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Abstract
The purpose of this paper is to prove the existence of a marginal pricing economic
equilibrium in presence of increasing returns and externalities in a commodity space
general enough as to encompass the vast majority of economic situations. This extends
the existing literature on competitive equilibria in vector lattices by incorporating
market failures, and it also generalises several non-competitive existence results to a
larger class of commodity spaces. The key features are a suitable definition for the
marginal pricing rule and an adaptation of the properness condition.

Keywords Riesz space · Marginal pricing rule · Non-competitive equilibrium ·
σ -Locally τ -Uniform properness or Properness condition

JEL Classification D51 · C62

1 Introduction

The purpose of this paper is to prove the existence of a marginal pricing economic
equilibrium in presence of increasing returns and externalities in a commodity space
general enough as to encompass the vast majority of economic situations. Our aim is
twofold: reaching the same level of generality as competitive equilibrium existence
theorems in Walrasian economies like Podczeck (1996), Tourky (1999), Florenzano
and Marakulin (2001); generalising the previous existence results with a non-convex
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2 J.-M. Bonnisseau, M. Fuentes

production sector likeBonnisseau (2002),Bonnisseau andCornet (1990b),Bonnisseau
andMeddeb (1999), Bonnisseau andMédecin (2001), Bonnisseau and Fuentes (2020)
and Fuentes (2011, 2016). For the second aspect, this is achieved mainly by consider-
ing a larger class of commodity spaces. Indeed, as usual, we considered a Riesz space1

but we remove the requirement that the topology be locally solid, or, equivalently that
the lattice operations be continuous. This pursues the goal of encompassing relevant
economic models of product differentiation or intertemporal allocation in continuous
time.

Let us take, for instance, the space of measures on a compact set (M(K ), ‖ · ‖),
which has been usually considered to formalize commodity differentiation models.
Even though it is a Banach lattice,2 all compatible topologies with the commodity-
price pairing 〈M(K ),C(K )〉 are not locally solid. Hence, the locally-solid hypothesis
rules out models studied by Mas-Colell (1975) and Jones (1984) among others.
Indeed, in these papers, the commodity space is equipped with the weak∗-topology
σ(M(K ),C(K )) so that (M(K ), σ (M(K ),C(K ))) is not a topological vector lat-
tice.3 In the same way, models with strong intertemporal substitution properties
in consumption as the one studied by Hindy et al. (1992) where the commodity-
price pairing is 〈M([0, 1]),Lip([0, 1])〉,4 makes use of the compatible topology
σ (M([0, 1]),Lip([0, 1]), which is not locally solid either, thus requiring to look
beyond topological vector lattices.

Besides these locally-solid issue, all marginal pricing existence theorems assume
that the positive cone of the commodity space has quasi-interior points for the stronger
topology. This is an unpleasant restriction sinceM(K )+ has no quasi-interior points
for the norm, unless K is countable.

The presence of increasing returns or more generally, non-convex production sets,
ismost often incompatiblewith a competitive equilibrium as already noticed inDebreu
(1959). Consequently, we focus on the marginal pricing rule for which every producer
sets on the market a price vector which fulfils the first order conditions for profit
maximisation. This rule has a particular importance thanks to the Second Theorem
of Welfare Economics stating that it is a necessary condition for the decentralization
of Pareto optimal allocations (see, e.g., Bonnisseau and Cornet 1988; Cornet 1986;
Florenzano et al. 2005). Furthermore, this rule coincides with the profit maximisation
rule when the production set is actually convex.

A propermathematical treatment of themarginal pricing rule in a finite dimensional
setting was first provided in Guesnerie (1975) and then generalized in Cornet (1990):
a price vector p satisfies the marginal pricing rule at a production y j belonging to the
production setY j if it belongs to theClarke’s normal cone to y j atY j (seeClarke 1983).
This rule associates, to each efficient production plan y j at Y j , the convex hull of the
set of vectors that are perpendicular to y j and those that are limit of perpendicular
vector in a neighbourhood of it.

1 That is, a partially ordered vector space with the lattice operations supremum and infimum.
2 That is, a complete normed Riesz space.
3 That is a Riesz space with a locally-solid topology.
4 Lip([0, 1]) is the space of Lipschitz functions on [0, 1].

123



Marginal pricing equilibrium with externalities in Riesz spaces 3

When the commodity space is infinite dimensional, Bonnisseau (2002) defines
the marginal pricing rule based on a normal cone larger than the Clarke’s one. This is
justifiedby the fact that the graphof the correspondence from the set ofweakly-efficient
production to the price space associating to a production y j the Clarke’s normal cone
at this point, is not closed for the relevant topologies. Later on, Bonnisseau and Fuentes
(2020) introduced a new extension to cope with the emptiness of the interior of the
positive cone by considering order intervals instead of open balls to measure the
“distance” to the production set.

It is well known in the literature that externalities are a source of non-convexities
with strong consequences on the optimality of equilibra (see, e.g., an example in
Bonnisseau 1994). So, to cover a consistent and broad range of market failures, we
take into account external effects between all economic agents, consumers as well as
producers.

Like in the literature dealing with competitive equilibria, in this paper, the com-
modity space is a Riesz space equipped with a topology. We only assume that the
topological dual is a sub-lattice of the order dual, which is weaker than the locally
solid hypothesis and holds true in the above examples of commodity differentiation
and intertemporal allocations. As in Podczeck (1996), Tourky (1999) and Florenzano
and Marakulin (2001), our proof relies heavily on a reference commodity bundle e
and its associated order ideal L(e). Roughly speaking, in a measure space, it means
that e is a reference measure, for example the Lebesgue measure, and the relevant
economic bundles are absolutely continuous measures with respect to e. In exchange
economy, it is coherent that e be the total initial endowment like in Podczeck (1996).
In a production economy, the total initial endowment could belong to a small subspace
of inputs, whereas the attainable consumptions are in a much larger space thanks to
the production possibilities. For example, this is the case in a finite dimensional space
when the total initial endowment is on the boundary of the positive cone. Then, in
this setting, it would be very restrictive to assume that e be the initial endowments.
Nevertheless, the initial endowments must be commensurable with respect to e.

As for the definition of the marginal pricing rule, we first provide a formula for
the tangent cone, which is the set of inward directions at a given production. Then,
the normal cone is defined by polarity, which means that a price belongs to it if the
value of all inward directions is non-positive. In other words, the price maximises the
profit on the tangent cone, which is the genuine formulation of the first order necessary
condition for profitmaximisation. For this definition, we follow the samemethodology
as in Bonnisseau (2002) and Bonnisseau and Fuentes (2020) except that we deal with
a linear topology instead of a norm topology. The intuition is exposed in Sect. 3.1.
The key difference comes from the fact that we consider only the inward directions in
L(e) or dominated for the order by such direction.

Then, most of the assumptions are standard in this framework but the properness
assumption. Indeed, to cope with the non-convexity of the production sets, we borrow
from Clarke (1983) the strategy to consider not only a production y j and a given
environment z but all productions in a neighbourhood compatible with an environment
close to z. We mix this feature with the properness conditions of Florenzano and
Marakulin (2001). Roughly speaking, the pre-technology set à laMas-Colell is locally
uniform.
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4 J.-M. Bonnisseau, M. Fuentes

Concerning the existence proof, we restrict the commodity space to L(e) equipped
with the standard norm. Thanks to a result in Bonnisseau and Fuentes (2020), an
equilibrium exists in this auxiliary economy and the main task is to show that it can be
extended to the original economy. As for the equilibrium price, we borrow techniques
originally developed by Podczeck (1996) and extended by Florenzano and Marakulin
(2001) crucially using the properness condition. Unlike many papers on competitive
equilibria (e.g. Mas-Colell and Richards 1991; Richard 1989) we cannot follow the
Negishi approach since it requires the aggregate production plan to be efficient which
is not necessarily the case when production sets are non-convex.

Beyond the existence result, we show in detail that our result implies the existing
ones in the literature when we have additional properties on the commodity space or
on the production sets. We also prove that the marginal pricing rule is the profit max-
imising rule when the production set is convex under the Upper Order Boundedness
Assumption. This means that the production set is close to its intersection with L(e).
Note that in Florenzano andMarakulin (2001), a stronger assumption derived from the
properness assumption is necessary to get the existence of a competitive equilibrium.
So, we are also able to get the existence of a competitive equilibrium with a convex
production sector even in presence of externalities, which is, up to the best of our
knowledge, the first one in the literature for such commodity spaces.

The paper is organised as follows: Sect. 2 deals with the mathematical structure.
Section3 presents the model and Assumptions together with the specification of the
marginal pricing rule. In Sect. 4, we state an existence result in the intermediate
economies which becomes the starting point for Sect. 5, where a general existence
theorem is presented. In this section we also compare our results with previous ones
both in competitive and non-competitive economies. In Sect. 6, we prove the existence
theorem. With the exception of this section, all proofs are given in Appendix.

2 Terminology and notation

Let L be a Riesz space, i.e., an ordered vector space5 such that for any x, x ′ in L
the pair {x, x ′} has a supremum, x ∨ x ′, and an infimum, x ∧ x ′, in L . The cone
L+ = {x ∈ L : x ≥ 0} is called the positive cone of L . For x, x ′ ∈ L with x ≤ x ′,
we denote by [x, x ′] the order interval {y ∈ L : x ≤ y ≤ x ′}. Let x+ = x ∨ 0,
x− = (−x) ∨ 0 and |x | = x+ + x− be respectively the positive part, the negative part
and the absolute value of x .

We denote by L∼ the order dual of L , i.e., the vector space consisting of all linear
functionals on L which map order intervals of L to bounded subsets of R, ordered by
the relation f ≥ g whenever f (x) ≥ g(x) for all x ∈ L+. Let f and g in L∼ and let
x in L+. Then the Riesz–Kantorovich formula states f ∨ g(x) = sup0≤x ′≤x { f (x ′) +
g(x − x ′)}. In turn, L(x) := ⋃

n∈N[−nx, nx] is the principal ideal in L generated by
x .

5 An ordered vector space is a (real) vector space endowed with a partial ordering ≥ such that x ≥ x ′
implies x + y ≥ x ′ + y for x, x ′, y ∈ L and if x ≥ 0 it entails t x ≥ 0 for t ∈ R++. x ≤ x ′ means x ′ ≥ x .
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Marginal pricing equilibrium with externalities in Riesz spaces 5

We endow L with a Hausdorff locally convex linear topology τ such that L+ is
closed and order intervals are bounded. Let L∗ be the topological dual of L , i.e., the
vector space of all τ -continuous linear functionals on L . For x ∈ L and π ∈ L∗, π · x
is the evaluation of x under π . Since every order interval of L is τ -bounded, it follows
that L∗ ⊂ L∼. Throughout this paper we shall assume that L∗ is a vector sublattice of
L∼. Note that if τ is locally solid, then both L+ is τ -close and L∗ is a vector sublattice
of L∼.

We denote by Vτ (0) the base of all convex, symmetric6 τ - neighbourhoods of 0.
According to Schaefer (1971) (1.2, p. 14), for eachW ∈ Vτ (0) there existsW ′ ∈ Vτ (0)
satisfying W ′ + W ′ ⊂ W . We shall also consider the weak topology σ(L, L∗) = σ

on L . This linear topology is also Hausdorff and locally convex. Vσ (0) is the base of
weak neighbourhoods of 0 with the same properties as Vτ (0).

