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Abstract
Infectious diseases generate heterogeneous economic and health impacts within coun-
tries, thus it is essential to account for the spatial dimension in the design of epidemic
management programs. We analyze the optimal regional policy to contain the spread
of a communicable disease in a spatial framework with endogenous determination of
the regional borders characterizing which policy regime will prevail. Specifically, the
social planner needs to choose how to split the entire spatial economy in a number
of regions in which a different combination of lockdown and treatment measures will
be employed: in some region the only mitigation instrument will be treatment, while
in some other treatment will be accompanied by a partial lockdown. We characterize
the optimal solution both in an early and an advanced epidemic setting, showing that
according to the circumstances it may be convenient either to partition the spatial
economy in multiple regions with differentiated policies or to consider it a unique
region subject to the same policy measure. Moreover, we show that from a normative
perspective it is rather difficult to understand how to effectively determine the opti-
mal size of a lockdown area (and thus of the lockdown intensity) since this critically
depends on a number of factors, including the initial spatial distribution of disease
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prevalence, the amount of resources diverted from one region to the other, and the
possible spatio-temporal evolution of the disease.

Keywords Macroeconomic-epidemiological model · Optimal lockdown area ·
Regional policy · Spatio-temporal dynamics

JEL Classification C60 · E20 · I10

1 Introduction

The ongoing COVID-19 pandemic is ravaging the world showing more clearly than
ever than infectious diseases may generate devastating consequences both in industri-
alized and developing countries. By affecting the labor market, education attainment,
fertility, life expectancy and civil unrest, communicable diseases impact economic
activities through a variety of microeocnomic and macroeconomic channels (Bloom
et al. 2004; Acemoglu and Johnson 2007; Bleakley 2007; Adda 2016; Cervellati
et al. 2017; Klasing and Milionis 2020). Such effects generate important short run
implications determining the availability of resources to finance private and public
investments, ultimately harming the long run prospects of economic growth and devel-
opment (Boucekkine et al. 2009a, b; Lopez et al. 2006;WHO2009). This explains why
the eradication of infectious diseases is a primary social objective, as confirmed by the
inclusion in the UN’s 2030 sustainable development goals of specific targets related to
the elimination or reduction of HIV, tuberculosis, hepatitis, malaria, water-borne and
tropical illnesses (UN 2015). In order to contain the spread of communicable diseases
and mitigate their economic consequences a range of publicly-funded pharmaceuti-
cal measures, broadly categorized as forms of prevention (aiming to reduce disease
incidence) and treatment (aiming to reduce disease prevalence), have been employed
almost everywhere in the world. The role of such control policies along with their
effectiveness as mitigation strategies have been extensively discussed in the economic
epidemiology literature (Goldman andLightwood 2002;Gersovitz andHammer 2004;
Anderson et al. 2010; La Torre et al. 2023; see also the surveys by Philipson 2000;
Gersovitz and Hammer 2003). Less known is the impact of non-pharmaceutical policy
tools, recently employed on a large scale to fight the COVID-19 pandemic, which rep-
resent a special form of preventive measures that do not only improve epidemiological
outcomes but also deteriorate economic conditions.1

COVID-19 is a highly contagious virus-induced communicable disease for which
human-to-human transmission occurs though unprotected contacts between infective
and suceptible individuals (WHO 2020a). The epidemic has origin in China in late
2019 and the disease has spread rapidly both within and between countries reach-
ing a pandemic status in a few months, resulting thus far (in March 2023) in over

1 Non-pharmaceutical interventions have probably been employed for the first time during the sixth century
in the Roman empire to contain the buboinic plague epidemic (also known as Justinian’s plague), when
isolation and quarantine measures have been introduced to fight the diffusion of the disease (Sarris 2022).
Since then non-pharmaceutical interventions have been frequently used everywhere in the world to limit
the spread of deadly infectious diseases, such as the plague, cholera, ebola virus, SARS.
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430 million confirmed cases and nearly 6 million deaths globally (Dong et al. 2020).
On top of the traditional prevention and treatment measures, a variety of alternative
non-pharmaceutical policy actions have been taken all over the world to contain the
epidemic, including the introduction of social and physical distancing, the imposi-
tion of mobility constraints, and the adoption of voluntary isolations and lockdowns
(Cheng et al. 2020). Despite their beneficial effects in reducing the disease incidence
by decreasing the probability of transmission, such policy measures have also gener-
ated dramatic economic effects by imposing stringent restrictions on individuals and
firms’ behavior resulting in sharp reductions in GDP and sharp increases in job losses
worldwide. The impacts of the disease and the policymeasures implemented to contain
it have been highly diverse between countries and industries, with those extensively
relying on contact-intensive activities suffering the most (OECD 2020a). Understand-
ing thus how relying on non-pharmaceutical intervention tools to balance the needs
to preserve health conditions and to support economic activities in the shadow of
the COVID-19 pandemic is a current priority for policymakers, and our goal in this
paper is to contribute to this important issue by developing a normative approach to
characterize how policy measures should be determined in order to account for the
geographical features of economic and epidemiological outcomes.

Indeed, the impacts ofCOVID-19 have been highly heterogeneous not only between
countries but alsowithin countries, showing large differences both at regional and local
levels (Thomas et al. 2020; Amdaoud et al. 2021; Francetic and Munford 2021). For
example, in Italy, one of the countries suffering the most in Europe, the northern
regions have been hit hardest, with Lombardy (the wealthiest region in the country)
registering the largest number of cases and deaths (Bourdin et al. 2021). Therefore, in
order to limit the detrimental consequences on national economic activity, it is essen-
tial to understand how to discriminate the form and intensity of mitigation strategies
at subnational level, as the spatial dimension plays an important role in the design
of effective epidemic management programs (Della Rossa et al. 2020; Desmet and
Wacziarg 2021). Despite initially the policy response to the growing spread of the
disease has been uniformly applied at the national level, in an attempt to balance the
competing economic and epidemiological needs policymakers have opted more and
more frequently for policy heterogeneity (Kraemer et al. 2020; OECD 2020b). Sev-
eral measures, including mobility restrictions and lockdowns, have been implemented
with variable intensity and timing at the different subnational levels, trying to closely
relate their severity and durationwith the local level of disease prevalence (Cheng et al.
2020; Keystone 2020).2 All over the world, the implemented policies have been differ-
entiated at various (state, interregional, regional, municipal) levels and policymakers
have been facing the critical problem to determine at which specific geographical level
the alternative policy measures should be applied (OECD 2020b). In order to address

2 For example, in Italy the national territory has been divided in four main (red, orange, yellow and white)
areas, with the severity of the mitigation measures changing according to which zone a specific region or
municipality belongs to, such that while in some areas businesses have been allowed to regularly run and
individuals’ mobility to normally occur (apart from the need to ensure physical distancing and to enforce
the use of personal protective equipments), in others unnecessary businesses have been forced to closure
and individuals’ mobility completely forbidden (Sanfelici 2020).
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such an important research and policy question we develop a spatial macroeconomic-
epidemiological framework to characterize how policy measures should vary between
regions by endogenously determining the regional borders characterizingwhich policy
regime is applied within the different regions.

Specifically, we analyze a spatially structured optimal control problem in which
the national economy is represented by a continuum of locations distributed over a
closed interval, and the global policymaker chooses the regional borders delimiting
the area (i.e., the set of locations) in which a specific policy mix will prevail. In
particular, consistent with the COVID-19 policy response implemented in several
countries (such as Italy and China, just to mention two countries which have been
deeply exposed to the disease), the social planner needs to split the entire spatial
economy in a number of regions in which a different combination and intensity of
lockdownand treatmentmeasureswill be employed: in some region the onlymitigation
instrument will be treatment, while in some other treatment will be accompanied
by a partial lockdown whose intensity needs to be optimally determined. Moreover,
restrictions on individuals’ mobility are in place to prevent agents to travel between
regions, such that the different regions are isolated froman epidemiological perspective
since disease transmission may occur only within a single region. However from
an economic point of view the different regions are interconnected as the need to
finance extra-treatment in the regions with the largest degree of disease prevalence
is fulfilled by partly relying on the tax revenue collected in the other regions. By
determining the optimal size of the different regions the social planner affects not
only the number of locations in which the lockdown is applied but also the amount
of resources available for treatment in all locations. In this setting we characterize the
optimal lockdown policy alongwith the optimal size of the different regions, analyzing
how the results may change in early and advanced epidemic frameworks. We show
that according to the specific circumstances, it may be convenient either to partition
the spatial economy in multiple regions with differentiated policies or to consider
it as a unique region subject to the same policy measures. Moreover, we show that
from a normative perspective it is rather difficult to understand how to effectively
determine the optimal size of a lockdown area (and thus the lockdown intensity) since
this critically depends on a number of factors, including the initial spatial distribution
of disease prevalence, the amount of resources diverted from one region to the other,
and the possible spatio-temporal evolution of the disease.

Our paper mainly contributes to two different literature streams. Clearly our work
is closely related to themacroeconomic epidemiology literature which aims to analyze
the mutual implications between epidemics and aggregate economic activity (Goenka
and Liu 2012, 2019; Goenka et al. 2014; La Torre et al. 2020), in particular in the
light of the ongoing COVID-19 pandemic (Acemoglu et al. 2021; Alvarez et al. 2021;
Atkeson 2020; La Torre et al. 2021a, 2022; Eichenbaum et al. 2021). Most of these
studies adopt a normative point of view to determine the optimal policy to contrast
the spread of a communicable disease by accounting for the macroeconomic con-
sequences of different policies including the fact that the availability of resources
to finance them depends on the level of disease prevalence. With a few exceptions
which analyze the spatial implications of such epidemiological-macroeconomic issues
abstracting from the determination of the optimal dimension of a lockdown area (La
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Torre et al. 2022; Camacho et al. 2023), the discussion of the optimal policy at differ-
ent geographical levels has never been explored thus far, which is instead a distinctive
feature of our work aiming to characterize how mitigation policy should be differen-
tiated between regions and locations.3 Such a spatial focus closely relates our work
also to the macroeconomic geography literature which discusses the geographical
implications of economic activities, with particular emphasis on capital accumulation
(Camacho et al. 2008; Boucekkine et al. 2009a, b, 2013, 2019; La Torre et al. 2015)
and environmental problems (Brock and Xepapadeas 2008, 2010, 2017; de Frutos and
Martin-Herran 2019a, b; La Torre et al. 2019a, b, 2021b). These studies characterize
how the optimal economic policy may change across space to account for the even-
tual heterogeneity in the features of different locations and for the spatial externalities
associated with cross-location flows of resources, distinguishing eventually between
global and local approaches characterized by the presence or absence of regional
coordination, respectively. To the best of our knowledge, none of them allows for an
endogenous determination of the borders of the different geographical areas which
instead are assumed to be exogenously given, while the possibility to determine the
size of the geographical areas in which a specific policy is implemented is an important
peculiarity of our setup.

The paper proceeds as follows. Section2 discusses a spatial extension of the tradi-
tional SIS epidemiological model pointing out the differences arising from spatial and
a-spatial settings. Section3 presents our baseline two-regions spatial macroeconomic-
epidemiologicalmodel inwhich policymakers determine not only the optimal intensity
of the policy measures implemented but also the geographical areas in which specific
policies are employed. Section4 focuses on the early stage of the epidemic in which
the disease prevalence is rather limited and the disease dynamic equation can be
approximated by a linear partial differential equation, allowing thus for a closed-form
characterization of the solution. Section5 focuses on the advanced stage of the epi-
demic in which such an approximation is not applicable since disease prevalence is
no longer negligible, and thus the disease dynamics is described by a quadratic par-
tial differential equation, precluding the possibility to obtain closed-form solutions.
Section6 generalizes our analysis by considering three regions and different combi-
nations of lockdown and non-lockdown areas, showing how increasing the number of
regions in which to partition the entire spatial economy may affect our conclusions.
Section7 presents some extensions of our baseline two-regionmodel to account for the
effects of the policy measures implemented in order to control the spread of COVID-
19 and for some of its epidemiological peculiarities, showing that our framework can
account also for important realistic consequences of mitigation policies along with
realistic features of the disease. Sect. 8 as usual concludes and suggests directions for

3 A limited number of studies introduces a spatial dimension in the analysis of optimal lockdown strategies
by considering that the economy is structured in a network and the nodes represent different local units
(Birge et al. 2020; Bisin and Moro 2020; Bognanni et al. 2020; Cuñat and Zymek 2020; Fajgelbaum et al.
2020; Giannone et al. 2020). These works focus on how the interactions between geographical units affect
the epidemic dynamics, showing that lockdowns targeted at the different local levels are more cost-effective
than uniform lockdowns as they allow to reduce the economic losses associated with mitigation policies.
Different from these papers in which the analysis is carried out in a purely numerical setting precluding
the possibility to understand the different mechanisms at work, our approach allows for an analytical
characterization of the lockdown intensity at different local levels clarifying the role of spatial interactions.
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future research. All technicalities are presented either in Appendix A, or in the online
appendix.

2 The epidemiological framework

The SIS model is one of the simplest and most widely used framework in mathe-
matical epidemiology (Kermack and McKendrick 1927; Hethcote 2000), allowing to
describe the evolution of a number of infectious diseases which do not confer perma-
nent immunity after recovery. It can thus be used to analyze the spread of common
diseases, such as the seasonal flu and the common cold, but also of emerging diseases,
such as COVID-19 since thus far there exists no compelling evidence that “people
who have recovered from COVID-19 and have antibodies are protected from a second
infection” (WHO2020b).We introduce a SIS setting into a spatial context inwhich the
economy develops along a line (Hotelling 1929) and the points on the line represent
different geographical units, such that the population may move across different loca-
tions and thus the diseases may spread across the different geographical units (Wang
2014).

We denote with Nx,t , Sx,t and Ix,t , respectively the population, the susceptibles
and the infectives in the position x at date t , in a compact interval [xa, xb] ⊂ R,
and we assume that the Neumann boundary conditions hold true, that is there are no
mobility flows through the borders of [xa, xb] namely the directional derivatives are
null, ∂ Nx,t

∂x = ∂Sx,t
∂x = ∂ Ix,t

∂x = 0, at x = xa and x = xb. Every individual in the
population in each location can be either suceptible or infective, Nx,t = Sx,t + Ix,t :
susceptibles become infectives by interactingwith other infectives andα ≥ 0measures
the infectivity rate (i.e., the average number of contacts required in order to give rise to a
new infection), and infectives become susceptible after recovering from the disease and
δ ≥ 0 is the recovery rate. In each location the evolution of susceptibles and infectives
can be described through the following system of partial differential equations:

∂Sx,t

∂t
= d

∂2Sx,t

∂x2
+ δ Ix,t − αSx,t

Ix,t

Nt
(1)

∂ Ix,t

∂t
= d

∂2 Ix,t

∂x2
+ αSx,t

Ix,t

Nt
− δ Ix,t . (2)

where Nt = 1
xb−xa

∫ xb
xa

Nx,t dx represents the average population size within the whole

spatial economy. In the above equations the term Sx,t
Ix,t
Nt

states that human interactions
do not change with the spread of the disease, and thus what determines the disease
transmission is the share of infected population, Ix,t

Nt
, rather than the total number of

infectives, Ix,t . Moreover, the diffusion terms d ∂2

∂x2
captures the existence of spatial

externalities, describing how individuals’ mobility within the spatial economy may
lead the disease to spread geographically even in locations far away from the location
of the initial outbreak. In particular, diffusion describes the effects of the demographic
changes associated with migration which leads individuals to permanently move from
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one location to the next (La Torre et al. 2022). The parameter d = dI = dS ≥ 0
measures the speed at which such cross-location effects take place, which for the sake
of simplicity is assumed to be the same for both infectives and susceptibles.

Since Nx,t = Sx,t + Ix,t , by summing the above equations it follows that the
population in location x satisfies the classical heat equation:

∂ Nx,t

∂t
= d

∂2Nx,t

∂x2
(3)

subject to the Neuman boundary conditions and Nx,0 = Ix,0 + Sx,0. This implies that
the average population size within the whole spatial economy is constant over time
since:

d

dt
Nt = 1

xb − xa

∫ xb

xa

∂

∂t
Nx,t dx = 1

xb − xa
d
∫ xb

xa

∂2

∂x2
Nx,t dx = 0, (4)

thus in the following we shall denote the average population size with the constant N ,
that is Nt = N ,∀t .

