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Abstract
We define and characterize the notion of strong robustness to incomplete information,
whereby a Nash equilibrium in a game u is strongly robust if, given that each player
knows that his payoffs are those in uwith high probability, all Bayesian–Nash equilib-
ria in the corresponding incomplete-information game are close—in terms of action
distribution—to that equilibrium of u. We prove, under some continuity requirements
on payoffs, that a Nash equilibrium is strongly robust if and only if it is the unique
correlated equilibrium. We then review and extend the conditions that guarantee the
existence of a unique correlated equilibrium in games with a continuum of actions.
The existence of a strongly robust Nash equilibrium is thereby established for several
domains of games, including those that arise in economic environments as diverse
as Tullock contests, all-pay auctions, Cournot and Bertrand competitions, network
games, patent races, voting problems and location games.
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1 Introduction

Nash equilibrium is an immensely popular and long-established solution concept
in economics. By comparison, its generalized version, the correlated equilibrium of
Aumann (1974), is a far less frequent choice in economic modelling. Clearly, the two
solution concepts have their merits and drawbacks: Nash equilibrium is believed to
have a high predictive power and does not require a mediation or a correlation device,
while the correlated equilibrium is superior in terms of computational complexity and
arises naturally in a range of simple learning processes.1

In this paper we bring to light the effect produced when the two concepts happen
to coincide on the robustness of equilibrium outcome to the presence of incomplete
information. To motivate our notion of robustness, we first take a step back to discuss
an important issue in the field of economics—the need to predict.

1.1 The need to predict, and strong robustness to incomplete information

A major difficulty in the profession of economics is the perpetual requirement to pro-
vide accurate predictions in a realm affected by uncertainty and randomness. Similarly
to weather forecasters, economists are repeatedly evaluated by their ability to produce
solid assessments. When the latter deviate from the eventual outcomes to a significant
degree, doubts may be cast not only over the treatment of the available empirical data
and its validity, but also over the suitability of the underlying theoretical model.

The work of Kajii and Morris (1997) (henceforth KM) partially deals with this
concern by introducing the notion of equilibrium robustness to incomplete information.
Roughly speaking, an equilibrium in a complete-information scenario is robust if,when
some uncertainty is introduced, there exists an equilibrium that is “sufficiently close”
to the original one. Thus, existence of a robust equilibrium in a game-theoretical model
reinforces that model, because allowing limited uncertainty may lead only to small
changes in the predicted behavior. The practical implications are clear—an economist
who advises policy makers would be rather confident in her recommendations if they
are based on a robust equilibrium, even when there is some unmodelled uncertainty
regarding the agents’ true characteristics.

The current work continues this quest by defining and characterizing a stricter
robustness notion—strong robustness to incomplete information. We say that a Nash
equilibrium in a complete-information game u is strongly robust if, under uncertainty
about the individual payoffs but with each player knowing that his payoffs are those in
u with high probability, all Bayesian–Nash equilibria in the incomplete-information
game are sufficiently close (in terms of the induced action distribution) to the equi-
librium in u. Thus, when some uncertainty is introduced, the effect on all possible
equilibrium outcomes should be minor.

It is obvious that the imposition of the closeness requirement on all equilibria in
nearby games makes strong robustness a hugely demanding notion. At the same time,
this requirement is very beneficial for an analyst who either designs or models a strate-

1 See, e.g., Papadimitriou andRoughgarden (2008) for a discussion of computational complexity, andFoster
and Vohra (1997) and Hart and Mas-Colell (2000) for results on convergence to correlated equilibria.
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gic interaction between rational agents. Whenever a strongly robust Nash equilibrium
exists, the analyst can be sure that the behavior of the agents remains sufficiently
close to the designed or predicted outcome, as long as the agents’ behavior in nearby
incomplete-information games is consistent with any equilibrium.

The main result of this paper provides a characterization of a strongly robust Nash
equilibrium in a framework with a continuum of individual actions. Under a set of
requirements (inspired by Dasgupta and Maskin 1986) on the payoff functions that
limit the extent of possible discontinuity,2 our main theorems show that a Nash equi-
librium is strongly robust if and only if it is the unique correlated equilibrium. In other
words, it is precisely the coincidence of being a Nash and a correlated equilibrium
that makes such an equilibrium strongly robust.3

In the last part of this paper we review and extend the conditions that guarantee the
existence of a unique correlated equilibrium in games with a continuum of actions.
Thiswill, via ourmain result, imply the existence of a strongly robustNash equilibrium
in various economic environments, such as Tullock contests, all-pay auctions, certain
types of Bertrand and Cournot competition, network games, patent races, the median-
voter problem and pure-location Hotelling games.

1.2 Themain contribution and relation to the literature

The first and main contribution of this paper is the formulation and characterization of
strong robustness to incomplete information.Our notion of strong robustness preserves
the spirit of informational robustness of KM,4 but is far stricter since strong robust-
ness requires the closeness of all, not just some, equilibria in incomplete information
settings to the complete-information Nash equilibrium that is being approximated.
Similarly to Proposition 3.2 of KM concerning finite games,5 the uniqueness of a cor-
related equilibrium6 implies its strong robustness also in our setting with a continuum
of actions, albeit requiring certain continuity conditions on payoffs and necessitat-
ing a new, non-trivial proof.7 Strong robustness of a Nash equilibrium is, moreover,
equivalent to its being the unique correlated equilibrium in the game.

2 The conditions in Dasgupta and Maskin (1986) guarantee the existence of a (mixed-action) Nash equilib-
rium in a game, and our set will also be sufficient for equilibrium existence. Although Dasgupta andMaskin
were only concerned with equilibrium existence, variants of their conditions are useful in the proofs of our
main results since, like them, we make extensive use of (weak) convergence of probability measures and
of the corresponding integrals of payoff functions.
3 The uniqueness of a correlated equilibrium has been known to imply a different type of robustness, w.r.t.
payoff perturbations (see Viossat 2008).
4 The work of KM was preceded by the approaches of Fudenberg et al. (1988), Dekel and Fudenberg
(1990), and Carlsson and van Damme (1993).
5 Proposition 3.2 in KM establishes KM-robustness of a unique correlated equilibrium in any finite game,
but its proof implicitly shows strong robustness of such an equilibrium.
6 Since in our setting the existence of a (mixed-action) Nash equilibrium will be guaranteed, if a correlated
equilibrium is unique then it must be a Nash equilibrium.
7 Although our proofs in the continuum setting are quite involved, they use arguments that would have been
rather straightforward had finite action sets been assumed instead (notice, e.g. that the lengthy Lemma 3 in
the proof of Theorem 1 would have then become nearly trivial).
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This equivalence result puts the notion of strong robustness in a proper light, a pos-
teriori. Unlike KM-robustness, the equilibrium refinement based on strong robustness
does not provide an equilibrium-selection tool because, as it turns out, such refine-
ments only exist in games where the selection problem is trivial anyway (on account
of there being a unique Nash equilibrium that is also the unique correlated one). Yet,
strong robustness is a powerful, always-present feature of a unique correlated equilib-
rium. From a practical perspective, our equivalence result ensures that the behavior of
rational economic agents is always sufficiently close to the designed outcome as long
as a unique correlated equilibrium is guaranteed. From a theoretical point of view,
the result highlights the role of correlated equilibria in determining the sensitivity of
a Nash equilibrium to the presence of incomplete information. The main example in
Section 3.1 of KM showcases what may go wrong in terms of robustness even if a
game u has a unique, pure-action Nash equilibrium: when there is a correlated equilib-
rium that is distinct from the latter, there may be some incomplete-information games
nearby inwhich the (unique) Bayesian–Nash equilibrium approximates the correlated,
and not the unique Nash, equilibrium of u.

The motivation for allowing a continuum of actions to be available to each player in
our framework8 comes partially from the fact that the existing results on the uniqueness
of a correlated equilibrium are mostly in the continuum setting.9 An earliest exam-
ple is due to Milgrom and Roberts (1990), who showed, as an application of their
characterization of undominated action sets in supermodular games, that a Bertrand
oligopoly with differentiated products has a unique correlated equilibrium for cer-
tain families of demand functions. Also relying on supermodularity techniques, Amir
(1996) proved the uniqueness of a correlated equilibrium for a Cournot duopoly with a
log-concave strictly decreasing inverse demand function. Liu (1996) went beyond two
firms, and showed the uniqueness for linear Cournot oligopolies. His result was gener-
alized byNeyman (1997), who proved the existence of a unique correlated equilibrium
in every potential game with a compact and convex set of actions and a strictly con-
cave smooth potential function. The latter class of potential games partially includes
network games, as shown by Bramoullé et al. (2014) and Ui (2016). Generalizing the
work of Neyman (1997), Ui (2008) showed, under the condition of Rosen (1965) for
Nash equilibrium uniqueness in smooth concave games, that the same equilibrium is
also the unique correlated one.10 Recently, Hart and Mas-Colell (2015) proved the
uniqueness of a correlated equilibrium in social strictly concave games, without any
payoff-smoothness requirements.