For a subset A of L , we denote by τ − intA and τ −clA (resp. σ − intA and σ −clA)
the corresponding τ -interior and τ -closure of A (resp. the σ -interior and σ -closure of
A). Let LM be the Cartesian product of M copies of the space L . We denote by

∏
LM τ

(resp.
∏

LM σ ) the product topology on LM when the topology on each L is τ (resp.
σ ). Hence, both

(
LM ,

∏
LM τ

)
and

(
LM ,

∏
LM σ

)
are locally convex Hausdorff Riesz

spaces.
Let D : LM � L be a correspondence. We say that D has τ -closed values if for

every x ∈ LM , D(x) is a τ -closed subset of L .
For further details on infinite dimensional spaces and Riesz spaces, we refer to

Aliprantis and Border (2006) and Schaefer (1971).

3 Themodel

We consider an economy whose commodity space is the Riesz space L equipped with
the τ -topology and such that L∗ is a vector sublattice of L∼. There are finite sets of
consumers and producers I and J respectively. We index each consumer by i ∈ I
and each producer by j ∈ J . An element z = ((xi )i∈I , (y j ) j∈J ) in L I∪J is called an
environment. Instead of consumption sets we have consumption correspondences, that
is, the i-th consumer has a consumption correspondence Xi : L I∪J � L+ depending
on the environment z. Given z, Xi (z) ⊂ L+ is her consumption set. Preferences also
depend upon the actions of the other economic agents. We shall denote by �i,z the
preference relation of consumer i given the environment z. This relation is assumed
to be complete, reflexive and transitive on Xi (z). The relation of strict preference
x �i,z x ′ is then defined by x �i,z x ′ and not x ′ �i,z x . We do not assume that we can
compare two commodity bundles if they do not share the same environment. Let ωi ∈
L+ be the initial endowment of the i-th agent such that ωi ∈ Xi (z) for all z ∈ L I∪J .
Let us denote the total initial endowment of the economy by ω = ∑

i∈I ωi �= 0.
Each producer j has a production set which also depends upon the actions of the

other agents. For each j ∈ J , Y j : L I∪J � L is the production correspondence. For
the environment z ∈ L I∪J , Y j (z) ⊂ L is the set of all feasible productions for the
j-th producer. We denote the τ -boundary of Y j (z) by ∂Y j (z).

6 For all W ∈ Vτ (0), W = −W .
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6 J.-M. Bonnisseau, M. Fuentes

The wealth function of the i-th consumer is given by a function ri : R×R
J → R.

If π ∈ L∗ and (y j ) j∈J ∈ ∏
j∈J Y j (z), her wealth is ri

(
π · ωi ,

(
π · y j

)
j∈J

)
. This

definition is general enough as to encompass the private ownership economy case, i.e.,

when ri
(
π · ωi ,

(
π · y j

)
j∈J

)
= π ·ωi +∑

j∈J θi jπ · y j for θi j ≥ 0 and
∑

i∈I θi j = 1

for all j ∈ J .
For a given environment z ∈ L I∪J and a given initial endowments ω′ ∈ L+, we

shall denote by A(ω′, z) the set of attainable productions, that is,

A(ω′, z) :=
⎧
⎨

⎩
(y′

j ) ∈
∏

j∈J

∂Y j (z) :
∑

j∈J

y′
j + ω′ ∈ L+

⎫
⎬

⎭

In order to consider only consistent situations, we define the set

Z :=
{
z = ((xi )i∈I , (y j ) j∈J ) ∈ L I∪J : ∀i ∈ I , xi ∈ Xi (z); ∀ j ∈ J , y j ∈ ∂Y j (z)

}

The set of weakly efficient attainable allocations corresponding to a given total
initial endowment ω′ ∈ L+ is given by

A(ω′) :=
⎧
⎨

⎩
z = ((xi )i∈I , (y j ) j∈J ) ∈ Z :

∑

i∈I
xi =

∑

j∈J

y j + ω′
⎫
⎬

⎭

We fix a reference bundle e ∈ L+\{0} and assume that ω is compatible with it in
the sense that there is some n0 ∈ N for which ω ≤ n0e or, in other words, ω belongs to
the principal order ideal L(e). In most of the literature such a reference vector is given
directly by ω, which is coherent in exchange economies. However, this is not always
convenient in our setting since L(ω) may be very small whereas economic activities
take place in a much larger space. Indeed, even in a �-finite dimensional Euclidean
space, ω may not be in R

�++ which makes L(ω) too small. That is why in previous
works e has been suitably chosen depending on the commodity space L . For instance,
when L = R

� as in Bonnisseau and Médecin (2001), e is the unit vector (1, 1, . . . , 1).
When L = L∞ (Bewley 1972; Bonnisseau 2002) e is the constant function equal to
1 which obviously belongs to the ‖ · ‖∞-interior of L+∞. In Bonnisseau and Fuentes
(2020), e is a quasi-interior point of L+ satisfying ‖e‖ = 1. Actually, L(e) must be
large enough so that relevant consumptions and productions lie in the τ -closure of
L(e)− L+. It appears in the assumptions below that the larger is L(e), the weaker are
these assumptions.
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Marginal pricing equilibrium with externalities in Riesz spaces 7

3.1 Marginal pricing rule and equilibrium

The marginal pricing rule doctrine is not new. It comes at least from the thirties7

when (Hotelling 1938) argued that when the firms exhibit increasing returns to scale,
prices should be proportional to marginal costs to reach a Pareto optimal allocation.
Hotelling also paid attention to the fact that, in some cases, a firm or even an industry
which adopts marginal cost pricing will run at a loss if there are high fixed costs.
Since “taxes on commodities, including sales taxes, are more objectionable than taxes
on incomes”, the deficit must then be financed from income taxes: “the latter taxes
(income taxes) might well be applied to cover the fixed costs of electric power plants,
waterworks, railroads, and other industries in which the fixed costs are large, so as to
reduce to the level of marginal cost the prices charged for the services and products
of these industries”. In Hotelling’s conception, the production sets are non-convex but
with smooth boundaries. Hence, when the latter does not hold true, we replace the
marginal cost condition by the first order necessary condition for profit maximisation
(see Cornet 1990; Guesnerie 1975). This rule is called marginal pricing rule because
when technologies are smooth, marginal productivities are proportional to the prices
and, when the cost is well defined and differentiable, it coincides with the marginal
cost à la Hotelling. Note also that a Pareto optimal allocation can be descentralized by a
price satisfying the marginal pricing for all producers. The notion of marginal pricing
rule extends to very general frameworks (see, e.g., Cornet 1986; Bonnisseau and
Cornet 1988; Bonnisseau 2002; Florenzano et al. 2005) where it is defined by the fact
that the price is an outward direction, meaning that it belongs to the normal cone. The
later is the polar cone of the tangent cone, the set of inward or quasi-inward directions.
In a finite dimensional space, the Clarke’s normal cone as introduced in Cornet (1990)
and extended in Bonnisseau and Médecin (2001) to encompass externalities, is the
right concept and, in some sense, the smallest one for the existence of equilibrium.
For a survey on the marginal pricing rule and its related notions we refer to the chapter
on increasing returns of Brown (1991) and to the books of Villar (1996) and (2000).
For an exhaustive study about the relationship between increasing returns and Pareto
optimality we refer to the book of Quinzii (1992).

In infinite dimensional settings things change since the graph of the correspondence
y j � NYj (y j ),where NYj (y j ) is theClarke’s normal cone, is not necessarily closed for
the relevant topologies. Thesewere the technical challenges in theworks ofBonnisseau
(2002) and Bonnisseau and Fuentes (2020) and this is what we face now but in a Riesz
space. For z ∈ Z and y j ∈ ∂Y j (z), let us consider the following set

TY j (z)(y j ) = ⋂

C∈Vτ (0)
T C
Y j (z)

(y j )

7 We use the expression “at least” since in Hotelling’s own opinion, the work of the French engineer Jules
Dupuit (Dupuit 1952), positions him as the first marginal cost theorist. There is, however, some controversy
as to whether he is the progenitor of the idea (Ekeland 1968).
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8 J.-M. Bonnisseau, M. Fuentes

where

T C
Y j (z)(y j ) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν ∈ L

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃ η > 0 such that ∀ r > 0,
∃ U ∈ Vσ (0) and ε > 0 |
∀ z′ ∈ ({z} + (C ∩U )I∪J ) ,

∀ y′
j ∈ ({y j } + C ∩U

) ∩ Y j (z′)
and ∀ t ∈ (0, ε), ∃ ξ ∈ r [−e, e] such that

y′
j + t(ν + η(y j − y′

j ) + ξ) ∈ Y j (z′)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1)

Then, the set T̂Y j (z)(y j ) := TY j (z)(y j ) ∩ L(e) − L+ is the tangent cone at y j in
Y j (z).

Proposition 3.1 T̂Y j (z)(y j ) is a cone.

For a better understanding on the intuition behind the above formula, we recall first
that when Y j (z) is convex, a vector ν is inward at y j if y j + tν ∈ Y j (z) for all t
small enough. In the non-convex case, according to the key contribution of Clarke, we
consider in the formula (1) that a direction is inward if it is so for all productions in a
neighbourhood of y j . To deal with externalities, as in Bonnisseau and Fuentes (2020)
and Bonnisseau and Médecin (2001), we also consider production plans consistent
with an environment z′ in a neighbourhood of z.

As for the intersection with L(e) in the definition of T̂Y j (z)(y j ), we remark that
it is useless when L(e) is equal to L or τ -dense in L as in the cases of Bonnisseau
(2002) and Bonnisseau and Fuentes (2020) respectively. In our setting, L(e) could be
“small” and the only economically relevant inward directions are those which are in
L(e) − L+. Indeed, e is the reference commodity bundle and −L+ is consistent with
free-disposal of the technologies.

The marginal pricing rule is now formally defined: given (y j , z) ∈ ∂Y j (z) × Z ,

Producer j chooses prices in ˆNY j (z)(y j ) :=
[
T̂Y j (z)(y j )

]◦
. In words, to set prices

according to the marginal pricing rule, the producer takes into account the local shape
of Y j (z) around y j and the fact that her production set depends on external effects
in the sense that the former changes when the latter varies. We note that this rule
is equivalent to saying that the owner of the firm chooses the price π for which y j
maximizes profits on {y j } + T̂Y j (z)(y j ). Note that ˆNY j (z)(y j ) ⊂ L∗+.

Finally, the set of production equilibria is

PE :=
{
(π, z) ∈ L∗+ × Z : π ∈ ∩ j∈J ˆNY j (z)(y j )\{0}

}

We are now able to state the definition of a marginal pricing equilibrium.

Definition 3.2 A marginal pricing equilibrium of the economy E is an element (z̄ =
(x̄i )i∈I , (ȳ j ) j∈J ), π̄) in Z × L∗+ such that:

1. For all i ∈ I , π̄ · x̄i ≤ ri (π̄ · ωi , (π̄ · ȳ j ) j∈J ) and π̄ · x ′
i > ri (π̄ · ωi , (π̄ · ȳ j ) j∈J )

whenever x ′
i �i,z̄ x̄i .

2. For all j ∈ J , π̄ ∈ ˆNY j (z̄)(ȳ j )\{0}.
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Marginal pricing equilibrium with externalities in Riesz spaces 9

3.
∑

i∈I x̄i = ∑
j∈J ȳ j + ω.