Equation (3) states that human population moves from locations more populated
to those less populated, and so do susceptibles and infectives (see Eqs. (1) and (2))
which are two sub-population groupswhichmake up thewhole population.4 Migration
towards less densely populated locations, on the one hand, decreases the probability
of infection of the single individual and, on the other hand, increases the degree of
infection in the locations receiving such migrants (La Torre et al. 2022). Therefore,
such a characterization of population mobility and infection spread is well suitable to
describe the spatial disease dynamics during an epidemic outbreak, in which individ-
uals’ attempt to reduce their disease exposure increases the probability of infection of
other individuals.5

To analyze the disease dynamics it is convenient to recast the model in terms of
the share of infectives, ix,t = Ix,t

N , and the share of suscetibles, sx,t = Sx,t
N , which is

4 We assume that the mobility patterns of infectives and susceptibles coincide, thus also infectives can
move from one location to the next. This is generally the case with common diseases (such as the seasonal
flu or the common cold) while with highly contagious and deadly diseases (such as COVID-19), infectives’
mobility might be precluded by hospitalization or limited by public regulation. In reality though, even if
public regulations might require non-hospitalized infectives to be quarantined or self-isolating, individ-
ual compliance is not perfect and many individuals (especially asymptomatics) may be unaware of their
infectivity status, meaning that infectives’ spatial mobility represents an important determinant of disease
spreading. It seems interesting thus in our baseline framework to focus on the implications of spatial mobil-
ity on epidemic dynamics and the mitigation policies in a context in which both susceptibles and infectives
move across locations. We postpone to later the discussion of how results may change when the mobility
patterns of infectives and susceptibles differ (see Sect. 7).
5 Modeling mobility in a different way to allow for population to get more and more concentrated in given
locations would give rise to the counterintuive result in which because of their own migration decisions
people end up increasing their individual probability of infection. The implication of such an alternative
modeling approach is clearly not consistent with real world experiences during major epidemic outbreaks,
thus our modeling approach seems themost convenient to characterize the spatial spread of a communicable
Footnote 5 continued
disease. Note that a similar framework is typically employed also inmathematical epidemiology (Martcheva
2009; Anita and Capasso 2017).
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summarized by the following dynamic equationswith boundary and initial conditions:

∂sx,t

∂t
= d

∂2sx,t

∂x2
+ δix,t − αsx,t ix,t , x ∈ (xa, xb), t > 0 (5)

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ αsx,t ix,t − δix,t , x ∈ (xa, xb), t > 0 (6)

∂sx,t

∂x
= ∂ix,t

∂x
= 0, x ∈ {xa, xb}, t > 0 (7)

sx,0 = s0(x), ix,0 = i0(x) > 0 x ∈ [xa, xb] (8)

By assuming that s0 and i0 are continuous on [xa, xb], s0(x) > 0, i0(x) > 0 for any x ∈
[xa, xb], the theory for parabolic equations (Lieberman 1996) ensures that the above
boundary value problem admits a unique classical solution sx,t , ix,t ∈ C2,1([xa, xb]×
(0,∞)). Moreover, the strong maximum principle and the Hopf boundary lemma for
parabolic equations (Protter and Weinberger 1984) establish that both sx,t and ix,t are
nonnegative for all x ∈ [xa, xb] and t > 0 (Wang et al. 2015). Indeed, by being defined
in terms of the average population size in the spatial economy, the above shares of
infectives and suscetibles turn out to be only nonnegative and not naturally limited by
one.

Since a new disease outbreak does not lead to an immediate policy response, for
a certain period of time the disease spreads freely within the population and thus the
share of infectives tends to grow at a constant (or even decreasing) rate. In order to
characterize such a specific situation several studies analyze the disease dynamics in
an early epidemic setting by assuming that the evolution of the share of infectives
is described by a linear equation (Chowell et al. 2016). In our spatial context such
an early epidemic framework translates into assuming that the share of susceptibles
is approximately constant, namely sx,t � s,∀x, t . This implies that it is possible
to characterize the model’s outcome by analyzing only the evolution of the disease
prevalence, which is given by the following equation:

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ αsix,t − δix,t (9)

As discussed in literature the above approximation is applicable only in situations in
which the disease prevalence does not get too large, which in a spatial context means
that the total prevalence within the whole spatial economy, it = ∫ xb

xa
ix,t dx , remains

small over time. Therefore, an early epidemic setting can be used to describe the disease
dynamics only in contexts in which the total prevalence shows a nonincreasing pattern
converging eventually to a situation in which eradication will be achieved in the spatial
economy.

After an early stage in which the disease spreads freely within the population in
the absence of policymakers’ containment efforts, the disease prevalence may get too
large for the early epidemic approximation to keep holding true. In such an advanced
epidemic stage, in order to analyze the model’s outcome, we need to accompany the
dynamics of the disease prevalence with that of the share of population in location x .
Indeed, since nx,t = sx,t + ix,t , the shares of susceptibles is automatically determined
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once the disease prevalence and the local population are known. By exploiting the fact
that sx,t = nx,t − ix,t , we need to analyze the following system of partial differential
equations:

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(nx,t − ix,t )ix,t − δix,t (10)

∂nx,t

∂t
= d

∂2nx,t

∂x2
. (11)

where nx,t is simply Nx,t scaled down for the constant N . The expression of nx,t sat-
isfies the classical heat equation with Neumann boundary conditions, and its solution
is well known (see James et al. 2020) and given by the following expression:

nx,t =
∑

n≥0

Bne
−
(

nπ
xb−xa

)2
dt
cos

[
nπ(x − xa)

xb − xa

]

, (12)

where B0 = 1
xb−xa

∫ xb
xa

nx,0dx and Bn = 2
xb−xa

∫ xb
xa

nx,0 cos
[

nπ(x−xa)
xb−xa

]
dx are the

Fourier coefficients. In particular, the closed-form expression above implies that
nx,t → B0 whenever t → ∞, which allows us to determine the equilibria of the
system (10) - (11). It is straightforward to show that the system above admits two
homogeneous equilibria E = (i, n), given by the two pairs:

E F : i
F = 0, nF = 1

E E : i
E = α − δ

α
, nE = 1 (13)

The former represents a disease-free equilibrium as the disease prevalence is null

(i
F = 0) in each location in the spatial economy and it exists for all parameter values.

The latter instead is an endemic equilibrium since the disease prevalence is strictly

positive (i
E = α−δ

α
> 0) and it exists only if α > δ. Moreover, when only E F

exists this equilibrium is asymptotically stable, while when both equilibria exist E F

loses its stability and E E becomes asymptotically stable. Therefore, according to the
parameters configuration the economy may alternatively converge to either a disease-
free equilibrium (if α ≤ δ) or an endemic equilibrium (α > δ). This conclusion
is consistent with the traditional result in mathematical epidemiology stating that
the prevailing equilibrium depends on the value of the “basic reproduction number”,
R0, quantifying the average number of secondary infections produced by a typical
infectious individual introduced into a completely susceptible population. The basic
reproduction number is given by the ratio between the infectivity rate and the recovery
rate as follows:

R0 ≡ α

δ
(14)
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Also in our spatial framework, exactly as in an a-spatial context, the threshold value of
R0 determining which equilibrium will emerge is equal to 1: ifR0 ≤ 1 the prevailing
equilibrium will be disease-free while if R0 > 1 it will be endemic. Intuitively, any
single infection needs to generate a multiplier effect in order to allow the disease to
become endemic persisting thus in the long run. As extensively discussed both in the
mathematical epidemiology and economic epidemiology literature, since pharmaceu-
tical and non-pharmaceutical mitigation tools affect either the infectivity rate (i.e.,
prevention) or the recovery rate (i.e., treatment) they may be effectively employed in
order to bring and maintain the basic reproduction number below unity allowing thus
to achieve disease eradication in the long run.

Before introducing our economic framework, some further comments on the
assumptions underlying our epidemiological setting are needed. First of all, even if the
SIS framework can be used to describe the spread of COVID-19 in a simplified and
intuitive way, it clearly does not provide a precise representation of its dynamics since
infection from COVID-19 seems to confer some temporary (few-months long) immu-
nity which would require to add a further group of individuals (i.e., the recovereds)
who, different from the susceptibles, cannot become infectives for a certain period of
time. Moreover, the fact the spatial spread of the disease is driven entirely by demo-
graphic dynamics may represent well the spatial pattern of infections in developing
and less developed countries where people’s movements are limited, while it may not
represent well the situation in industrialized countries in which individuals regularly
commute between locations for business or leisure favoring thus the spatial propaga-
tion of a disease. In order to take these issues into account we would need to introduce
the presence of an additional sub-population group and local effects which partly drive
the spatial spread of infection. Since these additional features will substantially com-
plicate themodel’s structure precluding the possibility to obtain closed-form solutions,
it seems convenient to present our setup in its simplest possible form first, postponing
to later a formal discussion of how our baseline model might need to be modified
in order to describe more rigorously some epidemiological features of COVID-19 in
industrialized countries, including the possibility of temporary immunity and disease
spreading faster than demography (see Sect. 7).

3 The economic framework

We now extend the above spatial SIS framework to account for the role of public
policies and to analyze its relation with macroeconomic outcomes. We thus present a
spatial macroeconomic-epidemiological setup in which the disease prevalence drives
output production and both non-pharmaceutical (i.e., lockdown) and pharmaceutical
(i.e., treatment) measures are used to manage the epidemic. While lockdowns do not
require funding, treatment is funded via income taxation which however depends on
disease prevalence, since by affecting output it determines the availability of resources
to finance pharmaceutical interventions. Such feedback effects between health and
macroeconomic outcomes are complicated by the spatial interactions within and
between different geographical units.
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We analyze a short time horizon setting in which the social planner decides which
policy measures to implement in order to reduce the spread of a communicable dis-
ease, along with the geographical area of applicability of such policies, in order to
minimize the social cost associated with the epidemic management program. We con-
sider therapeutic treatment, 0 < vx,t < 1 which increases the speed of recovery of the
infectives decreasing disease prevalence, and a lockdown which limits the social con-
tacts by a percentage 0 < ux,t < 1 reducing thus disease incidence. Over a short time
horizon saving and capital accumulation are irrelevant while fiscal policy can be taken
as exogenously given because of its implementation delay, thus we simply assume
that in each location individuals entirely consume their disposable income as follows:
cx,t = (1 − τ)yx,t , where cx,t denotes consumption, yx,t income and 0 < τ < 1 the
exogenous and constant tax rate. The tax revenue is allocated to finance treatment, thus
pharmaceutical policy interventions are completely publicly provided by maintaining
a balanced budget position. Output is produced through a linear production function
by susceptibles as follows: qx,t = sx,t .

The planner needs to choose how to split the entire spatial economy in a number of
regions inwhich different combinations of the pharmaceutical and non-pharmaceutical
interventions will be implemented. For the sake of expositional simplicity we consider
only two regions for the time being. In one region (which we refer to as region A =
[xa, ξ ] for expositional simplicity) both treatment and lockdown will be used, while in
the other (region B = [ξ, xb]) only treatment will be used. In regionA, which develops
from xa to ξ , only a certain share of the social contacts, 1−ux,t , is allowed to regularly
occur, thus output net of lockdownmeasures is given by: yx,t = (1−ux,t )qx,t . The tax
revenue, τ yx,t , is entirely used to finance treatment locally, and some extra resources
from treatment are collected from region B, rx,t , such that vx,t = τ yx,t + rx,t . The

disease dynamics is described by a SIS equation as follows: ∂ix,t
∂t = d ∂2ix,t

∂x2
+ α(1 −

ux,t )sx,t ix,t −δ(1+ωvx,t )ix,t , whereω > 0measures the effectiveness of treatment in
speeding up recovery. In region B, which develops from ξ to xb, there is no lockdown
thus output in each location is determined by the unconstrained supply: yx,t = qx,t .
The tax revenue, τ yx,t , is entirely used to finance treatment, but only a part 0 ≤ β ≤ 1
is employed locally while the remaining part is allocated to finance extra treatment
in the region A. The disease dynamics is described by a SIS equation as follows:
∂ix,t
∂t = d ∂2ix,t

∂x2
+αsx,t ix,t −δ(1+ωvx,t )ix,t , where vx,t = βτqx,t . The total amount of

tax revenues diverted from regionB, (1−β)τ
∫

B qx,t dx , is equally splitwithin regionA

thus each location x ∈ [xa, ξ ] receives a share 1
ξ−xa

of the total: rt = (1−β)τ
ξ−xa

∫
B qx,t dx .

In both regions the disease is characterized by the same features and we assume that
the infectivity rate is larger than the recovery rate (i.e., α > δ) such that the basic
reproduction number in the absence of public intervention is larger than one (i.e.,
R0 > 1) and thus public policy is effectively needed in order to eventually achieve
long run disease eradication. We also assume that the initial prevalence is strictly
positive over the whole spatial domain (i.e., ix,0 = i0(x) > 0), which thanks to
evolution operator theory guarantees that disease prevalence is well defined (that is
ix,t > 0, ∀x, t).

The social planner needs to determine the size of the two regions in order to min-
imize the social cost of the epidemic management program, which is given by the
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discounted sum (ρ > 0 is the discount rate) of the instantaneous losses in regions A
and B during the duration of the program, augmented for the final damage in the entire
spatial economy at the end of the program. In region A, the instantaneous loss function
depends on the spread of the disease and the output lost due to the lockdown measure,

and takes a quadratic non-separable form as follows: �(ix,t , ux,t qx,t ) = i2x,t (1+u2x,t q
2
x,t )

2 ,
penalizing deviations from the disease-free status and from the no-production-loss
scenario. In region B, as there is no lockdown the instantaneous loss function depends

only on the level of disease prevalence: �(ix,t ) = i2x,t
2 . Since in region B the public

health intervention is rather limited and some of its resources are diverted to region
A, the instantaneous losses in region B are weighted by its size-adjusted importance
with respect to region A’s, given by μ

ξ−xa
where μ > 0 and ξ − xa > 0 measure the

relative importance and size of the region B, respectively. The final damage function
depends only of the level of disease prevalence at the end of the epidemic management

program and takes a quadratic form as follows: dT = i2x,T
2 . The relative weight of the

final damage in terms of the instantaneous losses is measured by the degree of health
concerns, φ > 0.

The social planner needs also to determine the size of the regions by determining
their boundary point ξ ∈ (xa, xb), thus the optimization problem can be stated as
follows: Find ξ ∈ (xa, xb) which minimizes the optimal value:

C(ξ) = min
ux,t ∈U

∫ T

0

∫ ξ

xa

i2x,t [1 + u2
x,t s

2
x,t ]

2
e−ρt dxdt

+ μ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t

2
e−ρt dxdt + φ

∫ xb

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ux,t )sx,t ix,t

−δ

[

1 + ωτ(1 − ux,t )sx,t + (1 − β)ωτ

ξ − xa
∫ xb

ξ

sx,t dx

]

ix,t , x ∈ [xa, ξ ]
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ αsx,t ix,t − δ[1 + βωτ sx,t ]ix,t , x ∈ [ξ, xb]

∂nx,t

∂t
= d

∂2nx,t

∂x2
sx,t = nx,t − ix,t

∂ix,t

∂x
= 0, x ∈ {xa, xb, ξ}

∂nx,t

∂x
= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0, x ∈ [xa, xb]
nx,0 = n0(x) > 0, x ∈ [xa, xb] (15)
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where the set of admissible controls is given by:

U = {ux,t : [xa, ξ ] × [0, T ] → R : ux,t is continuous, 0 < ux,t < 1} (16)

Since there is no control over the region B = [ξ, xb] we can extend any element
in U to be zero over such a region. We assume that ix,t is piecewise smooth and
integrable, that is it belongs to C2,1((xa, ξ) × (0, T )) ∩ L1([xa, ξ ] × [0, T ]) and
C2,1((ξ, xb) × (0, T )) ∩ L1([ξ, xb] × [0, T ]), and similarly that also both i0(x)

and n0(x) are piecewise continuous and integrable, that is they are in C((xa, ξ) ∩
L1([xa, ξ ]) and C((ξ, xb) ∩ L1([ξ, xb]). By applying the same argument used for the
system (5) - (8), it is possible to conclude that the boundary value problems over both
the regions A = [xa, ξ ] and B = [ξ, xb] are well-posed and admit a unique positive
solution ix,t , sx,t , nx,t whenever α > δβωτ and α > δωτ , respectively. This follows
from the considerations similar to those discussed earlier along with a comparison the-
orem for reaction–diffusion equations (Friedman 2008). Since β ∈ [0, 1], it follows
that δωτ > δβωτ and, therefore, both boundary value problems for the state equations
are well-posed under the common condition α > δωτ across the two regions, which
we will assume to hold true in the rest of the paper.

The strict convexity of the objective function in C(ξ) implies that the solution of
the above optimal control problem exists and is unique for any fixed ξ ∈ (xa, xb)

(Casas et al. 2018). Note that the boundedness of the function ix,t (due to the fact that
ix,t ≤ nx,t and nx,0 is continuous) implies that the the middle integral goes to +∞
when ξ → x+

a . Furthermore, thanks to the continuity of both ix,t and ux,t we have that
the integrands in the first two integrals are bounded (and then integrable). By using
the property that the Lebesgue integral of an integral function is continuous and the
well-posedness of the state equations, we get that C(ξ) is a continuous function for
any ξ ∈ (xa, xb]. Therefore C(ξ) attains a global minimum on each compact interval
[k, xb] with k > xa . The fact the optimal solution may need to be found for values
of ξ > xa implies that in our setting at least a minimal lockdown area is required to
contain the spread of the disease (ξ = xb represents the case in which the region B
does not exist).

Note also that by choosing the boundary point between the two regions, the social
planner endogenously determines the weight to attach to the instantaneous losses
experienced by region B and the point at which mobility between locations is inter-
rupted. Because of this interruption in cross-regional movements, at the boundary
point between regions some extra Neumann boundary conditions are applied (i.e.,
∂ix,t
∂x = ∂nx,t

∂x = 0), which means that the two regions are a smaller-scale copy of the
entire spatial economy. Note also that the problem above can be seen as a particu-
lar type of Stefan problems or variable boundary problems (Stefan 1899; Rubinstein
1971; Friedman 1968), which represent general frameworks in which the boundary
between regions changes over time. In our formulation we consider the separating
boundary between two regions to be endogenously determined and constant over the
period [0, T ],6 thus in our setup the boundary does not change over time but it is

6 Our model can be easily extended to consider a multi-period framework, in which there exists a sequence
of time horizons over which the planner determines the boundary point between the two regions, eventually
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determined optimally by the social planner, and to the best of our knowledge a similar
problem has never been analyzed in economics thus far.

