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Abstract
We propose and solve an optimal vaccination problemwithin a deterministic compart-
mental model of SIRS type: the immunized population can become susceptible again,
e.g. because of a not complete immunization power of the vaccine. A social planner
thus aims at reducing the number of susceptible individuals via a vaccination cam-
paign,whileminimizing the social and economic costs related to the infectious disease.
As a theoretical contribution, we provide a technical non-smooth verification theorem,
guaranteeing that a semiconcave viscosity solution to the Hamilton–Jacobi–Bellman
equation identifies with the minimal cost function, provided that the closed-loop equa-
tion admits a solution. Conditions under which the closed-loop equation is well-posed
are then derived by borrowing results from the theory of Regular Lagrangian Flows.
From the applied point of view, we provide a numerical implementation of the model
in a case study with quadratic instantaneous costs. Amongst other conclusions, we
observe that in the long-run the optimal vaccination policy is able to keep the per-
centage of infected to zero, at least when the natural reproduction number and the
reinfection rate are small.
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1 Introduction

During the recent Covid-19 pandemic, policymakers have been dealing in a first period
with the implementation of severe lockdowns, while, in a second phase, with the mas-
sive vaccination policy of the susceptible population. Simultaneously, the scientific
community experienced a renewed interest for epidemic mathematical models where
an agent—typically a social planner—aims at taming the spread of a disease by design-
ing lockdown policies and/or vaccination strategies that minimize social and economic
costs. The starting point of the majority of this literature is the classical SIR model
(cf. Kermack and McKendrick 1927), where, at each point in time, each person in
a population of N individuals is either Susceptible, Infectious, or Recovered from a
disease and can dynamically change her/his status according to a deterministic law of
motions.

Modeling a social planner’s actions usually results into the introduction of con-
trol variables in the dynamics of the considered compartmental epidemic model. For
example, the transmission rate becomes a control variable in the generalized SIR
models considered in Hritonenko and Yatsenko (2022), Kruse and Strack (2020) and
Miclo et al. (2020), and a controlled state-variable in the stochastic version of Federico
and Ferrari (2021). More in detail, Kruse and Strack (2020) introduces an additional
parameter in the dynamics, which is then used by the social planner in order to control
the rate at which the disease is transmitted; that parameter is meant to capture the
policymakers’ measures, such as social distancing, but also lockdown of businesses,
schools, universities and other institutions. Analogously, in Miclo et al. (2020) the
social planner controls both the instantaneous rate of pairwise meetings between sus-
ceptible and infected and the instantaneous probability of contagion, requiring that
the percentage of infected individuals does not exceed the ICU constraint, that is the
capacity of the health-care system to treat infected patients. Inspired by the previous
papers and other different deterministic models, Federico and Ferrari (2021) proposes
a stochastic control-theoretic version of the classical SIR model which, considering
the transmission rate as a diffusive stochastic state variable, incorporates random fluc-
tuations in the disease’s transmission rate. Time-dependent lockdown policies directly
affect the dynamics of the models studied in Acemoglu et al. (2020), Alvarez et al.
(2020) and Calvia et al. (2022). In particular, Acemoglu et al. (2020) develops a
multi-group version of the SIR model and highlights the significant benefits obtained
through the optimal targeted lockdown policies; Alvarez et al. (2020) analyzes the
optimal lockdown policy in the controlled SIRD (Susceptible-Infected-Recovered-
Dead) model, a modified version of SIR; finally, Calvia et al. (2022) provides a first
step in the complete theoretical analysis of the dynamic programming approach to a
class of controlled compartmental models (such as SIR, SIRD, and SEIR). Among the
confinement policies, social distancing also relying on private decisions is considered
in Makris (2021), which extends the classical SIR model to incorporate heterogeneity
in infection-induced mortality rates of the population. With respect to the literature
on optimal confinement policies, that on optimal vaccination has a longer history. The
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vaccination strategy that minimizes the social costs arising from the spread of a dis-
ease evolving according to the SIR model is studied in Hethcote and Waltman (1973).
This contribution was communicated for publication on “Mathematical Biosciences”
by Richard Bellman and it perhaps represents one of the earliest applications of the
dynamic programming techniques in epidemiology. A related optimization problem
is considered in Barrett and Hoel (2007), but in the context of a SIS (Susceptible-
Infected-Susceptible) model. The comparison between compulsory vaccination and
market allocation is studied in Brito et al. (1991), whereas Goenka and Liu (2012)
analyzes the effect of infectious diseases on economic variables and explains how the
traditional methods of vaccination and isolation can stabilize the economic fluctua-
tions. The seminal work Geoffard and Philipson (1997) starts observing that “of the
roughly 40 vaccines on the market, only the smallpox vaccine has been successful
in eradication” by 1997. The study in Geoffard and Philipson (1997) thus aims at
understanding which forces prevent the eradication through vaccines of a disease, and
the authors conclude that vaccinations yield a drop of infected individuals, which in
turn leads to a drop in the demand for vaccines, which finally implies the return of
the infectious disease. Disease’s eradication is also treated in Loertscher and Muir
(2021) where it is stated that “if eradication is impossible or possible only at tremen-
dous costs, keeping the pandemic under control [...] requires finding a path through
territory that is uncharted". The authors propose a way to manage an epidemic pro-
viding an optimal lockdown policy which takes into account the maximum capacity
of the healthcare system, whose level must not be exceeded. Further, the awareness
of a possible future vaccine employment does not substantially impact the optimal
policy dynamics until such an event actually occurs. In Ishikawa (2012) the “Vacci-
nated" (V) compartment is included in the stochastic SIRVmodel. Later on, Gatto and
Schellhorn (2021) proposes a simplified version of SIRV aiming at studying the effect
of implementing treatments of uncertain efficacy to control an epidemic; in this case,
rather than focusing on the numerical optimal solution of the problem, the authors
develop tractable solutions, either analytical or perturbative. In Garriga et al. (2022),
the employed epidemiological model is a generalized SIRS models considering an
additional V compartment. In this paper, the vaccine arrival, which is considered as a
random event with exogenous probability distribution, splits up the epidemic time into
two periods, namely Phase I and Phase II. During Phase I the only available policy
is a stylized version of a “stay-at-home", whereas Phase II is characterized by the
possibility to control the speed at which the population can be vaccinated. In Angeli
et al. (2022) both the “Asymptomatic" (A) and the “Vaccinated" compartments are
incorporated into the SAIVR model, in which several parameters and initial condi-
tions are set through machine learning techniques; the resulting epidemic’s evolution,
obtained for different values of roll-out daily rates and vaccine efficacy, is then deeply
analyzed. In the recent Glover et al. (2022) it is studied how to best allocate a given
time-varying supply of vaccines across individuals of different ages, and discuss the
possible sub-optimality (in terms of economic recovery) of the actual deployment path
that prioritized older retired individuals to younger working people. A similar problem
of optimal allocation of limited vaccines is considered in Rao and Brandeau (2021)
as well.
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In this paper we propose and study the problem of optimal vaccination against an
infectious disease that evolves according to a generalized SIRS model. Differently
to the classical SIR setting, where the compartment of recovered individuals is an
absorbing state, in the SIRS model immunized people can become susceptible again
at a given rate η > 0 (due, e.g., to a not complete immunization power of vaccines).
We consider a social planner that aims at determining a vaccination strategy which
reduces the number of susceptible individuals, while minimizing total social and eco-
nomic costs. These are due, e.g., to the arrangement of vaccination hubs and to the
employment of medical staff.