Condition 1. says that every consumer maximises her preference under her budget
constraint. Condition 2. says that every producer sets on the market the same equilib-
rium price vector π̄ which satisfies the marginal pricing rule. Condition 3. says that
all markets clear.

3.2 Assumptions

We now posit the following assumptions. Some of them became standard in the liter-
ature.

Assumption (C) For all i ∈ I

1. Xi is a convex-valued correspondence with a (
∏

L I∪J σ, σ )-closed graph. Further-
more, for all z ∈ L I∪J , 0 ∈ Xi (z) and for every x ∈ Xi (z) the order interval [0, x]
is contained in Xi (z).

2. For all z ∈ L I∪J , the half-line {δe : δ > 0} is included in Xi (z). For all xi ∈ Xi (z)
and for all δ > 0 there exists a neighbourhood V ′ ∈ Vσ (0) such that xi + δe ∈
Xi (z′) for all z′ ∈ {z} + (V ′)I∪J .

3. For every z ∈ L I∪J , and all xi ∈ Xi (z) both sets {x ′
i ∈ Xi (z) : x ′

i �i,z xi } and
{x ′

i ∈ Xi (z) : xi �i,z x ′
i } are τ -closed. For all x ′

i ∈ Xi (z) such that x ′
i �i,z xi , for

all t ∈ (0, 1), t x ′
i + (1 − t)xi �i,z xi .

4. The set Gi = {(x ′
i , xi , z) ∈ L2 × L I∪J : (x ′

i , xi ) ∈ Xi (z)2, x ′
i �i,z xi } is a

(τ × σ × ∏
L I∪J σ )-closed subset of L2 × L I∪J .

5. The wealth function ri : R×R
J → R is continuous, increasing and homogeneous

of degree one with respect to the price vector. Furthermore, for all ((vi ), (v j )) ∈
R

I∪J ,
∑

i∈I ri
(
vi , (v j )

) = ∑
i∈I vi +∑

j∈J v j and if
∑

i∈I ri (vi , (v j )) > 0 then
ri (vi , (v j )) > 0 for all i .

6. Let z = ((xi ), (y j )) ∈ A(ω)∩ L(e)I∪J . Preferences are E-proper relative to L(e)
at xi , i.e., there exists a τ -open convex cone �i with vertex 0 and containing e,
a set Rxi ⊂ L radial at xi 8 and a sublattice Kxi ⊂ L(e) satisfying xi ∈ Kxi and
Kxi + L(e)+ ⊂ Kxi such that

∅ �= ({
x ′
i ∈ Xi (z) : x ′

i �i,z xi
} + �i

) ∩ Kxi ∩ Rxi ⊂ {
x ′
i ∈ Xi (z) : x ′

i �i,z xi
}

(2)

and

{x ′
i ∈ Xi (z) : x ′

i �i,z xi } ∩ Rxi ⊂ (
Kxi + L+

)
(3)

Assumption (P) For every j ∈ J

1. Y j : L I∪J � L has a (
∏

L I∪J σ, σ )-closed graph.
2. For every z ∈ L I∪J , Y j (z)∩L+ = {0} and Y j satisfies the free-disposal condition,

that is, Y j (z) − L+ = Y j (z).

8 That is, for all x ′ ∈ L , there exists a real number λ̄ ∈]0, 1[ such that (1 − λ)xi + λx ′ belongs to A for
every λ ∈]0, λ̄[.
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10 J.-M. Bonnisseau, M. Fuentes

3. For all z ∈ L I∪J , for all y j ∈ ∂Y j (z) and for all δ > 0, there exists V ′ ∈ Vσ (0),
such that y j − δe ∈ Y j (z′) for all z′ ∈ {z} + (V ′)I∪J .

4. For all z ∈ L I∪J , for all y j ∈ ∂Y j (z), for all C ∈ Vτ (0) and for all δ > 0 there

exists Û ∈ Vσ (0) and ε > 0 such that for all z′ ∈
(
{z} + (C ∩ Û )I∪J

)
, for all

y′
j ∈ Y j (z′) ∩

(
{y j } + C ∩ Û

)
, for all t ∈ (0, ε], t(y j − δe) + (1− t)y′

j ∈ Y j (z′).
5. Let z = ((xi ), (y j )) ∈ A(ω) ∩ L(e)I∪J . The technology Y j is σ -locally τ -

uniformly-proper relative to L(e) at y j , i.e., there exists a τ -open convex cone
with vertex 0, � j , containing the vector e and an open convex neighbourhood

Vj ∈ Vσ (0), such that for all z′ ∈
(
{z} + V I∪J

j

)
∩ L(e)I∪J

[(({y j } + Vj
) ∩ Y j (z

′)
) − � j

] ∩ L(e) ∩ ({y j } + Vj
) ⊂ Y j (z

′) (4)

AssumptionB (Boundedness)Theorder interval [0, e] isσ -compact. Furthermore,
for all ω′ ∈ L(e), ω′ ≥ ω, there exists b ∈ R++ such that, for all z ∈ Z , A(ω′, z) ∩
L(e)J ⊂ [−be, be]J .

Assumption SA (Survival) For all z ∈ Z , for all t ∈ R+ and for all
(π, (y j )) ∈ L∗ × A(ω + te, z), if π ∈ ∩ j∈J ˆNY j (z)( y j )\{0}, it follows that

π ·
(∑

j∈J y j + ω + te
)

> 0.

Before commenting the above assumptions, we refer to the topologies used in them
in connection with the main objective of this paper. We remark that both the strong
topology τ and the weak topology σ(L, L∗) allow us to encompass interesting exam-
ples not covered by previous works that considered locally-solid topologies, that is to
say, when lattice operations are continuous. We recall that two important characteris-
tics of a (consistent) locally convex-solid topologies are: (i) the positive cone is closed
and (ii) the topological dual space L∗ of L is a sublattice of the order dual L∼ (Alipran-
tis and Border 2006, Theorems 8.43 and 8.48 respectively). The remarkable fact is
that, in the motivational examples provided in Introduction concerning commodity
differentiation and intertemporal preferences in continuous time, the topologies are
not locally solid but the above characteristics are satisfied.

Regarding the first case, that is, models of commodity differentitation as in Mas-
Colell (1975) and Jones (1984), the commodity space is L = M(K ), the set of
bounded, signed (Borel) measures on a compact set K . They consider the weak-star
topology σ (M(K ),C(K )) on L . This topology is too weak for the lattice operations
to be continuous, or, equivalently, σ (M(K ),C(K )) is not locally-solid. As for the
second case, that is, those of intertemporal preferences such as Hindy et al. (1992),
the authors consider the commodity space L of right continuous real-valued functions
of bounded variation on [0, 1], with the positive cone L+ of positive increasing right-
continuous real-valued function on [0, 1]. A topology makes L a topological vector
lattice with positive cone L+ only if it is at least as strong as the total variation norm
topology. However, such a topology does not satisfy desirable economic properties.
Conversely, the topology that does fulfill such properties is σ(L, L∗) for L∗ the space
of Lipschitz continuous functions (Hindy et al. 1992, Theorems 1 and 2, pp. 417–
18). Under this topology, the lattice operations are not continuous (Hindy et al. 1992,
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Marginal pricing equilibrium with externalities in Riesz spaces 11

Proposition 2, p. 413) but L∗ is a vector lattice in the order dual (Hindy et al. 1992,
Proposition 8, p. 418).

These examples justify that neither τ nor σ(L, L∗) need to be locally-solid at the
time that L+ is τ -closed and L∗ is a sublattice of L∼. In addition, we point out that in
both models, attainable sets are weakly compact which agrees with Assumption (B).

Remark 3.1 Assumption (C) gathers standard conditions on the continuity and con-
vexity of preferences together with the convexity and closedness of the consumption
set. Assumption C(1) and C(3) are quite usual even though we are not imposing that
the consumption sets equal to the positive cone L+, which is commonly assumed in
the literature. Assumption C(2) is a strong form of lower hemi-continuity that has been
widely discussed in Fuentes (2011) and Bonnisseau and Fuentes (2020). We refer the
reader to these works. We point out that homogeneity of ri with respect to the price
vector π is not necessary for getting equilibria but to deal with normalized prices.

The properness assumptions are well known in the literature on existence of equi-
libria in Riesz spaces. The main consequence of this condition is to get a continuous
extension of supporting prices in L(e) to the whole space L . Regarding preferences
we use the one of Florenzano and Marakulin (2001) so we refer to it for further dis-
cussion on this condition.9 Notice that (2) implies non-satiation of preferences on the
attainable sets restricted to L(e). Together with the convexity of preferences, we have
local non-satiation on the subspace. This non-satiation in L(e) rather than in L will
be sufficient for our purposes since the relevant commodity bundles in the economy
are close to L(e).

On the production side, assumptions on closedness and free disposal are standard.
Assumption P(3) is a stronger form of lower hemi-continuity and we refer the reader
to Fuentes (2011) and Bonnisseau and Fuentes (2020) for details. We discuss now the
remaining items of Assumption (P).

Remark 3.2 Properness condition means that if y′
j ∈ Y j (z′) is close to the production

vector y j ∈ Y j (z) for the environment z′ close to z, and we add to y j the quantity e of
inputs, then it is still producible if we add a vector small enough such that the resultant
vector is again both sufficiently near to y j and belongs to L(e). Thus, marginal rates
of substitution with respect to e are bounded away from zero in a neighbourhood of
y j .

Unlike Podczeck (1996) and Florenzano and Marakulin (2001), we consider an
open neighbourhood Vj of y j instead of a radial set at y j . Even though this is a
stronger requirement, in the sense that open neighbourhoods are radial but radial sets
could have an empty interior, it is consistent with the idea of the tangent cone to a
nonconvex set which, contrary to the convex case, not only focuses on y j but also on
productions in a neighbourhood.

When technologies are convex, we complement this assumption with condition
UOB which is quite similar to the inclusion (2.4) in Florenzano and Marakulin (2001)

9 We note that if the set Vx in the definition of E-properness in Florenzano and Marakulin (2001) is
{x ′

i ∈ Xi (z) : x ′
i �i,z x} + �i , the inclusions (2.1) and (2.2) there, are exactly the same as (2) and (3) in

C(6) since preferences are assumed to be convex.
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12 J.-M. Bonnisseau, M. Fuentes

and to the definition of M-properness in Tourky (1999). We shall define and discuss
this Assumption on Sect. 5.1.

Remark 3.3 Boundedness assumption implies, first, that all order intervals in L(e) are
σ -compact. Since L∗ is a subspace of L∼, such intervals are σ -bounded and then τ -
bounded (Rudin 1991, Theorem 3.18, p. 70). Second, Assumption (B) says that, even
if we increase the initial endowments, feasible production vectors belonging to L(e)
are order bounded which, in turn, implies that the attainable set in L(e)I∪J is included
in a

∏
L I∪J σ -compact set. We point out that this means that properness condition is

stated only on a compact subset of L I∪J . Note that this assumption is also necessary
even if L is finite dimensional (see Bonnisseau and Cornet 1990b).

Remark 3.4 If Y j (·) satisfies Assumption P(4), we say that Y j is
∏

L I∪J σ -locally star-
shaped with respect to y j − δe whenever y j ∈ Y j (z). If Y j (z) is convex for all z,
Assumption P(4) is clearly a consequence of Assumption P(3) and, in turn, if ε ≥ 1
in P(4), P(3) is a consequence of P(4). The next lemma shows first the equivalence
between Assumption P(4) and the fact that the null vector belongs to the tangent
cone to Y j (z) at y j , and, second, that P(4) is a consequence of free-disposal in finite
dimensional commodity spaces.