Before proceeding with our analysis, let us add a few remarks on some assumptions
underlying our economic framework. We have assumed that the planner wishes to
partition the economy in two regions only, and clearly this is a mere simplification
of reality in which instead a different (possibly large) number of regions may be
considered as well. In order to set up a baseline framework for our analysis, it seems
convenient to present first the case in which the number of regions is limited to two,
postponing to later the discussion of how our results may change in a multi-regional
context (see Sect. 6 where we will consider three regions, which requires to analyze
what happenswhether this extra region is either a lockdownor non-lockdown area).We
have also assumed the diffusion coefficients capturing the speed of the spatial spread
of the epidemics is homogeneous across population groups and across regions, while
it may be reasonable to consider that the recommendations for self-isolation in the
case of infection and the introduction of lockdown measures reduce mobility among
infectives and within the lockdown area respectively, such that both the population
subpopulation groups and the regions might be characterized by different diffusion
parameters. Given the short time horizon nature of the problem this will not modify
our qualitative conclusions, thus also in this case it seems convenient to present our
model in its simplest possible form discussing later how results may change under
heterogeneity in mobility patterns across groups and across regions (see Sect. 7).

4 The early epidemic stage

Wefirst analyze the above problem in an early epidemic setting inwhich, recallingwhat
we have discussed in Sect. 2, the share of susceptibles can be thought to be constant
over time and homogeneous across space, sx,t � s, ∀x, t . Under this approximation
the problem boils down to the following: Find ξ ∈ (xa, xb) which minimizes the
optimal value:

C(ξ) = min
ux,t

∫ T

0

∫ ξ

xa

i2x,t [1 + u2
x,t s

2]
2

e−ρt dxdt + μ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t

2
e−ρt dxdt

+φ

∫ xb

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ux,t )six,t

−δ

[

1 + ωτ(1 − ux,t )s + (1 − β)ωτ

ξ − xa

∫ xb

ξ

sdx

]

ix,t , x ∈ [xa, ξ ]

revising his decisions moving from one time horizon to the next. In this case the model would consist of
multiple optimization problems to be solvedover afinite number N of disjoint time intervals [0, T1], [T1, T2],
. . . , [TN−1, TN ], such that ξ might change between time intervals. This setup allows to characterize the
true problem faced by policymakers in the real world in which the lockdown decisions (i.e., the lockdown
intensity and the lockdown area) are determined in advanced for a certain period of time, to then be revised
when new information regarding disease prevalence become available.
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∂ix,t

∂t
= d

∂2ix,t

∂x2
+ αsix,t − δ[1 + βωτ s]ix,t , x ∈ [ξ, xb]

∂ix,t

∂x
= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]
nx,0 = n0(x) > 0 x ∈ [xa, xb] (17)

Note that in this case the well-posedness of the boundary value problems for the state
equations and the strict positivity of their solution is ensured by the linearity of the
epidemic equations. Moreover, since the solution can be obtained in closed-form, the
value of objective functional can be calculated explicitly in order to find the value
of ξ which minimizes it. Therefore, in order to determine the optimal solution of the
problem (17) we first assume that the boundary point ξ ∈ (xa, xb) is fixed and solve
the problems in the regions [xa, ξ ] and [ξ, xb], and then we determine the optimal
boundary point by using the solution obtained in the previous step to compute the
value of the functional and identify the value of ξ which minimizes it. Finally, note
that because of the convexity of the objective functional the above optimal control
problem is also well-posed (Dontchev and Zolezzi 1993).

Let us start thus from the case in which ξ is fixed. The following result (Lemma 1)
presents the elements of the exponential matrix which will be used to determine the
closed-form solution as a function of ξ (Theorem 1). The proofs of all the theorems,
propositions, corollaries and lemmas are presented in appendix A.

Lemma 1 By defining the following aggregated parameters:

η1 := s(α − δ τω) − δ − δ (xb − ξ) (1 − β) τω s

ξ − xa
(18)

η2 := 4 δ2τ 2ω2 − 8α δω τ + 4α2 + 4 η1
2 − 4 η1 ρ + ρ2

= 4(α − δωτ)2 + (ρ − 2η1)
2 (19)

and considering the matrix:

� =
⎡

⎣
s(α − δτω) − δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)
−(α − δτω)2

−1 ρ − s(α − δτω) + δ + δ
(

(xb−ξ)(1−β)τωs
ξ−xa

)

⎤

⎦ , (20)

then the entries of the exponential matrix e�t are given by:

e�t
11 = −e

ρt
2

(
ρ − 2 η1) sinh

(√
η2t
2

)
− √

η2 cosh
(√

η2t
2

))

√
η2

(21)

e�t
12 = −2e

ρt
2 (−δ τω + α)2

sinh
(√

η2t
2

)

√
η2

(22)

e�t
21 = −2e

ρt
2

sinh
(√

η2t
2

)

√
η2

(23)
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e�t
22 = e

ρt
2

(
ρ − 2 η1) sinh

(√
η2t
2

)
+ √

η2 cosh
(√

η2t
2

))

√
η2

(24)

Let us notice that in the region B, where lockdown measures are not employed,
the lockdown intensity is null (i.e., ux,t ≡ 0,∀x ∈ [ξ, xb]). This allows us to express
the closed-form solution in a more compact form. In order to ease readibility in the
statement of our results we shall denote the lockdown intensity and the share of
infectives in regionsAandBwith the superscript j = {A, B}. Furthermore, throughout
the paper the convergence of the Fourier series is intended in Lebesgue sense.

Theorem 1 Assuming that ξ ∈ (xa, xb) is fixed. Under the regularity assumptions on
the state and the control variables presented in the model statement, the optimal pair
(ix,t , ux,t ) solving problem (17) satisfies the following optimality conditions:

• ix,t : [xa, xb] × [0, T ] → R+ and it is defined as

ix,t = i A
x,tχ[xa ,ξ ] + i B

x,tχ[ξ,xb] (25)

where χS is the indicator function of the set S (χS(x) = 1 for any x ∈ S, 0
otherwise)

• ux,t : [xa, xb] × [0, T ] → R+ and it is defined as

ux,t = u A
x,tχ[xa ,ξ ] (26)

• The function i B
x,t solves the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂i B
x,t

∂t = d
∂2i B

x,t

∂x2
+ (αs − δ − δβτωs) i B

x,t x ∈ [ξ, xb]
∂i B

x,t
∂x = 0 x ∈ {ξ, xb}

i B
x,0 = i0(x) x ∈ [ξ, xb]

(27)

whose solution is:

i B
x,t =

∑

n≥0

Cne
−d
(

nπ
xb−ξ

)2
t
e(αs−δ−δβτωs)t cos

[
nπ(x − ξ)

xb − ξ

]

(28)

where:

C0 = 1

xb − ξ

∫ xb

ξ

i0(x)dx,

Cn = 2

xb − ξ

∫ xb

ξ

i0(x) cos

[
nπ(x − ξ)

xb − ξ

]

dx (29)
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• The pair (i A
x,t , u A

x,t ) solves the following optimality conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂i A
x,t

∂t = d
∂2i A

x,t

∂x2

+
[
s(α − δωτ) − δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
i A
x,t − su A

x,t i
A
x,t (α − δτ)

∂λA
x,t

∂t = ρλA
x,t − d

∂2λA
x,t

∂x2
− i A

x,t

−λA
x,t

[
s(α − δωτ) − δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]

u A
x,t = λA

x,t (α−δτω)

si A
x,t

∂i A
x,t

∂x = 0, x ∈ {xa, ξ}
∂λA

x,t
∂x = 0, x ∈ {xa, ξ}

i A
x,0 = i0(x) x ∈ [xa, ξ ]
λA

x,T = φi A
x,T x ∈ [xa, ξ ]

(30)

where λA
x,t is the costate variable. The closed-form solution is given by:

i A
x,t =

∑

n≥0

(

e�t
11 Ane

−d
(

nπ
ξ−xa

)2
t + e�t

12 Bne
−d
(

nπ
ξ−xa

)2
(T −t)

)

cos

(

nπ

[
x − xa

ξ − xa

])

(31)

u A
x,t =

∑
n≥0(α − δτω)

(

e�t
21 Ane

−d
(

nπ
ξ−xa

)2
t + e�t

22 Bne
−d
(

nπ
ξ−xa

)2
(T −t)

)

cos
(

nπ
[

x−xa
ξ−xa

])

∑
n≥0

(

e�t
11 Ane

−d
(

nπ
ξ−xa

)2
t + e�t

12 Bne
−d
(

nπ
ξ−xa

)2
(T −t)

)

cos
(

nπ
[

x−xa
ξ−xa

])

(32)

where:

Bn =
[

e�T
21 − φ2e�T

11

φ2e�T
12 − e�T

22

]

Ane
−d
(

nπ
ξ−xa

)2
T

(33)

A0 = 1

ξ − xa

∫ ξ

xa

i0(x)dx,

An = 2

ξ − xa

∫ ξ

xa

i0(x) cos

(

nπ

[
x − xa

ξ − xa

])

dx (34)

and e�t
11 , e�t

12 , e�t
21 , and e�t

22 are the entries of the exponential matrix e�t presented
in Lemma 1.

Note that, since we are assuming that ξ is fixed for the time being, provided that
ix,t > 0 and 0 < ux,t < 1 the conditions stated in Theorem 1 are also sufficient thanks
to the convexity of the objective functional. In particular, the theorem determines in an
explicit form the spatio-temporal dynamic path of the lockdown intensity (in region
A) and disease prevalence (in both regions A and B), which are expressed in terms
of cosine Fourier expansions. We can notice that both u j

x,t and i j
x,t are in general

123



366 D. La Torre et al.

non-constant over time and non-homogeneous across space. However, their analytical
expressions are particularly cumbersome and thus it is not possible to perform any
comparative statics exercise in order to understand how they depend on the different
parameters. Nevertheless, they still allow us to derive some interesting results.

Corollary 1 The following result holds true:

‖ix,t‖2L2 = ‖i A
x,t‖2L2 + ‖i B

x,t‖2L2 (35)

and:

2

ξ − xa
‖i A

x,t‖2L2 = 2
(
e�t
11 A0 + e�t

12 B0
)

+
∑

n≥1

(

e�t
11 Ane

−d
(

nπ
ξ−xa

)2
t + e�t

12 Bne
−d
(

nπ
ξ−xa

)2
(T −t)

)2

(36)

2

xb − ξ
‖i B

x,t‖2L2 = 2C2
0e2(αs−δ−δβτωs)t +

∑

n≥1

C2
n e

2t

[

αs−δ−δβτωs−d
(

nπ
xb−ξ

)2
]

(37)

Corollary 1 provides an upper bound to control the L2 norm of the disease preva-
lence in both regions A and B, and thus in the entire spatial economy. The following
proposition refines the above result by providing sufficient conditions which guarantee
that the epidemic management program is effective, that is the total disease prevalence
decreases over time in both regions A and B.

Proposition 1 Assume that β > αs−δ
sδωτ

, then it follows that d
dt

∫ xb
ξ

i B
x,t dx =

d
dt ‖i B

x,t‖L1([ξ,xb]) < 0 and d
dt

∫ ξ

xa
i A
x,t dx = d

dt ‖i A
x,t‖L1([xa ,ξ ]) < 0, which imply

that the total disease prevalence over the spatial domain (i.e., it = ∫ xb
xa

ix,t dx =
‖ix,t‖L1([xa ,xb])), decreases over time.

Proposition 1 states that if treatment in region B is effective (i.e., β > αs−δ
sδτω

),
that is the amount of resources kept within region B to finance local treatment is
large enough to reverse the disease growth pattern, then the total disease prevalence
will decrease over time not only in region B but also in region A, and thus over the
whole spatial domain.7 The result is intuitive: since all economic and epidemiological
parameters are exactly the same in both regions, if the cross-subsization of treatment
from region B to region A is not too large, then region B will have enough resources
to contain the disease regionally and the same will be true in region A, where all
resources are kept within the region. Regional cross-subsization of treatment, despite
limited, works jointly with the lockdown intensity: if less resources are diverted from
region B, a more stringent lockdown to achieve effective disease containment may be
needed. Overall, provided that β > αs−δ

sδτω
, the treatment and lockdown policy mix in

7 Note that the sufficient conditions outlined in Proposition 1 also imply that the early epidemic stage
approximation is suitable to describe the disease dynamics as prevalence does not show an explosive
behavior but it always remain bounded from above.
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the two regions allows for a monotonic reduction in the total disease prevalence in
the whole spatial economy. Despite the epidemic management program is effective as
it allows to decrease the total disease prevalence, consistent with what shown in La
Torre et al. (2021a) in an a-spatial setting, complete spatial eradication is not possible
over a finite time horizon, while it may be possible only asymptotically. Moreover,
as discussed in Sect. 2, if the condition in Proposition 1 holds true, then our early
epidemic approximation allows us to well characterize the spatio-temporal disease
dynamics within the entire spatial economy.

Thus farwe have simply assumed that the boundary point between the two regions is
exogenously given, while this needs to be optimally determined by the social planner.
In order to determine the optimal ξ , which we shall denote with ξopt , we plug the

analytical expressions of u j
x,t and i j

x,t provided by Theorem 1 into the functional cost
in (17) to assess how it depends on ξ . Specifically, we need to minimize the following
functional cost C(ξ):

C(ξ) =
∫ T

0

∫ ξ

xa

i2x,t [1 + u2
x,t s

2]
2

e−ρt dxdt + μ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t

2
e−ρt dxdt

+φ

∫ xb

xa

i2x,T

2
e−ρT dx (38)

with respect to ξ over the interval (xa, xb). As we have already observed the function
C(ξ) goes to+∞when x → x+

a and it is continuous over any compact interval [k, xb]
with k > xa , thus thanks to Weierstrass’s theorem this implies the existence of a
global minimizer over the interval [k, xb] which may be either an interior or a corner
solution. Since determining analytically the optimal boundary point is not possible
we will need to proceed through numerical analysis which confirms that in different
circumstances ξopt may be an interior or a corner point.

In order to visually illustrate the implications of our analysis we now present a
calibration of our model based on the Italian COVID-19 experience during its first
epidemic wave (February–June 2020). We set the parameter values as in La Torre et
al.’s (2021a) baseline a-spatial model, distinguishing between an early epidemic stage
at the national level (where the disease prevalence has remained relatively small) and
an advanced epidemic stage at the regional level in Bergamo (where the prevalence has
reached a sizeable portion of the local population). Specifically, we set α = 0.1328
and δ = 0.0476 (implying R0 = 2.79), along with ρ = 0.04/365, ω = 8.23 and
τ = 0.3. The parameters related to the peculiarities of our spatial framework are
instead set arbitrarily as follows: xb = 1, xa = −1, d = 0.01, s = 0.98, while
i0(x) and β are varied to see how they impact the solution. Figures1and 2depict the
spaio-temporal evolution of the lockdown intensity (left panels) and share of infectives
(right panels) under different configurations of the initial distribution of the disease
prevalence, distinguishing between situations in which β = 0.2 (top panels) and
β = 0.8 (bottom panels). In order to allow comparability, at time 0 the average
disease prevalence over the whole spatial domain is assumed to be the same and in
particular to be equal to 0.03, while disease prevalence is relatively higher in the left
than in the right locations such that effectively the leftmost region may require more
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Fig. 1 Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = − 0.04
2 (x + 1)+ 0.05, and either

β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary point: ξopt = −0.5253 with Copt = 0.0233 (top)
and ξopt = −0.7273 with Copt = 0.0124 (bottom)

intervention than the rightmost one, justifying thus the adoption of a lockdown policy
at least somewhere in the spatial economy. Note that under our parametrization the
condition in Proposition 1 (β > αs−δ

sδωτ
= 0.72) holds true only in the β = 0.8 case and

thus the epidemic management program gives rise to a reduction in the total disease
prevalence in the spatial economy only in such a scenario, while in the β = 0.2 case
the total disease prevalence may even increase over time.

Figure 1 represents the outcome in a scenario in which the initial distribution is
monotonically decreasing over the spatial domain, and specifically it is given by ix,0 =
− 0.05

2 (x +1)+0.05.We can observe that in region A the lockdown intensity decreases
over time and this initially high value is large enough to reverse the growth pattern
of the disease leading the disease prevalence to substantially decrease over time; in
region B, despite the absence of lockdown, as enough (not enough) resources are
allocated to local treatment, the disease prevalence decreases (increases) over time
whenever β = 0.8 (whenever β = 0.2). It is interesting to note that the lockdown
intensity is homogeneous across space in region A despite the fact that each location
in the region is characterized initially by a different level of disease prevalence. This
is due to the role of spatial diffusion which tends to increase prevalence in locations
in which it is initially lower leading thus to a homogenization of prevalence across
locations over time (La Torre et al. 2021b), thus from the social planner’s perspective it
is convenient to internalize such dynamic effects applying the same lockdown intensity
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Fig. 2 Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = k(sin(πx)2e−x−1 + 0.01)

where k = 0.03(4π2+1)
(1−e−2)π2+0.01(4π2+1)

, and either β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary

point: ξopt = −0.4243 with Copt = 0.0069 (top) and ξopt = −0.6667 with Copt = 0.0052 (bottom)

everywhere in the region A (La Torre et al. 2021b). Even if from a qualitative point
of view the behavior of the variables is independent of the value of β, this parameter
critically impacts the optimal boundary point ξ and the locdkdown intensity. Indeed,
β determines which share of the tax revenue collected in region B is spent locally in
the region, thus a higher β implies that region B subsidizes treatment in region A by
a smaller extent. We can observe that with a lower value of β (top panels) region A
covers a larger area than what happens with a higher β (bottom panels): as intervention
is less cross-subsidized by region B it is optimal to reduce the size of region A and
increase the lockdown intensity in order to compensate for the reduced resources for
treatment and to allow for a reduction in disease prevalence within the region. It is
possible to show that this result is robust and the larger β the smaller ξopt (i.e., ξopt

moves leftward) such that region A gets smaller.
Figure 2 repeats our previous analysis in the case in which the initial distribution

of the disease prevalence is sinusoidal and given by the following expression: ix,0 =
k(sin(πx)2e−x−1 +0.01) with k = 0.03(4π2+1)

(1−e−2)π2+0.01(4π2+1)
. From a qualitative point of

view the results are similar to those discussed earlier: disease prevalence decreases in
regionA, but the high heterogeneity of the initial distributionwithin the region leads the
lockdown intensity to be initially higher in the locations inwhich prevalence is initially
higher. Despite the physical mechanism of diffusion tends to increase prevalence in
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locations in which it is initially lower and to decrease it in those in which it is initially
higher, it is optimal from the social planner’s perspective to intervene more severely
in the central locations of the region. It is interesting to observe that the ξopt does not
coincide with x = 0, that is the point associated with the lowest initial prevalence
level between the peaks occurring at x = −0.5 and x = 0.5, but it is shifted leftmost.
Moreover, ad before different values of β do not change the qualitative behavior of the
main variables but the parameter plays an important role in determining the optimal
boundary point. In particular, the larger β the smaller ξ (i.e., ξ moves lefttward) such
that region A gets smaller, which is exactly the same result we have discussed in Fig. 1.