It is well known that determining an explicit solution to control problems aris-
ing in epidemiology is extremely hard, if possible at all. As a matter of fact, those
dynamic optimization problems are typically multidimensional and the dynamics of
the controlled state-variables are nonlinear. Although we are not able to determine
the expression of the optimal vaccination policy in closed form, in this paper we pro-
vide a thorough analysis of the optimal vaccination problem, which actually leads
to the identification of easily verifiable sufficient conditions for the optimality of a
candidate solution and to a numerical implementation in a relevant case study. This is
accomplished as we explain in the following. First of all, we show that the assumed
semiconcavity property of the instantaneous cost function is inherited by the problem’s
minimal cost function V , so that the latter is shown to be a semiconcave viscosity
solution to the related Hamilton–Jacobi–Bellman (HJB) equation. A delicate techni-
cal analysis then allows to prove a verification theorem for non-smooth (viscosity)
solutions to the HJB equation (see Theorem 4, our main theoretical result). It is worth
noticing that the proof of a verification theorem in the context of viscosity solutions
is far to be trivial, and it is typically a remarkable fact. Our proof is inspired by that
of Theorem 3.9 in Yong and Zhou (1999). However, in order to achieve the result, the
arguments therein needed to be thoroughly adapted and expanded to the present set-
ting, by properly exploiting the semiconcavity of V and argument of convex analysis,
namely the properties of supergradient (cf. Proposition 4 below). Since the verification
theorem assumes that a solution to the so-called closed-loop equation exists, to pro-
ceed further in the analysis we provide sufficient conditions for the well-posedness of
the latter (cf. Proposition 6), by suitably employing the theory of Regular Lagrangian
Flows (cf. Ambrosio (2004, 2017)). To the best of our knowledge, this is the first
paper that combines the theory of Regular Lagrangian Flows with the study an opti-
mal control problem. As a corollary of the verification theorem and of the existence of
a solution to the closed-loop equation, we then obtain that the minimal cost function
V is indeed the unique semiconcave viscosity solution to the HJB equation.

The latter uniqueness result paves the way for a numerical study of the optimal
vaccination problem. Indeed, as a complement to our theoretical analysis, we also
provide a numerical implementationwhich is based on a recursion of theHJB equation,
initialized by the null function. For the numerical exercise we assume a specification
of the model with quadratic instantaneous costs, under which the conditions of the
verification theorem are satisfied. Fixing the values of the model’s parameters, we
study the evolution of the optimal vaccination policy, the evolution of the instantaneous
reproduction number, aswell as the dynamics of the (optimally controlled) percentages
of susceptible, infected, and immunized (recovered) individuals. A numerical result
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suggests that, following the optimal vaccination plan, the social planner is able in
the long-run to keep the number of infected individuals equal to zero. In particular,
this happens when the reinfection parameter or the natural reproduction number are
sufficiently small. However, since the model prescribes reinfection at rate η > 0, the
disease cannot be eradicated in the strict sense, and the vaccination campaign cannot
be terminated if the aim is to maintain zero infections. Hence, if the social planner
wishes to stop vaccinating the population, other forms of control must be adapted, such
as isolation. We also observe that the social planner is allowed to relax the vaccination
policy only after a first time period where the maximal possible vaccination effort is
made. As expected, the length of such an initial phase increases when the number of
initial infected people increases.

The rest of this paper is organized as follows. Section 2 presents the model and the
problem’s formulation. Section 3 provides the theoretical analysis and the solution to
the optimal vaccination problem, while Sect. 4 discusses the numerical results. Finally,
conclusions are presented in Sect. 5.

2 Problem formulation

2.1 The generalized SIRSmodel

Wemodel the spreadof the infection by relyingon avariation of the classical SIRmodel
that dates back to the work by Kermack and McKendrick Kermack and McKendrick
(1927). The society has population N and it consists of three different groups. The first
group is formed by those people who are healthy, but susceptible to the disease; the
second group contains those who are infected, while the last cohort consists of those
who are immunized, that is recovered, dead or vaccinated. However, differently to
the classical SIR model, we assume that, once immunized, an individual can become
susceptible again, so that we face a SIRS epidemic model. We denote by S(t) the
fraction (within a society of N individuals) of individuals who are susceptible at time
t ≥ 0, by I (t) the fraction of infected, and by R(t) the fraction of immunized (which,
in the sequel, we will also call recovered). Clearly, S(t) + I (t) + R(t) = 1 for all
t ≥ 0.

We briefly review the classical SIRS model and then introduce vaccination policies
within it. At time t ≥ 0, it is assumed that the fraction of infected people I (t) grows
at a rate which is proportional to the fraction S(t) of people who are susceptible
to the disease. In particular, letting β be the instantaneous transmission rate of the
disease, during an infinitesimal interval of time [t, t + dt], each infected individual
generates a fractionβS(t)dt of new infected individuals. It thus follows that the fraction
of susceptible individuals that get infected within the interval of time [t, t + dt] is
β I (t)S(t)dt . On the other hand, in the same interval [t, t+dt], the fraction of infected
I (t) is reduced at a rate γ > 0, the rate of recovering from the disease.Hence, it follows
the dynamics

I ′(t) = βS(t)I (t) − γ I (t).
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Furthermore, in the infinitesimal interval of time [t, t +dt], the fraction of susceptible
people S(t) naturally decreases at the rateβS(t)I (t), because of those people changing
their status frombeing susceptible to being infected, as previously discussed.However,
the fraction of susceptible individuals also gains mass, at a rate η > 0, from the
fraction of recovered people R(t) who becomes again susceptible to be re-infected. It
thus follows that

S′(t) = −βS(t)I (t) + ηR(t).

Finally, the fraction of recovered people R(t) increases due to those infected individu-
als who recover, and decreases because of the transition from being recovered to being
again susceptible to the disease. According to the discussion above, we therefore have
the dynamics

R′(t) = γ I (t) − ηR(t).