We also contribute to this line of work by showing that every Tullock rent-seeking
game (contest), and every equivalent patent race, have a unique correlated equilib-
rium.11 Certain features of Tullock contests (discontinuity of payoffs when all efforts
vanish, and the sum of payoffs not being strictly concave)make them unsuitable for the

8 We also concomitantly admit uncountable, measurable state-spaces in incomplete information approxi-
mations of a complete information game.
9 In the finite setting, KM mention two classes of games with a unique correlated equilibrium: two-player
zero-sum games with a unique optimal strategy for each player, and dominance-solvable games.
10 Ui (2008) also generalized the original condition of Rosen.
11 For the proof of equivalence between patent races and Tullock contests see Baye and Hoppe (2003),
who follow the model of Loury (1979).
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frameworks of both Ui (2008) and Hart and Mas-Colell (2015), and thus necessitate
a separate approach. It will also be observed that a correlated equilibrium is unique
in two-player constant-sum games whenever their Nash equilibrium is unique; this
implies correlated equilibrium uniqueness in all-pay auctions, median-voter problems
and pure-location Hotelling games, which are non-concave and discontinuous. We
thereby expand the known part of the domain of games with a unique correlated equi-
librium by adding to it important sets of non-smooth and non-concave games. In order
to demonstrate the scope of our strong robustness notion, we will offer a formal survey
of what is known on that domain, as its constituent games have a strongly robust NE
in light of our main result.

1.3 Structure of the paper

The rest of the paper is organized as follows. In Sect. 2 we present the basic complete-
information framework, and extend it to incomplete information. In Sect. 3 we define
and explain the notion of strong robustness to incomplete information. In Sect. 4 we
present our main result on the equivalence of the existence of a strongly robust Nash
equilibrium and the uniqueness of a correlated one. In Sect. 5 we survey the games
for which a correlated equilibrium is known to be unique and state uniqueness results
of our own. All proofs are given in the “Appendix”.

2 Preliminaries

Our basic framework is laid out in Sect. 2.1, where we formally define games with a
continuum of pure actions. It is then extended in Sect. 2.2 to accommodate incomplete
information.

2.1 Games with a continuum of pure actions

Fix a finite set of players N = {1, 2, . . . , n}. The set Ai of (pure) actions of each player
i is assumed to be a compact and full-dimensional.12 convex subset of a Euclidean
space R

mi , and A = ×i∈N Ai ⊂ R
�i∈Nmi denotes the set of players’ action profiles.

A game u will be identified with an n-tuple (ui )i∈N where ui : A → R is the payoff
function of player i .

To formally treat mixed actions, some general notations are in order. For a positive
integer m and a compact set B ⊂ R

m , denote by M(B) the set of Borel probability
measures on B. When needed, any b ∈ B will be identified with a Dirac measure
supported on {b}, and hence B may be viewed as a subset of M(B). We shall endow
M(B) with the topology of weak convergence of measures, in which M(B) is metriz-
able and compact.13 In general, for any product set C = ×i∈NCi and any j ∈ N ,

12 The assumption of full dimension entails no loss of generality, since otherwise Ai can be replaced by
an equivalent strategy set of lower, full, dimension.
13 Recall that under this topology a sequence {μk }∞n=1 ⊂ M(B) converges to μ ∈ M(B) if and only if
limk→∞

∫
B f (a) dμk (a) = ∫

B f (a) dμ (a) for any continuous f : B → R.
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the notation c j will refer to a generic element of the set C j , and c− j—to a generic
element of the set C− j = ×i �= jCi .

A mixed action of player i will be an element of M(Ai ), and an element of M(A)

will be referred to as an action distribution. Similarly to the definition used by Hart
and Schmeidler (1989), an action distribution μ ∈ M(A) is a correlated equilibrium
(henceforth, CE) of a game u if, for any player i and any Borel-measurable function
ψi : Ai → Ai ,

∫

A
ui (a) dμ (a) ≥

∫

A
ui (ψi (ai ) , a−i ) dμ (a) . (1)

In fact, if μ is a CE, then Ineq. (1) holds for any Borel-measurable function14 ψi :
Ai → M(Ai ), with ui (ψi (ai ) , a−i ) being defined as

∫
Ai
ui (bi , a−i ) dψi (ai ) (bi ) in

this case. See “Appendix A.1” for the proof of this claim.
Given a mixed-action profile ν = (νi )i∈N , with each νi ∈ M(Ai ) being a mixed

action of player i , let ν̂ = ×i∈Nνi ∈ M(A) be the product action distribution that is
induced by ν when the individual action choices are independent. The expected payoff
ui (ν) of player i in the latter scenario is given by

ui (ν) =
∫

A
ui (a) d ν̂ (a) . (2)

A mixed-action profile ν is a Nash equilibrium (henceforth, NE) of u if ν̂ is a CE.
This is equivalent to the requirement that ui (ν) ≥ ui (ai , ν−i ) for every player i and
ai ∈ Ai .

2.2 Incomplete information games

In an incomplete information game, the underlying uncertainty is described by a
measurable space (�, �) of states of nature and a countably additive probability
measure P on (�, �), which is the common prior belief of the players about the actual
state. The information of player i is given by a σ -subfield �i of �; the interpretation
is that given any E ∈ �i , player i knows whether the realized state of nature belongs
to E .15 The payoffs to player i are determined by a state-dependent payoff function
Ui : A × � → R that is B(A) ⊗ �-measurable, where B(A) stands for the σ -field of
Borel subsets of A. The incomplete information game with the above attributes will
be denoted by U = {

(�, �) , {�i }i∈N , {Ui }i∈N
}
. We shall henceforth assume that

14 That is, ψi (ai ) (B) is a measurable function of ai for every Borel subset B of Ai .
15 If �i is generated by a finite or countable partition �i of � (in which case any E ∈ �i is a union of
finitely or countably many elements of �i ), then player i knows the exact partition element πi (ω) ∈ �i
that contains the realized state of nature ω, and thus �i can be viewed as the collection of information
types of player i . In fact, the present framework of incomplete information can accommodate a general type
space. Indeed, consider a state space (�, �, μ) in which � is a product set 
 × (×i∈N Ti ), � is a tensor-
product σ -field � ⊗ (⊗i∈Nϒi ), and, for each i ∈ N , �i is the inverse image of ϒi under the projection(
θ, (ti )i∈N

) 	→ ti on �. This corresponds to each player i having a type, or signal, space (Ti , ϒi ), and 


being a set of payoff-relevant parameters.
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payoff functions in all complete and incomplete information games are bounded in
absolute value by the same exogenously fixed constant.

A (behavioral) strategy of player i is a �i -measurable function σi : � → M(Ai ),

i.e., σi (ω) (B) is an �i -measurable function of ω for every Borel set B ⊂ Ai . A
strategy profile is an n-tuple σ = (σi )i∈N , where σi is a strategy of player i . Given
such σ , the expected payoff to player i is

Ui (σ ) :=
∫

�

Ui (σ (ω) , ω) dP (ω) , (3)

where Ui (σ (ω) , ω) denotes the extension of Ui (·, ω) into mixed-action profiles,
which is done by the same procedure as in Eq. (2).16

A strategy profile σ is a Bayesian–Nash equilibrium (henceforth, BNE) of U if
Ui (σ ) ≥ Ui (τi , σ−i ) for every player i and for every strategy τi of i . Given a BNE
σ , its induced action distribution μ (σ) ∈ M(A) is given by

μ (σ) (B) =
∫

�

σ̂ (ω) (B) dP (ω)

for every B ∈ B(A).

3 Strong robustness to incomplete information

To accurately define strong robustness, we first need tomake precise the sense inwhich
an incomplete-information game U can approximate a (complete-information) game
u. We will consider an incomplete-information game U as being close to u if, with
high probability, each player i knows that his payoff in U is given by ui . Formally, for
any ε ≥ 0, an incomplete-information game U is said to be an ε-elaboration of u if
for every player i there exists an event �i (U ,u) ∈ �i such that

�i (U ,u) ⊂ {ω | Ui (a, ω) = ui (a) for all a ∈ A} ,

and P (∩i∈N�i (U ,u)) = 1 − ε. Note that the above notion of a close incomplete-
information game is in line with that of KM for finite games, with the additional
possibility of an uncountable state space.

We shall use these ε-elaborations to define strong robustness of NE, a notion that
preserves the spirit of informational robustness of KM but is far more demanding.

Definition 1 Given a complete-information game u, its NE ν is strongly robust (to
incomplete information) if, for any sequence {Uk}∞k=1 of incomplete informationgames
where each Uk is an εk -elaboration of u that possesses some BNE σ k and limk→∞ εk
= 0, the sequence {μ (

σ k
)}∞k=1 of action distributions induced by {σ k}∞k=1 weakly

converges to the action distribution ν̂ of ν.

16 The integrand in Eq. (3) is bounded and Borel-measurable by, e.g., Proposition 7.29 in Bertsekas and
Shreve (2004), and hence Ui is well-defined.
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In other words, an NE of u is strongly robust if its induced product action-
distribution is close to the action distributions of BNE in every incomplete-information
elaboration that is sufficiently close to u.