Overall, these figures show that from a normative perspective it is not simple to
understand how to effectively determine the optimal size of a lockdown area since the
chosen regional size determines the availability of resources to finance pharmaceutical
interventions in different regions and thus it critically affects the eventual success of
national epidemic management programs. In particular, the optimal choice of the
lockdown area (and thus of the lockdown intensity) depends on the initial spatial
distribution of disease prevalence and on the amount of resources diverted from one
region to the other, thus policymakers’ task to determine the optimal lockdown area
and intensity is all but simple as it requires a large amount of information on the
characteristics of the disease across the whole spatial economy.

4.1 The homogeneous case

A particular case of our general model is represented by the situation in which the
initial distribution of the disease prevalence is spatially homogeneous (i.e., i0(x) = i0).
In this specific situation the leftmost locations are characterized by exactly the same
level of disease prevalence as the rightmost locations, thus intervening more severily
(with both lockdown and treatment measures) in the left region may not be a sensible
approach. Nevertheless, this special case allows us to derive substantially simpler
analytical expressions for u j

x,t and i j
x,t and to understand more clearly how the optimal

boundary point is determined, thus it represents an interesting and instructive example.
The following proposition summarizes our results under homogeneity of the initial
distribution of the disease prevalence.

Corollary 2 Suppose i0(x) = i0 for any x ∈ [xa, xb]. Then, assuming that ξ is fixed,
the optimal pair (ix,t , ux,t ) solving problem (17) is given by the following expressions:

ix,t =
⎧
⎨

⎩
i A
x,t = i0

(

e�t
11 + e�t

12

[
e�T
21 −φ2e�T

11
φ2e�T

12 −e�T
22

])

x ∈ [xa, ξ ]
i B
x,t = i0e(αs−δ−δβτωs)t x ∈ [ξ, xb]

(39)
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ux,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u A
x,t =

(α−δτω)

(

e�t
21 +e�t

22

[
e�T
21 −φ2e�T

11
φ2e�T

12 −e�T
22

])

(

e�t
11 +e�t

12

[
e�T
21 −φ2e�T

11
φ2e�T

12 −e�T
22

]) x ∈ [xa, ξ ]

u B
x,t = 0 x ∈ [ξ, xb]

(40)

Corollary 2 determines the dynamics of the lockdown intensity and disease preva-
lence in the case in which the initial prevalence distribution is homogeneous across
space, showing that u j

x,t and i j
x,t are spatially homogeneous aswell. This result is due to

the fact that all economic and epidemiological parameters are spatially homogeneous
and thus in the absence of any source of heterogeneity the variables behavior needs to
be exactly the same in every location within each region. In the case of a homogeneous
initial distribution of the disease prevalence, the functional form of C(ξ) simplifies
and it can be written as:

C(ξ) = C1(ξ) + C2(ξ) + C3(ξ) (41)

where:

C1(ξ) = (ξ − xa)i20
2

∫ T

0

(
e�t
11 + Le�t

12

)2
e−ρt dt

+ (ξ − xa)i20s2(α − δωτ)2

2

∫ T

0

(
e�t
11 + Le�t

12

)2
e−ρt dt (42)

C2(ξ) = μ(xb − ξ)i20
2(ξ − xa)

(
e2(αs−δ−δβτωs)T − 1

2(αs − δ − δβτωs)

)

(43)

C3(ξ) = �(xb − xa)i20
2

((
e�T
11 + Le�T

12

)2 + 2e2(αs−δ−δβτωs)T
)

(44)

and L = e�T
21 −φ2e�T

11
φ2e�T

12 −e�T
22

. The integrals in the above expression can be solved in closed-

form but the expression of C(ξ) turns out to be quite cumbersome in general, and thus
it is not possible to explicitly determine the optimal ξ . However, in a special case in
which the tax revenue collected from region B is employed entirely locally within the
region (i.e., β = 1) it is possible to obtain in closed-form such an optimal boundary
point, as stated in the following corollary.

Corollary 3 Suppose that β = 1, and the following condition holds:

2μ(αs − δ − δτωs)
(
e2(αs−δ−δτωs)T − 1

)
[∫ T

0
(e�t

11 + Le�t
12 )2e−ρt dt

]−1

< xb − xa

Then C ′(ξ) = 0 if and only if the following result holds:
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ξ = xa

+
√

2μ(αs − δ − δτωs)(xb − xa)

(1 + s2(α − δωτ)2)
(
e2(αs−δ−δτωs)T − 1

) ∫ T
0 (e�t

11 + Le�t
12 )2e−ρt dt

(45)

where η1 = s(α − δ τω) − δ and η2 = 4(α − δωτ)2 + (ρ − 2η1)2. Furthermore ξ is
a global minimizer of C when x > xa and ξ ∈ (xa, xb).

Corollary 3 demonstrates that, under a quite general parameter condition the func-
tion C has a global minimizer, which is an interior point of the domain (xa, xb), which
suggests that also under a homogeneous initial disease prevalence distribution the
optimal ξ may be characterized by an interior solution. It is not possible though to
infer how this optimal boundary point depends on the main parameters, as its expres-
sion is extremely complicated due to the presence of the entries of the exponential
matrix which depend nonlinearly on the model parameters. Apart from what happens
in this particular case, in general the behavior of C(ξ) shows a vertical asymptote at
ξ = xa and then a decreasing trend followed by an increasing one, which suggests that
also under a homogeneous initial disease prevalence distribution the optimal ξ may
be characterized by an interior or a corner solution, exactly as it happens whenever
the initial disease prevalence distribution is heterogeneous. Therefore, as before we
proceed with numerical simulations to illustrate the behavior of the optimal solution.

Fig. 3 shows the spatio-temporal evolution of the lockdown intensity (left panel)
and disease prevalence (right panel) in the homogeneous initial prevalence distribution
case. In particular, we set ix,0 = 0.03 such that the total share of infectives within
the whole spatial economy is the same as in Figs. 1 and 2. We can observe that the
results are qualitative identical to those earlier discussed in the case of a heterogeneous
initial distribution: the initially high value of the lockdown intensity in regionA (which
covers a small portion of the entire spatial domain) allows to reverse the disease growth
pattern in the region, while prevalence increases or decreases in region B according
to the size of β. The most noticeable difference with respect to what have seen earlier
is related to the impact of β: independently of the value of this parameter the optimal
boundary point is always located in the same position: as there are no sources of
heterogeneity between regions (the parameters along with the initial prevalence are
the same in the two regions) the redistribution of resources between regions affects
only the intensity of the lockdown intensity in region A (and clearly the possibilities
for treatment in both regions A and B) but not the optimal size of the lockdown area.

5 The advanced epidemic stage

We now analyze the problem in an advanced epidemic setting in which the share
of susceptibles is not necessarily either constant or homogeneous, sx,t �= s. In this
context, along the lines of what we have seen in Sect. 2, by exploiting the fact that
sx,t = nx,t − ix,t the problem can be rewritten as follows: Find ξ ∈ (xa, xb] which
minimizes the following functional:
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Fig. 3 Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = 0.03 and either β = 0.2 (top) or
β = 0.8 (bottom).Optimal boundary point: ξopt = −0.7273withCopt = 0.0091 (top) and ξopt = −0.7273
with Copt = 0.0045 (bottom)

C(ξ) = min
ux,t

∫ T

0

∫ ξ

xa

i2x,t [1 + u2
x,t (nx,t − ix,t )

2]
2

e−ρt dxdt

+ μ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t

2
e−ρt dxdt + φ

∫ xb

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ux,t )(nx,t − ix,t )ix,t

−δ

[

1 + ωτ(1 − ux,t )(nx,t − ix,t ) + (1 − β)ωτ

ξ − xa
∫ xb

ξ

(nx,t − ix,t )dx

]

ix,t , x ∈ [xa, ξ ]
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(nx,t − ix,t )ix,t − δ[1 + βωτ(nx,t − ix,t )]ix,t ,

x ∈ [ξ, xb]
∂nx,t

∂t
= d

∂2nx,t

∂x2
∂ix,t

∂x
= 0, x ∈ {xa, xb, ξ}

123



374 D. La Torre et al.

∂nx,t

∂x
= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]
nx,0 = n0(x) > 0 x ∈ [xa, xb] (46)

In this case, even after a variable change the problem does not take a linear-quadratic
form but nevertheless the objective function is convex and it is possible to prove
existence and uniqueness of the solution by using the fact that the optimal control is
unique along with the fact that the state and costate equations are bounded, meaning
that the associated system of differential equations has a Lipschitz structure (Fleming
and Rishel 1975). Also in this case because of the convexity of the objective functional
the optimal control problem turns out to be well-posed (Dontchev and Zolezzi 1993).
Exactly as in the previous section we proceed by steps, considering ξ as exogenously
given first, and determining ξopt endogenously then.However, different from the previ-
ous section in which it has been possible to obtain the optimal solution in closed-form,
now the highly nonlinear structure of the problem precludes us fromderiving explicitly
the dynamic path of the lockdown intensity and disease prevalence. Therefore, apart
from the characterization of the optimality conditions (Theorem 2), we will need to
mostly rely on a numerical analysis.

Theorem 2 Assuming that ξ ∈ (xa, xb) is fixed. Under the regularity assumptions on
the state and the control variables presented in the model statement, then the optimal
pair (ix,t , ux,t ) solving problem (46) satisfies the following optimality conditions:

• ix,t : [xa, xb] × [0, T ] → R+ and it is defined as ix,t = i A
x,tχ[xa ,ξ ] + i B

x,tχ[ξ,xb]
• ux,t : [xa, xb] × [0, T ] → R+ and it is defined as ux,t = u A

x,tχ[xa ,ξ ]
• The function i B

x,t solves the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂i B
x,t

∂t = d
∂2i B

x,t

∂x2
+ (α − δβτω)i B

x,t

(
nB

x,t − i B
x,t

)− δi B
x,t , x ∈ [ξ, xb]

∂i B
x,t

∂x = 0, x ∈ {ξ, xb}
ix,0 = i0(x) x ∈ [ξ, xb]

(47)

where:

nB
x,t =

∑

n≥0

Bne
−
(

nπ
xb−ξ

)2
dt
cos

[
nπ(x − ξ)

xb − ξ

]

(48)

B0 = 1

xb − ξ

∫ xb

ξ

nx,0dx,

Bn = 2

xb − ξ

∫ xb

ξ

nx,0 cos

[
nπ(x − ξ)

xb − ξ

]

dx (49)
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• The pair (i A
x,t , u A

x,t ) solves the following optimality conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂i A
x,t

∂t = d
∂2i A

x,t

∂x2
+ (α − δτω)i A

x,t (n
A
x,t − i A

x,t )(1 − u A
x,t )

−δ
[
1 + (1−β)τω

ξ−xa

∫ xb
ξ

(
nB

x,t − i B
x,t

)
dx
]

i A
x,t

∂λA
x,t

∂t = ρλx,t − d
∂2λA

x,t

∂x2
− i A

x,t

−λA
x,t

[
(α − δτω)

(
n A

x,t − 2i A
x,t

)− δ − (1−β)τω
ξ−xa

∫ xb
ξ

(nB
x,t − i B

x,t )dx
]

u A
x,t = λA

x,t (α−δτω)
(
n A

x,t −i A
x,t
)
i A
x,t

∂i A
x,t

∂x = 0, x ∈ {xa, ξ}
∂λA

x,t
∂x = 0, x ∈ {xa, ξ}

i A
x,0 = i0(x) x ∈ [xa, ξ ]
λA

x,T = φi A
x,T x ∈ [xa, ξ ]

(50)

where λA
x,t is the costate variable and

n A
x,t =

∑

n≥0

Bne
−
(

nπ
ξ−xa

)2
dt
cos

[
nπ(x − xa)

ξ − xa

]

(51)

B0 = 1

ξ − xa

∫ ξ

xa

nx,0dx,

Bn = 2

ξ − xa

∫ ξ

xa

nx,0 cos

[
nπ(x − xa)

ξ − xa

]

dx (52)

Theorem 2 determines the necessary conditions for an optimum of our optimiza-
tion problem. Since we are assuming that ξ is fixed for the time being, provided that
0 < ix,t < nx,t and 0 < ux,t < 1, the conditions stated in Theorem 2 are also suffi-
cient. In fact, despite the Hamiltonian function is non-convex, it is possible to show
that the optimal control and the state and costate equations are bounded, meaning that
the derived system of forward–backward differential equations has a Lipschitz struc-
ture (Jung et al. 2002; La Torre et al. 2020). These specific properties of the model
ensure that the solution that we are able to characterize by analyzing the system of
first order conditions is effectively the unique optimal solution of our minimization
problem. However, the absence of a closed-form solution does not allow us to infer
anything about the behavior of the lockdown intensity and disease prevalence over
time and across space. Nevertheless, similar to what we have seen in an early epi-
demic setting, it is possible to derive some sufficient conditions guaranteeing that the
epidemic management program is effective, allowing thus a monotonic reduction in
the total disease prevalence in the entire spatial economy.

Proposition 2 Assume that αs̃−δ
s̃δωτ

< β < α
ωδτ

where s̃ = maxx,t (nx,t − ix .t ) ≥
0; then it follows that d

dt

∫ xb
ξ

i B
x,t dx = d

dt ‖i B
x,t‖L1([ξ,xb]) < 0 and d

dt

∫ ξ

xa
i A
x,t dx =
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d
dt ‖i A

x,t‖L1([xa ,ξ ]) < 0, which imply that the total disease prevalence over the spatial
domain (i.e., it = ∫ xb

xa
ix,t dx = ‖ix,t‖L1([xa ,xb])), decreases over time.

Proposition 2 states that if the amount of resources kept within region B to finance
local treatment is large enough to reverse the disease growthpattern (i.e.,β > αs̃−δ

s̃δωτ
) but

not excessively large to allow for enough cross-subsidization of treatment in region A
(i.e.,β < α

ωδτ
), then the total disease prevalencewill decrease over time in both regions

A and B, and thus also in the entire spatial domain. Note that, different from what we
have seen in an early epidemic setting, the minimal amount of resources required to
finance local treatment in region B depends on s̃, which represents the maximum of
the susceptibles sx,t = nx,t − ix .t over time and space within the spatial economy.
This means that ensuring that the epidemic management program is effective requires
to forecast the possible spatio-temporal disease dynamics in order to determine which
share of the resources needs to be maintained within region B and which share can be
diverted to region A. Apart from this difference, comments similar to those discussed
in an early epidemic setting apply.

As already discussed in the early epidemic scenario, in order to determine ξopt we
proceed by minimizing the functional cost C(ξ) given by:

C(ξ) =
∫ T

0

∫ ξ

xa

i2x,t [1 + u2
x,t (nx,t − ix,t )

2]
2

e−ρt dxdt

+ μ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t

2
e−ρt dxdt + φ

∫ xb

xa

i2x,T

2
e−ρT dx (53)

with respect to ξ over the interval (xa, xb). The absence of a closed form expression for
the dynamic path of the control and state variables does not allow us to state anything
about the behavior of the cost functional and thus we need to proceed via numerical
analysis in order to determine the optimal spatio-temporal dynamic path of u j

x,t and

i j
x,t and the optimal boundary point (see the online appendix for a discussion of the
numerical method employed in our analysis). We keep relying on the same parameters
we have employed in the previous section based on the COVID-19 experience during
its first epidemic wave in Italy. In order to characterize an advanced epidemic setting
in which the disease prevalence is no longer negligible as in an early epidemic stage,
we now increase the average prevalence value over the whole spatial domain to 0.1.
Figures4 and 5 depict the spatio-temporal evolution of the lockdown intensity (left
panels) and disease prevalence (right panels) under different configurations of the
initial prevalence distribution, distinguishing between the case in which β = 0.2
(top panels) and β = 0.8 (bottom panels). Note that under our parametrization and
numerical simulations the condition in Proposition 2 holds true (αs̃−δ

s̃δωτ
< β < α

ωδτ
)

only in the β = 0.8 case and thus the epidemic management program gives rise to a
reduction in the total disease prevalence in the spatial economy only in such a scenario,
while in the β = 0.2 case the total disease prevalence may even increase over time.