So far, there is no control in the system, which evolves autonomously according to
the differential equations previously derived. We now introduce the possibility that a
social planner intervenes on the system through a vaccination policy, described by a
function of time t �→ u(t), in the sense that we formalize below. Let U := [0,U ], for
some U > 0, and assume that the vaccination policy u(·) belongs to the set

U :=
{
u : R+ → U measurable

}
. (1)

The quantity u(t) here represents the rate of vaccination of susceptible people at time t ;
precisely, u(t)S(t)dt is the fraction of susceptible individuals that, due to vaccination,
moves in the interval [t, t+dt] from the class S to the class R. All in all, the controlled
dynamics then become

S′(t) = −βS(t)I (t) − u(t)S(t) + ηR(t), t > 0, S(0) = s, (2)

I ′(t) = βS(t)I (t) − γ I (t), t > 0, I (0) = i, (3)

and

R′(t) = γ I (t) − ηR(t) + u(t)S(t), t > 0, R(0) = r , (4)

for given nonnegative s, i and r such that s + i + r = 1. Given that u(·) ∈ U , the
previous system of ODEs is well posed in the Carathéodory sense, that is, there exists
a unique triple of absolutely continuous functions S, I , R such that (2), (3), (4) are
satisfied a.e.1 Notice also that for any t ≥ 0, and for any choice of u(·) ∈ U , summing

1 The abbreviation ‘a.e.’ means almost everywhere, which is used to state that a property holds for every
element of a set, except for a subset of null (Lebesgue) measure.
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up the dynamics of S, I and R we have (S′ + I ′ + R′)(t) = 0 for all t > 0, which then
implies that S(t)+ I (t)+ R(t) = 1 for all t ≥ 0 as s + i + r = 1. Given this fact, it is
then sufficient to consider only the dynamics of (S, I ), being R(t) = 1− S(t) − I (t).
Hence, we obtain

S′(t) = −βS(t)I (t) − u(t)S(t) + η(1 − S(t) − I (t)), t > 0, S(0) = s, (5)

and

I ′(t) = βS(t)I (t) − γ I (t), t > 0, I (0) = i . (6)

From (6), one has for any t ≥ 0

I (t) = i exp
{ ∫ t

0
(βS(q) − γ )dq

}
,

so that I (t) > 0 for any t ≥ 0 and for any u(·) ∈ U . Lemma 8 in the Appendix shows
that also S(t) > 0 and R(t) > 0 for any t ≥ 0, so that also S(t) < 1, R(t) < 1,
I (t) < 1 for any t ≥ 0. In the following, we assume that (s, i) ∈ (0, 1)2 are such that
s + i ∈ (0, 1).2

2.2 The social planner problem

The epidemic generates social costs. These might arise because of lost gross domestic
product (GDP) due to inability of working for infected, or because of an overwhelming
of the national health-care system etc. Also, one can imagine that the more susceptible
are, the larger is the probability of an additional wave of the epidemic and, therefore, of
additional societal stress. The social planner thus employs a vaccination policy aiming
at reducing the number of susceptible individuals. These actions, however, come with
a cost, which increases with the amplitude of the effort. The cost is due, e.g., to the
arrangement of vaccination hubs and to the employment of medical staff.

In order to tackle the social planner problem with techniques from dynamic pro-
gramming, it is convenient to keep track of the initial values of (S(·), I (·)). We
therefore let x := (s, i) and set

M := {
x := (s, i) ∈ R

2 : x ∈ (0, 1)2, s + i < 1
}
. (7)

The social planner aims at minimizing the cost functional

∫ ∞

0
e−r tC

(
S(t), I (t), u(t)

)
dt . (8)

2 The choice of considering s+ i < 1—i.e. of having an initial strictly positive percentage of immunized—
is only done in order to deal with an open set in the subsequent mathematical formulation of the problem.
As a matter of fact, such a condition is not restrictive from the technical point of view as our results still
apply if s + i < �, for some � > 1, thus covering the case s + i = 1 as well.
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Here, r ≥ 0 measures the social planner’s time preferences, and C : (0, 1)2 ×R+ →
R+ is a running cost function measuring the negative impact of the disease on the
socio-economic state and on the public health, as well as the costs arising because of
vaccination policies. The following requirements are satisfied by C . Below, and in the
rest of this paper, with a slight abuse of notation, we indicate by | · | both the absolute
value and the Euclidean norm in R2.

Assumption 1 (i) C is continuous and bounded.
(ii) u �→ C(s, i, u) is strictly convex for any (s, i) ∈ (0, 1)2.
(iii) C is Lipschitz continuous with respect to (s, i), uniformly in u; that is, there

exists K > 0 such that for any u ∈ U we have that

|C(s, i, u) − C(s′, i ′, u)| ≤ K |(s, i) − (s′, i ′)|, ∀(s, i), (s′, i ′) ∈ (0, 1)2.

(iv) (s, i) �→ C(s, i, u) is semiconcave uniformlywith respect to u ∈ U ; that is, there
exists K > 0 such that for any u ∈ U and anyμ ∈ [0, 1] one has ∀(s, i), (s′, i ′) ∈
(0, 1)2

μC(s, i, u) + (1 − μ)C(s′, i ′, u) − C
(
μ(s, i) + (1 − μ)(s, i ′), u

) ≤
≤ Kμ(1 − μ)|(s, i) − (s′, i)′|2.

Without loss of generality, we also take infM×U C = 0. Convexity of u �→
C(s, i, u) describes that marginal costs of vaccinations are increasing: E.g., an addi-
tional hiring of medical staff for vaccination might have a larger cost in a society that
has already devoted many resources to the fight of the epidemics. Finally, the Lips-
chitz and semiconcavity property of C(·, ·, u) are technical requirements that will be
important in the next section.

As we already observed, by Lemma 8, the controlled dynamics of (S(·), I (·))
evolves within the setM. When needed, we stress the dependency of (S(·), I (·))with
respect to x ∈ M and u(·) ∈ U by writing (Sx,u(·), I x,u(·)). We shall also simply
set (Sx (·), I x (·)) := (Sx,0(·), I x,0(·)) to denote the solutions to (5) and (6) when
u(·) ≡ 0.

Then, we introduce the problem’s value function

V (x) := inf
u(·)∈U

∫ ∞

0
e−r tC

(
Sx,u(t), I x,u(t), u(t)

)
dt, x ∈ M. (9)

Since C is nonnegative and bounded, we have the following.

Proposition 2 V is well defined, nonnegative, and bounded.

In the next section we will show that V is semiconcave, solves the corresponding
dynamic programming equation in the viscosity sense, and we will also provide an
optimal control in feedback form.
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3 The solution to the social planner problem

Let x = (s, i) ∈ M and set

b(x, u) := (−βsi − us + η(1 − s − i), βsi − γ i), x ∈ M. (10)

In light of the dynamic programming principle (see, e.g., Yong and Zhou (1999)), we
expect that V should identify with a suitable solution to the Hamilton–Jacobi–Bellman
(HJB) equation

rv(x) = H(x, Dv(x)), x = (s, i) ∈ M, (11)

where Dv := (vs, vi ) denotes the gradient of v (being vs and vi the partial derivatives
in the s and i direction respectively) and

H(x, p) = inf
u∈U Hcv(x, p; u), x = (s, i) ∈ M, p = (ps, pi ) ∈ R

2,

with

Hcv(x, p; u) = 〈b(x, u), p〉 + C(x, u), x = (s, i) ∈ M, p = (ps, pi ) ∈ R
2.