Notice that the definition allows us to choose any BNE in an elaboration Uk , and so
strong robustness requires all corresponding BNE sequences to approximate ν. This
is the main difference between our strong robustness and KM-robustness for finite
games, as the latter notion only requires elaborations near u to have some BNE that
approximate ν. The corresponding definition for our class of games could have been
termed just robustness, and would require ν̂ to be approximable by {μ (

σ k
)}∞k=1 for

some selection of BNE {σ k}∞k=1 in any sequence {Uk}∞k=1. But since our focus is on
the furthest possible extent to which robustness can constrain equilibrium outcomes,
it is the strong robustness that we need.

There are two other distinctions between strong robustness and KM-robustness that
we would like to point out. Unlike KM-robustness, Definition 1 employs a sequential
statement, which obviates the need to specify a particular metric that governs weak
convergence of action distributions.17 Also, the KM-robustness is defined for action
distributions in general, while strong robustness only applies to NE and presupposes
the existence of an NE in u. This difference is in appearance only. In the KM set-up of
finite games, the existence of a mixed-action NE is guaranteed and any robust action
distribution is clearly an NE. Hence, KM-robustness in actuality applies only to NE.
The reason we focus on a strongly robust NE is to exclude cases where an equilibrium
does not exist and all action distributions are strongly robust by default.

It can be readily seen that the implications of there being a strongly robust NE in u
are quite stark: such an NE is necessarily unique, and its action distribution must be
the only CE in the game. For the sake of completeness, we state this observation in
the following proposition.

Proposition 1 If a complete-information game u possesses a strongly robust NE ν,
then ν̂ is the unique CE of u. In particular, if a strongly robust NE exists, then it is
unique.

We conclude that a necessary condition for an NE ν to be strongly robust is the
uniqueness of a CE in the game. In the next section we establish conditions under
which the uniqueness of a CE is both necessary and sufficient for the existence of a
strongly robust NE.

4 Strong robustness of a unique CE

Our main result, which identifies a strongly robust NE with a unique CE, will be
proved under a set of conditions requiring partial continuity of the payoff functions.
We will present two versions of the result. Theorem 1 below assumes continuity of
payoffs in the interior of the action-profile set A. Theorem 2, on the other hand, allows

17 No particular metric on M(A) that induces the topology of weak convergence, including the Lévy–
Prokhorov metric, seems to be sufficiently appealing to make a KM-like statement in terms of ε and δ

preferable to our (equivalent) statement in terms of sequence convergence.
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discontinuity of payoffs along “diagonal” curves in A, when the action sets of all
players are one-dimensional.

The following three conditions will be used in the statement of Theorem 1:

(a) each payoff function ui (a) is continuous in a whenever ai is an interior point of
Ai ;

(b) each payoff function ui (ai , a−i ) is lower semi-continuous in ai for a fixed a−i ;
and

(c) the sum
∑

i∈N ui is upper semi-continuous on A.18

These continuity conditions resemble those that were introduced in Dasgupta
and Maskin (1986), and were shown therein to be sufficient for the existence of a
mixed-action NE in a complete-information game. Specifically, our condition (b) is a
strengthened, and (c) an exact, version of the corresponding conditions in Theorem 5
of Dasgupta and Maskin (1986). Condition (a) is not, however, directly comparable
with their requirement of partial continuity. Asmay be expected, under our conditions,
u also possesses a mixed-action NE.We state this claim separately, for later reference,
as the following lemma:

Lemma 1 If u satisfies (a ), (b), and (c), then it possesses a mixed-action NE.

Our main result, Theorem 1, extends Proposition 1 to a full characterization of
strong robustness, by showing an equivalence between the existence of a strongly
robust NE and its being a unique CE under conditions (a)–(c).

Theorem 1 Consider a complete-information game u which satisfies (a), (b), and (c).
Then an NE ν is strongly robust if and only if its induced action distribution ν̂ is the
unique CE.

In otherwords, the existence of a strongly robust NE is tantamount to the uniqueness
of a CE in the game. In particular, the quest for strongly robust distributions may be
reduced to finding conditions that ensure CE uniqueness. We pursue this latter goal in
the next section which reviews and extends the known settings that possess a unique
CE.

We shall now show that the equivalence result in Theorem 1 remains in force
even when some discontinuity of payoffs occurs in the interior of A, along appro-
priately defined “diagonal” curves. For this extension, we shall confine ourselves to
one-dimensional action sets, i.e., assume that each Ai is a closed non-degenerate inter-
val

[
ai , ai

] ⊂ R. For technical reasons (the need for which will become clear in the
proof), it will be further assumed that each payoff function ui is defined on (or can
be extended to) a superset A+ = ∪i∈N

[
ai − δ, ai + δ

] × A−i of A, for some δ > 0,
in such a way that all player i’s actions above ai are weakly dominated by ai , and
all actions below ai are weakly dominated by ai , when other players are restricted to
A−i .

Condition (a) on the continuity of each individual payoff function ui when i’s own
actions are in the interior of Ai will be replaced by the following assumption, based

18 The mentioned lower (upper) semi-continuity is respectively defined by the requirements that

lim infk→∞ ui
(
aki , a−i

)
≥ ui

(
ai , a−i

)
and lim supk→∞

∑
i∈N ui

(
ak

)
≤ ∑

i∈N ui (a), for any

sequence {ak }∞k=1 ⊂ A that converges to a.
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on the continuity requirement posited in Section 4 of Dasgupta and Maskin (1986).
Let {D (i)}i∈N be a collection of finite sets, and let { f di j : R → R}i �= j∈N ,d∈D(i) be a
collection of strictly monotone and continuous functions. Define

A∗ (i) := {a ∈ A+ | ∃ j �= i, ∃d ∈ D(i) s.t. a j = f di j (ai )}.

We shall assume that:

(a’) for every i ∈ N , the set of discontinuity points of the payoff function ui on A+ is
a subset of A∗ (i), as defined above, for some given sets D(i) and functions f di j .

Our earlier condition (b) will also be replaced by a (somewhat strengthened) version
of weak lower semi-continuity of Dasgupta and Maskin (1986). Specifically, we will
assume that:

(b’) there exist 0 < λ1, . . . , λn < 1 such that, for every i ∈ N and a ∈ A,

λi lim inf
ε→0+ ui (ai − ε, a−i ) + (1 − λi ) lim inf

ε→0+ ui (ai + ε, a−i ) ≥ ui (a).

ByTheorem 5 ofDasgupta andMaskin (1986), any u that satisfies ( a’), (b’), and (c)
possesses a (mixed-action) NE. Furthermore, strong robustness of that NE is subject
to the same characterization as in Theorem 1:

Theorem 2 Consider a complete-information game u which satisfies (a’), (b’), and
(c). Then an NE ν is strongly robust if and only if its induced action distribution ν̂ is
the unique CE.

Note that Theorems 1 and 2 complement each other in terms of generality: The-
orem 1 admits higher-dimension actions sets, whereas Theorem 2 allows broader
discontinuity features.

We now comment on the proofs of Theorems 1 and 2, given in the “Appendix”.
Because the “only if” direction of both theorems is settled by Proposition 1, it is the
“if” direction that needs attention. The proofs follow an expected route, established
in Proposition 3.2 of KM concerning the KM-robustness of a unique CE in finite
games. It consists of showing that any limit point of action distributions of BNE in a
sequence of incomplete information elaborations that approximate u is a CE of u; but,
since the CE is unique, all limit action distributions must be the same, and thus the
BNE action distributions converge to that CE, establishing strong robustness of the
underlying NE. However, unlike in finite games, in games with a continuum of actions
the convergence of BNE action distributions to a limit point does not necessarily imply
convergence of expected payoffs (including those obtained by unilateral deviations),
on account of possible discontinuity of the payoff functions and of deviation methods.
This makes checking the fact that any limit point is a CE quite challenging technically,
and establishing that fact is what the proofs of Theorems 1 and 2 are mainly dedicated
to.

Remark 1 Occasionally, a weighted version of condition ( c) will be useful, requiring
upper semi-continuity on A of the function

∑
i∈N ωi ui for some collection (ωi )i∈N of

fixed, positive weights. This version can replace ( c) in both our theorems, requiring
only self-evident changes in the proofs.
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5 Applications: survey of games with a unique CE

In this section we examine various settings in which the uniqueness of a CE is
known, or can be proved, and to which our results on the existence of a strongly
robust NE may therefore be applied. In Sect. 5.1 we review known results con-
cerning “smooth” games—essentially those with continuously differentiable payoff
functions—for which the question of CE uniqueness was addressed, in fullest general-
ity to date, by Ui (2008). The class of smooth games for which Ui’s conditions for CE
uniqueness hold includes, inter alia, strictly concave potential games, a subclass of
Cournot oligopolies with differentiated products, and some types of network games.
Attention will also be drawn to Bertrand oligopolies with differentiated products,
where the CE is unique by the supermodularity arguments of Milgrom and Roberts
(1990) for some specifications of the demand functions.