Under a monotonically decreasing initial prevalence distribution (see Fig. 4) we
can see that the results are qualitatively similar to those discussed in the previous
section, apart from the fact that the lockdown intensity increases over time. We can
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Fig. 4 Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = − 0.2
2 (x + 1) + 0.21, and either

β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary point: ξopt = 1 with Copt = 0.0143 (top) and
ξopt = 1 with Copt = 0.0274 (bottom)

note that in an advanced epidemic stage the size of region A is larger than in an early
epidemic setting (ξopt is located rightmost), and actually the region A covers the entire
spatial economy. As initially disease prevalence is higher in the whole spatial domain,
the need for intervention is more stringent in every location and thus it is convenient
to increase the size of region A (where more stringent lockdown measures can be
applied) in order to effectively reverse the disease growth pattern. In this case β does
not play any role as independently of the value of the parameter the optimal boundary
point is located at its upper extreme.

Similar comments apply also under a sinusoidal initial prevalence distribution (see
Fig. 5). Similar to what happens in an early epidemic stage, initially the lockdown
intensity is higher in locations characterized by a higher level of disease preva-
lence, Moreover, exactly as what we have seen in the previous figure in the case
of a monotonically decreasing prevalence distribution, we can note that with a sinu-
soidal distribution in an advanced epidemic stage the size of region A is larger than
in an early epidemic setting (ξopt is located rightmost). This is again due to the role
of a higher disease prevalence in the whole spatial domain, which thus requires to
intervenemore severely (with both lockdown and treatmentmeasures) in a larger num-
ber of locations. As the lockdown region does not cover the entire spatial economy,
the effects of β on the optimal boundary point are noticeable in this case. Specifi-
cally, different from what we have discussed under a monotonically decreasing initial
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Fig. 5 Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = k(sin(πx)2e−x−1 + 0.01)

where k = 0.1(4π2+1)
(1−e−2)π2+0.01(4π2+1)

, and either β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary

point: ξopt = 0.8284 with Copt = 0.0043 (top) and ξopt = 0.8890 with Copt = 0.0069 (bottom)

prevalence distribution, the optimal boundary point shifts rightward as β increases.
The availability of less resources from region B to subsidize treatment in region A
requires to intervene more severely (through lockdown measures) in a larger number
of locations.

Overall, these figures confirm what we have earlier discussed in an early epidemic
setting, and in particular from a normative perspective it is not simple to understand
how to effectively determine the optimal size of a lockdown area since this critically
depends on the initial spatial distribution of disease prevalence and the amount of
resources diverted from one region to the other. Moreover, different from what we
have discussed in an early epidemic stage, ensuring the effectiveness of the epidemic
management program requires to forecast the possible spatio-temporal disease dynam-
ics in order to determine which share of the resources needs to be maintained within
one region for local treatment and which share can be diverted to cross-subsidizing
treatment in the other region.

5.1 The homogeneous case

Different from what we have seen in an early epidemic setting in which the case of a
spatially homogeneous initial distribution of the disease prevalence (i.e., i0(x) = i0)
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Fig. 6 Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = 0.03 and either β = 0.2 (top)
or β = 0.8 (bottom). Optimal boundary point: ξopt = 1 with Copt = 0.0032 (top) and ξopt = 1 with
Copt = 0.0053 (bottom)

allows for a more clear characterization of the optimal solution and of the determina-
tion of the optimal boundary point, in an advanced epidemic stage such advantages
deriving from the homogeneity assumption disappear because the spatio-temporal
dynamic path of the state and control variables cannot be derived in closed-form.
Therefore, we necessarily need to rely on a numerical analysis which however
confirms what we have already discussed in an early epidemic stage: in our pre-
vious parametrization based on Italian COVID-19 experience, the cost functional
is resembles an U-shaped parabola in ξ and thus the optimal boundary point may
coincide with either one of the extremes of the spatial domain or with an interior
point.

Figure 6shows the spaio-temporal evolution of the lockdown intensity (left panels)
and disease prevalence (right panels) in the homogeneous initial prevalence distri-
bution case. We can observe that the results are qualitative similar to those earlier
discussed in an early epidemic stage, apart from the fact that, exactly as in the pre-
vious monotonically decreasing initial prevalence scenario, the lockdown area covers
the entire spatial domain independently of the value of β. Different from what we
have seen in an early stage setting, in an advanced epidemic stage because of the lack
of heterogeneity between regions it is convenient from the social planner’s point of
view to apply the same policy mix (based both on lockdown and treatment measures)
everywhere in the spatial economy.
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6 Multiple regions

Thus far we have presented our analysis in a two-regions framework as a matter of
expositional simplicity, but our setup can be straightforwardly generalized to multiple
regions. In order to exemplify how the addition of further regions may affect our
results we focus only on a three-regions case in which two boundary points (rather
than one as in a two-regions context) need to be optimally determined. Specifically,
we consider two alternative scenarios differing on the nature of a third region (which
we shall refer to as region C): in the first one the third region is not subject to lockdown
and part of the tax revenues collected in the region are diverted to the lockdown region
to finance extra treatment (i.e., the extra region resembles region B); in the second one
the third region is subject to lockdown such that the intensity of the lockdown needs
to be determined in two regions (i.e., the extra region resembles region A). These two
alternative scenarios are not exhaustive of all the possible ways in which a continuous
spatial domain may be partitioned in order to control the spread of an infectious
disease in real world situations, but they well exemplify the generality of our setup
and how it can be modified in order to deal with the different needs of policymakers.
In our following discussion we will focus only on the advanced epidemic stage, but
similar to what we have shown in the previous sections the early epidemic stage may
be analyzed as well. For the benefit of the reader and simplify the exposition, in the
following we will not stress the technical mathematical assumptions but rather we
will focus on the economic and policy implications of our model extension. However,
precise definitions of the set of admissible controls as well as the regularity hypotheses
on the state and the control variables can be stated similar to those presented in the
previous sections.

6.1 An extra non-lockdown region

The planner needs to choose how to split the entire spatial economy in three regions
in which different combinations of the pharmaceutical and non-pharmaceutical inter-
ventions will be implemented. In one region (region A = [ξ1, ξ2]) both treatment and
lockdown will be used, while in the others (regions C = [xa, ξ1] and B = [ξ2, xb])
only treatment will be used (with xa < ξ1 < ξ2 < xb). In region A, which develops
from ξ1 to ξ2, output net of lockdown measures is given by: yx,t = (1 − ux,t )qx,t ,
while the tax revenue, τ yx,t , is entirely used to finance treatment locally, and some
extra resources from treatment are collected from regions B and C, r B

x,t and rC
x,t , such

that vx,t = τ yx,t + r B
x,t + rC

x,t . The disease dynamics is described by a SIS equa-

tion as follows: ∂ix,t
∂t = d ∂2ix,t

∂x2
+ α(1 − ux,t )sx,t ix,t − δ(1 + ωvx,t )ix,t . In region

B and C, which develop from ξ2 to xb and from xa to ξ1 respectively, output in
each location is determined by the unconstrained supply: yx,t = qx,t , while a part
of the tax revenue, β iτ yx,t where 0 ≤ β i ≤ 1 with i = {B, C} is employed locally
to finance treatment and the remaining part is allocated to finance extra treatment
in the region A. The disease dynamics is described by a SIS equation as follows:
∂ix,t
∂t = d ∂2ix,t

∂x2
+αsx,t ix,t −δ(1+ωvx,t )ix,t , where vx,t = β iτqx,t . The total amount of
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tax revenues diverted from regionsBandC, (1−βB)τ
∫

B qx,t dx+(1−βC )τ
∫

C qx,t dx ,
is equally split within region A thus each location x ∈ [ξ1, ξ2] receives a share 1

ξ2−ξ1

of the total: r B
x,t + rC

x,t = τ
ξ2−ξ1

[(1−βB)
∫

B qx,t dx + (1−βC )
∫

C qx,t dx]. The social
planner needs to determine the size of the three regions in order to minimize the social
cost of the epidemic management program, accounting also for the instantaneous loss
in region C. In region C, exactly as in region B, as there is no lockdown the instan-

taneous loss function depends only on the level of disease prevalence: �(ix,t ) = i2x,t
2 .

Since in region B and C the public health intervention is rather limited and some of
its resources are diverted to region A, the instantaneous losses in these regions are

weighted by their size-adjusted importance with respect to region A’s, given by μB

xb−ξ2

with μb > 0 for region B and μC

ξ1−xa
with μC > 0 for region C. The planner’s opti-

mization problem reads thus as follows: Find ξ1, ξ2 ∈ (xa, xb) with ξ2 > ξ1 which
minimizes the optimal value:

C(ξ1, ξ2) = min
ux,t

μ

ξ1 − xa

∫ T

0

∫ ξ1

xa

i2x,t

2
e−ρt dxdt

+
∫ T

0

∫ ξ2

ξ1

i2x,t [1 + u2
x,t s

2
x,t ]

2
e−ρt dxdt

+ μ

xb − ξ2

∫ T

0

∫ xb

ξ2

i2x,t

2
e−ρt dxdt + φ

∫ xb

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ αsx,t ix,t − δ[1 + βCωτ sx,t ]ix,t , x ∈ [xa, ξ1]

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ux,t )sx,t ix,t

−δ

{

1 + ωτ(1 − ux,t )sx,t + ωτ

ξ2 − ξ1
[

(1 − βB)

∫ xb

ξ2

sx,t dx + (1 − βC )

∫ ξ1

xa

sx,t dx

]}

ix,t , x ∈ [ξ1, ξ2]

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ αsx,t ix,t − δ[1 + βBωτ sx,t ]ix,t , x ∈ [ξ2, xb]

∂nx,t

∂t
= d

∂2nx,t

∂x2

sx,t = nx,t − ix,t

∂ix,t

∂x
= 0, x ∈ {xa, xb, ξ1, ξ2}

∂nx,t

∂x
= 0, x ∈ {xa, xb, ξ1, ξ2}

ix,0 = i0(x) > 0 x ∈ [xa, xb]
nx,0 = n0(x) > 0 x ∈ [xa, xb] (54)

By following the same approach we have adopted in our baseline two-regions
framework, we can analytically determine the optimality conditions by taking the
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boundary points ξ1 and ξ2 as given and then numerically determine the optimal bound-
ary points which minimize the social cost associated with the epidemic management
program. Similar to what earlier discussed, the following theorem states the optimality
conditions for the model above.

Theorem 3 Assuming that ξ1, ξ2 are fixed, xa < ξ1 < ξ2 < xb. The optimal pair
(ix,t , ux,t ) solving problem (54) satisfies the following optimality conditions:

• ix,t : [xa, xb]× [0, T ] → R+ and it is defined as ix,t = iC
x,tχ[xa ,ξ1] + i A

x,tχ[ξ1,ξ2] +
i B
x,tχ[ξ2,xb]

• ux,t : [xa, xb] × [0, T ] → R+ and it is defined as ux,t = u A
x,tχ[ξ1,ξ2]

• The function i B
x,t solves the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂i B
x,t

∂t = d
∂2i B

x,t

∂x2
+ (α − δβτω)i B

x,t

(
nB

x,t − i B
x,t

)− δi B
x,t , x ∈ [ξ2, xb]

∂i B
x,t

∂x = 0, x ∈ {ξ2, xb}
ix,0 = i0(x) x ∈ [ξ2, xb]

(55)

where:

nB
x,t =

∑

n≥0

Bne
−
(

nπ
xb−ξ2

)2
dt
cos

[
nπ(x − ξ2)

xb − ξ2

]

(56)

B0 = 1

xb − ξ2

∫ xb

ξ2

nx,0dx,

Bn = 2

xb − ξ2

∫ xb

ξ2

nx,0 cos

[
nπ(x − ξ2)

xb − ξ2

]

dx (57)

• The function iC
x,t solves the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂iC
x,t

∂t = d
∂2iC

x,t

∂x2
+ (α − δβτω)iC

x,t

(
nC

x,t − iC
x,t

)− δiC
x,t , x ∈ [xa, ξ1]

∂iC
x,t

∂x = 0, x ∈ {xa, ξ1}
ix,0 = i0(x) x ∈ [xa, ξ1]

(58)

where:

nC
x,t =

∑

n≥0

Bne
−
(

nπ
ξ1−xa

)2
dt
cos

[
nπ(x − xa)

ξ1 − xa

]

(59)

B0 = 1

ξ1 − xa

∫ ξ1

xa

nx,0dx,

Bn = 2

ξ1 − xa

∫ ξ1

xa

nx,0 cos

[
nπ(x − xa)

ξ1 − xa

]

dx (60)
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• The pair (i A
x,t , u A

x,t ) solves the following optimality conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂i A
x,t

∂t = d
∂2i A

x,t

∂x2
+ (α − δτω)i A

x,t (n
A
x,t − i A

x,t )(1 − u A
x,t )

−δ
[
1 + ωτ

ξ2−ξ1

(
(1 − βB)

∫ xb
ξ2

s B
x,t dx + (1 − βC )

∫ ξ1
xa

sC
x,t dx

)]
i A
x,t

∂λA
x,t

∂t = ρλx,t − d
∂2λA

x,t

∂x2
− i A

x,t − λA
x,t

[
(α − δτω)

(
n A

x,t − 2i A
x,t

)

−δ − ωτ
ξ2−ξ1

(
(1 − βB)

∫ xb
ξ2

s B
x,t dx + (1 − βC )

∫ ξ1
xa

sC
x,t dx

)]

u A
x,t = λA

x,t (α−δτω)

(n A
x,t −i A

x,t )i
A
x,t

∂i A
x,t

∂x = 0, x ∈ {ξ1, ξ2}
∂λA

x,t
∂x = 0, x ∈ {ξ1, ξ2}

i A
x,0 = i0(x) x ∈ [ξ1, ξ2]
λA

x,T = φi A
x,T x ∈ [ξ1, ξ2]

(61)

where λA
x,t is the costate variable and

n A
x,t =

∑

n≥0

Bne
−
(

nπ
ξ2−ξ1

)2
dt
cos

[
nπ(x − ξ1)

ξ2 − ξ1

]

(62)

B0 = 1

ξ2 − ξ1

∫ ξ2

ξ1

nx,0dx,

Bn = 2

ξ2 − ξ1

∫ ξ2

ξ1

nx,0 cos

[
nπ(x − ξ1)

ξ2 − ξ1

]

dx (63)

In order to illustrate the implications of a third non-lockdown region on the partition
of the whole spatial economy, we rely on the same parameter values employed in our
Italian COVID-19 calibration by setting βB = βC = 0.2. Figure7shows the spatio-
temporal evolution of the lockdown intensity (left panels) and infectives share (right
panel) in a situation in which the initial disease prevalence distribution is linear (top
panels) and sinusoidal (bottom panels). We can note that in both scenarios the results
are qualitatively similar to those discussed in the previous section, that is disease
prevalence decreases in the lockdown region while it tends to increase in the non-
lockdown areas. It is interesting to observe that the possibility to partition the spatial
economy in a further region decreases the size of the lockdown area such that a lower
number of locations is subject to lockdown measures, which turn out to be more (less)
stringent than in a two-regions setting at the beginning (at the end) of the planning
horizon.

6.2 An extra lockdown region

We now consider a situation in which the third region (i.e., region C) is subject to
lockdown measures. As before, the planner needs to choose how to split the entire
spatial economy in three regions inwhich different combinations of the pharmaceutical
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Fig. 7 Spatio-temporal evolution of ux,t (left) and ix,t (right) with either ix,0 = − 0.2
2 (x + 1) + 0.21 (top)

or ix,0 = k(sin(πx)2e−x−1 + 0.01) where k = 0.1(4π2+1)
(1−e−2)π2+0.01(4π2+1)

(bottom) in the case of two non-

lockdown regions, Optimal boundary points: ξopt
1 = 0.1125 and ξ

opt
2 = 0.4151 (top), with Copt = 0.1112

and ξ
opt
1 = −0.3467 and ξ

opt
2 = 0.0520 (bottom), with Copt = 0.0235

and non-pharmaceutical interventions will be implemented. In two regions (region
A = [xa, ξ1] andC = [ξ2, xb]) both treatment and lockdownwill be used, while in the
other (region B = [ξ1, ξ2]) only treatment will be used (with xa < ξ1 < ξ2 < xb). In
regions A and C, which develop from xa to ξ1 and from ξ2 to xb respectively, output net
of lockdown measures is given by: yx,t = (1− ux,t )qx,t , while the tax revenue, τ yx,t ,
is entirely used to finance treatment locally, and some extra resources from treatment
are collected from region B, rx,t , such that vx,t = τ yx,t + rx,t . The disease dynamics

is described by a SIS equation as follows: ∂ix,t
∂t = d ∂2ix,t

∂x2
+ α(1 − ux,t )sx,t ix,t −

δ(1 + ωvx,t )ix,t . In region B, which develop from ξ1 to ξ2, output in each location is
determined by the unconstrained supply: yx,t = qx,t , while a part of the tax revenue,
βτ yx,t is employed locally to finance treatment and the remaining part is allocated to
finance extra treatment in regions A and C. The disease dynamics is described by a SIS

equation as follows: ∂ix,t
∂t = d ∂2ix,t

∂x2
+αsx,t ix,t −δ(1+ωvx,t )ix,t , where vx,t = βτqx,t .