Here, and in the sequel, 〈·, ·〉 denotes the scalar product in R2.
Defining the linear operator

(Lv)(x) := βsi(vi (s, i) − vs(s, i) + η(1 − s − i)vs(s, i) − γ ivi (s, i), (12)

with x = (s, i) ∈ M, v ∈ C1(M), we can separate the linear part in the HJB equation
(11) and write

(r − L)v(x) = C�(x, vs(x)), (13)

where

C�(s, i, ps) = inf
u∈U {C(s, i, u) − usps} , ps ∈ R.

For future frequent use, given an open set O ⊆ R
2 and a function f : O → R,

we denote by D+ f (resp., D− f ) the supergradient (respectively, subgradient) of f ;
namely, for any x ∈ O,

D+ f (x) :=
{
p ∈ R

2 : lim inf
y→x

f (y) − f (x) − 〈p, y − x〉
|y − x | ≥ 0

}
, (14)

and

D− f (x) :=
{
p ∈ R

2 : lim sup
y→x

f (y) − f (x) − 〈p, y − x〉
|y − x | ≤ 0

}
. (15)
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Then, due to Assumption 1, we have the following preliminary result which is the
stationary version of Theorems 7.4.11 and 7.4.14 in Cannarsa and Sinestrari (2014)
(by taking g ≡ 0 therein).

Theorem 3 V is semiconcave onM and solves the HJB equation (11) in the viscosity
sense on M; that is,

(subsolution) rV (x) ≤ inf
u∈U

{〈b(x, u), p〉 + C(x, u)
}
, ∀p := (ps, pi ) ∈ D+V (x);

(supersolution) rV (x) ≥ inf
u∈U

{〈b(x, u), p〉+ C(x, u)
}
, ∀p := (ps, pi )∈D−V (x).

Let now

U �(s, i, ps) := argminu∈U {C(s, i, u) − usps} , (s, i, ps) ∈ M × R, (16)

which, due to the strict convexity of C(x, ·) (cf. Assumption 1), exists unique and is
continuous onM×R by the Berge’s maximum theorem. In light of the semiconcavity
of V and of the proof of the next verification theorem, let us now recall some well-
known properties of semiconcave functions for the reader’s convenience. Given O ⊆
R
n , x ∈ O and a semiconcave function f : O → R, we denote by D∗ f (x) the set of

reachable gradients. We say that a vector p ∈ R
2 is a reachable gradient of f at x if

there exists {xn}n∈N which converges to x and admits Df (xn) for each n ∈ N such
that p = limn→∞ Df (xn); i.e.

D∗ f (x) :=
{
lim
n→∞ Df (xn) : ∃Df (xn) and xn → x

}
.

Also, given and fixed ξ ∈ R
n , we set

f ±
ξ (x) := lim

r→0±
f (x + rξ) − f (x)

r

which exists by semiconcavity of f . Further, the notation ‘co’ denotes the convex hull,
that is the set of all convex combinations of points of the set.

Proposition 4 LetO ⊆ R
n and f : O ⊆ R

n → R be semiconcave. Then the following
hold true:

(a) D+ f (x) is nonempty, closed and convex for each x ∈ O.
(b) The multi-valued map x �→ D+ f (x) is locally bounded.
(c) f is a.e. differentiable over O.
(d) Given and fixed x ∈ O, we have

D+ f (x) = co D∗ f (x).
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(e) Given and fixed ξ ∈ R
n we have

f +
ξ (x) = min

p∈D+ f (x)
〈p, ξ 〉, f −

ξ (x) = max
p∈D+ f (x)

〈p, ξ 〉. (17)

(f) D+ f (x) is compact and convex.

Proof We simply provide precise reference for the reader’s convenience. Item (a)
follows by Proposition 3.1.5-(b) and Proposition 3.3.4-(c) in Cannarsa and Sinestrari
(2014); Item (b) is due to Theorem 2.1.7 in Cannarsa and Sinestrari (2014); Item (c)
is then implied by Item (b) and Rademacher’s Theorem; Items (d) and (e) follow by
Theorem 3.3.6 in Cannarsa and Sinestrari (2014); Item (f) is due to Item (d) and the
fact that the convex hull of a compact set—such as D∗ f (x), by definition—is compact
(cf. Corollary A.1.7 in Cannarsa and Sinestrari (2014)). ��

We are now ready to state and prove the main result of this section, namely a verifi-
cation theorem for viscosity solutions to the HJB equation (11). Its proof is inspired by
that of Theorem 3.9 in Yong and Zhou (1999), which is, however, thoroughly adapted
and expanded to the present setting by suitably exploiting the semiconcavity of V , and
thus the subsequent properties of its supergradient (cf. Proposition 4).

In the following, given a semiconcave function v : M → R we set3

∂±vs := v±
(1,0), ∂∗

s v := {∂+
s v, ∂−

s v}.

Theorem 5 [Non-smooth Verification Theorem] Let v : M → R+ be semiconcave,
bounded and nonnegative. Then the following hold true:

1. If v is a viscosity subsolution to the HJB equation, then v ≤ V on M.
2. Recall (16). Let x := (s, i) ∈ M, let v be a viscosity supersolution to the HJB

equation, and let u� ∈ U be such that, denoting by (S�(·), I �(·)) the state trajectory
associated to u�, the following holds:

u�(t) ∈ U �
(
S�(t), I �(t), ∂∗

s v(S�(t), I �(t))
)
, for a.e. t ≥ 0. (18)

Then v(s, i) ≥ J (s, i; u�).

Proof Recall b as in (10). Given an admissible control u(·) and the corresponding
controlled trajectory X(·) = (S(·), I (·)), for future use throughout this proof, define
the set

T = Tu(·) :=
{
t > 0 : v(X(·)) is differentiable and lim

h→0+
1

h

∫ t

t−h
b(X(s), u(s))ds

= lim
h→0+

1

h

∫ t+h

t
b(X(s), u(s))ds = b(X(t), u(t))

}
.

3 Hereafter, the superscript ± means, as usual, either + or −.
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Notice that T has full measure. Indeed, b(X(·), u(·)) ∈ L1
loc(R

+); furthermore,
because of the Lipschitz property of t �→ X(t) and the locally Lipschitz property
of v, which follows by semiconcavity, we have that t �→ v(X(t)) is locally Lipschitz
continuous, and, hence, it is differentiable a.e. This last assertion simply follows by
applying Lebesgue’s differentiation theorem, see [Theorem 2.19], to v(X(·)).

Step 1. Let ū(·) be an admissible control and X̄(·) := (S̄(·), Ī (·)) be the asso-
ciated state trajectory. In order to simplify notation, from now on, we set b̄(t) :=
b(X̄(t), ū(t)).