Lemma 3.3 (1) Condition P(4) is equivalent to 0 ∈ TY j (z)(y j ) under Assump-
tions P(1)–P(3).

(2) Condition P(4) is a consequence of free disposal when L is finite dimensional.

4 The restricted economy in L(e)

The purpose of this section is to show the existence of a marginal pricing equilibrium
in the restricted economy, that is, the one with commodity space L(e). This is the
first step to get an equilibrium in the original economy. In L(e), the order interval
[−e, e] is absorbing and its gauge induces a norm topology on L(e) with ‖e‖e = 1.
We call it the ‖ · ‖e-topology. Actually, [−e, e] is the closed unit ball on L(e) while
Be
1 = {x ∈ L(e) : ‖x‖e < 1} is the open unit ball on L(e). In general, for ε > 0,

ε[−e, e] and Be
ε = {x ∈ L(e) : ‖x‖e < ε} are respectively the closed and open balls

of center 0 and radius ε on L(e). We note that [−e, e] is σ -compact and τ -bounded by
Assumption (B). Consequently, there exists C ∈ Vτ (0) such that Be(0, 1) ⊂ C∩ L(e).
In turn, L(e)∗ denotes the ‖ · ‖e-dual of L(e). The relativization of the topologies τ

and σ to L(e) are weaker than the ‖ · ‖e-topology. We point out that (L(e), ‖ · ‖e) is a
normed lattice which is not necessarily complete.

Let L(e)+ = L+∩L(e). Clearly L(e)+ is ‖·‖e-closed in L(e) and has a non-empty
‖ · ‖e-interior which contains e. Furthermore, ω ∈ L(e)+ since ω is commensurable
to e. Let Y e

j : L(e)I∪J � L(e) be the restricted production correspondence such that

for all z ∈ L(e)I∪J , Y e
j (z) = Y j (z) ∩ L(e). Since we are looking for an equilibrium

in the economy E when the commodity space is L(e), we need the definition of the
tangent cone of Bonnisseau and Fuentes (2020) in L(e).

T̂Y e
j (z)

(y j ) =
⋂

ρ>0

T̂ ρ

Y e
j (z)

(y j )
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Marginal pricing equilibrium with externalities in Riesz spaces 13

where

T̂ ρ

Y e
j (z)

(y j ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν ∈ L(e)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃ η > 0 such that ∀ r > 0,
∃ U ∈ Vσ (0) and ε > 0 |

∀ z′ ∈
(
{z} + (

Be
ρ ∩U

)I∪J
)

,

∀ y′
j ∈ ({y j } + Be

ρ ∩U
) ∩ Y j (z′)

and ∀ t ∈ (0, ε), ∃ ξ ∈ r [−e, e] such that

y′
j + t

(
ν + η(y j − y′

j ) + ξ
)

∈ Y j (z′) ∩ L(e)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

In the restricted economy, themarginal pricing rule is defined thanks to the following
normal cone in L(e)∗

N̂Y e
j (z)

(y j ) =
[
T̂Y e

j (z)
(y j )}

]◦ =
{
p ∈ L(e)∗ : p · ν ≤ 0 ∀ ν ∈ T̂Y e

j (z)
(y j )

}
.

We remark that T̂Y e
j (z)

(y j ) is not the adaptation of T̂Y j (z)(y j ) to L(e). The former
considers open balls Be(0, ρ) in L(e) while the latter would take the neighbourhoods
C∩L(e). Consequently, T̂Y e

j (z)
(y j ) is equivalent to the definition of Bonnisseau (2002)

with externalities (compare with Proposition 5.3 below). The following lemma pro-
vides important inclusions that we shall exploit later.

Lemma 4.1 For all (z, y j ) ∈ L(e)I∪J × L(e),

1. TY j (z)(y j ) ∩ L(e) ⊂ T̂Y e
j (z)

(y j ).

2.
(−� j

) ∩ L(e) ⊂ T̂Y e
j (z)

(y j ).

We now define precisely the restricted economy E|L(e). Let Xe
i : L(e)I∪J � L(e)+

be the restricted consumption correspondence such that for all z ∈ L(e)I∪J , Xe
i (z) =

Xi (z) ∩ L(e)+. We suitably restrict the preference relation �i,z to Xe
i (z) by �e

i,z for

all z ∈ L(e)I∪J . We remark that ∂Y e
j (z) ⊂ ∂Y j (z)∩L(e) by free-disposal assumption

and the fact that e belongs to L+,10 whence Ze ⊂ Z and then Ae(ω′) = A(ω′)∩ Ze ⊂
A(ω′). The revenue functions (ri ) are the same and

PEe = {(p, z) ∈ L(e)∗ × Ze : p ∈ ∩ j∈J N̂Y e
j (z)

(y j )\{0}}

is the production equilibria set. Hence, the economy E|L(e) is fully described by(
(Xe

i ,�e
i,z, ri )i∈I , (Y

e
j ) j∈J , ω

)
.

Theorem 4.1 in Bonnisseau and Fuentes (2020) implies that E|L(e) has an equilib-
rium ((x̄i )i∈I , (ȳ j ) j∈J , p̄) ∈ L(e)I∪J × L(e)∗+ since all assumptions hold.11 The only
condition for which we need to provide a specific proof is (SA).

10 Indeed, if y j belongs to the ‖·‖e boundary of Ye
j (z), then y j +te does not belong to Ye

j (z) for all positive
t since e belongs to the ‖ · ‖e-interior of L(e)+ and the free-disposal assumption holds. Then y j + te does
not belong to Y j (z). Hence, y j does not belong to the τ -interior of Y j (z) and then, it does belong to the
boundary of Y j (z).
11 We would like to emphasize that in Bonnisseau and Fuentes (2020) the commodity space of the inter-
mediate economy is a Banach lattice (see Aliprantis and Border 2006, Theorem 9.28 and discussions on
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14 J.-M. Bonnisseau, M. Fuentes

Lemma 4.2 The economy E|L(e) satisfies the Survival Assumption (SA).

Note that p̄ �= 0 from the non-satiation of preferences and p̄ · e > 0 since e ∈
‖ · ‖e − intL(e)+ and p̄ ∈ L(e)∗+.

5 Existence of equilibria

We are now ready to state our main result

Theorem 5.1 Let E be an economy. Under Assumptions (C), (P), (B) and (SA) there
exists a bundle (z̄, π̄) in Z × L∗ which is a marginal pricing equilibrium of E .
Remark 5.1 The proof of Theorem 5.1 provides an “additional information” on the

equilibrium price, namely, π̄|L(e) =
[
T̂Y e

j (z)
(y j )}

]◦
.

We now compare with previous existence results.

5.1 Themarginal pricing equilibria in special cases

The comparison of Theorem 5.1 with previous results in the literature is not obvious.
Then, in order to perceive the scope of our existence result, we analyze the marginal
pricing rule in three particular circumstances that are commonly assumed in economic
theory, namely, when technologies are convex, i.e., the competitive case; when e
belongs to the quasi-interior or the interior of the cone L+ and when technologies
are smooth, i.e., production sets may be described by differentiable transformation
functions. The analysiswill show that Theorem5.1 encompasses competitive existence
results as Theorems 3.1 and 2.7 of Florenzano and Marakulin (2001) and Tourky
(1999) respectively (Proposition 5.2), non-competitive existence results as Theorem
5.1 in Bonnisseau and Fuentes (2020) (Proposition 5.3) and theorems on existence of
equilibria under smooth technologies (Proposition 5.6).

Convex technologies and competitive equilibria

Competitive equilibria is relatedwith a production sector the technologies of which are
convex and producers’ behaviour is profitmaximisation. By comparing our properness
condition with that of Florenzano and Marakulin (2001) and Tourky (1999), we note
that their condition impose additional requirements on the structure of the production
sets, namely that it is in the τ -closure of L(e) − L+. So, we posit the following
assumption:

Upper order bounded (UOB) For all z ∈ Z and for all y j ∈ Y j (z) ∩ L(e), there
exists a radial set Ryj at y j such that

Y j (z) ∩ Ryj ⊂ τ − cl
[
Y j (z) ∩ L(e) − � j − L+

] ∩ τ − cl (L(e) − L+) (5)

pages 357–58) which does not hold true for (L(e), ‖ · ‖e). Nonetheless, it is important to note that a careful
reading of Bonnisseau and Fuentes (2020) reveals that the completeness property is not used in the proof
of Theorem 4.1 in that paper.
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Marginal pricing equilibrium with externalities in Riesz spaces 15

where � j is given by the properness condition (Assumption P(5)).
We claim that (UOB) means that for every z ∈ Z and for every y′

j ∈ Y j (z), there
exists ξ as close as we want to y′

j such that it is bounded from above (or upper order
bounded) by a vector in L(e): let y′

j belongs to Y j (z). Let y j ∈ Y j (z) ∩ L(e). Then
there exists λy j ≤ 1 such that (1 − λ)y j + λy′

j ∈ Y j (z) ∩ Ryj for every λ ∈ (0, λy j )

since Y j (z) is convex and Ryj is radial at y j . For anyWj ∈ Vτ (0), there exists u ∈ Wj

such that (1 − λ)y j + λy′
j + λu ∈ L(e) − L+ by Inclusion (5) and the fact that

λWj ∈ Vτ (0). This implies that y′
j + u belongs to L(e) − L+ and the claimed is

proved with ξ := y′
j + u.

Notice that (5) is close to Condition (2.4) of Florenzano and Marakulin (2001); we
recall it using our notation: Let z ∈ Z , for y j ∈ Y j (z) ∩ L(e) there exist a τ -open
convex set F , a lattice Kyj ⊂ L(e) verifying Kyj − L(e)+ ⊂ Kyj and some subset
Ryj of L , radial at y j , such that y j ∈ τ − cl (F) ∩ Kyj and

Y j (z) ∩ Ryj ⊂ τ − cl (F) ∩ (
Kyj − L+

)
(6)

In (5), we could take Kyj as in (6) but for simplicity we left L(e) = Kyj . In the way
of comparison, we are taking F = Y j (z)∩ L(e)−� j − L+ and we slightly weakened
(6) by considering the τ -closure of L(e) − L+ instead of L(e) − L+.

On the other hand, (5) is also related to the M-properness condition of (Tourky
1999) that we transcript with our notation: Y j (z) is M-proper at y j ∈ Y j (z) if there

are convex sets Ŷ j (z) and K̂ y j such that (i) Ŷ j (z)∩
(
K̂ y j − L+

)
= Y j (z), (ii) y j −e ∈

τ − intŶ j (z),12 (iii) 0 ∈ K̂ y j and (iv) if y j , y′
j belong to K̂ y j then y j ∨ y′

j belongs to

K̂ y j .
It is clear that both Y j (z) ∩ L(e) − � j − L+ and L(e) satisfy the requirements of

Ŷ j (z) and K̂ y j respectively. Then, the two conditions are similar. Nevertheless, our

condition is stronger since, in Tourky (1999), K̂ y j can be strictly included in L(e). On
the contrary, (5) only requires an inclusion on Y j (z) ∩ Ryj which is smaller than on
Y j (z).