The total amount of tax revenues diverted from region B, (1 − β)τ
∫

B qx,t dx , is split
between regionsA andC in proportions 0 < θ < 1 and 1−θ respectively, andwithin in
each region the amount received is equally split between locations, thus each location
x ∈ [xa, ξ1] receives an amount equal to r A

x,t = (1−β)θτ
ξ1−xa

∫
B qx,t dx , while each location
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x ∈ [x2, xb] an amount equal to rC
x,t = (1−β)(1−θ)τ

xb−ξ2

∫
B qx,t dx . The social planner needs

to determine the size of the three regions in order to minimize the social cost of the
epidemic management program, accounting also for the instantaneous loss in region
C. In region C, exactly as in region A, as there is lockdown the instantaneous loss
function depends on the spread of the disease and the output lost due to the lockdown

measure as follows: �(ix,t , ux,t qx,t ) = i2x,t (1+u2x,t q
2
x,t )

2 . Since in region B the public
health intervention is rather limited and some of its resources are diverted to regions
A and C, the instantaneous losses in this regions are weighted by its size-adjusted
importance with respect to regions A and C’s, given by μ

ξ1−xa+xb−ξ2
. The planner’s

optimization problem reads thus as follows: Find ξ1, ξ2 ∈ (xa, xb)with ξ2 > ξ1 which
minimizes the optimal value:

C(ξ1, ξ2) = min
ux,t

∫ T

0

∫ ξ1

xa

i2x,t [1 + u2
x,t s

2
x,t ]

2
e−ρt dxdt

+ μ

ξ1 − xa + xb − ξ2

∫ T

0

∫ ξ2

ξ1

i2x,t

2
e−ρt dxdt

+
∫ T

0

∫ xb

ξ2

i2x,t [1 + u2
x,t s

2
x,t ]

2
e−ρt dxdt + φ

∫ xb

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ux,t )sx,t ix,t

−δ

[

1 + ωτ(1 − ux,t )sx,t + (1 − β)ωτθ

ξ1 − xa

∫ ξ2

ξ1

sx,t dx

]

ix,t ,

x ∈ [xa, ξ1]
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ αsx,t ix,t − δ[1 + βωτ sx,t ]ix,t , x ∈ [ξ1, ξ2]

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ux,t )sx,t ix,t

−δ

[

1 + ωτ(1 − ux,t )sx,t + (1 − β)ωτ(1 − θ)

xb − ξ2

∫ ξ2

ξ1

sx,t dx

]

ix,t ,

x ∈ [ξ2, xb]
∂nx,t

∂t
= d

∂2nx,t

∂x2
x ∈ [xa, xb]

sx,t = nx,t − ix,t

∂ix,t

∂x
= 0, x ∈ {xa, xb, ξ1, ξ2}

∂nx,t

∂x
= 0, x ∈ {xa, xb, ξ1, ξ2}

ix,0 = i0(x) > 0 x ∈ [xa, xb]
nx,0 = n0(x) > 0 x ∈ [xa, xb] (64)
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Fig. 8 Spatio-temporal evolution of ux,t (left) and ix,t (right) with either ix,0 = − 0.2
2 (x + 1) + 0.21

(top) or ix,0 = k(sin(πx)2e−x−1 + 0.01) where k = 0.1(4π2+1)
(1−e−2)π2+0.01(4π2+1)

(bottom) in the case of two

lockdown regions, Optimal boundary points: ξopt
1 = 0.5055 and ξ

opt
2 = 0.5384 (top), with Copt = 0.0502

and ξ
opt
1 = −0.1837 and ξ

opt
2 = 0.0968 (bottom), with Copt = 0.0101

Exactly as before, it is possible to analytically derive the optimality conditions
taking the boundary points as given (Theorem 4) and numerically derive the optimal
boundary points (Fig. 8),

Theorem 4 Assuming that ξ1, ξ2 are fixed and xa < ξ1 < ξ2 < xb. Under the regular-
ity assumptions on the state and the control variables, then the optimal pair (ix,t , ux,t )

solving problem (46) satisfies the following:

• ix,t : [xa, xb]×[0, T ] → R+ and it is defined as ix,t = i A
x,tχ [xa, ξ1]+i B

x,tχ[ξ1,ξ2]+
iC
x,tχ[ξ2,xb]

• ux,t : [xa, xb]× [0, T ] → R+ and it is defined as ux,t = u A
x,tχ[xa ,ξ1] +uC

x,tχ[ξ2,xb]
• The function i B

x,t solves the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂i B
x,t

∂t = d
∂2i B

x,t

∂x2
+ (α − δβτω)i B

x,t

(
nB

x,t − i B
x,t

)− δi B
x,t , x ∈ [ξ1, ξ2]

∂i B
x,t

∂x = 0, x ∈ {ξ1, ξ2}
ix,0 = i0(x) x ∈ [ξ1, ξ2]

(65)

123



Epidemic outbreaks and the optimal lockdown area… 387

where:

nB
x,t =

∑

n≥0

Bne
−
(

nπ
ξ2−ξ1

)2
dt
cos

[
nπ(x − ξ1)

ξ2 − ξ1

]

(66)

B0 = 1

ξ2 − ξ1

∫ ξ2

ξ1

nx,0dx,

Bn = 2

ξ2 − ξ1

∫ ξ2

ξ1

nx,0 cos

[
nπ(x − ξ1)

ξ2 − ξ1

]

dx (67)

• The pair (i A
x,t , u A

x,t ) solves the following optimality conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂i A
x,t

∂t = d
∂2i A

x,t

∂x2
+ (α − δτω)i A

x,t (n
A
x,t − i A

x,t )(1 − u A
x,t )

−δ
[
1 + (1−β)τωθ

ξ1−xa

∫ ξ2
ξ1

(nB
x,t − i B

x,t )dx
]

i A
x,t

∂λA
x,t

∂t = ρλx,t − d
∂2λA

x,t

∂x2
− i A

x,t

−λA
x,t

[
(α − δτω)(n A

x,t − 2i A
x,t ) − δ − (1−β)τωθ

ξ1−xa

∫ ξ2
ξ1

(nB
x,t − i B

x,t )dx
]

u A
x,t = λA

x,t (α−δτω)

i A
x,t (n

A
x,t −i A

x,t )

∂i A
x,t

∂x = 0, x ∈ {xa, ξ1}
∂λA

x,t
∂x = 0, x ∈ {xa, ξ1}

i A
x,0 = i0(x) x ∈ [xa, ξ1]
λA

x,T = φi A
x,T x ∈ [xa, ξ1]

(68)

where λA
x,t is the costate variable and

n A
x,t =

∑

n≥0

Bne
−
(

nπ
ξ1−xa

)2
dt
cos

[
nπ(x − xa)

ξ1 − xa

]

(69)

B0 = 1

ξ1 − xa

∫ ξ1

xa

nx,0dx,

Bn = 2

ξ1 − xa

∫ ξ1

xa

nx,0 cos

[
nπ(x − xa)

ξ1 − xa

]

dx (70)
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• The pair (iC
x,t , uC

x,t ) solves the following optimality conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂iC
x,t

∂t = d
∂2iC

x,t

∂x2
+ (α − δτω)iC

x,t (n
C
x,t − iC

x,t )(1 − uC
x,t )

−δ
[
1 + (1−β)τω(1−θ)

xb−ξ2

∫ ξ2
ξ1

(nB
x,t − i B

x,t )dx
]

iC
x,t

∂λC
x,t

∂t = ρλx,t − d
∂2λC

x,t

∂x2
− iC

x,t

−λC
x,t

[
(α − δτω)(nC

x,t − 2iC
x,t ) − δ − (1−β)τω(1−θ)

xb−ξ2

∫ ξ2
ξ1

(nB
x,t − i B

x,t )dx
]

uC
x,t = λC

x,t (α−δτω)

(nC
x,t −iC

x,t )i
C
x,t

∂iC
x,t

∂x = 0, x ∈ {ξ2, xb}
∂λC

x,t
∂x = 0, x ∈ {ξ2, xb}

iC
x,0 = i0(x) x ∈ [ξ2, xb]
λC

x,T = φiC
x,T x ∈ [ξ2, xb]

(71)

where λC
x,t is the costate variable and

nC
x,t =

∑

n≥0

Bne
−
(

nπ
xb−ξ2

)2
dt
cos

[
nπ(x − ξ2)

xb − ξ2

]

(72)

B0 = 1

xb − ξ2

∫ xb

ξ2

nx,0dx,

Bn = 2

xb − ξ2

∫ xb

ξ2

nx,0 cos

[
nπ(x − ξ2)

xb − ξ2

]

dx (73)

Figure 8 shows the outcome of our analysis in the case of our Italian COVID-19
calibration by setting θ = 0.5 and β = 0.2. Also in this case the results are qualitative
similar to those discussed in a two-regions context, that is disease prevalence decreases
in the two lockdown regions while it tends to increase in the non-lockdown area. The
two lockdown areas are subject to different lockdown intensities, which intuitively
results to be higher (on average) in the region in which the level of disease prevalence
is higher. It is interesting to observe that also in this case, the possibility to partition the
spatial economy in a further region (despite this additional region is a lockdown region)
decreases the size of the lockdown area such that a lower number of locations is subject
to lockdown measures, which are again more (less) stringent than in a two-regions
setting at the beginning (at the end) of the planning horizon.

6.3 Howmany regions subject to lockdown?

Figures 7 and 8 show that by increasing the number of regions it is possible to decrease
the size of the area subject to the more stringent policy measures (i.e., lockdowns).
This suggests that by allowing the spatial economy to be partitioned in a larger number
of regions allows to intervene with more precision in the areas which are more in need
of policy support. However, we cannot assess whether it may be most convenient to
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Table 1 Social cost of disease containment strategies in different scenarios

One lockdown area Two lockdown areas

Linear initial conditions 0.1112 0.0502

Nonlinear initial conditions 0.0235 0.0101

partition the spatial economy in one or two lockdown areas, thus in order to comment
on this we need to quantify the social cost associated with the epidemic management
program.

Table 1reports the social cost of the epidemic management program in our three-
regions setup in different scenarios, associated with a different number of lockdown
areas (one or two) and different initial prevalence conditions (linearly decreasing or
nonlinear sinusoidal). We can straightforwardly note that independently of the initial
spatial distribution of disease prevalence the social cost is significantly lower when
the spatial economy is partitioned in two lockdown areas: the possibility to split the
economy in two distinct areas where the most severe policy intervention tools are
applied allows to cater the lockdown intensity for the specific needs of such areas,
resulting in a most effective way to reverse to disease growth pattern in specific areas
and in the entire spatial economy as well.

7 Extensions

We now return to our two-regions baseline setup to extend it to account for some
of the epidemiological peculiarities of COVID-19 and the effects of some policy
measures implemented in order to control its spread, which we have not considered
in our baseline model for the sake of analytical tractability. We first consider how
results change if mobility patterns captured by the diffusion term are different between
regions andbetweenpopulation sub-groups, thenwhether the possibility to adjust fiscal
policy changes our conclusions, and finally how a more rigorous characterization of
the COVID-19 epidemics modifies our analysis. As in the previous section, we focus
only on an advanced epidemic setting, and for the sake of expositional simplicity we
present only the results of our numerical simulations while the optimality conditions
and further technicalities can be found in the online appendix. As in the previous
section, we will not stress the technical mathematical assumptions but we will focus
on the economic and policy implications of the differentmodel extensions. Once again,
precise definitions of the set of admissible controls as well as the regularity hypotheses
on the state and the control variables can be easily stated similar to those presented
for our benchmark model.

7.1 The economic setting

An important consequence of the policy measures implemented to contain the spread
of COVID-19 worldwide consists of affecting heterogeneously individual mobility
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across different population groups and regions. Indeed, since infectives have been
subject to either hospitalized or self-imposed confinement rules their spatial mobility
has been much lower than susceptibles’ who instead have been able to freely circulate
within the national or regional borders, thus the speed of diffusion cannot be simply
assumed to be the same between the two population sub-groups. Moreover, due to
lockdown regulations the mobility patterns of both susceptibles and infectives have
largely reduced in lockdown regions compared to those occurring in non-lockdown
ares, thus the speed of diffusion cannot be assumed to be the same between regions.
Therefore, we modify our baseline model along two directions: (i) we allow for the
population groups to be characterized by different diffusion parameters, dI and dS for
infectives and susceptibles respectively, with dI ≤ dS ; (ii) and we allow for the two
regions to be characterized by different diffusion coefficients, dA and dB in regions A
and B respectively, with dA ≤ dB .

By abstracting from mitigation policy and denoting with d j
i ≥ 0 the diffusion

parameter for group i = {I , S} in region j = {A, B}, our extended model in each
region j can be described by the following system of partial differential equations:

∂sx,t

∂t
= d j

S
∂2sx,t

∂x2
+ δix,t − αsx,t ix,t (74)

∂ix,t

∂t
= d j

I
∂2ix,t

∂x2
+ αsx,t ix,t − δix,t (75)

It is straightforward to observe that the above equations are no longer symmetric and
thus the equation for the share of population in location x , nx,t = sx,t + ix,t , turns out
to take the following form:

∂nx,t

∂t
= d j

S
∂2nx,t

∂x2
+
(

d j
I − d j

S

) ∂2ix,t

∂x2
, (76)

which clearly does no longer coincide with the classical heat equation but rather
depends endogenously on the share of infectives. Therefore, it is not possible to sub-
stitute sx,t = nx,t − ix,t in (75) in order to obtain a unique endogenous state equation
paired with an exogenously given variable as we have done in the previous sections,
but we need to carry on in our analysis both the equations for the susceptibles and
infectives shares, given by (74) and (75) respectively. This makes the model slightly
more complicated than the previous formulation due to the presence of two endoge-
nous state variables for each region. Note that whenever d j = d j

I = d j
S (76) returns

being the classical heat equation and thus we can follow the same approach we have
employed in the previous sections.

Taking this complication into account, in our extended model with heterogeneous
diffusion between groups and regions, the social planner’s problem can be stated as
follows: Find ξ ∈ (xa, xb) which minimizes the following functional:

C(ξ) = min
ux,t

∫ T

0

∫ ξ

xa

i2x,t [1 + u2
x,t s

2
x,t ]

2
e−ρt dxdt + μ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t

2
e−ρt dxdt

+φ

∫ xb

xa

i2x,T

2
e−ρT dx
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s.t .
∂sx,t

∂t
= d A

S
∂2sx,t

∂x2
− α(1 − ux,t )sx,t ix,t

+δ

[

1 + ωτ(1 − ux,t )sx,t + (1 − β)ωτ

ξ − xa

∫ xb

ξ

sx,t dx

]

ix,t , x ∈ [xa, ξ ]

∂ix,t

∂t
= d A

I
∂2ix,t

∂x2
+ α(1 − ux,t )sx,t ix,t

−δ

[

1 + ωτ(1 − ux,t )sx,t + (1 − β)ωτ

ξ − xa

∫ xb

ξ

sx,t dx

]

ix,t , x ∈ [xa, ξ ]

∂sx,t

∂t
= d B

S
∂2sx,t

∂x2
− αsx,t ix,t + δ[1 + βωτ sx,t ]ix,t , x ∈ [ξ, xb]

∂ix,t

∂t
= d B

I
∂2ix,t

∂x2
+ αsx,t ix,t − δ[1 + βωτ sx,t ]ix,t , x ∈ [ξ, xb]

∂ix,t

∂x
= 0, x ∈ {xa, xb, ξ}

∂sx,t

∂x
= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]
sx,0 = s0(x) ≥ 0 x ∈ [xa, xb] (77)

In an advanced epidemic setting we can determine the optimal size of the lockdown
area and the optimal lockdown intensity only numerically, exactly as in the previous
sections. We continue relying on the same parameter values we have employed in our
COVID-19 Italian calibration, and in order to allow for heterogeneity in the speed
of diffusion between groups we set d j

I = 0.01 and d j
S = 0.05 while to allow for

heterogeneity between regions we set d A
i = 0.01 and d B

i = 0.1, showing how such a
lack of diffusion homogeneity affects our results. Figure9shows the spatio-temporal
evolution of the lockdown intensity (left panels), susceptibles share (central panels)
and disease prevalence (right panels) under homogeneity between groups and regions
(top panels), homogeneity between groups but heterogeneity between regions (mid
panels), and heterogeneity between groups but homogeneity between regions (bottom
panels).We can observe that in all three scenarios the results are qualitatively identical:
the lockdown intensity monotonically decreases over time in order to allow disease
prevalence to decrease within the lockdown region, while the absence of lockdown
in the non-lockdown region does not allow for a reduction in prevalence within the
region.8 Heterogeneity in the mobility patterns affects quantitatively the results, and
in particular the lockdown intensity and the size of the lockdown area are reduced by
the presence of heterogeneity either between regions or between groups. This is due
to the fact that a faster diffusion of a population group or within a region increases the
speed at which the disease naturally tends to die out in a single location by spreading
geographically across locations, reducing thus the need to employ stringent andwidely
spread lockdown measures.

Note also that in order to visualize the effects of heterogeneity we have analyzed
what happens when the degree of heterogeneity (i.e., the gap between the diffusion

8 Note that we cannot compare our results with those presented earlier in Fig. 4 since the evolution of the
share of population residing in a given location (and thus that of the share of susceptibles) is different in
the two frameworks.
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Fig. 9 Spatio-temporal evolution of ux,t (left), sx,t (center) and ix,t (right) with ix,0 = − 0.2
2 (x +1)+0.21

and sx,0 = 0.2
2 (x + 1)+ 0.29 with d A

I = d B
I = d A

S = d B
S = 0.01 (top) or d A

I = d B
I = 0.01, d A

S = d B
S =

0.05 (mid) and d A
I = d A

S = 0.01, d B
I = d B

I = 0.1 (bottom). Optimal boundary point: ξopt = 0.3409
(top), with C = 0.0530, ξopt = 0.0298 (center), with C = 0.0561 and ξopt = −0.369 (bottom), with
C = 0.0846

parameters) is substantially large. In fact, it is possible to show that if the gap between
the diffusion parameters is small differences in the degree of heterogeneity will not
lead to noticeable differences in the evolution of the main variables (unless one of
the two diffusion parameters becomes particularly large, at least one order of mag-
nitude larger than the other epidemiological parameters). This suggests that under
realistic parameter values we can safely analyze the implications of our economic-
epidemiological framework under the assumption of homogeneous mobility patterns
between groups and between regions.