Sections 5.2, 5.3 and 5.4 concern games that are not necessarily smooth. Contrary
to Sect. 5.1, many games therein require varying degrees of analysis beyond applying
ready-made results, in order to prove the uniqueness of a CE. Specifically, Sect. 5.2 is
dedicated to Tullock contests, in which the payoff functions are not differentiable (or
even continuous) at a boundary point of the set of action profiles. We prove that the
unique NE of a Tullock contest is also its unique CE,19 and therefore strongly robust.
Section 5.3 discards the differentiability assumption altogether. In that section, we
recall the notion of a socially concave game that is due to Even-dar et al. (2009), and
deduce CE uniqueness in socially strictly concave games from the result of Hart and
Mas-Colell (2015). The latter class of games includes various imperfectly discrim-
inating contests (such as those arising from patent races), Cournot oligopolies with
linear demand and possibly non-differentiable costs, and equilibrium implementation
games for quasi-linear exchange economies. Section 5.4 considers some two-player
games with major discontinuities and provides an argument for the uniqueness of their
CE (whose strong robustness is established by appealing to a more potent Theorem 2).
Among these games are two types of auctions and two classical constant-sum games
(namely, the median-voter problem and a pure-location Hotelling game).

5.1 Smooth games

Following Ui (2008), a game u is called smooth if every payoff function ui is con-
tinuously differentiable in ai ∈ Ai ; we will additionally impose the assumption that
each ui is continuous on A. Ui’s work generalized the results of Rosen (1965) on NE
uniqueness in smooth games to CE uniqueness, with one sufficient condition being the
following. A game u is said to have strictly monotone payoff gradients (henceforth,
SMPG) if, for every a �= a′,20

∑

i∈N

[∇i ui (a) − ∇i ui (a
′)
]
(ai − a′

i ) < 0. (4)

19 While the uniqueness of an NE is Tullock contests is well known, our result on CE uniqueness is new.
20 In the following inequality, ∇i denotes the gradient of ui as a function of ai .
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An easy way to verify the SMPG condition, assuming that all payoff function are
twice continuously differentiable, is to consider the matrix

[
∂2ui (a) /∂ai∂a j

]
; if it is

negative definite then u has SMPG.21

The main result of Ui (2008) shows that any smooth game with SMPG has a unique
CE (which is also the unique pure-action NE).22 Since our continuity conditions (
a)–(c) hold trivially for any smooth game, the following is a corollary of Theorem 1.

Corollary 1 Any smooth game with SMPG has a unique pure-action NE which is also
the unique CE,23 and therefore is strongly robust.

In what follows we review some examples of smooth games. The majority are
known to have SMPG. One exception is a class of Bertrand oligopolies considered in
Sect. 5.1.4, where the CE uniqueness is based on a log-supermodularity argument due
to Milgrom and Roberts (1990) instead of the SMPG condition.

5.1.1 Strictly concave potential games

An important class of games which is relevant to our context is that of potential games,
defined by Monderer and Shapley (1996). A game u is a potential game if there exists
a function P : A → R such that for every player i , every action profile a = (ai , a−i ),
and every action a′

i �= ai , ui (a′
i , a−i ) − ui (a) = P(a′

i , a−i ) − P(a). Among the best-
known smooth potential games is a single-product Cournot oligopolies with linear
demand and costs. For a smooth potential game, its potential is strictly concave if and
only if the game has SMPG (by Lemma 4 of Ui 2008), in which case Corollary 1
applies.24

5.1.2 Network games

In network games, each player’s action set is a compact interval, and the payoffs
depend on the network (i.e., a graph) that links different players to one another. Ui
(2016) lists in his Section 5.3 several such games, in particular those from Ballester
et al. (2006) and Bramoullé et al. (2014), whose payoffs have the following quadratic
form: for each i ∈ N and a ∈ A,

ui (a) = θi ai − 1

2
qii a

2
i − ai

∑

j �=i

qi j a j , (5)

21 See Lemma 3 and the proof of Corollary 6 in Ui (2008). A necessary condition for SMPG is strict
concavity of each ui in ai , by Lemma 5 in Ui (2008).
22 See Proposition 5 in Ui (2008).
23 We identify a (pure) action profile a with the action distribution supported on a. Thus, in interpreting a
pure-action NE as a CE there is no need to add that a as is viewed as the corresponding degenerate “action
distribution”.
24 One may, alternatively, use the result of Neyman (1997), who was the first to observe CE uniqueness in
games with a continuously differentiable and strictly concave potential, and then deduce strong robustness
by applying Theorem 1.
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where θi > 0 and Q = [qi j ] is an n × n-matrix accounting for the network links. Ui
(2016) states conditions on the corresponding models that ensure positive definiteness
of Q.25 For such a Q, by an observation following (4) the game u has SMPG. It is
clearly smooth, and hence Corollary 1 applies.

5.1.3 Cournot oligopoly with differentiated products

In a Cournot oligopoly model with differentiated products, each firm i ∈ N chooses
a non-negative output level ai of its product from some compact interval Ai ⊂ R+,
expecting to obtain the price Pi (a) ≥ 0 given any output-profile a, and incurring a
production cost ci (ai ) ≥ 0. Assume further that the two functions Pi and ci are twice
continuously differentiable and that ci is convex. As shown in Example 1 of Ui (2008),

the game u has SMPG whenever the matrix
[

∂2Pi (a)ai
∂ai ∂a j

]
is negative-definite for each

a ∈ A, in which case Corollary 1 applies.

5.1.4 Supermodularity and Bertrand oligopoly with differentiated products

In their study of supermodular games, Milgrom and Roberts (1990) showed that pure-
action NE provide bounds on the sets of rationalizable actions. Specifically, their
Theorem 5 states that in a supermodular game the set of serially undominated actions26

of each player is bounded from above (and, respectively, from below) by the largest
(respectively, the smallest) pure NE action of that player. Since no CE can, with posi-
tive probability, prescribe strictly serially dominated actions to any player, an obvious
corollary is that uniqueness of a pure-action NE in a supermodular game implies its
being a unique CE. The same claims also apply to games that become supermod-
ular after a strictly increasing transformation of payoffs, such as log-supermodular
games.27

In their Section 4(2), Milgrom and Roberts (1990) considered smooth Bertrand
oligopolies with differentiated products that are substitutes and constant marginal
costs, providing a condition (the elasticity of each demand being a non-increasing
function of the other firms’ prices) for its log-supermodularity. They noted that the
condition holds, and that the pure-action NE is unique, for several demand types
(including linear, CES and logit demand functions). With the oligopoly being smooth
by assumption, our continuity conditions (a)–(c) hold trivially, and the unique NE is
strongly robust by Theorem 1.

25 For a non-symmetric Q, positive definiteness is defined as that of Q + QT . If Q is symmetric, then the
game u has a smooth strictly concave potential, but it is not a potential game otherise.
26 Serially undominated actions are those that survive the iterative process of eliminating strongly domi-
nated actions.
27 That is because the sets of serially undominated actions and of pure-action NE are detemined only by
ordinal comparisons.
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5.2 The Tullock rent-seeking game

Many economic settings, ranging from political races to investments in R&D, can be
modelled as contests where players exert effort to win the competition and the winner
receives a reward.28 The Tullock rent-seeking game (see Tullock 2001), or Tullock
contest, is a complete-information game u of this type.

In a Tullock contest with n ≥ 2 players, every player i exerts an effort ai ∈ R+ for a
chance to win a single prize, e.g., an economic rent. The success function p = (pi )i∈N
specifies the probability of each contestant to receive the prize based on the realized
effort profile a, and is assumed to have the following form: for each player i and any
profile a = (ai )i∈N that is distinct from the zero-effort profile 0,

pi (a) = fi (ai )∑
j∈N f j (a j )

,

where { f j : R+ → R+} j∈N are effort impact functions of the players. These functions
are assumed to be twice differentiable, strictly increasing, concave, and vanishing at 0.
If a is the zero-effort profile 0, then p(0) can be an arbitrary strictly positive probability
vector.

All efforts are costly. Each effort is identified with its cost, and the value of the
prize to each player is normalized to 1, giving rise to net utilities (ui )i∈N where

ui (ai , a−i ) = pi (a) − ai (6)

for every i ∈ N and a ∈ R
n+. Note that this formulation also allows for the case of

player-specific general costs of effort. Namely, given a twice-differentiable, strictly
increasing and convex cost function ci : R+ → R+ with ci (0) = 0, one can obtain an
equivalent game with payoffs given by (6) by redefining each player i’s effort impact
function to be equal to fi ◦ c−1

i .
Since all efforts above 1 are strictly dominated by effort 0 for all players, it can

be assumed w.l.o.g. that player i’s action set is Ai = [0, 1]. Tullock contests may
thereby be viewed as belonging to our basic framework, and one can easily verify
that they meet requirements ( a)–(c). Moreover, it has already been established by
Szidarovszky and Okuguchi (1997) that a Tullock contest has a unique (pure-action)
NE. In the following theorem we prove that the same equilibrium is also the unique
CE,29 which implies its strong robustness via Theorem 1.

Theorem 3 The pure-actionNEof aTullock contest is also its uniqueCE, and therefore
is strongly robust.