Proposition 5.2 Let z ∈ Z and y j ∈ ∂Y j (z) ∩ L(e). Assume that firm j has a convex
technology and satisfies Assumptions (P), then:

1. {π ∈ L∗ : π · y j ≥ π · y′
j ∀ y′

j ∈ Y j (z)} ⊂ ˆNY j (z)(y j )

2. Furthermore, if Assumption UOB holds, then for every π j in ˆNY j (z)(y j ) such
that sup

{
π j · (−γ j

) : γ j ∈ � j
} ≤ 0, it follows that π j · y′

j ≤ π j · y j for all
y′
j ∈ Y j (z). Moreover, for π ′

j ≥ π j such that π ′
j |L(e) = π j |L(e), π ′

j · y′
j ≤ π ′

j · y j
for all y′

j ∈ Y j (z).

For convex technologies, the above proposition means, on the one hand, that a price
for which the profit is maximum at y j satisfies the marginal pricing rule at y j and, on
the other hand, the converse is true under Condition UOB. As a consequence, we stress
that the marginal pricing equilibria of the Theorem 5.1 is a competitive equilibria if

12 Actually, Tourky takes ω instead of e.
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16 J.-M. Bonnisseau, M. Fuentes

production sets are convex and ConditionUOB holds. Indeed, thanks to the properness
condition, the equilibriumprice π̄ satisfies the condition sup

{
π j · (−γ j

) : γ j ∈ � j
} ≤

0 (see Sect. 6).

Spaces with quasi-interior points in L+

We provide now some properties of the marginal pricing rule when e is a quasi-
interior point of L+. The following result shows that all positive continuous linear
functionals in ˆNY j (z)(y j ), whose restriction to L(e) belongs to N̂Y e

j (z)
(y j ), belongs

also to [TY j (z)(y j )]◦. This fact implies that the marginal pricing rule of this paper
coincides with the one in Bonnisseau and Fuentes (2020) when L is a Banach lattice.

Lemma 5.3 Let (y j , z) ∈ L(e)×L(e)I∪J andπ ∈ ˆNY j (z)(y j ). Under Assumption (P),

if e is a quasi-interior point of L+ and π|L(e) ∈ [T̂Y e
j (z)

(y j )]◦, then π ∈ [TY j (z)(y j )]◦.

It follows from the very definition of the tangent sets that [TY j (z)(y j )]◦ ⊂
ˆNY j (z)(y j ). So, the interesting result in the above lemma is just the converse inclu-

sion. Then, we get the following consequence when the commodity spaces enjoymore
properties:

Proposition 5.4 Let (L, ‖ · ‖) be a Banach lattice such that e is quasi-interior point
of L+. The marginal pricing equilibrium given by Theorem 5.1 is a marginal pricing
equilibrium in the sense of Bonnisseau and Fuentes (2020).13 If intL+ �= ∅ and e
belongs to intL+, then ˆNY j (z)(y j ) is the normal cone of Bonnisseau (2002) with

externalities and if L = R
�, ˆNY j (z)(y j ) is the marginal pricing rule of Bonnisseau

and Médecin (2001).

We close this section by showing that Condition UOB holds when L is a locally-
solid Riesz space, e is a quasi-interior point of L+ and technologies are convex. This
explains why this condition is not necessary in Riesz spaces with quasi-interior points
in the positive cone.

Lemma 5.5 Let (L, τ ) be a topological vector lattice such that e is a quasi-interior
point of L+. If Y j is a convex-valued production correspondence satisfying σ -locally
τ -uniformly properness relative to L(e) for all y j ∈ Y j (z) and all z ∈ Z, then
condition UOB holds.

Smooth technologies

Smooth technologies are a common assumption in economics. Indeed, the first results
on equilibria with increasing returns are in this framework (see Mantel 1979; Beato
1982; Bonnisseau andCornet 1990a) and even thosewith infinitelymany commodities

13 We remark that in the current paper, τ is the strong topology unlike in Bonnisseau and Fuentes (2020)
where τ denotes the weak one. Proposition 5.4 takes the particular case where τ is the norm topology.
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(Shannon 1996). It means that the production set is defined by an inequality involving
a differentiable transformation function, that is, for all z ∈ Z the technology is

Y j (z) = {ζ j ∈ L : f j (ζ j , z) ≤ 0}

where f j : L × L I∪J → R is a differentiable mapping. Let us consider the following
assumption:

Assumption SB (Smooth boundary)

1. f j is continuous for the σ × ∏
L I∪J σ -topology on L × L I∪J .

2. f j (·, z) is Gateaux differentiable on L .
3. ∇1 f j (ζ j , z) belongs to L∗+\{0} if ζ j ∈ ∂Y j (z) where ∇1 f j (ζ j , z) is the gradient

of f j with respect to ζ j .
4. ∇1 f j (ζ j , z) · e > 0 for every ζ j ∈ ∂Y j (z).
5. Let H be a σ(L, L∗)-equicontinuous14 subset of L∗. For all (ζ j , z) ∈ ∂Y j (z) ×

L I∪J and for all β > 0 there exists U ′ ∈ Vσ (0) such that ∇1 f j (ζ ′
j , z

′) −
∇1 f j (ζ j , z) ∈ βH for all (ζ ′

j , z
′) ∈ ({ζ j } +U ′) × ({z} +U ′I∪J

)
.

Proposition 5.6 If the production set Y j (·) is described by a transformation function
f j satisfying Assumption SB, then

ˆNY j (z)(ζ j ) ⊂ {ν ∈ τ − clL(e) : ∇1 f j (ζ j , z) · ν ≤ 0}◦

This means that for every π j ∈ ˆNY j (z)(y j ) there exists λ j > 0 such that the
restriction of π j to τ − clL(e) equals the restriction of λ j∇1 f j (ζ j , z) to τ − clL(e).
Of course, when e is a quasi-interior point of L+, L equals τ − clL(e) so one can say
that ˆNY j (z)(ζ j ) equals

{
λ∇1 f j (ζ j , z) : λ > 0

}
which is the Clarke´s normal cone by

Lemma 3.1 in Bonnisseau and Fuentes (2020).

6 Proof of the existence theorem

Let ((x̄i ), (ȳ j ), p̄) be an equilibrium of E|L(e), which exists from the result in Sect. 4.
We shall prove that there exists a positive linear and continuous extension of p̄ to
the whole space L , π̄ , such that ((x̄i ), (ȳ j ), π̄) is a marginal pricing equilibrium of
the economy E . Throughout the proof, we make use of the following Lemma whose
first part comes from Podczeck (1996) and the second one is due to Florenzano and
Marakulin (2001).

Lemma 6.1 (Lemma 2, Podczeck 1996; Lemma 2.1, Florenzano andMarakulin 2001)
Let K be a linear subspace of L. Let A and B be convex subsets of L with A τ -open,
B ⊂ K and such that A ∩ B �= ∅. Let f be any linear functional on K satisfying for
some x ∈ τ − cl(A) ∩ B, f · x ≤ f · x ′, for all x ′ ∈ A ∩ B. Then,

14 That is, for every real number a > 0 there exists U ∈ Vσ (0) such that g(U ) ⊂ (−a, a) for all g ∈ H .
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18 J.-M. Bonnisseau, M. Fuentes

1. There exist f1 and f2 with f1 ∈ L∗ and f2 a linear functional on L such that
f = f1|K + f2|K and

f1 · x ≤ f1 · x ′, ∀x ′ ∈ A and f2 · x ≤ f2 · x ′, ∀ x ′ ∈ B

2. Let K+ = K ∩ L+. If B + K+ ⊂ B then f2|K ≥ 0, f1|K ≤ f and f · (x ′ − x) =
f1 · (x ′ − x) for each x ′ ∈ B such that x ′ ≤ x.

Claim 6.2 For each j ∈ J , there exists π j ∈ L∗+ such that π j |L(e) = p̄.

Proof From Lemma 4.1(2),
(−� j

)∩L(e) ⊂ T̂Y e
j (z̄)

(ȳ j ) and−e ∈ (−� j
)∩L(e) �= ∅.

From the equilibrium conditions in L(e), p̄ ∈ N̂Y e
j (z̄)

(ȳ j ), so, for all ζ ∈ (−� j
)∩L(e),

− p̄ · ζ ≥ 0 since N̂Y e
j (z)

(ȳ j ) =
[
T̂Y e

j (z̄)
(ȳ j )

]◦
. Taking A = −� j , B = K = L(e) and

x = 0, we remark that the assumptions of Lemma 6.1 are satisfied, so there exist π̂ j

and π̂ ′
j such that π̂ j is τ -continuous on L , p̄ = π̂ j |L(e) + π̂ ′

j |L(e), π̂ j · ζ ≥ 0 for all
ζ ∈ −� j and π̂ ′

j · x ≥ 0 for all x ∈ L(e). From the last assertion, we deduce that
π̂ ′
j |L(e) = 0 since L(e) is a linear subspace, so p̄ = π̂ j |L(e).

Let π j := π̂+
j = π̂ j ∨ 0. π j is continuous since L∗ is a sub-lattice of L∼ by

assumption. Since p̄ ∈ L∗(e)+ we prove that π j |L(e) = p̄. Indeed, let x ∈ L(e)+. By
the Riesz–Kantorovich formula, π j · x = sup

{
π j · x̃ : 0 ≤ x̃ ≤ x

}
. Since 0 ≤ x̃ ≤ x

implies x̃ ∈ L(e)+, π j · x = sup { p̄ · x̃ : 0 ≤ x̃ ≤ x} and the supremum is p̄ · x since
p̄ ∈ L∗(e)+. For all ζ ∈ L(e), one has ζ = ζ+ − ζ− and both belong to L(e)+,
then one deduces that p̄ · ζ = π j · ζ . Consequently π j is a continuous extension of p̄
belonging to L∗+. ��
Claim 6.3 For all i ∈ I , there exists πi ∈ L∗ such that πi |L(e) ≤ p̄, πi · x̄i ≤ πi · x ′

i
for all x ′

i ∈ τ − cl
({x ′

i ∈ Xi (z) : x ′
i �i,z x̄i } + �i

)
and πi · (ζi − x̄i ) = p̄ · (ζi − x̄i )

for all ζi ∈ Kx̄i
15 such that ζi ≤ x̄i .