7.2 The role of fiscal policy

Given our previous conclusion regarding the limited role of heterogeneity in mobil-
ity patterns under a realistic model parametrization, we now return to our baseline
setup with homogeneous mobility between groups and between regions to extend it to
account for the possibility to optimally determine fiscal policy, which provides poli-
cymakers with an additional mitigation instrument. Indeed, in our analysis thus far we
have assumed that fiscal policy is exogenously given and the tax rate takes a constant
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value such that lockdowns are the only form of policy intervention. In reality policy-
makers can try to mitigate the health-economic consequences of infectious diseases
through fiscal policy adjustments, as confirmed by the experience of several coun-
tries during the ongoing COVID-19 epidemic in which different tax cuts, subsidies
and other fiscal measures have been implemented to support households and firms’
income.We now try to reassess our previous conclusions in the light of these consider-
ations, and specifically we do so by endogeneizing the tax rate which now represents
an additional control variable. By optimally determining the tax rate, policymakers
can apply heterogenous tax rates between the lockdown and the non-lockdown regions
choosing whether financing the extra treatment needs of the lockdown region through
additional taxation either in the same region or in the non-lockdown region.

In a setting in which fiscal policy is endogenous, the policymaker needs to choose
the optimal tax rate τx,t accounting for its social cost since a higher tax rate increases
the instantaneous losses (in both regions A and B) associated with the epidemic man-
agement program. In particular, in region A, the instantaneous loss function depends
no longer only on the spread of the disease and the output lost due to the lockdown
measure but also on the tax rate, and bymaintaining our quadratic formulation assump-

tion it reads as follows: �(ix,t , ux,t qx,t , τx,t ) = i2x,t (1+u2x,t q
2
x,t )+τ 2x,t

2 , where the last term
penalizes deviations from the no-tax scenario. Similarly, in the non-lockdown region
B the instantaneous loss function depends not only on the level of disease prevalence

but also on the tax rate as follows: �(ix,t , τx,t ) = i2x,t +τ 2x,t
2 . Note that even if in region

B there is no lockdown, the social planner needs to determine the intensity of the
tax rate in the region, thus also in region B they face an optimal control problem.
And by optimally choosing the tax rate in each location within the two regions the
social planner determines not only howmany resources to employ locally in a specific
location to finance treatment, but also how many resources to divert from region B
to finance extra treatment in region A. Specifically, the total amount of tax revenues
diverted from region B, (1 − β)

∫
B τx,t qx,t dx , is equally split within region A thus

each location x ∈ [xa, ξ ] receives a share 1
ξ−xa

of the total: rt = (1−β)
ξ−xa

∫
B τx,t qx,t dx .

In this more complicated setting, the social planner’s optimization problem becomes:
Find ξ ∈ (xa, xb) which minimizes the following functional:

C(ξ) = min
ux,t ,τx,t

∫ T

0

∫ ξ

xa

i2x,t [1 + u2
x,t (nx,t − ix,t )

2] + τ 2x,t

2
e−ρt dxdt

+ μ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t + τ 2x,t

2
e−ρt dxdt + φ

∫ xb

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ux,t )(nx,t − ix,t )ix,t

−δ

[

1 + ωτx,t (1 − ux,t )(nx,t − ix,t ) + (1 − β)ω

ξ − xa
∫ xb

ξ

τx,t (nx,t − ix,t )dx

]

ix,t , x ∈ [xa, ξ ]
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Fig. 10 Spatio-temporal evolution of ux,t (left), ix,t (center) and τx,t (right) with ix,0 = − 0.2
2 (x+1)+0.21

and either β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary point: ξopt = 0.6750 with Copt = 0.0909
(top) and ξopt = 0.7897 with Copt = 0.1106 (bottom)

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(nx,t − ix,t )ix,t − δ[1 + βωτx,t (nx,t − ix,t )]ix,t ,

x ∈ [ξ, xb]
∂nx,t

∂t
= d

∂2nx,t

∂x2
∂ix,t

∂x
= 0, x ∈ {xa, xb, ξ}

∂nx,t

∂x
= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]
nx,0 = n0(x) > 0 x ∈ [xa, xb] (78)

In an advanced epidemic setting we can numerically determine not only the optimal
size of the lockdown area and the optimal lockdown intensity as in the previous
sections, but also the optimal intensity of the tax rate. We continue relying on the
same parameter values we have employed in our COVID-19 Italian calibration, and
our results are illustrated in Fig. 10, which shows the spatio-temporal evolution of the
lockdown intensity (left panels), disease prevalence (central panels) and tax rate (right
panels) whenever either β = 0.2 (top panels) or β = 0.8 (bottom panels).

We can observe that the results are qualitatively similar to thosewehave discussed in
our baselinemodel: the lockdown intensitymonotonically decreases over time in order
to allow disease prevalence to decrease within the lockdown region, while the absence
of lockdown in the non-lockdown region does not allow for a reduction in prevalence
within the region. The tax rate instead shows a different pattern in the lonckdown and
non-lockdown regions: in the non-lockdown region it is monotonically decreasing
mimicking the behavior of the lockdown intensity, while in the lockdown area it is
non-monotonic (increasing first and decreasing then) and highly heterogeneous (being
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initially higher in the central locations of the region than in the lateral ones). Compared
to what we have discussed in our baseline setup where we have assumed the tax rate
being homogeneous across space and constant over time (i.e., τx,t = 0.3,∀x, t), its
optimal value results to be lower everywhere in space and time generating a slower
reduction in disease prevalence along with a reduction in the size of the lockdown area
(see Fig. 4). A higher β generates a rightward shift of the optimal boundary point,
that is when the amount of resources diverted from region B to region A decreases, it
is convenient to increase the tax rate within region A to allow for effective treatment
and for a larger size of the lockdown area. Comments similar to those presented in
our baseline setup apply, thus apart from some quantitative difference in the optimal
values of the boundary point and the lockdown intensity, qualitatively speaking the
endogenous determination of the optimal local tax rate does not modify our main
conclusions and thus can be safely ignored in our following analysis.

7.3 The epidemiological setting

Given our previous conclusion regarding the limited role of the optimal determination
of the tax rate on our qualitative results, we now return to our baseline setup with a
constant and homogeneous tax rate to extend it to account for some of the epidemio-
logical peculiarities of COVID-19 which we have not considered thus far for the sake
of analytical tractability. Indeed, since recovery from COVID-19 infection provides
temporary immunity from the disease its dynamics cannot be simplistically described
by a SIS model. Moreover, the spatial spread of the disease seems to be much faster
than the spatial pace of the demographic changes associated with migration, thus dif-
fusion cannot be the only element of spatial propagation of the disease. Therefore, we
modify our baseline model along two directions: (i) we consider a SIRS framework in
which upon recovery individuals become immune before returning susceptible to the
disease again when the acquired temporary immunity dies out; (ii) we introduce local
effects conveyed by a spatial integral term which captures short-lived individuals’
spatial movements due to personal and business trips.

By abstracting from mitigation policy, our extended SIRS epidemiological model
can be described as follows. Every individual in the population in each location can
be suceptible, infective, or recovered, Rx,t . Susceptibles become infectives by inter-
acting with other infectives within the entire spatial economy (and not only those
located in the same venue, as in our baseline framework); infectives become immune
after recovering from the disease; recovereds return being susceptible again after the
temporary immunity gained from recovery dies out, and ε > 0 measures the speed
of immunity loss. In each location the evolution of the susceptibles, infectives and
recovereds shares where rx,t = Rx,t

N can be described through the following system
of partial differential equations:

∂sx,t

∂t
= d

∂2sx,t

∂x2
+ εrx,t − α

∫

�

sx ′,t ix ′,tψx ′,x dx (79)

∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α

∫

�

sx ′,t ix ′,tψx ′,x dx − δix,t (80)
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∂rx,t

∂t
= d

∂2rx,t

∂x2
+ δix,t − εrx,t (81)

In the equations above, the spatial integral term
∫
�

sx ′,t ix ′,tψx ′,x dx captures the infec-
tions generated by the social interactions generated by commuting and business trips
which take place on a daily basis (La Torre et al. 2022). Because of such intra-day
movements individuals get in contact with a number of individuals originally located
even far away from their origin location, thus all the contacts between infectives and
susceptibles contribute to determine the spread of the disease in a given location. The
kernel ϕx ′,x where

∫
�

ϕx ′,x dx = 1 measures the extent to which these cross-locations
contacts determine the level of disease prevalence in a given location. While the dif-
fusion term captures the effects of migration and thus describes a dynamic externality
affecting disease dynamics over time, the integral term represents a static externality
affecting disease dynamics instantaneously (La Torre et al. 2022).

Similar to what we have discussed in our baseline SIS model, it is possible to show
that in the absence of the integral term the system above admits two homogeneous

equilibria, one of which is disease-free, E F = (i
F
, s F , r F ), and the other endemic,

E E = (i
E
, s E , r E ), characterized as follows:

E F : i
F = 0, s F = 1, r F = 0

E E : i
E = ε(α − δ)

α(δ + ε)
, s E = δ

α
, r E = δ(α − δ)

α(δ + ε)
(82)

Exactly as in our baseline SIS framework, the disease-free equilibrium exists for
all parameter values while the endemic one only whenever α > δ, and the system
converges to a disease-free situation whenever α ≤ δ or to an endemic situation
whenever α > δ. Therefore, also in this case the basic reproduction number is given
by (14), thus the same comments discussed in our baseline model still apply. However,
note that these conclusions hold true only whenever the integral term is absent (i.e.,
the kernel takes the form of the Dirac’s delta function), while whenever the integral
term is present the results will be partially different. In particular, a disease-free and an
endemic equilibrium will still exist and will still represent alternative outcomes, but
these equilibria will become spatially heterogeneous (i.e., no longer homogeneous)
andwill be no longer possible to characterize themexplicitly.Despite these differences,
most our qualitative conclusions still apply and according to the intensity of mitigation
policies it may be possible to achieve a disease-free or a endemic outcome, either
locally or globally within the spatial economy.

Such an extended SIRS epidemiological framework with local effects requires us to
take into account also the role of recovereds in our economic framework. Indeed, since
they are healthy individuals we now assume that production depends linearly not only
on susceptibles but also on recovereds as follows: qx,t = sx,t + rx,t . Taking this into
account and recalling that sx,t = nx,t − ix,t − rx,t , it follows that the social planner’s
optimization problem becomes: Find ξ ∈ (xa, xb) which minimizes the following
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functional:

C(ξ) = min
ux,t

∫ T

0

∫ ξ

xa

i2x,t [1 + u2
x,t (nx,t − ix,t )

2]
2

e−ρt dxdt

+ μ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t

2
e−ρt dxdt + φ

∫ xb

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α(1 − ux,t )

∫ ξ

xa

(nx ′,t − ix ′,t − rx ′,t )ix ′,tψx ′,x dx ′

−δ

[

1 + ωτ(1 − ux,t )(nx,t − ix,t − rx,t ) + (1 − β)ωτ

ξ − xa
∫ xb

ξ

(nx,t − ix,t )dx

]

ix,t , x ∈ [xa, ξ ]
∂rx,t

∂t
= d

∂2rx,t

∂x2

+δ

[

1 + ωτ(1 − ux,t )(nx,t − ix,t − rx,t ) + (1 − β)ωτ

ξ − xa
∫ xb

ξ

(nx,t − ix,t )dx

]

ix,t

−εrx,t x ∈ [xa, ξ ]
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ α

∫ xb

ξ

(nx ′,t − ix ′,t − rx ′,t )ix ′,tψx ′,x dx

−δ[1 + βωτ(nx,t − ix,t )]ix,t , x ∈ [ξ, xb]
∂rx,t

∂t
= d

∂2rx,t

∂x2
+ δ[1 + βωτ(nx,t − ix,t )]ix,t − εrx,t x ∈ [ξ, xb]

∂nx,t

∂t
= d

∂2nx,t

∂x2
sx,t = nx,t − ix,t − rx,t

∂ix,t

∂x
= 0, x ∈ {xa, xb, ξ}

∂rx,t

∂x
= 0, x ∈ {xa, xb, ξ}

∂nx,t

∂x
= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]
rx,0 = r0(x) > 0 x ∈ [xa, xb]
nx,0 = n0(x) > 0 x ∈ [xa, xb] (83)

In an advanced epidemic setting we can numerically determine the optimal size
of the lockdown area and the optimal lockdown intensity exactly as in the previous
sections. We continue relying on the same parameter values we have employed in our
COVID-19 Italian calibration, and in order to model temporary immunity and local
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Fig. 11 Spatio-temporal evolution of ux,t (left), ix,t (center) and rx,t (right) with ix,0 = − 0.2
2 (x +1)+0.21

and rx,0 = 0.5ix,0 with either σ = 1.5 (top) or σ = 2 (bottom). Optimal boundary point: ξopt = 0.2343
(top), with C = 0.0536 and ξopt = 0.2434 (bottom), with C = 0.0532

effects we set ε = 0.0056 and ϕx,x ′ = 1
σ
√
2π

e− 1
2 ( x ′−x

σ
)2 where σ ≥ 0 measures the

standard deviation of the kernel and we consider different values of this parameter to
understand how it affects our results (La Torre et al. 2022).

Figure 11 shows the spatio-temporal evolution of the lockdown intensity (left
panels), infectives share (mid panels) and recovereds share (right panels) under a
monotonically decreasing initial disease prevalence distribution in the case in which
σ = 0.5 (top panels) or σ = 1 (bottom panels). While the evolution of the infectives
resembles what we have already discussed in the previous sections and that of the
recovereds is intuitive, the most noticeable difference with respect to what we have
seen in our baseline model is related to the behavior of the lockdown intensity. Indeed,
we can observe that despite the initial condition is linear, the lockdown intensity is
highly nonlinear to account for the effects of the integral term, which quantifies how
cross-location proximity effects impact disease prevalence in a specific location. In
particular, the central (lateral) locations within the lockdown area are the ones which
are affected by the influence of prevalence from a larger (smaller) number of sur-
rounding locations. However, the extent to which such cross-location effects impact
prevalence in a specific location x depends on the value of σ . A higher standard devia-
tion increases the total number of locations with non-negligible impact on x , but only
those within the lockdown area effectively matter (there is no flow in and out of the
boundary point ξ ), thus the higher σ the smaller the number of relevant proximity
effects for the epidemic dynamics in location x . This is the reason why the lockdown
intensity is on average higher and the lockdown area is smaller when the standard devi-
ation is smaller. A smaller standard deviation by increasing the number of relevant
proximity effects requires to reduce the size of the lockdown area and to increase the
lockdown intensity in order to account for the augmented disease incidence induced
by cross-location proximity effects.
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8 Conclusions

The ongoing COVID-19 pandemic has shown more clearly than ever that the con-
sequences of infectious diseases on macroeconomic activity may be particularly
dramatic. It has also shown that such effects are to a large extent heterogeneous between
and within countries, which thus requires policymakers to differentiate the intensity
and the type of intervention tools employed at local levels in order to contain the
spread of the disease without excessively compromising economic activity. In order
to shed some light on how such a policy differentiation may need to be implemented,
our paper characterizes from a normative perspective the optimal regional policy to
contain the spread of a communicable disease in a spatial framework with endogenous
determination of the regional borders characterizing which policy regime will prevail
in a given region. Specifically, the social planner needs to choose how to split the
entire spatial economy in a number of regions in which a different combination of
lockdown and treatment measures will be employed: in some region the only mitiga-
tion instrument will be treatment, while in some other treatment will be accompanied
by a partial lockdown. We characterize the optimal solution both in an early and an
advanced epidemic setting inwhich the disease prevalence in the total population is and
is not negligible, respectively. We show that according to the specific circumstances,
it may be convenient either to partition the spatial economy in multiple regions with
differentiated policies or to consider it as a unique region subject to the same policy
measures. Moreover, we show that from a normative perspective it is rather difficult to
understand how to effectively determine the optimal size of a lockdown area (and thus
the optimal lockdown intensity in the area) since this critically depends on a number
of factors, including the initial spatial distribution of disease prevalence, the amount
of resources diverted from one region to the other, and the possible spatio-temporal
evolution of the disease. We present a calibration based on the COVID-19 experience
in Italy during its first epidemicwave showing how the prescribed solutionmay change
under alternative initial distributions of the disease prevalence across space.

To the best of our knowledge, this is the first paper characterizing analytically the
optimal lockdown area in a spatial setting and also the first paper analyzing the optimal
determination of the borders between regions in a spatial setting. Given the complexity
of the problem under investigationwe have tried tomaintain the setup as simple as pos-
sible in order to understand the mechanisms underlying the formation of such optimal
choices. However, this has precluded us the possibility to account for some important
features observed in the real world during the COVID-19 epidemic. In particular, lock-
down measures have generated important effects not only on disease prevalence and
economic activity but also on the natural environment, thus introducing some mutual
links among epidemics, economies and pollution may allow us to describe more accu-
rately different dimensions of the COVID-19 experience in industrialized countries.
Moreover, lockdown decisions have often beenmade not at a centralized national level
but at a decentralized regional level giving often rise to free-riding behavior between
regions, thus introducing some strategic interactions between different geographical
units may allow us to characterize the externalities imposed by free riding on disease
and macroeconomic dynamics and thus to determine how to eventually decentralize
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the social optimum. Extending the analysis along these directions is left for future
research.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00199-023-01517-w.

A Proofs of themain results

A.1 Proof of Lemma 1

The proof is a straightforward application of Sylvester’s formula (see Bhatia 1997).

