we define

V̄m (I ) = 1

ρ

[
r̄m (I )

(
Īm − I

) − [r̄m (I )]2

2
+ hm + β

2
I 2

]
.

Note that Ī ′
m is the stable positive StS that is reached by I (t) in finite time in mode m.

A.11.2 Before mutation

Equation (28) with θm > K takes the form

(ρ + λ) Vm (I ) = IθmV
′
m (I )

[
Im − I

] −
[
θm I V

′
m (I )

]2
2

+ hm + β

2
I 2 + λV̄m (I ) .

(68)

In terms of rm (I ) = IθmV
′
m (I ) in the form

(ρ + λ) Vm (I ) = rm (I )
[
Im − I

] −
[
rm (I )

]2
2

+ hm + β

2
I 2 + λV̄m (I ) . (69)

By differentiation, we obtain

r ′
m =

[
ρ + λ + θm I

]
rm − βθm I

2 + λr̄mθm/θ̄m

θm I
[
Im − I − rm

] . (70)
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The initial condition should be imposed at a point I ′
m that satisfies

(ρ + λ) Vm

(
I ′
m

) = hm + β

2

(
I ′
m

)2 + λV̄m
(
I ′
m

)
,

(ρ + λ) V ′
m

(
I ′
m

) = β I ′
m + λV̄ ′

m

(
I ′
m

)
.

By (68), the first equation is equivalent to

rm
(
I ′
m

) = 2
[
Im − I ′

m

]
(71)

and the second equation can be written as

(ρ + λ)
rm

(
I ′
m

)
θm

= β
(
I ′
m

)2 + λ
r̄m

(
I ′
m

)
θ̄m

.

Hence, I ′
m satisfies

2 (ρ + λ)
[
Im − I ′

m

] = βθm
(
I ′
m

)2 + λ
θm

θ̄m
r̄m

(
I ′
m

)
(72)

This determines I ′
m .

To solve rm (I ) and Vm (I ), we solve Eq. (70) with two initial-value problems, one
for I > I ′

m and the other for I < I ′
m . For the former, we find rm

(
I ′
m

)
by (71), and for

the latter, we set rm
(
I ′
m

) = 0. This determines rm (I ). Finally, Um is determined by

Um (I ) = 1

ρ + λ

[
rm (I )

[
Im − I

] −
[
rm (I )

]2
2

+ hm + β

2
I 2 + λV̄m (I )

]
.

The graphs of U 0 and U 1 are shown in Fig. 3.
Since

U 0 (I ) < U1 (I )

for some I ∈ (0, 1), there is a reopening point, I ∗
0. To find I ∗

0, we use (13) with n = 0
and m = 1, which takes the form

r0
(
I ∗
0

) [
1 − θ1

θ0

] (
1 − I ∗

0

)

−
[
r0

(
I ∗
0

)]2
2

[
1 −

(
θ1

θ0

)2
]

− h1 + λ
[
V̄0

(
I ∗
0

) − V̄1
(
I ∗
0

)] = 0.

By computation, I ∗
0 ≈ 0.01788. We next find r1

(
I ∗
0

)
by solving (69) with m = 1,

I = I ∗
0, and solve r1 (I ) from (70) with this initial condition for I < I ∗

0. From (69)
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we find

V 1 (I ) = 1

ρ + λ

[
r1 (I )

(
I 1 − I

) −
[
r1 (I )

]2
2

+ h1 + β

2
I 2 + λV̄1 (I )

]

for I < I ∗
0. For I > I ∗

0,

V 1 (I ) = V 0 (I ) = U 0 (I ) ,

and hence r1 (I ) = r0 (I ) for I > I ∗
0. This determines V 1 and r1 for all I ∈ (0, 1)

and V 0 and r0 for I > I ∗
0. It remains to determine V 0 and r0 for I < I ∗

0. For this
purpose, we need first find the lockdown point, I ∗

1.
Lockdown point The lockdown point I ∗

1 exists if

U 0 (I ) > V 1 (I ) + �1

for some I ∈ (0, 1). By computation, the above inequality never holds. As a result,
V 0 (I ) = U 0 (I ) for all I ∈ (0, 1).

The resulting value functions and vaccination rates before mutation are shown in
Fig. 3 in the main text.
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