Proof By Assumption C(6) (1), there exists a set Rx̄i , radial at x̄i such that({x ′
i ∈ Xi (z) : x ′

i �i,z x̄i } + �i
) ∩ Kx̄i ∩ Rx̄i ⊂ {x ′

i ∈ Xi (z) : x ′
i �i,z x̄i }

hence, p̄ · x̄i < p̄ · xi for all xi ∈ ({x ′
i ∈ Xi (z) : x ′

i �i,z x̄i } + �i
) ∩ Kx̄i ∩ Rx̄i

by the equilibrium conditions in E|L(e). Since Rx̄i is radial, Kx̄i is convex16 and
{x ′

i ∈ Xi (z) : x ′
i �i,z x̄i } is radial at x̄i from Assumption C(3), p̄ · x̄i <

p̄ · xi for all xi ∈ ({x ′
i ∈ Xi (z) : x ′

i �i,z x̄i } + �i
) ∩ Kx̄i . Indeed, take xi ∈({

x ′
i ∈ Xi (z) : x ′

i �i,z x̄i
} + �i

)∩Kx̄i . There exists λx̄i > 0 such that (1−λ)x̄i +λxi
belongs to Kx̄i ∩ Rx̄i for all 0 ≤ λ ≤ λx̄i . Furthermore, there exists ξ ∈ �i and
x ′′
i ∈ {

x ′
i ∈ Xi (z) : x ′

i �i,z x̄i
}
such that xi = x ′′

i +ξ . It follows that (1−λ)x̄i +λxi =
(1− λ)x̄i + λx ′′

i + λξ ∈ {
x ′
i ∈ Xi (z) : x ′

i �i,z x̄i
} + �i by Assumption C(3). Hence,

(1 − λ)x̄i + λxi belongs to
({
x ′
i ∈ Xi (z) : x ′

i �i,z x̄i
} + �i

) ∩ Kx̄i ∩ Rx̄i . From the
above inequality, p̄ · [(1 − λ)x̄i + λxi ] > p̄ · x̄i so p̄ · xi > p̄ · x̄i .
15 Kx̄i ⊂ L(e) comes from Assumption C(6).
16 Kx̄i is convex since it is a sublattice of L(e) and Kx̄i +L(e)+ ⊂ Kx̄i . Indeed, let ξ and ξ ′ in Kx̄i ⊂ L(e).
ξ ∧ ξ ′ belongs to Kx̄i since Kx̄i is a sublattice. For every t ∈ (0, 1), tξ + (1 − t)ξ ′ ≥ ξ ∧ ξ ′ and thus
tξ + (1 − t)ξ ′ belongs to Kx̄i + L(e)+ ⊂ Kx̄i .
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By applying Lemma 6.1(1) and (2) to K = L(e), A = {x ′
i ∈ Xi (z) | x ′

i �i,z

x̄i } + �i and B = Kx̄i , we deduce the existence of πi ∈ L∗ such that πi |L(e) ≤ p̄
and πi · x̄i ≤ πi · xi for all xi ∈ τ − cl

({
x ′
i ∈ Xi (z) : x ′

i �i,z x̄i
} + �i

)
. Furthermore,

πi · (ζi − x̄i ) = p̄ · (ζi − x̄i ) for all ζi ∈ Kx̄i such that ζi ≤ x̄i . ��
Claim 6.4 Let π̄ = (∨i∈Iπi ) ∨ (∨ jπ j ). Then π̄ ∈ L∗+ and π̄|L(e) = p̄.

Proof π̄ ∈ L∗ since L∗ is a sublattice of L∼. Furthermore, π̄ > 0 since π j > 0 for
all j . Let ζ be any vector in L(e). Then ζ+ and ζ− belong to L(e) since it is an ideal.
Since π̄ ≥ π j for some j , from Claim 6.3, one deduces that π̄ ·ζ+ ≥ π j ·ζ+ = p̄ ·ζ+.

From the Riesz–Kantorovich formula, π̄ · ζ+ is the supremum of
∑

i∈I πi · ζi +∑
j∈J π j ·ζ j over the elements ((ζi ), (ζ j )) ∈ L I∪J+ such that

∑
i∈I ζi+∑

j∈J ζ j ≤ ζ+.
From Claims 6.3 and 6.4, π j · ζ j = p̄ · ζ j and πi · ζi ≤ p̄ · ζi . So, since p̄ ∈ L∗(e)+,
∑

i∈I πi ·ζi+∑
j∈J π j ·ζ j ≤ p̄·

(∑
i∈I ζi + ∑

j∈J ζ j

)
≤ p̄·ζ+.Hence, π̄ ·ζ+ ≤ p̄·ζ+

and together with the inequality above, we conclude that π̄ ·ζ+ = p̄ ·ζ+. Analogously,
π̄ · ζ− = p̄ · ζ−. Thus, π̄ · ζ = p̄ · ζ and the proof is complete. ��
Claim 6.5 π̄ ∈ ⋂

j∈J

ˆNY j (z̄)(ȳ j ).

Proof This is a direct consequence of Lemma 4.1(1) and Claim 6.4 together with

the fact that p̄ ∈ N̂Y e
j (z̄)

(ȳ j ) =
[
T̂Y e

j (z̄)
(ȳ j )

]◦
. Indeed, let ν ∈ T̂Y j (z̄)(ȳ j ). Then,

from the definition of the tangent cone and Lemma 4.1(1), ν = ν1 + ν2 with ν1 ∈
TY j (z)(y j ) ∩ L(e) ⊂ T̂Y e

j (z)
(y j ) and ν2 ∈ −L+. Since π̄|L(e) = p̄ ∈ N̂Y e

j (z)
(y j ) and

π̄ > 0, one gets π̄ · ν1 ≤ 0 and π̄ · ν2 ≤ 0. Hence, π̄ · ν = π̄ · ν1 + π̄ · ν2 ≤ 0 and
the claim is proved. ��
Claim 6.6 π̄ · x̄i = ri (π̄ ·ω, (π̄ · ȳ j )) and if xi �i,z̄ x̄i then π̄ · xi > ri (π̄ ·ω, (π̄ · ȳ j )).

Proof By the Survival Assumption (SA), π̄ ·
(∑

j∈J ȳ j + ω
)

> 0. From Assumption

C(5),
∑

i∈I ri (π̄ ·ω, (π̄ · ȳ j )) > 0 and ri (π̄ ·ω, (π̄ · ȳ j )) > 0 for all i ∈ I . Furthermore,
π̄ · x̄i = ri ( p̄ · ω, ( p̄ · ȳ j )) = ri (π̄ · ω, (π̄ · ȳ j )) follows since ((x̄i )i∈I , (ȳ j ) j∈J , p̄) is
an equilibrium in E|L(e), π̄|L(e) = p̄ and the preferences �e

i,z̄ are locally nonsatiated
thanks to Assumptions C(3) and C(6).

Let xi ∈ Xi (z̄) such that xi �i,z̄ x̄i and Rx̄i and Kx̄i as given by Assumption C(6).
Since Rx̄i is radial at x̄i and Xi (z̄) is convex, there exists λ̄ ∈ (0, 1) such that for
λ ∈ (0, λ̄], x̃i = (1 − λ)x̄i + λxi ∈ Xi (z̄) ∩ Rx̄i . By Assumption C(3), x̃i �i,z̄ x̄i .
Due to E-properness relative to L(e) (C (6.2)), x̃i ∈ Kx̄i + L+, that is, there exists
ζi ∈ Kx̄i such that ζi ≤ x̃i . Let ζ ′

i = x̄i ∧ ζi . ζ ′
i ∈ Kx̄i since Kx̄i is a sublattice and

x̄i ∈ Kx̄i . By Claim 6.3, it follows that πi · x̃i ≥ π · x̄i and πi · (x̄i −ζ ′
i ) = p̄ · (x̄i −ζ ′

i ).
By Claim 6.4, π̄|L(e) = p̄, so π̄ · (x̄i − ζ ′

i ) = p̄ · (x̄i − ζ ′
i ). Since π̄ ≥ πi , we get

π̄ · (
x̃i − ζ ′

i

) ≥ πi · (
x̃i − ζ ′

i

) ≥ πi · (
x̄i − ζ ′

i

)

= p̄ · (
x̄i − ζ ′

i

) = π̄ · (x̄i − ζ ′
i )

Consequently, π̄ · x̃i ≥ π̄ · x̄i whence, π̄ · xi ≥ π̄ · x̄i .
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20 J.-M. Bonnisseau, M. Fuentes

Let us suppose that π̄ ·xi = π̄ ·x̄i . Since π̄ ·x̄i > 0, π̄ ·(γ xi ) < π̄ ·x̄i for allγ ∈ (0, 1).
Notice that (x̄i , xi , z̄) /∈ Gi and γ xi belongs to Xi (z) because this set is convex
and 0 belongs to it. Hence, Assumption C(4) implies that for γ close enough to 1,
(x̄i , γ xi , z̄) /∈ Gi and thus, γ xi �i,z̄ x̄i . By the previous result, π̄ ·(γ xi ) ≥ π̄ · x̄i which
contradicts the above converse inequality. Consequently, π̄ · xi > ri (π̄ · ω, (π̄ · ȳ j ))
and the proof is complete. ��

Proofs

Proposition 3.1

It suffices to show that T C
Y j (z)

(y j ) is a cone for all C ∈ Vτ (0) since L(e) is a cone.

Let C ∈ Vτ (0) and ν ∈ T C
Y j (z)

(y j ). Then there exists η > 0 such that for all r > 0

there exists U ∈ Vσ (0) and ε > 0 such that for all z′ ∈ ({z} + (C ∩U )I∪J ), for all
y′
j ∈ ({y j } + C ∩U

)∩Y j (z′) and for all t ∈ (0, ε) there exists ξ ∈ r [−e, e] such that
y′
j + t(ν + η(y j − y′

j ) + ξ) ∈ Y j (z′).
Let κ > 0, ηκ = κη and Uκ and εκ be the open neighbourhood and the

parameter associated for ν to r
κ
. Hence, for all z′ ∈ ({z} + (C ∩Uκ)I∪J ), for all

y′
j ∈ ({y j } + C ∩Uκ

) ∩ Y j (z′) and for all t ∈ (0, εκ), there exists ξ ∈ r
κ
[−e, e] such

that y′
j + t(ν + η(y j − y′

j ) + ξ) ∈ Y j (z′). Then, for all t ∈ (
0, εκ

κ

)
, κt ∈ (0, εκ), so,

for all z′ ∈ ({z} + (C ∩Uκ)I∪J ), for all y′
j ∈ ({y j } + C ∩Uκ

) ∩ Y j (z′), there exists
ξ ∈ r

κ
[−e, e] such that y′

j +κt(ν+η(y j − y′
j )+ξ) = y′

j +t(κν+κη(y j − y′
j )+κξ) ∈

Y j (z′). Since κξ ∈ r [−e, e], this shows that κν ∈ T C
Y j (z)

(y j ) with the parameter ηκ

and Uκ and εκ

κ
associated to r . ��

Lemma 3.3

1. Let z ∈ Z and y j ∈ ∂Y j (z). Let us assume that Condition P(4) is satisfied. Let
C ∈ Vτ (0) and η = 1. Let r > 0 and choose δ > 0 smaller than r . Let Û
be the σ -open set and ε > 0 as given by Assumption P(4). Then, for all z′ ∈(
{z} + (C ∩ Û )I∪J

)
, for all y′

j ∈
(
{y j } + C ∩ Û

)
∩ Y j (z′) and for all t ∈ (0, ε),

the vector t(y j − δe) + (1 − t)y′
j = y′

j + t(y j − y′
j − δe) ∈ Y j (z′), which

means 0 ∈ T C
Y j (z)

(y j ). Since this is true for all neighbourhood C, we conclude that
0 ∈ TY j (z)(y j ).
For the converse, let z ∈ Z , y j ∈ ∂Y j (z) and let us assume that 0 ∈ TY j (z)(y j ).
Let C ∈ Vτ (0) and δ > 0. So, using the free-disposal Assumption on Y j (z′)
and the fact that 0 ∈ TY j (z)(y j ), there exists η > 0 and for r = δη > 0, there
exists U ∈ Vσ (0) and ε > 0, such that for all z′ ∈ ({z} + (C ∩U )|I |+|J |), for all
y′
j ∈ ({y} + C ∩U ) ∩ Y j (z′) and for all t ∈ (0, ε)

y′
j + t(η(y j − y′

j ) − re) = (1 − tη)y′
j + tη(y j − δe) ∈ Y j (z

′)
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So Assumption P(4) is satisfied with Û = U and ε′ = ηε.
2. Let z ∈ L I∪J and y j ∈ ∂Y j (z). Since L is finite dimensional, the two topolo-

gies τ and σ coincide with the standard norm topology and L+ has a nonempty
interior containing e. Let C be a neighbourhood of 0 and δ > 0. Let us con-
sider the neighbourhood of 0, Û = {−δe} + intL+ and ε = 1. Thus, for all

z′ ∈
(
{z} + (C ∩ Û )I∪J

)
, for all y′

j ∈ Y j (z′) ∩
(
{y j } + (C ∩ Û )