In a Tullock contest, each pi is strictly concave in ai for a fixed a−i �= 0−i , and
convex in a−i for a fixed ai ; this implies that the payoff function ui has the same

28 See, for example, Dasgupta and Stiglitz (1980), Dixit (1987) and Skaperdas (1996) among many others.
29 A recent work by Ewerhart and Quartieri (2020) establishes the uniqueness of a BNE in (a generalization
of) the Szidarovszky andOkuguchimodel with incomplete information, where each player has finitelymany
information types.This implies that, amongfinitely-supported actiondistributions in a complete-information
Tullock contest, its NE is the unique CE, but does not settle the question of CE uniqueness among all action
distributions.
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properties. In addition, each ui is continuously differentiable on R
n+\{0}. Since the

sum
∑

i∈N ui (a) = 1− ∑
i∈N ai is linear in a, Tullock contests have SMPG on R

n++
by an observation made in Goodman (1980). The lack of differentiability of the payoff
functions at 0 prevents, however, a direct application of Proposition 5 of Ui (2008) on
CE uniqueness, and necessitates the separate approach that we have taken.

The proof of Theorem 3 relies on the fact of there being a pure-action NE. Its main
step is to show that every player is indifferent between following a CE recommended-
action and deviating to his NE action; this part of the proof uses a method akin to the
one employed by Liu (1996) in showing CE uniqueness for linear Cournot oligopolies.
This indifference, combined with strict concavity of each player’s payoff in his own
action, then pinpoints the CE as a Dirac measure concentrated on the pure-action NE.

5.3 Socially concave games

The class of socially concave games, introduced in Even-dar et al. (2009) and, with
greater generality, in Hart and Mas-Colell (2015) contains games that arise in several
widely used models such as Tullock contests, patent races (see Sect. 5.3.2), single
product Cournot oligopolies with linear demand (see Sect. 5.3.3), and quasi-linear
exchange economies (see Hart and Mas-Colell 2015). This class of games is also
important in our context since they tend to have a unique CE.

Let us now formally define socially concave games. A game u is socially (strictly)
concave if the sum of payoffs

∑
i∈N ui (a) is (strictly) concave in a, and every payoff

functionui (ai , a−i ) is convex ina−i .Note that the combinationof these twoconditions
immediately implies that every ui is (strictly) concave in ai for a fixed a−i .

Hart and Mas-Colell (2015) showed that socially strictly concave games have at
most one CE. In addition, by Lemma 1, conditions (a)–(c) imply the existence of
an NE, which is in particular a CE. (The NE is evidently in pure actions, due to the
strict concavity of each player’s payoffs in his own action.) This leads to the following
Corollary:

Corollary 2 Any socially strictly concave game u that satisfies (a), (b), and (c ) has
a pure-action NE which is also the unique CE, and therefore is strongly robust. If all
actions sets are intervals in R, (a) and (b) above can be replaced by (a’) and (b’).

The proof is omitted since it follows directly fromourTheorems1, 2 andProposition
10 of Hart and Mas-Colell (2015).

Remark 2 It is well-known that any concave function on a convex polytope is lower
semi-continuous (see, e.g., Gale et al. 1968). Hence, if u is a socially concave game
in which each action set Ai is a polytope, then condition (b) [or (b’), when Ai ⊂ R]
holds trivially, and condition (c) is equivalent to

(c’) the sum
∑

i∈N ui (a) is a continuous function.

5.3.1 Imperfectly discriminating contests

Tullock contests do not fall under the purview of Corollary 2 since they do not have a
strictly concave sum of payoffs, and wemust rely on Theorem 3 for the CE uniqueness
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result. However, the following family of imperfectly discriminating contests does
satisfy the conditions of Corollary 2.

Consider a contest where the action (effort) set of every player i is a closed bounded
interval Ai and player i’s payoff is given by ui (a) = pi (a) − ci (ai ) for every action
profile a. Let us assume that (pi (a))i∈N is a concave-sum sub-probability vector30

such that pi (ai , a−i ) is a convex function of a−i for a fixed ai , and the cost function
ci : Ai → R+ is continuous and convex. Notice that u is a socially concave game
which satisfies (a) [or (a’)] and (c’) whenever p = (pi )i∈N does so. Thus, in light of
Remark 2, Corollary 2 applies to imperfectly discriminating contests when they are
strictly socially concave:

Corollary 3 An imperfectly discriminating contest u has a pure-action NE which is
also the unique CE, and therefore is strongly robust, provided that p = (pi )i∈N
satisfies (a) [or (a’) ] and (c’), and that either

∑
i∈N pi is strictly concave or ci is

strictly convex for every i ∈ N.

5.3.2 Patent races

Baye and Hoppe (2003) consider the patent-race model of Loury (1979), where firms
compete over an infinite-life patent. Baye and Hoppe prove that the patent race is
strategically equivalent to an imperfectly discriminating contest, which is a variant of
the Tullock competition.Wewill now show that this contest alsomeets the requirement
of Corollary 3.

A patent race is an n-firms game where each firm i chooses to invest ai ∈ R+ in
R&D for a patent of value v > 0. Given ai , the probability of firm i tomake a discovery
by the time t ≥ 0 is 1−e−h(ai )t , where h : R+ → R+ is a strictly increasing, concave,
twice-differentiable function. Taking a positive interest rate r , the payoff of firm i is
given by

ui (ai , a−i ) =
∫

R+
h(ai )ve

−t
[
r+∑

j∈N h(a j )
]

dt − ai

= v
h(ai )

r + ∑
j∈N h(a j )

− ai .

Since all sufficiently high investments are strictly dominated by the null investment
(i.e., ai = 0), it can be assumedw.l.o.g. that every player i’s action set is some bounded
closed interval Ai ⊆ R+.

Evidently, if r tends to zero, the patent race is strategically equivalent to a Tullock
contest, as noted in Theorem 3 of Baye and Hoppe (2003). Moreover, when r > 0 and
after a division of all payoffs by v, the game u is included in the scope of Corollary 3
even if h is merely continuous.

Claim 4 The patent-race game has a pure-actionNE which is also the unique CE, and
therefore is strongly robust.

30 That is,
∑

i∈N pi (a) is a concave function and
∑

i∈N pi (a) ≤ 1 (the latter means that the prize may
be withheld with positive probability).
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5.3.3 Single-product Cournot oligopoly

Consider a single-product Cournot oligopoly model with linear demand, which is
given by the description in Sect. 5.1.3 using a (common) inverse demand function
P(a) =B−A

(∑
i∈N ai

)
,whereA,B > 0.Nowdiscard the assumption of continuous

differentiability of costs; assume instead that each ci : Ai → R+ is merely continuous
and convex. The results on smooth games are not applicable to such an oligopoly, but,
with payoff functions given by ui (a) = (

B − A
(∑

i∈N ai
))
ai − ci (ai ), the game u

is clearly socially strictly concave. Since it trivially satisfies (a) and (c’), Corollary 2
applies.

When a duopoly is considered, CE is unique under much more general conditions
on the inverse demand that the firms face: it only needs to be strictly decreasing and
log-concave (see Theorem 2.3 and Corollary 2.4 in Amir 1996).31 Amir showed that
such a duopoly can be viewed as an ordinally supermodular game, which implies, via
the previously mentioned method of Milgrom and Roberts (1990),32 that the unique
pure-action Cournot equilibrium is also a unique CE.

5.4 Some two-player games withmajor discontinuities

In this section we will show the existence of a unique, possibly strictly mixed, CE
in three classes of discontinuous and zero-sum-equivalent games with two players:
all-pay auctions (see Sect. 5.4.1), median-voter problems (see Sect. 5.4.2) and pure-
location Hotelling games (see Sect. 5.4.3). In these games, the discontinuity in payoffs
occurs along an entire diagonal line, which necessitates the use of Theorem 2, instead
of Theorem 1 as in the previous sections. To further demonstrate the applicability
of Theorem 2, we will also consider a non-zero-sum-equivalent game (specifically,
a common-value first-price auction) where the payoffs are discontinuous along the
diagonal but a unique CE is known to exist.

The main tool in establishing the uniqueness of a CE will be the following lemma:

Lemma 2 If a two-player zero-sum game has a unique NE, then its induced action
distribution is the unique CE in the game.

If u is strategically equivalent (in mixed actions) to a zero-sum game, Lemma 2 is
also applicable to such u, i.e., the induced action distribution of a unique NE is the
unique CE of the game. In particular, Lemma 2 is applicable to two-player constant-
sum games.

5.4.1 Two auction types

Consider an all-pay auction with two players, in which player 1 values the auctioned
object at V1 > 0 and player 2 values it at V2 > 0, where (w.l.o.g.) V2 ≤ V1. Both

31 For the results of Amir (1996) to hold, it must be further assumed that there exists Q > 0 such that the
inverse demand function P satisfies QP(Q) − mini=1,2 ci (Q) < 0 for every Q > Q.
32 In fact, an extension due toMilgrom and Shannon (1994) of this method is required to deal with ordinally
supermodular games.
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players submit bids in A1 = A2 = [0, V1]. Each bid is paid, and the object is awarded
to the highest bidder (with a symmetric tie-breaking rule). Each payoff function ui is
given, for every a ∈ A, by

ui (a) =

⎧
⎪⎨

⎪⎩

Vi − ai , if ai > a−i ,
Vi
2 − ai , if ai = a−i ,

−ai , if ai < a−i .