A.2 Proof of Theorem 1

For any fixed ξ ∈ (xa, xb), the model can be analyzed via a two-stage approach. First,
we determine the solution in region B which is independent of region A’s, and then
we plug this solution into region A’s problem determining its solution. The share of
infectives ix,t over the region [ξ, xb] solves the boundary value problem:

⎧
⎪⎨

⎪⎩

∂ix,t
∂t = d ∂2ix,t

∂x2
+ (αs − δ − δβτ sω) ix,t x ∈ [ξ, xb]

∂ix,t
∂x = 0 x ∈ {ξ, xb}

ix,0 = i0(x) x ∈ [ξ, xb]
(84)

The above problem admits a closed-form solution given by:

ix,t = e(αs−δ−δβτωs)t hx,t , (85)

where hx,t is the well-known classical solution of the heat equation with Neumann
boundary conditions, given by the following expression:

hx,t =
∑

n≥0

Cne
−d
(

nπ
xb−xa

)2
t
cos

[
nπ(x − ξ)

xb − xa

]

(86)

where:

C0 = 1

xb − ξ

∫ xb

ξ

i0(x)dx (87)

Cn = 2

xb − ξ

∫ xb

ξ

i0(x) cos

[
nπ(x − ξ)

xb − ξ

]

dx (88)

It is then straightforward to show the following:

ix,t =
∑

n≥0

Cne
−d
(

nπ
xb−ξ

)2
t
e(αs−δ−δβτωs)t cos

[
nπ(x − ξ)

xb − ξ

]

, (89)
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from which, with some algebraic computations and the integration term by term of
the Fourier series of i2x .t , it is possible to determine the value of the following terms:

�1 =
∫ T

0

∫ xb

ξ

i2x,t

2
e−ρt dxdt = 1

2

∑

n≥0

C2
n

∫ T

0
e
2

[

−d
(

nπ
xb−ξ

)2+(αs−δ−δβτωs)

]

t
dt

=
∑

n≥0

C2
n

⎡

⎢
⎢
⎣
1 − e

2

[

−d
(

nπ
xb−ξ

)2+αs−δ−δβτωs

]

T

−d
(

nπ
xb−ξ

)2 + α − δ − δβτωs

⎤

⎥
⎥
⎦ (90)

�2 =
∫ xb

ξ

i2x,T

2
dx = 1

2

∑

n≥0

C2
n e

2

[

−d
(

nπ
xb−ξ

)2+(αs−δ−δβτωs)

]

T
(91)

Once the solution over the region [ξ, xb] has been determined and plugged into, the
model in the region [xa, ξ ] can be restated as follows:

min
ux,t ∈U

∫ T

0

∫ ξ

xa

i2x,t [1 + s2u2
x,t ]

2
e−ρt dxdt + μ

ξ − xa
�1 + φ�2 + φ

∫ ξ

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ (1 − ux,t )six,t (α − δτω)

−δ

(

1 + (xb − ξ)(1 − β)τωs

ξ − xa

)

ix,t , x ∈ [xa, ξ ]
∂ix,t

∂x
= 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ ] (92)

where:

U = {ux,t : [xa, ξ ] × [0, T ] → R : ux,t is continuous, 0 < ux,t < 1} (93)

By noticing that μ
ξ−xa

�1+φ�2 is just a translation term, the above model is totally
equivalent to the following:

min
u∈U

∫ T

0

∫ ξ

xa

i2x,t + (sux,t ix,t )
2

2
e−ρt dxdt + φ

∫ ξ

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+
[

s(α − δτω) − δ − δ

(
(xb − ξ)(1 − β)τωs

ξ − xa

)]

ix,t

−sux,t ix,t (α − δτω), x ∈ [xa, ξ ]
∂ix,t

∂x
= 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ ] (94)
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In order to determine the optimality conditions we rely on the method based on the
current value Hamiltonian function in (x, t) (Troltzsch 2010), which reads as follows:

H = i2x,t + (sux,t ix,t )
2

2
+ λx,t

[

d
∂2ix,t

∂x2

+
[

s(α − δτω) − δ − δ

(
(xb − ξ)(1 − β)τωs

ξ − xa

)]

ix,t − sux,t ix,t (α − δτω)

]

,

The FOCs for a minimum are given by the following expressions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ix,t
∂t =d ∂2ix,t

∂x2
+
[
s(α−δτω)−δ−δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
ix,t − sux,t ix,t (α − δτω)

∂λx,t
∂t = ρλx,t − d ∂2λx,t

∂x2
− ix,t − λx,t

[
s(α − δτω) − δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]

ux,t = λx,t (α−δτω)

six,t
∂ix,t
∂x = 0, x ∈ {xa, ξ}

∂λx,t
∂x = 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ ]
λx,T = φix,T x ∈ [xa, ξ ]

(95)

By replacing the control variable ux,t , the system of FOCs reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ix,t
∂t =d ∂2ix,t

∂x2
+
[
s(α−δτω)−δ−δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
ix,t − λx,t (α − δτω)2

∂λx,t
∂t = −d ∂2λx,t

∂x2
− ix,t − λx,t

[
−ρ + s(α − δτω) − δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]

∂ix,t
∂x = 0, x ∈ {xa, ξ}

∂λx,t
∂x = 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ ]
λx,T = φix,T x ∈ [xa, ξ ]

(96)

By recalling the definition of the matrix � and by introducing the matrix D as it
follows:

� :=
⎡

⎣
s(α − δτω) − δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)
−(α − δτω)2

−1 ρ − s(α − δτω) + δ + δ
(

(xb−ξ)(1−β)τωs
ξ−xa

)

⎤

⎦

(97)

D :=
[

d 0
0 −d

]

(98)

and the vector:

zx,t :=
[

ix,t

λx,t

]

(99)
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the optimality conditions in vector form can be restated as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂zx,t
∂t = D ∂2zx,t

∂x2
+ �zx,t

∂zx,t
∂x = 0, x ∈ {xa, ξ}

z1x,0 = i0(x) zx ∈ [xa, ξ ]
z2x,T = φz1x,T x ∈ [xa, ξ ]

(100)

By introducing the exponential matrix e�t and the variable z̃x,t = e−�t zx,t , we get:

∂ z̃x,t

∂t
= D

∂2 z̃x,t

∂x2
, (101)

where z̃x,t is the solution to the classical heat equation given by:

z̃x,t =
⎡

⎢
⎣

∑
n≥0 Ane

−d
(

nπ
ξ−xa

)2
t
cos

(
nπ
[

x−xa
ξ−xa

])

∑
n≥0 Bne

−d
(

nπ
ξ−xa

)2
(T −t)

cos
(

nπ
[

x−xa
ξ−xa

])

⎤

⎥
⎦ (102)

We now wish to determine the expressions of An and Bn . If we plug t = 0 we get
that e�0 = I and then z̃x,0 = I zx,0, thus the first component of z boils down to:

z̃1x,0 = i0(x) =
∑

n≥0

An cos

(

nπ

[
x − xa

ξ − xa

])

,

which implies that A0 and An are the Fourier coefficients of i0, that is:

A0 = 1

ξ − xa

∫ ξ

xa

i0(x)dx

An = 2

ξ − xa

∫ ξ

xa

i0(x) cos

(

nπ

[
x − xa

ξ − xa

])

dx

In order to determine the expression of Bn as function of An , let us consider the
terminal condition. By plugging t = T into the expression of zx,t we obtain:

zx,T = e�T
[

z̃1x,T
z̃2x,T

]

= e�T

⎡

⎢
⎣

∑
n≥0 Ane

−d
(

nπ
ξ−xa

)2
T
cos

(
nπ
[

x−xa
ξ−xa

])

∑
n≥0 Bn cos

(
nπ
[

x−xa
ξ−xa

])

⎤

⎥
⎦ ,

and by using the terminal condition:

z2x,T = φz1x,T
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we get the following system:

1

φ
=

e�T
11

(
∑

n≥0 Ane
−d
(

nπ
ξ−xa

)2
T
cos

(
nπ
[

x−xa
ξ−xa

])
)

+ e�T
12

(∑
n≥0 Bn cos

(
nπ
[

x−xa
ξ−xa

]))

e�T
21

(
∑

n≥0 Ane
−d
(

nπ
ξ−xa

)2
T
cos

(
nπ
[

x−xa
ξ−xa

])
)

+ e�T
22

(∑
n≥0 Bn cos

(
nπ
[

x−xa
ξ−xa

]))

which can be transformed into

1

φ
=

∑
n≥0

(

e�T
11 Ane

−d
(

nπ
ξ−xa

)2
T + e�T

12 Bn

)

cos
(

nπ
[

x−xa
ξ−xa

])

∑
n≥0

(

e�T
21 Ane

−d
(

nπ
ξ−xa

)2
T + e�T

22 Bn

)

cos
(

nπ
[

x−xa
ξ−xa

])

and then:
⎧
⎨

⎩

∑

n≥0

(

e�T
21 Ane

−d
(

nπ
ξ−xa

)2
T + e�T

22 Bn

)

cos

(

nπ

[
x − xa

ξ − xa

])
⎫
⎬

⎭

= φ

⎧
⎨

⎩

∑

n≥0

(

e�T
11 Ane

−d
(

nπ
ξ−xa

)2
T + e�T

12 Bn

)

cos

(

nπ

[
x − xa

ξ − xa

])
⎫
⎬

⎭
,

from which we finally get the expressions of Bn in terms of An by noticing the
following:

Bn =
[

e�T
21 − φe�T

11

φ2e�T
12 − e�T

22

]

Ane
−d
(

nπ
ξ−xa

)2
T

(103)

From this we easily get the expression of i A
x .t which is given by:

i A
x,t =

∑

n≥0

(

e�t
11 Ane

−d
(

nπ
ξ−xa

)2
t + e�t

12 Bne
−d
(

nπ
ξ−xa

)2
(T −t)

)

cos

(

nπ

[
x − xa

ξ − xa

])

, (104)

and by using the expression linking the control ux,t with the costate variable λx,t we
obtain:

u A
x,t =

∑
n≥0(α − δτω)

(

e�t
21 Ane

−d
(

nπ
ξ−xa

)2
t + e�t

22 Bne
−d
(

nπ
ξ−xa

)2
(T −t)

)

cos
(

nπ
[

x−xa
ξ−xa

])

∑
n≥0

(

e�t
11 Ane

−d
(

nπ
ξ−xa

)2
t + e�t

12 Bne
−d
(

nπ
ξ−xa

)2
(T −t)

)

cos
(

nπ
[

x−xa
ξ−xa

])
(105)

123



Epidemic outbreaks and the optimal lockdown area… 405

A.3 Proof of Corollary 1

The proof of this result is quite straightforward and it follows by classical results in
Fourier series theory. In fact, it is enough to use Parseval’s identity applied to i A

x,t and
i B
x,t over the two separate regions A = [xa, ξ ] and B = [ξ, xb] and then recombine
the two L2 norms to get the thesis.

A.4 Proof of Proposition 1

The proof is straightforward and it follows by taking the spatial integrals of both sides,
by usingNeumann’s conditions, and by using classical comparison results for ordinary
differential equations.

A.5 Proof of Corollary 2

The proof follows by replacing i0 into the Fourier coefficients and recalling that the
cosine basis is orthogonal.

A.6 Proof of Corollary 3

The proof is quite straightforward and it follows by taking the classical first order
derivative of

C(ξ) = C1(ξ) + C2(ξ) + C3(ξ) (106)

with respect to ξ . The hypothesis on β, β = 1, makes most of the terms involved in the
expression of C(ξ) to be independent from ξ . In particular, this is true for η1 and η2.
The condition on the parameters implies that ξ < xb and standard calculus arguments
allow to conclude that ξ is an internal minimizer.

A.7 Proof of Theorem 2

The problem can be analyzed by following the same steps discussed in the early
epidemic setting. However, in this case, it is possible to provide only a characterization
of the optimal solution in terms of optimality conditions as the nonlinearity prevents
the possibility to determine a closed-form solution. The share of infectives ix,t over
[ξ, xb] solves the equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂i B
x,t

∂t = d
∂2i B

x,t

∂x2
+ (α − δβτ)i B

x,t (n
B
x,t − i B

x,t ) − δi B
x,t , x ∈ [ξ, xb]

∂i B
x,t

∂x = 0, x ∈ {ξ, xb}
i B
x,0 = i0(x) x ∈ [ξ, xb]

(107)
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This equation admits a unique solution i B
x,t which is defined over the interval [ξ, xb]. By

plugging this expression into the integral and the objective function, we can determine
the value of the two terms:

�1 = 1

2

∫ T

0

∫ xb

ξ

(
i B
x,t

)2

2
e−ρt dxdt (108)

�2 =
∫ xb

ξ

(
i B
x,T

)2

2
e−ρT dx (109)

We need thus to solve the following problem:

min
∫ T

0

∫ ξ

ξa

i2x,t [1 + (1 − i A
x,t )

2(u A
x,t )

2]
2

e−ρt dxdt + φ

∫ ξ

xa

(i A
x,T )2

2
e−ρT dx

+ μ

ξ − xa
�1 + φ�2

s.t .
∂i A

x,t

∂t
= d

∂2i A
x,t

∂x2
+ (α − δτω)(1 − u A

x,t )ix,t (n
A
x,t − i A

x,t )

−δ

[

1 + (1 − β)τω

s − a

∫ xb

ξ

(nB
x,t − i B

x,t )dx

]

i A
x,t , x ∈ [xa, ξ ]

∂n A
x,t

∂t
= d

∂2n A
x,t

∂x2

∂i A
x,t

∂x
= 0, x ∈ {xa, ξ}

∂n A
x,t

∂x
= 0, x ∈ {xa, ξ}

i A
x,0 = i0(x) x ∈ [xa, ξ ]

n A
x,0 = n0(x) x ∈ [xa, ξ ] (110)

Note that the expression of nx,t over the interval [xa, xb] is known and its closed-form
is provided by:

nx,t =

⎧
⎪⎨

⎪⎩

∑
n≥0 B1

n e
−
(

nπ
ξ−xa

)2
dt
cos

[
nπ(x−xa)

ξ−xa

]
x ∈ [xa, ξ ]

∑
n≥0 B2

n e
−
(

nπ
xb−ξ

)2
dt
cos

[
nπ(x−ξ)

xb−ξ

]
x ∈ [ξ, xb]

(111)

where B1
0 = 1

ξ−xa

∫ ξ

xa
nx,0dx and B1

n = 2
ξ−xa

∫ ξ

xa
nx,0 cos

[
nπ(x−xa)

ξ−xa

]
dx and B2

0 =
1

xb−ξ

∫ xb
ξ

nx,0dx and B2
n = 2

xb−ξ

∫ xb
ξ

nx,0 cos
[

nπ(x−ξ)
xb−ξ

]
dx .
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By dropping the translation term, the model reads as:

min
∫ T

0

∫ ξ

xa

i2x,t + (nx,t − ix,t )
2u2

x,t i
2
x,t

2
e−ρt dxdt + φ2

∫ ξ

xa

i2x,T

2
e−ρT dx

s.t .
∂ix,t

∂t
= d

∂2ix,t

∂x2
+ (α − δτω)ix,t (nx,t − ix,t )(1 − ux,t )

−δ

[

1 + (1 − β)τω

ξ − xa

∫ xb

ξ

(nx,t − ix,t )dx

]

ix,t , x ∈ [xa, ξ ]
∂ix,t

∂x
= 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ ] (112)

The current value Hamiltonian function in (x, t) reads as:

H = i2x,t + (nx,t − ix,t )
2u2

x,t i
2
x,t

2
+ λx,t

{

d
∂2ix,t

∂x2
+ (α − δτω)ix,t (nx,t − ix,t )(1 − ux,t )

− δ

[

1 + (1 − β)τω

ξ − xa

∫ xb

ξ

(nx,t − ix,t )dx

]

ix,t

}

The optimal solution over the region [xa, ξ ] can be characterized by means of the
FOCs which read as (Troltzsch 2010):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ix,t
∂t = d ∂2ix,t

∂x2
+ (α − δτω)ix,t (nx,t − ix,t )(1 − ux,t )

−δ
[
1 + (1−β)τω

ξ−xa

∫ xb
ξ

(nx,t − ix,t )dx
]

ix,t

∂λx,t
∂t = ρλx,t − d ∂2λx,t

∂x2
− ix,t

−λx,t

[
(α − δτω)(nx,t − 2ix,t ) − δ − δ

(1−β)τω
ξ−xa

∫ xb
ξ

(nx,t − ix,t )dx
]

ux,t = λx,t (α−δτω)

ix,t (nx,t −ix,t )
∂ix,t
∂x = 0, x ∈ {xa, ξ}

∂λx,t
∂x = 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ ]
λx,T = φ2ix,T x ∈ [xa, ξ ]

(113)

A.8 Proof of Proposition 2

The proof is straightforward. It follows by taking the spatial integrals of both sides, by
using Neumann’s conditions, and by using classical comparison results for ordinary
differential equations.
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A.9 Proof of Theorem 3

The proof is very similar to the one presented for Theorem 2. For any fixed pair of ξ1
and ξ2, the first step is to determine the amount of infectives over the regions B and
C which can be done by solving two logistic-type partial differential equations. After
substituting both of them into the model for the region A, the second step involves the
characterization of the optimal solution by means of the FOCs.

A.10 Proof of Theorem 4

The proof is very similar to the one presented for Theorem 2. For any fixed pair of ξ1
and ξ2, the first step is to determine the amount of infectives over the region B which
can be done by solving a logistic-type partial differential equation. After substituting
it into the model for the regions A and C , the second step involves the characterization
of the optimal solutions over A and C by means of the FOCs.
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