)
and for all

t ∈ (0, 1), the vector t(y j − δe) + (1 − t)y′
j = y′

j − t( y′
j − y j + δe) belongs to

Y j (z′) from the free-disposal assumption since y′
j − y j + δe belongs to L+. ��

Lemma 4.1

1. Let ν ∈ TY j (z)(y j ) ∩ L(e) then ν ∈ T C
Y j (z)

(y j ) ∩ L(e) for all C ∈ Vτ (0). Let

ρ > 0. Since order intervals are τ -bounded, there exists C′ ∈ Vτ (0) such that
Be

ρ ⊂ C′. Hence, since ν ∈ T C′
Y j (z)

(y j ), there exists η > 0 such that for all r > 0,

there exists U ∈ Vσ (0) and ε > 0 such that for all z′ ∈ ({z} + (Be
ρ ∩U )I∪J

) ⊂
({z} + (C′ ∩U )I∪J

)
, for all y′

j ∈ ({y j } + Be ∩U
)∩Y j (z′) ⊂ ({y j } + C′ ∩U

)∩
Y j (z′) and for all t ∈ (0, ε), there exists ξ ∈ r [−e, e] such that y′

j + t(ν +η(y j −
y′
j ) + ξ) ∈ Y j (z′) ∩ L(e). Hence, ν ∈ T̂ ρ

Y e
j (z)

(y j ) and since it is true for all ρ > 0,

ν ∈ T̂Y e
j (z)

(y j ).

2. By Lemma 3.3(1), 0 belongs toTY j (z)(y j ) and then to T̂Y e
j (z)

(y j ) = ⋂

ρ>0
T̂ ρ

Y e
j (z)

(y j )

by the first part of the proof. Let ρ > 0. Let η > 0 be the parameter associated to
0 in the definition of T̂ ρ

Y j (z)
(y j ). Let r > 0 and let U ∈ Vσ (0) and ε > 0 be the

neighbourhood and the parameter associated to r in the definition of T̂ ρ

Y j (z)
(y j ).

Let Vj as given by Assumption P(5) at y j ∈ Y j (z). Finally, let V ′
j ∈ Vσ (0) such

that V ′
j + V ′

j + V ′
j ⊂ Vj .

Let U ′ = U ∩ V ′
j . We note that there exists n0 ∈ N such that η(y j − y′

j ) + ξ ∈
n0[−e, e] for all y′

j ∈ ({y j } + Be
ρ ∩U ′) ∩ Y j (z′) and ξ ∈ r [−e, e]. Since [0, e] is

σ -compact and therefore σ -bounded, there exists λ > 0 such that n0[−e, e] ⊂ λV ′
j .

Note that y′
j ∈ ({y j } + Be

ρ ∩U ′) implies that y′
j ∈ {y j } + V ′

j and, for all 0 < t < 1
λ
,

t(η(y j − y′
j ) + ξ) ∈ V ′

j since V
′
j is circled.

Now, 0 ∈ TY j (z)(y j ) implies that for all z′ ∈
(
{z} + (

Be
ρ ∩U ′)|I |+|J |), for all

y′
j ∈ ({y j } + Be

ρ ∩U ′) ∩ Y j (z′) and for all t ∈ (0, ε), there exists ξ ∈ r [−e, e] such
that y′

j + t(η(y j − y′
j ) + ξ) ∈ Y j (z′) ∩ L(e).

Let ζ ∈ (−� j
) ∩ L(e). There exists ε′ > 0 such that tζ ∈ V ′

j for all

t ∈ (0, ε′). Consequently, for all 0 < t < ε′′ < min
{
ε, ε′, 1

λ

}
, we have

y′
j + t(η(y j − y′

j )+ ξ + ζ ) ∈
(
{y j } + V ′

j + V ′
j + V ′

j

)
∩ L(e) ⊂ ({y j } + Vj

)∩ L(e).

Furthermore, since y′
j+t(η(y j−y′

j )+ξ)+tζ ∈
(
Y j (z′) ∩

(
{y j } + V ′

j + V ′
j

))
−� j ⊂
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(
Y j (z′) ∩ ({y j } + Vj

)) − � j , we deduce by Assumption P(5) that y′
j + t(ζ + η(y j −

y′
j ) + ξ) ∈ Y j (z′) ∩ L(e). So, for the parameter ρ taken η as given above, and for all

r > 0, taken U ′ and ε′′, we have shown that ζ ∈ T ρ

Y e
j (z)

(y j ). Since this holds for all

ρ > 0, we have the desired result. ��

Lemma 4.2

Wewant to prove that for all (p, z, t) ∈ L(e)∗\{0}× Ze ×R+, if (y j ) ∈ Ae(ω+ te, z)

and p ∈ ∩ j∈J N̂Y e
j (z)

(y j ), it follows that p ·
(∑

j∈J y j + ω + te
)

> 0. By Claim 6.2,

there existsπ j ∈ L∗+ such thatπ j |L(e) = p. Using the same argument as in the proof of

Claim 6.4, π = ∨ j∈Jπ j ∈ L∗+ and π|L(e) = p. FromClaim 6.5, π ∈ ∩ j∈J ˆNY j (z)(y j ).
Hence, (π, z, t) ∈ L∗+\{0} × Z × R+ and (y j ) ∈ A(ω + te, z). So Assumption SA

implies that 0 < π ·
(∑

j∈J y j + ω + te
)

= p ·
(∑

j∈J y j + ω + te
)
and the lemma

is proved. ��

Proposition 5.2

Let

PM(y j , z) = {π ∈ L∗ : π · y j ≥ π · y′
j ∀ y′

j ∈ Y j (z)}

be the profit maximisation rule.

1. Let π ∈ PM(y j , z). By free disposal, it follows that π ≥ 0. If ν ∈ TY j (z)(y j )
then, from the definition of the tangent cone with z′ = z and y′

j = y j , for all r > 0
there exists ε > 0 such that for t ∈ (0, ε), y j + t(ν − re) ∈ Y j (z). Consequently
π · (y j + t(ν − re)) ≤ π · y j , which implies π · ν ≤ 0 when r tends to 0.
Consequently, for every ν′ ∈ TY j (z)(y j ) ∩ L(e) − L+ we get π · ν′ ≤ 0 whence,

π ∈ ˆNY j (z)(y j ) and PM(y j , z) ⊂ ˆNY j (z)(y j ).

2. We first prove that for all π ∈ ˆNY j (z)(y j ), π · y′
j ≤ π · y j for all y′

j ∈ Y j (z)∩L(e).

Indeed, let ζ j ∈ Y j (z). We prove that for all C ∈ Vτ (0), ζ j − y j ∈ T C
Y j (z)

(y j ).

Let η = 1, r > 0, 0 < δ < r , ε = 1. By Assumption P(3), there exists V ′ ∈
Vσ (0) such that ζ j − δe ∈ Y j (z′) for all z′ ∈ {z} + (V ′)I∪J . Then, for z′ ∈(
{z} + (

C ∩ V ′)I∪J
)
, for y′

j ∈ ({y j } + C ∩ V ′) ∩ Y j (z′) and t ∈ (0, 1), t(ζ j −
δe) + (1 − t)y′

j ∈ Y j (z′) since Y j (z′) is convex. But this means that y′
j + t(ζ j −

δe − y j + (y j − y′
j )) ∈ Y j (z′). Since −δe ∈ r [−e, e], we deduce that ζ j − y j ∈

T C
Y j (z)

(y j ). Since this is true for all C ∈ Vτ (0), ζ j − y j ∈ ⋂

C∈Vτ (0)
T C
Y j (z)

(y j ) and

thus (Y j (z) − {y j }) ∩ L(e) ⊂ ⋂

C∈Vτ (0)
T C
Y j (z)

(y j ) ∩ L(e) ⊂ T̂Y j (z)(y j ). Since y j

belongs to L(e) this implies that for every π ∈ ˆNY j (z)(y j ), π · y′
j ≤ π · y j for all

y′
j ∈ Y j (z) ∩ L(e).
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Weproceed now to show that for everyπ j in ˆNY j (z)(y j ) such thatπ j ·γ j ≥ 0 for all
γ j ∈ � j , it follows that π j · y′

j ≤ π j · y j for all y′
j ∈ Y j (z). Let y′

j ∈ Y j (z). Let Ryj

as given byAssumption (UOB). There exists 0 < λ ≤ 1 such that (1−λ)y j+λy′
j ∈

Ryj whence in Y j (z)∩ Ryj since Y j (z) is convex. LetW be a τ -neighbourhood of
0. By Assumption (UOB), there exist w ∈ W , ζ j ∈ Y j (z)∩ L(e) and ξ ∈ � j such
that (1− λ)y j + λy′

j + λw ≤ ζ j − ξ . By the above result, π j · (ζ j − ξ
) ≤ π j · y j

sinceπ j ·(−ξ) ≤ 0. Hence,π j ·
(
(1 − λ)y j + λy′

j + λw
)

≤ π j ·y j , which implies

λπ j ·
(
(y′

j − y j ) + w
)

≤ 0. Since λ > 0 and W is an arbitrary neighbourhood of

0, this implies π j · y′
j ≤ π j · y j . Then we proved that π j ∈ PM(y j , z).

We finish the proof by considering π ′
j such that π ′

j ≥ π j and π ′
j |L(e) = π j |L(e).

Let y′
j ∈ Y j (z). Assumption (UOB) implies that Y j (z) ⊂ τ − cl (L(e) − L+), so,

for everyW in Vτ (0) there existsw ∈ W such that y′
j +w ≤ ζ for some ζ ∈ L(e).

Without any loss of generality we may assume that ζ ≥ y j . Hence,
π ′
j · (y′

j + w − y j ) + π j · (y j − ζ ) = π ′
j · (y′

j + w − y j ) + π ′
j · (y j − ζ ) =

π ′
j · (y′

j + w − ζ ) ≤ π j · (y′
j + w − ζ ) ≤ π j · (y j + w − ζ ).