Let now t ∈ T and let p̄(t) ∈ D+v(X̄(t)). We then have:

d

dt
e−r tv(X̄(t)) = lim

h→0+
−e−r(t−h)v(X̄(t − h)) + e−r tv(X̄(t))

h

= e−r t lim
h→0+

erhv(X̄(t)) − erhv(X̄(t − h)) + v(X̄(t)) − erhv(X̄(t))

h

= e−r t
(

lim
h→0+ erh

v(X̄(t − h) + hb̄(t) + o(h)) − v(X̄(t − h))

h
+

− rv(X̄(t))

)
≥ e−r t (〈 p̄(t), b̄(t)〉 − rv(X̄(t))

)
, (19)

where the last inequality follows by the fact that p̄(t) ∈ D+v(X̄(t)).
Since now v is a viscosity subsolution to the HJB equation, we find from (19)

d

dt
e−r tv(X̄(t)) ≥ −rv(X̄(t)) + 〈 p̄(t), b̄(t)〉 ≥ −C(X̄(t), ū(t)). (20)

On the other hand, because of the Lipschitz property of v(X̄(·)) we can write, for
X̄(0) = x = (s, i) ∈ M,

e−rT v(X̄(T )) − v(x) =
∫ T

0

d

dt
e−r tv(X̄(t))dt, (21)

and picking a measurable selection t �→ p̄(t) ∈ D+v(X̄(t)) (see, e.g., page 277 in
Yong and Zhou (1999)), and using (20) in (21), we find

v(x) ≤ e−rT v(X̄(T )) +
∫ T

0
e−r tC(X̄(t), ū(t))dt .

Since v and C are bounded, we safely take the limit as T → ∞ obtaining

v(x) ≤
∫ ∞

0
e−r tC(X̄(t), ū(t))dt .

By the arbitrariness of ū and x it follows that v ≤ V on M, as claimed.
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Step 2. For x ∈ M given and fixed, let

P+(x) := argminp∈D+v(x)〈p, (1, 0)〉, P−(x) := argmaxp∈D+v(x)〈p, (1, 0)〉

and notice that

〈p, (1, 0)〉 = ∂+
s v(x), ∀p ∈ P+(x), 〈p, (1, 0)〉 = ∂−

s v(x), ∀p ∈ P−(x).

Hence, since P±(x) is closed, bounded, and convex, it must have the structure

P±(x) = {∂±
s v(x)} × [p±

i
(x), p̄±

i (x)],

for some −∞ < p±
i
(x) ≤ p̄±

i (x) < ∞. The point (∂±
s v(x), p±

i
(x)) is thus an

extremal point for the convex compact set D+v(x) (cf. Proposition 4-(e)), and by
Proposition 4-(d) there exists a sequence x±

n → x such that

∃Dv(x±
n ) → (∂±

s v(x), p±
i
(x)) ∈ D+v(x).

Since v is a viscosity supersolution we have

rv(x±
n ) ≥ inf

u∈U
{〈b(x±

n , u), Dv(x±
n )〉 + C(x±

n , u)
}
,

which, taking the limit as n → ∞, yields

rv(x) ≥ inf
u∈U{〈b(x, u), (∂±

s v(x), p±
i
(x)))〉 + C(x, u)}. (22)

Using the definition of U � as in (16), (22) gives

rv(x) ≥ 〈b(x,U �(x, ∂±
s v(x)), (∂±

s v(x), p±
i
(x))〉 + C(x,U �(x, ∂±

s v(x))). (23)

Now, let u�(·) and X�(·) := (S�(·), I �(·)) as in the claim, and take t ∈ T � = Tu�(·).
Also, let b�(·) := b(X�(·), u�(·)). Then

d

dt
e−r tv(X�(t)) = lim

h→0+
e−r(t+h)v(X�(t + h)) − e−r tv(X�(t))

h

= e−r t
(

lim
h→0+ e−rh v(X�(t + h)) − v(X�(t))

h
− rv(X�(t))

)

= e−r t
(

lim
h→0+ e−rh v(X�(t) + hb�(t) + o(h)) − v(X�(t))

h
+

− rv(X�(t))

)
,
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from which, using the definition of superdifferential (14) with f = v and x = X�(t),

d

dt
e−r tv(X�(t)) ≤ e−r t

(
−rv(X�(t)) + 〈b�(t), (∂±

s v(X�(t)), p
i
(X�(t)))〉

)
, (24)

so that by (23)

e−r t
(
−rv(X�(t)) + 〈b�(t), (∂±

s v(X�(t)), p
i
(X�(t)))〉

)
≤ −e−r tC(X�(t), u�(t)).

Therefore

d

dt
e−r tv(X�(t)) ≤ −e−r tC(X�(t), u�(t)). (25)

Because of the locally Lipschitz property of t �→ v(X�(t)), we can write

e−rT v(X�(T )) − v(x) =
∫ T

0

d

dt
e−r tv(X�(t))dt, (26)

which, together with (26) and the assumed nonnegativity of v, yields

v(x) ≥ e−rT v(X�(T )) +
∫ T

0
e−r tC(X�(t), u�(t))dt ≥

∫ T

0
e−r tC(X�(t), u�(t))dt .

Taking limits as T ↑ ∞ and using the monotone convergence theorem by nonnega-
tivity of C , we finally obtain

v(x) ≥
∫ ∞

0
e−r tC(X�(t), u�(t))dt .

Hence, v ≥ V onM, by arbitrariness of x . ��
Combining the results of the previous theorem, we see that if both the assumptions of
Part (1) and Part (2) are satisfied, then we find that v(x) = V (x) and u�(·) is optimal
starting at x .

Part (2) of Theorem 5 assumes (18), which in turn holds if a solution to the closed-
loop differential inclusion

⎧⎨
⎩
S′(t) ∈ −βS(t)I (t) − S(t)U �

(
S(t), I (t), ∂∗

s V (S(t), I (t))
)

+η(1 − S(t) − I (t)),
I ′(t) = βS(t)I (t) − γ I (t),

(27)

exists. In order to address this aspect, we consider the closed-loop equation

⎧⎨
⎩
S′(t) = −βS(t)I (t) − S(t)U �

(
S(t), I (t), ∂+

s v(S(t), I (t))
)

+η(1 − S(t) − I (t)),
I ′(t) = βS(t)I (t) − γ I (t),

(28)
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and look at it from the point of view of the theory of Regular Lagrangian Flows; cf.
Ambrosio (2017) and Ambrosio (2004), among others. Such theory has been intro-
duced in order to provide a good notion of flow maps even in situations when the
associated vector field exhibits little regularity. For this, we recall the following defi-
nition (cf. Definition 1 in Ambrosio (2017)):

Definition 1 Let d ≥ 1, denote byLd the Lebesguemeasure onRd , and fix T > 0.We
say that X(t; x) is aRegularLagrangianFlowassociated to a vector fieldm : Rd → R

d

if:

1. For Ld -a.e. x ∈ R
d , t �→ X(t; x) is an absolutely continuous solution on [0, T ]

to the ODE

d

dt
X(t; x) = m(X(t; x)), X(0; x) = x;

2. for some constant C > 0,

Ld(x ∈ R
d : X(t; x) ∈ B

) ≤ C · Ld(B) ∀t ∈ [0, T ], ∀B ⊂ R
d Borel set.