It is well known that this auction has a unique NE in which player 1’s bids have
the uniform distribution on [0, V2], whereas player 2 bids uniformly on [0, V2] with
probability V2

V1
and submits the zero bid with the complementary probability (see, e.g.,

Proposition 2 in Hillman and Riley 1989). Also, u is strategically equivalent (in mixed
actions) to a zero-sum gamewwithwi (a) = 1

Vi
ui (a)+ 1

V−i
a−i − 1

2 for every i = 1, 2

and a ∈ A.33 By Lemma 2 and the comment following it, the unique mixed NE is
the unique CE of u. Conditions (a’) and (b’) obviously hold for the game u,34 while
a weighted version of (c) is satisfied: 1

V1
u1(a) + 1

V2
u2(a) = 1 − 1

V1
a1 − 1

V1
a2 is a

continuous (and in particular upper semi-continuous) function on A. Thus, the unique
NE is strongly robust by Theorem 2 and Remark 1.

The above class of auctions is important because in all of them the strongly
robust NE is comprised of strictly mixed actions. That stands in contrast to games
in Sects. 5.1, 5.2 and 5.3, where the strongly robust NE are in pure actions; the latter
is, however, primarily an artifact of the strict concavity of each player’s payoff in his
own action in most of those games.

We end this discussion by considering a first-price auction with common values,
in which V1 = V2 = 1 (the second equality is assumed w.l.o.g.) and only the highest
bidder pays his bid. Accordingly, the modified payoffs are given, for every i = 1, 2
and a ∈ A, by

ui (a) =

⎧
⎪⎨

⎪⎩

1 − ai , if ai > a−i ,
1
2 (1 − ai ) , if ai = a−i ,

0, if ai < a−i .

While this auction is not strategically equivalent to any zero-sum game and thus
Lemma 2 does not apply, it was shown in Section 3.1 of Dütting et al. (2014) by using
direct arguments that bothplayers bid1 in aunique (pure-action)NEandCE.Asbefore,
it is easy to check conditions (a’) and (b ’); the sum u1(a)+ u2(a) = 1−min{a1, a2}
is obviously continuous and so (c) is satisfied as well. The unique NE is therefore
strongly robust by Theorem 2.

33 This was observed already by Pavlov (2013), but he stopped short of showing CE uniqueness, claiming
instead CE’s payoff-equivalence to the unique NE.
34 Condition (a’) holds for f di j (ai ) = ai with |D(i)| = 1, i = 1, 2, and (b’) holds for λ1 = λ2 = 0.
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5.4.2 The median-voter problem

The median voter problem, also known as a Hotelling–Downs game, is a simple
model of bipartisan political competition with a one-dimensional policy space. Fol-
lowing Persson and Tabellini (2000) (Section 3.2, pp. 49–51), we assume that there are
two players (i.e., candidates), and that their action sets, representing possible policy
promises, are the interval [0, 1]. Voters, of which there is a continuum, have single-
peaked preferences over the policy space, and their ideal points are continuously
distributed on [0, 1] with a strictly positive density function f .

The game begins by each player i = 1, 2 choosing an action in Ai = [0, 1], in a
possibly mixed fashion. Given a realized action profile a = (a1, a2), every voter with
an ideal point x ∈ [0, 1] votes for player i whose action ai is the closest to x, with a
symmetric tie-breaking rule. For every profile a, denote by Wi (a) the mass of voters
who vote for i ; that is,

Wi (a) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ a1+a2
2

0 f (x)dx, if ai < a−i ,
1
2 , if ai = a−i ,∫ 1
a1+a2

2
f (x)dx, if ai > a−i .

The payoff function of every player i is then given by

ui (a) =

⎧
⎪⎨

⎪⎩

−1, if Wi (a) < W−i (a),

0, if Wi (a) = W−i (a),

1, if Wi (a) > W−i (a),

which defines a two-player zero-sum game u.
Note that the action ai = m, where m is the median voter (characterized by the

equation
∫ m
0 f (x)dx = 1

2 ), guarantees player i the payoff of 0, and leads to a strictly
positive payoff if his opponent uses any (mixed) action that is different from m. It
follows that m is the unique optimal strategy for each player in the zero-sum game u,

and therefore (m,m) is its unique, pure-action NE. By Lemma 2, that NE is also the
unique CE. Moreover, one can easily verify that conditions (a’), ( b’), and (c) hold in
this framework,35 and so the unique pure NE is strongly robust by Theorem 2.

5.4.3 Hotelling model of pure location

A pure-location Hotelling game is a classical motivating scenario for a more general
(Hotelling 1929) duopoly model of spatial competition. In a location game, each firm
i = 1, 2 chooses a location (sale point) in the interval [0, 1], which may represent the
main street in a town, and hence A1 = A2 = [0, 1]. Both firms offer for sale the same
product, and charge the same mill price for each unit of the good and at each sale
point. Unit-demand customers are located along [0, 1]; the continuous distribution of
35 Notice that (a’) holds for f di j (ai ) = 2m − ai with |D(i)| = 1; (b’) holds for λ1 = λ2 = 1

2 , and (c) is
satisfied trivially because u is constant-sum.
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their locations has a positive density function f . Each customer patronizes the closest
seller, with a symmetric tie-breaking rule, and both firms’ objective is to maximize
their respective market shares. The corresponding constant-sum game u may thus be
described in terms of the functions Wi from Sect. 5.4.2 : ui (a) = Wi (a) for each
a ∈ A and i = 1, 2.

Just as in, e.g., Corollary 1 of Ben-Porat and Tennenholtz (2016) (taken for k = 1),
it can be seen that the location game u has a unique, pure-action NE, in which both
firms choose the location of the median customer m. By Lemma 2 and the comment
following it, that NE is also the unique CE of the game. As conditions (a’), (b’), and
(c) hold for the game u, the unique NE is strongly robust by Theorem 2.

A Appendices

A.1 Extending CE tomixed-action deviations

Proposition 2 If μ is a CE then Ineq. (1) holds for any Borel-measurable func-
tion ψi : Ai → M(Ai ), with ui (ψi (ai ) , a−i ) in Ineq. (1) being defined as∫
Ai
ui (bi , a−i ) dψi (ai ) (bi ).

Proof Suppose that Ineq. (1) does not hold for some i ∈ N and some measurable
ψ ′
i : Ai → M(Ai ). It is well known (see, e.g., Corollary 3.1.2 of Borkar (1995)) that

conditional distribution μ (· | ai ) ∈ M(A−i ), induced by μ on A−i given ai , can be
defined for every ai ∈ Ai in such away that the stochastic kernel (ai , B) 	→ μ (B | ai )
is Borel-measurable in ai for any Borel subset B of A−i .By assumption, the stochastic
kernel (ai , B) 	→ ψ ′

i (ai ) (B) is also Borel-measurable in ai for any Borel subset B of
Ai .ByProposition 7.29 ofBertsekas andShreve (2004) on integration involvingBorel-
measurable stochastic kernels, the functions (ai , bi ) 	→ ∫

A−i
ui (bi , a−i ) dμ (a−i | ai )

and ai 	→ ∫
A−i

ui
(
ψ ′
i (ai ) , a−i

)
dμ (a−i | ai ) are Borel-measurable. Hence the graph

of the (non-empty-valued) correspondence

�i (ai ) := {bi ∈ Ai |
∫

A−i

ui (bi , a−i ) dμ (a−i | ai )

≥
∫

A−i

ui
(
ψ ′
i (ai ) , a−i

)
dμ (a−i | ai )}

is also Borel-measurable. By themeasurable choice theorem, there exists ameasurable
ψi : Ai → Ai such that ψi (ai ) ∈ �i (ai ) for μi -almost every ai ∈ Ai .

Clearly,

∫

A−i

ui (ψi (ai ), a−i ) dμ (a−i | ai ) ≥
∫

A−i

ui
(
ψ ′
i (ai ) , a−i

)
dμ (a−i | ai )

for μi -almost every ai ∈ Ai , and integrating both terms w.r.t. μAi (the marginal
distribution induced by μ on Ai ) yields
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∫

A
ui (ψi (ai ) , a−i ) dμ(a) ≥

∫

A
ui

(
ψ ′
i (ai ) , a−i

)
dμ (a) .