Consequently, π ′
j · (y′

j + w − y j ) ≤ π j · w, which implies π ′
j .y

′
j ≤ π ′

j .y j since
W is an arbitrary neighbourhood of 0. ��

Lemma 5.3

Let π ∈ L∗\{0} such that π|L(e) ∈ [T̂Y e
j (z)

(y j )]◦. We prove below that TY j (z)(y j ) is a

subset of the τ -closure of T̂Y e
j (z)

(y j ). Then, for all ν ∈ TY j (z)(y j ), π · ν ≤ 0, which

implies that π ∈ [
TY j (z)(y j )

]◦.
Let ν ∈ TY j (z)(y j ). We prove that for all β > 0 and for allW ∈ Vτ (0), there exists

w ∈ W such that ν−βe+w ∈ T̂Y e
j (z)

(y j ). LetW ′ ∈ Vτ (0) such that−βe+W ′ ⊂ −� j .
Let ρ > 0. There exists C ∈ Vτ (0) such that [−ρe, ρe] ⊂ C. Since ν ∈ TY j (z)(y j ) ⊂
T C
Y j (z)

(y j ), there exists η > 0 such that for all r > 0, there exists U ∈ Vσ (0) and

ε > 0 such that for all z′ ∈ ({z} + (C ∩U )I∪J ) for all y′
j ∈ ({y j } + C ∩U

) ∩ Y j (z′)
and for all t ∈ (0, ε), there exists ξ ∈ r [−e, e] such that

y′
j + t(ν + η(y j − y′

j ) + ξ) ∈ Y j (z
′) (7)

LetU ′ ∈ Vτ (0) such thatU ′ +U ′ +U ′ +U ′ +U ′ ⊂ Vj ∩U where Vj comes from
Properness Assumption P(5). Since L(e) is τ -dense in L , there existsw ∈ W∩W ′∩U ′
such that ν + w ∈ L(e). Furthermore, t(−βe + w) ∈ −� j for all t > 0. Since U ′ is
absorbing, there exist α > 0 and γ > 0 such that ν − βe ∈ αU ′ and ν ∈ γU ′. Since
order intervals are τ -bounded, there exists δ > 0 such that−r [e, e] ⊂ δU ′. Let ε′ > 0
strictly smaller than 1, ε, 1

α
, 1

γ
, 1

η
and 1

δ
. Hence, by invoking (7) above, we deduce

that for all z′ ∈
(
{z} + (

C ∩U ′)I∪J
)
for all y′

j ∈ ({y j } + C ∩U ′)∩Y j (z′) and for all
t ∈ (0, ε′), there exists ξ ′ ∈ r [−e, e] such that y′

j + t(ν + η(y j − y′
j ) + ξ ′) ∈ Y j (z′).
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We remark that y′
j ∈ {y j } + U ′ and from the choice of ε′, tν, tη(y j − y′

j ) and tξ ′
belong toU ′. So, y′

j + t(ν+η(y j − y′
j )+ξ ′) ∈ {y j }+U ′ +U ′ +U ′ +U ′ ⊂ {y j }+Vj .

Then, y′
j + t(ν + η(y j − y′

j ) + ξ ′) + t(−βe + w) ∈ (
({y j } + Vj ) ∩ Y j (z′)

) − � j .
Again, from the choice of ε′, t(ν − βe) and tw belong to U ′. So, y′

j + t(ν +
η(y j − y′

j ) + ξ ′) + t(−βe+ w) = y′
j + t(ν − βe+ w + η(y j − y′

j ) + ξ ′) belongs to
{y j } +U ′ +U ′ +U ′ +U ′ +U ′ ⊂ {y j } + Vj .

So, if y′
j ∈ L(e)

y′
j + t(ν + η(y j − y′

j ) + ξ ′) + t(−βe + w) ∈ [(({y j } + Vj
) ∩ Y j (z

′)
) − � j

]

∩ ({y j } + Vj
) ∩ L(e)

Hence, by σ -locally τ -uniformly properness relative to L(e) at y j , we conclude
that

y′
j + t(ν − βe + w + η(y j − y′

j ) + ξ ′) ∈ Y e
j (z

′)

which means that ν −βe+w ∈ T̂ ρ

Y e
j (z)

(y j ). Since T̂Y e
j (z)

(y j ) = ⋂

ρ>0
T̂ ρ

Y e
j (z)

(y j ), we get

that ν − βe + w ∈ T̂Y e
j (z)

(y j ). ��

Proposition 5.4

The results follow since if we consider the norm-topology on L , the collection Vτ (0) is
the collection of open ball of center 0 and radiusρ > 0.Hence, the normal cone defined
in Bonnisseau and Fuentes (2020) coincides with

[
TY j (z)(y j )

]◦. From Lemma 5.3, the
equilibrium given by Theorem 5 is then a marginal pricing equilibrium in the sense of
Bonnisseau and Fuentes (2020). The proof of the remaining items is straightforward.

��

Lemma 5.5

It suffices to show thatY j (z) ⊂ τ−cl
[
Y j (z) ∩ L(e) − � j

]
since τ−cl (L(e) − L+) =

L . Let y j ∈ Y j (z) and let Vj the 0-neighbourhood given by the definition of σ -locally
τ -uniformly-properness relative to L(e) at y j ∈ Y j (z). Let Wj be a neighbourhood
in Vτ (0). Let W ′

j be a neighbourhood in Vτ (0) such that W ′
j + W ′

j ⊂ Wj ∩ Vj and
{−e} + W ′

j ⊂ −� j . Since W ′
j is absorbing and circled, there exists 0 < δ < 1

such that −δe belongs to W ′
j . Since L(e) is τ -dense in L there exists a vector u

in W ′
j such that y j − δe + δu belongs to L(e). Since −δe + δu belongs to −� j ,

we conclude that y j − δe + δu ∈ [{
y j

} − � j
] ∩ L(e) ∩

(
{y j } + W ′

j + W ′
j

)
⊂

[(
({y j } + Vj ) ∩ Y j (z)

) − � j
] ∩ L(e) ∩ ({y j } − Vj ). Hence, by Assumption P(5) on

properness with z′ = z, it follows that y j − δe + δu ∈ Y j (z). Since W ′
j + W ′

j ⊂ Wj ,

we have y j − δe + δu ∈ {y j } + Wj , hence
({y j } + Wj

) ∩ Y j (z) ∩ L(e) �= ∅. Since
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this is true for any neighbourhood Wj in Vτ (0), y j ∈ τ − cl
[
Y j (z) ∩ L(e)

] ⊂ τ −
cl

[
Y j (z) ∩ L(e) − � j

]
. ��

Proposition 5.6

We show first that {ν ∈ L : ∇1 f j (ζ j , z) · ν ≤ 0} ⊂ TY j (z)(ζ j ). By SB (2) and (3),
∇1 f j (ζ j , z) ∈ L∗+\{0} and ∇1 f j (ζ j , z) · e > 0 respectively. Let ν ∈ L such that
∇1 f j (ζ j , z) · ν ≤ 0, C ∈ Vτ (0), η = 1 and r > 0. Since H is equicontinuous, there
exists U ∈ Vσ (0) such that

⋃

g∈H
g(U ) ⊂ (−1, 1) (Schaefer 1971, Theorem 4.1 (c), p.

83). Since U is absorbing, there exists α > 0 such that ν − r
2e ∈ αU . Let β > 0

such that β <
r∇1 f j (ζ j ,z)·e

4(α+1) . By SB (5), there exists U ′ ∈ Vσ (0) such that for all

(ζ ′
j , z

′) ∈ ({ζ j } +U ′) × ({z} + (U ′)I∪J
)
, ∇1 f j (ζ ′

j , z
′) − ∇1 f j (ζ j , z) ∈ βH .

Let the σ -neighbourhood of 0 defined by

U ′′ =
{

ζ ′
j ∈ L | ∇1 f j (ζ j , z) · ζ ′

j <
r∇1 f j (ζ j , z) · e

4

}

We claim that there existsU ′′′ ∈ Vσ (0) such thatU ′′′ +U ′′′ ⊂ U ′ andU ′′′ ⊂ U ∩U ′′.
Indeed, let U0 ∈ Vσ (0) such that U0 ⊂ U ∩ U ′ ∩ U ′′. Since U0 is convex, U0 =
1
2U0 + 1

2U0. Then it suffices to take U ′′′ = 1
2U0.

Since U ′′′ is absorbing, there exists γ > 0 such that ν − r
2e ∈ γU ′′′. Let

ε > 0 such that ε < 1
γ+1 . From the Mean Value Theorem for topological vec-

tor spaces (Khan 1997, Theorem 1, p. 2) for all z′ ∈
(
{z} + (

C ∩U ′′′)I∪J
)
, for all

ζ ′
j ∈ ({ζ j } + C ∩U ′′′) ∩ Y j (z′) and for all t ∈ (0, ε), there exists θ ∈ (0, 1) such that

ζ ′′
j = ζ ′

j + θ t
(
ν + ζ j − ζ ′

j − r
2e

)
belongs to

[
ζ ′
j , ζ

′
j + t

(
ν + ζ j − ζ ′

j − r
2e

)]
and

satisfies

f j
(
ζ ′
j + t

(
ν + ζ j − ζ ′

j − r

2
e
)

, z′
)

= f j (ζ
′
j , z

′) + t∇1 f j (ζ
′′
j , z

′)

·
(
ν + ζ j − ζ ′

j − r

2
e
)

Since θ < 1, from our choice of ε, it follows that θ t(ν − r
2e) ∈ U ′′′ and ζ ′

j =
θ t(ζ j − ζ ′

j ) = ζ j + (1− θ t)(ζ ′
j − ζ j ) ∈ U ′′′. So, ζ ′′

j ∈ {ζ j }+U ′′′ +U ′′′ ⊂ {ζ j }+U ′.
Hence, ∇1 f j (ζ ′′

j , z
′) − ∇1 f j (ζ j , z) ∈ βH . We remark that:

∇1 f j (ζ
′′
j , z

′) ·
(
ν + ζ j − ζ ′

j − r

2
e
)

= (∇1 f j (ζ
′′
j , z

′) − ∇1 f j (ζ j , z))

·
(
ν + ζ j − ζ ′

j − r

2
e
)

+ ∇1 f j (ζ j , z)

·
(
ν + ζ j − ζ ′

j − r

2
e
)
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Since ζ j − ζ ′
j ∈ U ′′′ and ν + ζ j − ζ ′

j − r
2e ∈ αU , ν + ζ j − ζ ′

j − r
2e ∈ αU +U ′′′ ⊂

αU + U = (α + 1)U since U is convex.17 Consequently, since ∇1 f j (ζ ′′
j , z

′) −
∇1 f j (ζ j , z) ∈ βH , (∇1 f j (ζ ′′

j , z
′) − ∇1 f j (ζ j , z)) · (ν + ζ j − ζ ′

j − r
2e) < β(1 +

α) <
r∇1 f j (ζ j ,z)·e

4 . In addition, since ζ j − ζ ′
j ∈ U ′′′ ⊂ U ′′ and ∇1 f j (ζ j , z) · ν ≤ 0,

∇1 f j (ζ j , z) ·
(
ν + ζ j − ζ ′

j − r
2e

)
≤ r∇1 f j (ζ j ,z)·e

4 − r∇1 f j (ζ j ,z)·e
2 = − r∇1 f j (ζ j ,z)·e

4 .

Consequently, ∇1 f j (ζ ′′
j , z

′) ·
(
ν + ζ j − ζ ′

j − r
2e

)
≤ 0. Since f (ζ ′

j , z
′) ≤ 0, we get

f
(
ζ ′
j + t

(
ν + ζ j − ζ ′

j − r
2e

)
, z′

)
≤ 0, that is ζ ′

j + t
(
ν + ζ j − ζ ′

j − r
2e

)
∈ Y j (z′).

Hence, ν ∈ T C
Y j (z)

(ζ j ). Since this is true for all C ∈ Vτ (0), we have that ν ∈ TY j (z)(ζ j ).

Thus, {ν ∈ L(e) : ∇1 f j (ζ j , z) · ν ≤ 0} ⊂ T̂Y j (z)(ζ j ) whence, ˆNY j (z)(ζ j ) ⊂ {ν ∈
L(e) : ∇1 f j (ζ j , z) · ν ≤ 0}◦. Since ∇1 f j (ζ j , z) · e < 0, {ν ∈ L(e) : ∇1 f j (ζ j , z) · ν ≤
0}◦ = {ν ∈ τ − clL(e) : ∇1 f j (ζ j , z) · ν ≤ 0}◦. ��
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