We say that a Regular Lagrangian Flow is unique if, given X(t; x) and X̃(t; x)
Regular Lagrangian Flows starting from Ld -measurable sets Bi ⊂ R

d , i = 1, 2, we
have that

X(t; x) = X̃(t; x), for Ld − a.e. x ∈ B1 ∩ B2.

Proposition 6 Let v : M → R+ be a semiconcave, bounded, and nonnegative vis-
cosity solution to (11). Set

Ũ �(s, i) := U �
(
s, i, ∂+

s v(s, i)
)

and assume that

(i) (s, i, ps) �→ U �(s, i, ps) is locally Lipschitz-continuous on M × R;
(ii) (s ∂Ũ �

∂s )+ ∈ L∞(M).

Then, the Regular Lagrangian Flow (closed-loop equation)

{
S′(t) = −βS(t)I (t) − Ũ � (S(t), I (t)) S(t) + η(1 − S(t) − I (t)),

I ′(t) = βS(t)I (t) − γ I (t),
(29)

with initial data (S(0), I (0)) = (s, i) ∈ M exists and is unique.

Proof It is enough to embed the closed-loop equation (29) in the setting ofDefinition 1,
and apply Theorem 7 in Ambrosio (2017) (see also Theorems 6.2 and 6.4 in Ambrosio
(2004)), after checking the validity of its hypothesis.

In order to accomplish that, we set

x = (x1, x2) =: (s, i) ∈ M, X(t; x) = (X1, X2)(t; x) =: (S(t), I (t))
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and

m(x) :=
(

− βx1x2 − x1Ũ
�(x1, x2) + η(1 − x1 − x2), βx1x2 − γ x2

)
, x ∈ M,

(being extended to R
2 by defining it equal to (0, 0) onMc).

Firstly, since v is semiconcave by Theorem 3, it follows by Theorem 3 at page 240
of Evans and Gariepy (1992) that ∂+

s v is locally of bounded variation on M. Then,
as (s, i, ps) �→ U �(s, i, ps) is locally Lipschitz-continuous by assumption, it follows
that Ũ � is locally of bounded variation onM too by Theorem 4 in Josephy (1981), so
that m is locally of bounded variation on R2.

Secondly, given the fact that (x1, x2) ∈ M and Ũ � ∈ [0,U ], it is readily seen that
|m(x)|
1+|x | is integrable over R

2. Furthermore, explicit computations yield inM, for some
K ≥ 0,

(
divm

)− ≤ K +
(

− x1
∂Ũ �

∂x1

)− = K +
(
x1

∂Ũ �

∂x1

)+
.

Since
(
s ∂Ũ �

∂s

)+ ∈ L∞(M) by assumption, we conclude. ��
As a corollary of Theorems 3 and 5, and of Proposition 6, we obtain uniqueness of

viscosity solution to HJB (11).

Corollary 7 Let Assumption 1 and the assumptions of Proposition 6 hold. Then V is
the unique bounded locally semiconcave viscosity solution to (11).

Proof We need to prove uniqueness. By Proposition 6, a solution to (28) exists for
almost every (s, i) ∈ M. This provides the control u� required by Part (1) of Theorem
5. Hence, given any other bounded locally semiconcave viscosity solution v to (11),
we get v(s, i) = V (s, i) for a.e. (s, i) ∈ M. Since semiconcavity implies continuity,
we conclude that v = V on M. ��

4 A case study with numerical illustrations

In this section we introduce a case study and provide numerical simulations. This
section simply aims at illustrating the results of the proposed model and no empirical
study will be developed. This in particular means that real data will not be employed in
order to provide estimations of the model’s parameters and no fit of the model on real
data will be performed. Indeed, we believe that, though relevant, a similar empirical
analysis falls outside the scopes of the present paper and it is left for future research.

In order to proceed with our illustrations, it is useful to preliminarly consider as
benchmark the dynamical system (5)–(6) in absence of vaccination. We assume that
Ro = β/γ > 1. In this case the dynamical system has two equilibria:

(S(1,o)∞ , I (1,o)∞ ) =
(

γ

β
,

η

γ + η

(
1 − γ

β

))
, (S(2,o)∞ , I (2,o)∞ ) = (1, 0). (30)
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The convergence of the system to the first of the above equilibria means that the dis-
ease becomes endogenous; the convergence to the second one means that the disease
goes to extinction. It is shown in O’Regan et al. (2010) that (S(1,o)∞ , I (1,o)∞ ) is glob-
ally asymptotically stable when Ro = β/γ > 1, whereas (S(2,o)∞ , I (2,o)∞ ) is globally
asymptotically stable when Ro = β/γ < 1.

We assume that the cost function has the following quadratic form

C(s, i, u) = 1

2

(
ai2 + b(us)2

)
, a, b > 0, (s, i) ∈ M, u ∈ U .

The latter can be interpreted as a second-order Taylor approximation of any smooth,
convex, separable cost functionwith globalminimum in (0, 0). The parameter a can be
taken, for instance, as a = ῑ −1, where ῑ ∈ (0, 1) represents the maximal percentage of
infected people that the health-care system can handle; on the other hand, b represents
the sensitivity of the policy maker with respect to the vaccination costs. Under this
specification of the cost function, for each (s, i) ∈ M, given v as in Proposition 6, we
have Ũ �(s, i) = U �(s, i, ∂+

s v(s, i)), where

U �(s, i, ps) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if ps ≤ 0,

ps
bs if 0 < ps < bUs,

U if ps ≥ bUs,

Now, (s, i, ps) �→ U �(s, i, ps) is clearly locally Lipschitz continuous. Moreover, we
notice that

∂U �

∂s
(s, i, ps) =

{
0, if ps /∈ (0, bUs),
− ps

bs2
, if ps ∈ (0, bUs),

∂U �

∂ ps
(s, i, ps) =

{
0, if ps /∈ (0, bUs),
1
bs , if ps ∈ (0, bUs).

Therefore, ∂U �

∂s ≤ 0 and we have (in the sense of distributions)

s
∂Ũ �

∂s
(s, i) = s

∂U �

∂s
(s, i, ∂+

s v(s, i)) + s
∂U �

∂ ps
(s, i, ∂+

s v(s, i)) · ∂

∂s

(
∂+
s v

)
(s, i)

≤ 1

b

∂

∂s

(
∂+
s v

)
(s, i).

Then, the semiconcavity of v allows to conclude (s ∂Ũ �

∂s )+ ∈ L∞(M), so thatCorollary
7 applies and V is the unique bounded, locally semiconcave viscosity solution to (11).
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4.1 Details of numerical scheme

Our numerical method consists of two parts: the construction of the dynamics of (S, I )
(see (5) and (6)) for each initial value (s, i) ∈ M and, based on the previous discussion,
a recursive routine on the HJB equation (11). More precisely, starting from v[0] ≡ 0,
we use the recursive algorithm:

(r − L)v[n+1] = C�(s, i, v[n]
s ), n ≥ 0.