Therefore, ψi violates Ineq. (1) because ψ ′
i does so, contradicting the assumption that

μ is a CE. ��

A.2 Proof of Proposition 1

Proof Let μ′ be any CE of u. Consider a 0-elaboration U0,μ′ of u in which (�, �) is
the set of action profiles A with the Borel σ -algebra on it, P = μ′ and, for each player
i , �i = {Bi × A−i | Bi ⊂ Ai is a Borel set} and Ui ≡ ui in a state-independent
fashion. It follows from Proposition 2 that a strategy profile τ in which τi (a) = ai for
every i ∈ N and a ∈ A is a pure-action BNE of U0,μ′ , with μ (τ) = μ′. It therefore
follows from Definition 1 that ν̂, the product action distribution of the strongly robust
ν, must coincide with the CE μ′. Thus ν̂ must coincide with any CE of u, and hence
it is the unique CE. ��

A.3 Proof of Lemma 1

Proof Assume that u satisfies (a), (b), and (c). As in the proof of Proposition 5.1 in
Reny (1999), it can be seen that (b) implies lower semi-continuity of each ui (νi , ν−i )

in νi when players use mixed strategies. Furthermore, it follows from (a) and the
Portmanteau theorem that ui (νi , ν−i ) is continuous at any point ν as long as νi ∈
M(Ai ) satisfies νi (∂(Ai )) = 0. These two observations, together with the fact that
any νi ∈ M(Ai ) can be approximated by probability measures on Ai for which
∂(Ai ) is a zero-measure set , imply that the payoffs in mixed strategies are payoff-
secure. That is, for every ν ∈ ×i∈N M(Ai ) and ε > 0, each player i can secure a
payoff of at least ui (ν) − ε. (The latter means that there exists νi ∈ M(Ai ) such that
ui

(
νi , ν

′−i

) ≥ ui (ν) − ε for any ν′−i in some open neighbourhood of ν−i .) Given
the payoff-security of the mixed-strategy extension of u, and condition (c) on pure-
strategy payoffs, the existence of a mixed-strategy NE in u follows from Proposition
5.1 and Corollary 5.2 of Reny (1999). ��

A.4 Proof of Theorem 1

The “only if” direction of the theorem is given by Proposition 1. As for the “if” direc-
tion, consider a sequence {Uk}∞k=1 off incomplete information games and a sequence
of corresponding BNE {σ k}∞k=1 such that each Uk = {

�k, Pk,
{
�

k
i

}
i∈N ,

{
Uk
i

}
i∈N

}

is an εk-elaboration of u and limk→∞ εk = 0. We will show that, for any subsequence
of {μ (

σ k
)}∞k=1 ⊂ M(A) that converges to some μ′ ∈ M(A), the limit μ′ is a CE of u.

W.l.o.g., we will take such a subsequence to be {μ (
σ k

)}∞k=1 itself in our forthcoming
considerations.

The following lemma will be instrumental in the rest of the proof.
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Lemma 3 For any i ∈ N and any measurable function ψi : Ai → Ai ,

lim inf
k→∞U

k
i

(
σ k

)
≥

∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) .

Proof of Lemma 3 Suppose to the contrary that, for some i ∈ N and some measurable
ψi : Ai → Ai ,

lim inf
k→∞U

k
i

(
σ k

)
<

∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) . (7)

We will first show that such ψi can, w.l.o.g., be assumed to be continuous. Indeed, for
any ε > 0, by Lusin’s theorem, the given ψi is continuous on a compact subset Eε

of Ai with μ′(Eε × A−i ) > 1 − ε. By applying the Tietze extension theorem to each
coordinate of ψi |Eε , the restriction of ψi to Eε, this function may be extended to a
continuous ψε

i : Ai → R
mi . If projAi : R

mi → Ai is the projection onto Ai , which
sends any ai ∈ R

mi into the point in Ai with the shortest Euclidean distance from
ai , then the composite function ψ

ε

i = projAi ◦ ψε
i : Ai → Ai is continuous, and is

identical to ψi on Eε. Since ui is bounded and limε→0+ μ′(Eε × A−i ) = 1, clearly

lim
ε→0+

∫

A
ui

(
ψ

ε

i (ai ) , a−i

)
dμ′ (a) =

∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) ,

and so ψi can be replaced in Ineq. (7) by ψ
ε

i for some sufficiently small ε without
affecting that inequality. Thus, it can be assumed w.l.o.g. that ψi for which Ineq. (7)
holds is continuous.

Next, we will show that, w.l.o.g., it can be assumed that the values of the continuous
ψi in Ineq. (7) avoid the boundary ∂ (Ai ), i.e., that ψi : Ai → Ai\∂ (Ai ). To this end,
for any ε > 0 consider the closed and convex set Aε

i that consists of all points in Ai

whose Euclidean distance from ∂ (Ai ) is at least ε. As Ai has full dimension, Aε
i is non-

empty for all sufficiently small ε, and the projection onto Aε
i , projAε

i
: R

mi → Aε
i , is

well-defined. Since the function ψ
ε

i = projAε
i
◦ ψi converges to ψi pointwise on Ai

as ε → 0, by assumption (b) on ui

lim inf
ε→0+ ui

(
ψ

ε

i (ai ) , a−i

)
≥ ui (ψi (ai ) , a−i )

for every a ∈ A . Hence, by Fatou’s lemma,

lim inf
ε→0+

∫

A
ui

(
ψ

ε

i (ai ) , a−i

)
dμ′ (a) ≥

∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) .

It follows that the continuous functionψi can be replaced in (7) by another continuous

function ψ
ε

i , for some sufficiently small ε, without affecting the inequality. Thus, it
can be assumed w.l.o.g. that the values of the continuous ψi in Ineq. (7) avoid the
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boundary ∂ (Ai ), i.e., that ψi : Ai → Ai\∂ (Ai ) . Consequently, by assumption (a)
on ui , the function ui (ψi (ai ) , a−i ) is continuous on A.

For any νi ∈ M(Ai ), let ψi (νi ) ∈ M(Ai ) be the probability measure given by

ψi (νi ) (B) = νi

(
ψ−1
i (B)

)
for every Borel set B in Ai .36 Note that ψi can thus be

applied to any M(Ai )-valued strategy σ k
i , thereby producing a new strategy, ψi

(
σ k
i

)
,

for player i in the game Uk . The uniform boundedness of Uk
i (together with the fact

that Uk
i = ui on a set with a μ

(
σ k

)
-measure tending to 1) now implies that

lim
k→∞U

k
i

(
ψi

(
σ k
i

)
, σ k

−i

)
= lim

k→∞

∫

�

Uk
i

(
ψi

(
σ k
i (ω)

)
, σ k

−i (ω) , ω
)
dPk (ω)

= lim
k→∞

∫

�

ui
(
ψi

(
σ k
i (ω)

)
, σ k

−i (ω)
)
dPk (ω)

= lim
k→∞

∫

A
ui (ψi (ai ) , a−i ) dμ

(
σ k

)
(a)

=
∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) ,

where the last equality follows from the weak convergence of {μ (
σ k

)}∞k=1 to μ′ and
the continuity of ui (ψi (ai ) , a−i ). Thus,

lim
k→∞U

k
i

(
ψi

(
σ k
i

)
, σ k

−i

)
=

∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) .

Combining this with Ineq. (7) shows that, for some k,U
k
i

(
ψi

(
σ k
i

)
, σ k

−i

)
> U

k
i

(
σ k

)
,

in contradiction to the assumption that σ k is a BNE of Uk . ��

Proof of Theorem 1 By taking ψi to be the identity function, Lemma 3 implies that

lim inf
k→∞U

k
i

(
σ k

)
≥

∫

A
ui (a) dμ′ (a) (8)

for every i ∈ N . On the other hand, by using the uniform boundedness of all payoff
functions (together with the fact that the payoffs are given by u on a set with a μ

(
σ k

)
-

36 In other words, if νi is the probability distribution of a random variable X , thenψi (νi ) is the distribution
of ψi (X).
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measure tending to 1) we obtain

lim sup
k→∞

∑

i∈N
U

k
i

(
σ k

)
= lim sup

k→∞

∑

i∈N

∫

�

Uk
i

(
σ k (ω) , ω

)
dPk (ω)

= lim sup
k→∞

∑

i∈N

∫

�

ui
(
σ k (ω)

)
dPk (ω)

= lim sup
k→∞

∫

A

(
∑

i∈N
ui (a)

)

dμ
(
σ k

)
(a)

≤
∫

A

(
∑

i∈N
ui (a)

)

dμ′ (a) =
∑

i∈N

∫

A
ui (a) dμ′ (a) ,

where the inequality follows from the Portmanteau theorem and the assumption (c)
that

∑
i∈N ui (a) is upper semi-continuous. Thus,

lim sup
k→∞

∑

i∈N
U

k
i

(
σ k

)
≤

∑

i∈N

∫

A
ui (a) dμ′ (a) .

Combined with Ineq. (8), this leads to the conclusion that limk→∞ U
k
i

(
σ k

)
exists

and is equal to
∫
A ui (a) dμ′ (a) for every i ∈ N . Therefore, according to Lemma 3,

for any i ∈ N and any measurable ψi : Ai → Ai , the inequality
∫
A ui (a) dμ′ (a)

≥ ∫
A ui (ψi (ai ) , a−i ) dμ′ (a) holds, which shows that μ′ is indeed a CE of u.
We have thereby shown that any accumulation point of {μ (

σ k
)}∞k=1 is a CE of

u. Since ν̂ has a unique CE and M(A) is compact, the sequence {μ (
σ k

)}∞k=1 in fact
converges to ν̂. As the latter is true for any such sequence, ν is strongly robust by
Definition 1. ��

A.5 Proof of Theorem 2

Proof The proof proceeds in the same way as the proof of Theorem 1. The only
exception that needs to be made is in the proof of Lemma 1, the first paragraph of
which we follow verbatim, establishing the fact that the inequality

lim inf
k→∞U

k
i

(
σ k

)
<

∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) . (9)

holds for a continuous function ψi : Ai → Ai . In what follows we will show that
ψi can be modified in a way that the integrand in the right-hand term in Ineq. (9) is
continuous μ′-almost everywhere.
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By (b’) and Fatou’s lemma,

λi lim inf
ε→0+

∫

A
ui (ψi (ai ) − ε, a−i ) dμ′ (a)

+ (1 − λi ) lim inf
ε→0+

∫

A
ui (ψi (ai ) + ε, a−i ) dμ′ (a)

≥
∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) .