Those equations are then solved using the representation formula

v[n+1](s, i) =
∫ ∞

0
e−r tC�

(
Ss,it , I s,it , v[n]

s (Ss,it , I s,it )
)
dt, (s, i) ∈ M. (31)

Such an approach overcomes the issue of the lack of appropriate boundary conditions
for the HJB equation (11). As a matter of fact, the boundary ∂M is unattainable for the
underlying controlled dynamical system, so that no natural conditions for V on ∂M
arise. It is worth noticing that although no evidence on the theoretical convergence
of the above recursive procedure is provided in the current analysis, the convergence
of iteration (31) has been verified through the performed numerical tests. Indeed, if
the procedure converges, then the limit is the unique viscosity solution to (11) (see
Corollary 7).

The numerical algorithm is designed using MatLab® and all computations are
performed on a Quad-Core Intel Core i5 processor (at 2.3 GHz) running macOS.
More in detail, the numerical implementation is performed using a regular grid on the
space (0, 1)2 with 80×80 nodes and uniform grid’s size δ.We consider a discretization
of M represented by the set

M̂ := {(ksδ, kiδ) | ks, ki ∈ N \ {0} and (ks + ki )δ ≤ 0.95}.

The evaluation of ∂+
s v[n] at a point of M̂ depends on the position of the point in the

set. If (ks + ki + 2)δ ≤ 0.95, then ∂+
s v[n]((ks, ki )δ) is approximated by using the

forward finite difference scheme

∂+
s v[n]((ks, ki )δ) ≈ − 3

2v
[n]((ks, ki )δ) + 2v[n]((ks + 1, ki )δ) − 1

2v
[n]((ks + 2, ki )δ)

δ3

+O(δ2);

if (ks + ki + 2)δ > 0.95 and (ks + ki + 1)δ ≤ 0.95, then the evaluation of
∂+
s v[n]((ks, ki )δ) is performed using the first-order accuracy formula

∂+
s v[n]((ks, ki )δ) ≈ −v[n]((ks, ki )δ) + v[n]((ks + 1, ki )δ)

δ2
+ O(δ);
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Fig. 1 Comparison between the optimal social planner vaccination policy (upper panel) and the case of
no vaccination (lower panel). The figures in the first column show the evolution of the vaccination policy
through the optimal control ut ; the ones in the second column show the evolution of the instantaneous
reproduction number Rt = β

γ S(t); the ones in the third column show evolution of the percentage of
susceptible (in blue), infected (in red) and recovered (in green) individuals (color figure online)

finally, if (ks +ki +1)δ > 0.95, then ∂+
s v[n]((ks, ki )δ) is replaced by the left derivative

approximation

∂−
s v[n]((ks, ki )δ) ≈

1
2v

[n]((ks − 2, ki )δ) − 2v[n]((ks − 1, ki )δ) + 3
2v

[n]((ks, ki )δ)
δ3

+O(δ2).

Note that this last choice is justified by Theorem 5, whose statement could indeed have
been equivalently given through the notions of viscosity supersolution and subgradient.
The algorithm stops when |v[n+1]−v[n]| < ε, with ε = 10−4. Throughout this section,
the unit of time will be the week.

4.2 Optimal vaccination versus no vaccination

We set the following values for the parameters. The transmission rate of the disease
is β = 0.7; the average length of infection and reinfection are assumed to be equal
to 21 and 180 days respectively, so that γ = 1

3 and η = 7
180 ; we set r = 0.005

52 (i.e.
a yearly discount rate of 5%) and a = 0.08 and b = 0.016. We fix U = 7

120 . Since

e−52U ≈ e−3, one observes that the health-care system vaccinating at the maximal
rate U is able to vaccinate about 95% of the total population in 1 year. Finally, we
initialize the system as

S(0) = 75%, I (0) = 20%.
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Table 1 Computational time to approximate the value function V using different values of the stopping
criterion’s parameter ε

ε 10−4 10−6 10−8 10−10 10−12 10−14

Time 0.22 s 0.42 s 0.57 s 0.60 s 0.70 s 1.16 s

Figure 1 provides a comparison between the optimal vaccination policy and the
no-vaccination policy. As outcome, we see that in both cases the system oscillates in
a first phase and then converges towards an equilibrium.

Our numerical simulations suggest that the optimal policy u� always converges
towards a limit value u�∞. Assuming that such an equilibrium u�∞ indeed exists, we
see that the optimally controlled system has again two long-run equilibria (cf. (30)):

(S(1)∞ , I (1)∞ ) =
(

γ

β
,

η

η + γ

(
1 − γ

β

)
− γ

η + γ

u�∞
β

)

(S(2)∞ , I (2)∞ ) =
(

η

η + u�∞
, 0

)
,

whenever I (1)∞ > 0. Repeating the arguments in O’Regan et al. (2010) (easily adjusted
to our setting), it can be proved that (S(1)∞ , I (1)∞ ) is globally asymptotically stable when
u�∞ < γ .

We can observe that in the case of no vaccination the disease becomes endogenous,
whereas the optimal vaccination is able in the long-run to keep the number of infected
to zero. More precisely, in the case of no vaccination, the long-run percentage of
susceptible and infected individuals, 47% and 6%, respectively, is achieved in about
3 years. On the contrast, if the policy maker adopts the optimal vaccination policy,
the vaccination campaign starts with maximum intensity U and then it fluctuates
for a period of about 28 weeks. After that, it stabilizes at the value U . In this case,
the equilibrium point (S(2)∞ , I (2)∞ ) is approached counting about 40% of susceptible
individuals and almost no infected in less than 1 year. Still, to avoid a new outbreak of
the disease, the vaccination policy U must be kept to move individuals from the class
S to the class R.

Finally, in the case of vaccination, we briefly discuss the computational time of the
numerical simulations. In the defined setting, the first part of the numerical method,
i.e. the construction of the dynamics of (S, I ), approximately takes 55.6 s, whereas
the computational speed of the second part, consisting of the recursive routine on the
HJB equation (see (31)), is theoretically dependent on the stopping criterion |v[n+1] −
v[n]| < ε. In Table 1we report the algorithmic time taken to compute the value function
V for different values of the threshold ε. As expected, we note that the greater the
required accuracy is, the slower is the algorithmic procedure to return V , although
such an effect appears to be negligible if compared to the running time of the whole
numerical procedure.
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Fig. 2 Comparison between the optimal social planner vaccination policy when the average length of
reinfection is 60 days (first row) or 360 days (second row). The figures in the first column show the
evolution of the vaccination policy through the optimal control ut ; the ones in the second column show the
evolution of the instantaneous reproduction number Rt = β

γ S(t); the ones in the third column show the
evolution of the percentage of susceptible (in blue), infected (in red) and recovered (in green) individuals
(color figure online)

4.3 Variation of the parameter�

In this subsection we study how the optimal vaccination rate, the optimal reproduction
numberRt and the optimally controlled dynamics of susceptible, infected and recov-
ered depend on the reinfection rate η. We assume that the average period of reinfection
is equal to 60 or 360 days, so that either η = 7

360 or η = 7
60 , respectively. All the other

parameters are instead kept fixed to the values assumed in Sect. 4.2.
As expected, from Fig. 2 we observe that the optimal vaccination rate increases

when increasing η. However, the more vigorous optimal vaccination rate employed
when η = 7

60 is not such to let infections to zero. As a matter of fact, the lower row
of Fig. 2 shows that the number of infected stabilizes asymptotically around the level
0.05. On the other hand, the infected population disappears in the long run through a
weaker vaccination policy when the reinfection average period is of 1 year circa.

4.4 Variation of the ratio ˇ
�

In this section we consider strategies corresponding to different values of the natural
reproduction number Ro = β

γ
; precisely, we take β

γ
= 3 and β

γ
= 3

2 . All the other
parameters are instead kept fixed to the values assumed in Sect. 4.2. A comparison of
the optimal social planner vaccination policy is shown in Fig. 3.

It is interesting to notice that the two choices of Ro are such that the dynamical
system of susceptible and infected stabilizes around the equilibria in which the disease
becomes endogenous or achieves zero infections.As amatter of fact, whenRo = 3, the
optimal strategy is constantly equal to U = 7

120 and the dynamical system converges
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Fig. 3 Comparison between the optimal social planner vaccination policy when Ro = 3 (first row) or
Ro = 3/2 (second row). The figures in the first column show the evolution of the vaccination policy
through the optimal control ut ; the ones in the second column show the evolution of the instantaneous
reproduction number Rt = β

γ S(t); the ones in the third column show the evolution of the percentage of
susceptible (in blue), infected (in red) and recovered (in green) individuals (color figure online)

to the equilibrium point (S(1)∞ , I (1)∞ ) ≈ (0.33, 0.11). On the other hand, ifRo = 3
2 , the

optimal strategy stabilizes around to the value u�∞ ≈ 0.028 and the dynamical system
converges to the equilibrium point (S(2)∞ , I (2)∞ ) ≈ (0.56, 0). Hence, a lower natural
reproduction number Ro has the effect of making it possible to asymptotically keep
the number of infected to zero through the optimal vaccination policy.

4.5 Optimal vaccination policy for different values of initial infected individuals

In this section we study how the optimal vaccination policy reacts to different initial
percentages of the infected population. All the parameters are set as in Sect. 4.2,
β
γ

= 1.5, and the percentage I (0) of the initial infected individuals is 1%, 5% and
10%. The results of the numerical study are presented in Fig. 4.

We observe that, in all the considered cases, the optimal vaccination rate asymptot-
ically stabilizes around the equilibrium level u∞ ≈ 0.028, so that, under the optimal
vaccination policy, I∞ = 0 after circa 20weeks. In all the cases, the vaccination policy
starts at the maximal rate, then the vaccination campaign is relaxed, and it is finally
kept at the constant rate u∞ ≈ 0.028. However, the starting date of this final phase of
constant vaccination rate is different: it is circa 15 weeks when I (0) = 1%; it is circa
30 weeks when I (0) = 5%; it is circa 54 weeks if I (0) = 10%. That is, the social
planner is allowed to stabilize the vaccination rate only after a first time period, whose
length increases when the number of initial infected people increases.
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Fig. 4 Comparison between the optimal social planner vaccination policy in the case the initial infected
individuals are 1% (first row), 5% (second row) and 10% (third row). The figures in the first column show
the evolution of the vaccination policy through the value of the optimal control ut ; the ones in the second
column show the evolution of the instantaneous reproduction number Rt = β

γ S(t); the ones in the third
column show the evolution of the percentage of susceptible (in blue), infected (in red) and recovered (in
green) individuals (color figure online)

5 Conclusions

Within a SIR model with reinfection possibility, we have considered the problem of
a social planner that aims at reducing the number of individuals susceptible to an
infectious disease via a vaccination policy that minimizes social and economic costs.
The resulting optimal control problem is nonlinear and nonconvex, due to the nonlin-
ear dynamics of the percentage of susceptible, infected and recovered (immunized)
populations. Combining refined techniques of viscosity theory and results from the
theory of Regular Lagrangian flows, we are able to provide verifiable sufficient con-
ditions under which the minimal cost function identifies with the unique semiconcave
viscosity solution to the corresponding HJB equation. A recursion on the latter is
then employed in order to provide a numerical implementation in a case study with
quadratic costs. Our experiments show that it is possible to maintain asymptotically
the number of infected to zero, at least when the disease is not too infective. How-
ever, given that the model allows reinfection with positive probability, this comes at
the cost of keeping vaccinating at a constant rate in the long-run. Further, in most of
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the numerical results, the optimal control, given in feedback form, fluctuates during
the first period (approximately 6–7 months) as it substantially follows the oscillations
of the underlying dynamical system. From a practical viewpoint, following the opti-
mal strategy’s fluctuations is certainly challenging for a policymaker. Nevertheless,
employing a policy that averages those oscillations out may represent an effective
guide for the social planner’s actions.

There are several directions towards which this research can be extended and con-
tinued. First of all, from a technical point of view, it would be interesting to grasp
a deeper understanding of how the theory Regular Lagrangian Flows can be helpful
for proving the well-posedness of the closed-loop equation arising in nonlinear opti-
mal control problems, as those arising in mathematical epidemiology. Second of all,
from a modeling perspective, stochastic and partial observation features should be
included in the model, as the evolution of an infectious disease is clearly far to obey
completely observable deterministic law of motions. Thirdly, it would be intriguing to
study the problem of optimal vaccination problem from a moral-hazard point of view,
thus leading to a principal-agent problem where the social planner designs benefits
which should induce the agents (the susceptible population) to get vaccinated. These
aspects are clearly outside the scope of the present work and are therefore left to future
research.
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A A Technical result

Lemma 8 Recall (2), (3) and (4). One has S(t) > 0, I (t) > 0 and R(t) > 0 for all
t ≥ 0.

Proof Let (S(0), I (0), R(0)) =: (s, i, r) ∈ (0, 1)3 and define τ := inf{t ≥ 0 :
S(t) ≤ 0} ∧ inf{t ≥ 0 : I (t) ≤ 0} ∧ inf{t ≥ 0 : R(t) ≤ 0}. For the sake of
contradiction, suppose that τ < ∞. Then, let t ∈ [0, τ ) and, by using (2), (3) and (4),
the chain rule yields:

ln
(
S(t)I (t)R(t)

) = ln(s, i, r) +
∫ t

0

(
− β I + η

R

S
+ βS − (γ + η + u)

+γ
I

R
+ u

S

R

)
(q)dq
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≥ ln(s, i, r) − β

∫ t

0
I (q)dq − (γ + η +U )t

≥ ln(s, i, r) − (γ + η +U )t − t max
q∈[0,t] I (q), (32)

where in the penultimate inequalitywe have used that 0 ≤ u(·) ≤ U . The contradiction
now follows by taking limits as t → τ . ��
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