Assume, e.g., that

lim inf
ε→0+

∫

A
ui (ψi (ai ) + ε, a−i ) dμ′ (a) ≥

∫

A
ui (ψi (ai ) , a−i ) dμ′ (a) (10)

(the arguments in the casewhere the inequality holds forψi (ai )−ε instead ofψi (ai )+
ε are symmetric).

Given the set D(i) and functions
{
f di j

}

j �=i, j∈N whose existence is postulated in

condition (a’), for any j �= i, d ∈ D(i) and 0 < ε < δ consider the set Ai, j,d(ε) :=
{a ∈ A | a j = f di j (ψi (ai )+ε)}.As each f di j is strictlymonotone, the sets Ai, j,d(ε) are
disjoint for different values of ε, and hence μ′(Ai, j,d(ε)) = 0 for any ε outside some
countable set. It follows from (a’) that the function ui (ψi (ai ) + ε, a−i ) is continuous
in a outside ∪ j �=i,d∈D(i)Ai, j,d(ε).37 Thus, ui (ψi (ai ) + ε, a−i ) is in fact μ′-almost
everywhere continuous in a for any ε belonging to some vanishing sequence in (0, δ).
By Ineq. (10), the function ψi can therefore be replaced in Ineq. (9) by some ψ ′

i (=
ψi + ε) : Ai → [

ai , ai + δ
]
, for which ui

(
ψ ′
i (ai ) , a−i

)
is μ′-almost everywhere

continuous in a, and the inequality in (9) is preserved.
Now let ψ ′′

i := min(ψ ′
i , ai ). As in the proof of Theorem 1, we obtain

lim
k→∞U

k
i

(
ψ ′′
i

(
σ k
i

)
, σ k

−i

)
= lim

k→∞

∫

A
ui

(
ψ ′′
i (ai ) , a−i

)
dμ

(
σ k

)
(a) ,

and, since ai dominates all actions higher than ai by assumption,

lim
k→∞U

k
i

(
ψ ′′
i

(
σ k
i

)
, σ k

−i

)
≥ lim

k→∞

∫

A
ui

(
ψ ′
i (ai ) , a−i

)
dμ

(
σ k

)
(a) . (11)

As ui
(
ψ ′
i (ai ) , a−i

)
is μ′-almost everywhere continuous in a, the right-hand side

in ( 11) is equal to
∫
A ui

(
ψ ′
i (ai ) , a−i

)
dμ′ (a) by the Portmanteau theorem, and so

lim
k→∞U

k
i

(
ψ ′′
i

(
σ k
i

)
, σ k

−i

)
≥

∫

A
ui

(
ψ ′
i (ai ) , a−i

)
dμ′ (a) . (12)

37 Indeed, given any a0 /∈ ∪ j �=i,d∈D(i)Ai, j ,d (ε), consider a′ =
(
ψi

(
a0i

)
+ ε, a0−i

)
∈ A. It follows from

the definition of each Ai, j ,d (ε) that a′
j �= f di j (a

′
i ) for any j �= i and d ∈ D(i), and hence ui is continuous

at a′ by condition (a’). The function ui
(
ψi (ai ) + ε, a−i

)
is therefore continuous at a0 as a composition

of the continuous function a 	→ (
ψi (ai ) + ε, a−i

)
and ui that is continuous at a

′.
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Ineq. (9)—which holds for ψ ′
i—and Ineq. (12) imply that U

k
i

(
ψ ′′
i

(
σ k
i

)
, σ k

−i

)
>

U
k
i

(
σ k

)
for some k, in contradiction to the assumption that σ k is a BNE of Uk .

This establishes the claim in Lemma 1 under conditions (a’) and (b’), and the proof
proceeds as that of Theorem 1 from this point onward. ��

A.6 Proof of Theorem 3

Proof Denote by a∗ the pure-actionNEof the contest, whose existence and uniqueness
was established in Szidarovszky and Okuguchi (1997). For any a ∈ [0, 1]n , define

H(a) :=
∑

i∈N

[
ui (a) − ui (a

∗
i , a−i )

] = 1 −
n∑

i∈N
ai −

n∑

i∈N
ui (a

∗
i , a−i ).

Clearly, H(a∗) = 0. As has been observed in Sect. 5.2, each ui (a∗
i , a−i ) is a convex

function of a−i , which is also continuously differentiable whenever a−i �= 0−i . It
follows that H is concave on [0, 1]n and continuously differentiable on [0, 1]n\ ∪i∈N
([0, 1]i × {0−i }).

Observe that at least two players exert positive effort in a∗, i.e., a∗ /∈
∪i∈N ([0, 1]i × {0−i }), since otherwise player i, for whom a∗−i = 0−i , would have
no best response against a∗−i . As a consequence, H is differentiable at a∗.

We shall now prove that H is non-positive. For every player j and every action
a j ∈ [0, 1], we can evaluate H(a j , a∗− j ) and get

H(a j , a
∗− j ) = u j (a j , a

∗− j ) − u j (a
∗
j , a

∗− j )

+
∑

i∈N\{ j}

[
ui (a j , a

∗− j ) − ui (a
∗
i , a j , a

∗−i,− j )
]

=

= u j (a j , a
∗− j ) − u j (a

∗
j , a

∗− j ) ≤ 0,

where the last inequality follows from the fact the a∗ is an NE. Therefore a∗ is a
critical point of H , and, as the latter is differentiable at a∗ and concave on [0, 1]n , the
profile a∗ is also a global maximizer of H , which implies that H(a) ≤ H(a∗) = 0
for every a ∈ [0, 1]n . Because H is non-positive, for every a ∈ [0, 1]n

∑

i∈N
ui (a) ≤

∑

i∈N
ui (a

∗
i , a−i ). (13)

Now consider any CE μ in the contest. The condition given in Ineq. (1) holds, in
particular, for each i ∈ N and the constant function ψ(ai ) ≡ a∗

i , i.e.,

∫

A
ui (ai , a−i ) dμ(a) ≥

∫

A
ui

(
a∗
i , a−i

)
dμ(a). (14)
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The combination of Ineq. (13) and Ineq. (14) shows that, for every i ∈ N ,

∫

A
ui (ai , a−i ) dμ(a) =

∫

A
ui

(
a∗
i , a−i

)
dμ(a). (15)

In words, every player i is indifferent between following the realized suggestion ai of
the CE μ and deviating to the pure NE action a∗

i .
Now assume that μ([0, 1]n \ {a∗}) > 0. Then there exists i ∈ N such that μ({a |

ai �= a∗
i }) > 0. It cannot be that, conditional on ai �= a∗

i , the CE μ puts weight 1 on
a set with a−i = 0−i , since otherwise

ψε
i (ai ) =

{
a∗
i , if ai = a∗

i ,

ε, otherwise,

would violate Ineq. (1) for every sufficiently small ε > 0. It follows that

μ({a | ai �= a∗
i and a−i �= 0−i }) > 0. (16)

Finally, consider a functionψi : [0, 1] → [0, 1] given byψi (ai ) = ai+a∗
i

2 . It follows
from Ineq. (1) that

∫

A
ui (ai , a−i )dμ(a) ≥

∫

A
ui (ψi (ai ), a−i )dμ(a)

=
∫

A
ui

(
ai+a∗

i
2 , a−i

)
dμ(a)

>
1

2

∫

A
ui (ai , a−i )dμ(a) + 1

2

∫

A
ui (a

∗
i , a−i )dμ(a)

=
∫

A
ui (ai , a−i )dμ(a),

where the strict inequality follows from the strict concavity of ui in ai when a−i �= 0−i

and Ineq. (16), and the last equality follows from (15). We have reached a contradic-
tion, and therefore must conclude that any CE μ of the contest is a Dirac measure
concentrated on the pure-action NE a∗. ��

A.7 Proof of Claim 4

Proof Each function pi is clearly continuous, and so p = (pi )i∈N trivially satisfies
(a) and (c’). Next, pi (ai , a−i ) = h(ai )

r+∑
j∈N h(a j )

is convex in a−i since h is concave and

the function 1
r+x is decreasing and convex in x ≥ 0 for any r > 0. Similarly, the sum

∑

i∈N
pi (a) =

∑
i∈N h(ai )∑

i∈N h(ai ) + r
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is strictly concave since h is strictly increasing and concave, and the function x
r+x

is increasing and strictly concave in x ≥ 0 for any r > 0. Thus u is an imperfectly
discriminating contest that satisfies the assumptions of Corollary 3. ��

A.8 Proof of Lemma 2

Proof Consider a two-player zero-sum game u with a unique NE, which is then also
the unique pair of optimal actions. Ifμ is a CE of u then it is easy to see that, for almost
every action recommendation ai to player i, the conditional distribution μ(· | ai ) on
A−i is the optimal action of the player−i . Indeed, had the conditional distribution not
been almost always optimal, player i would have had profitable deviations fromhis rec-
ommendation on a positive-probability set of actions.38 Thus, (almost) all conditional
distributions of μ on A−i are identical, implying that μ is the product distribution of
the (pure or mixed) actions comprising the NE. This shows that the CE is unique. ��
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