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Abstract
In a general one-sector optimal stochastic growthmodel where the production technol-
ogy may be globally unproductive or allow for unbounded growth, we outline readily
verifiable sufficient conditions for optimality that do not require checking the transver-
sality condition. An interior policy function satisfying the Ramsey–Euler condition
may not be optimal even if consumption and investment are continuous and increasing
in output; our conditions for optimality require that the policy function must also sat-
isfy a lower bound on the propensity to consume. For the case of production functions
with multiplicative shocks, the consumption propensity needs to be bounded away
from zero; a similar condition is sufficient for more general production functions if
the utility function belongs to a restricted class.
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1 Introduction

The one sector model of optimal economic growth under uncertainty (Levhari and
Srinivasan 1969; Brock and Mirman 1972) has been widely used by economists
to examine problems of capital accumulation in stochastic environments including
macroeconomic growth under technology or productivity shocks and resource man-
agement under environmental uncertainty. Variations of themodel have also been used
to study business cycles.

In this model, a representative agent allocates the currently available output (of
a single good) between investment and consumption where consumption generates
immediate utility while investment generates next period’s output according to a pro-
duction function that is subject to exogenous production shocks. In the standard version
of the model, the exogenous shocks are independent and identically distributed over
time. The agent maximizes expected discounted sum of utility from consumption
where the discount factor, the utility function and the production function are invari-
ant over time. In such a stationary framework, the intertemporal economic trade-offs
faced by the agent are reflected in the optimal consumption policy function. Con-
ditions for optimality play a very important role in understanding the nature of this
optimal policy function. In a large class of applications where economists work with
specific functional forms for utility and production functions, sufficient conditions for
optimality help determine whether an explicitly specified policy function is actually
optimal. Even when one cannot derive explicit solutions to the dynamic optimiza-
tion problem, sufficient conditions for optimality are useful in showing that a certain
implicitly defined (“candidate”) function is optimal. Optimality conditions for the
dynamic optimization problem underlying the one sector stochastic growth model can
also be useful in dynamic games of capital accumulation such as dynamic games of
common property renewable resource extraction1.

In a convex framework (strictly concave utility, concave production function), the
existing literature has used duality theory to derive a set of conditions that are both
necessary and sufficient for a policy function to be optimal and, in fact, to be the unique
optimal policy function. In particular, an interior policy function (i.e., one where both
consumption and investment are always strictly positive when the current stock of
output is strictly positive) is optimal if, and only if, it satisfies the Euler condition
(called the Ramsey–Euler equation in this literature) and a transversality condition
(Mirman and Zilcha 1975; Zilcha 1976, 1978).2,3

The Ramsey–Euler equation is a simple first order condition that captures the trade-
off between consumption in any two consecutive time periods, and takes the form of
a functional equation. We refer to an interior consumption policy function satisfying

1 See, for instance, Mitra and Sorger (2014).
2 Key contributions emphasizing the importance of the transversality condition in models of intertem-
poral resource allocation include Malinvaud (1953), Cass (1965), Shell (1969), Peleg and Ryder (1972)
and Weitzman (1973).
3 That theEuler and transversality conditions are necessary and sufficient for optimality has been established
for more general, convex dynamic optimization problems. See, among others, Stokey and Lucas (1989),
Acemoglu (2009). Establishing the necessity of transversality condition for optimality in general has been
more challenging; see, Kamihigashi (2001, 2003, 2005).
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this Ramsey–Euler equation as a Ramsey–Euler policy and this paper contributes to
a literature on systematic study of the optimality of such a policy.

Using the characterization results mentioned above, a Ramsey–Euler policy can be
shown to be an optimal policy, if it satisfies a transversality condition. The transver-
sality condition essentially requires that the expected present value of capital stocks
(valued by a shadow price equal to the discounted marginal utility of current con-
sumption) converges to zero in the long run. It is an asymptotic condition on the entire
stochastic process generated by the policy function.4 Verifying the transversality con-
dition can be a non-trivial task when the stochastic process of output and consumption
can reach levels arbitrarily close to zero infinitely often (for instance, on sample paths
involving runs of bad realizations of the production shock) and the marginal utility of
consumption is infinitely large at zero5; it can also be somewhat challenging if output
and investment can be arbitrarily large with positive probability.

Mitra and Roy (2017) develop an alternative sufficient condition for optimality of a
Ramsey–Euler policy; they show that a Ramsey–Euler policy function is optimal if it is
continuous or co-monotone (i.e., consumption and investment are both non-decreasing
in current output). They derive their results under two restrictions on the production
technology. First, the technology is assumed to be productive for investment levels
close to zero even under the worst realization of the random shock i.e., marginal
productivity at zero is always greater than one. Second, the technology is assumed
to exhibit bounded growth i.e., there is a maximum sustainable capital stock beyond
which the technology is unproductive even for the best realization of the random
shock. A natural question that arises is whether their result extends to more general
environments where the production technology may be unproductive at all levels of
investment or alternatively, productive at all levels of investment (thus allowing for
unbounded expansion of output and consumption).

In their paper, Mitra and Roy (2017) provide an example to show why their result
may not hold if the technology is globally productive; in an economy with a deter-
ministic linear production function where the average productivity is always greater
than one, they show that there is a continuous and co-monotone Ramsey–Euler policy
function that is not optimal.

In this paper, we provide an example of an economywith a deterministic linear pro-
duction function that is globally unproductive i.e., the average productivity is always
less than one; we explicitly derive a non-linear solution to the Ramsey–Euler func-
tional equation that is not optimal; this non-optimal consumption function is smooth,
strictly convex and strictly increasing in output; also, investment is strictly increasing
in output. Together, these two examples show that a continuous and co-monotone
Ramsey–Euler policy function need not be optimal once we allow for production
functions that do not exhibit bounded growth or are not productive near zero.

4 For certain versions of our model, in checking for optimality of a Ramsey–Euler path (from an arbitrary
initial stock) the transversality condition may be replaced by an infinite number of “period by period”
conditions; see, Brock and Majumdar (1988), Dasgupta and Mitra (1988) and Nyarko (1988). Like the
transversality condition, these period-by-period conditions taken together involve the entire stochastic pro-
cess of consumption and capital and establishing optimality by showing that all of them hold can be difficult
to implement.
5 Mitra and Roy (2017) illustrate this difficulty through examples.
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In many macroeconomic applications6, the structure of technology shocks is such
that the net return on investment is always negative under adverse realizations of
the shock. On the other hand, understanding sustained or long run economic growth
requires analysis of models with production technologies that are productive at all
levels of investment.7,8 It is important to understand the nature of conditions on a
Ramsey–Euler policy function that can ensure it is optimal when we allow for such
production technologies. The key contribution of this paper is that we develop eas-
ily verifiable conditions for optimality of Ramsey–Euler policy functions in a more
general version of the one sector growth model than that considered in Mitra and Roy
(2017); in particular, we do not require the production function to exhibit bounded
growth or to be productive near zero.

In each of the two examples mentioned above, the non-optimal Ramsey–Euler
policy function is such that the propensity to consume can be arbitrarily small. We
show that some restriction on the behavior of the propensity to consume can play an
important role in ensuring optimality of a Ramsey–Euler policy function.

For production functions where the random shock enters multiplicatively, we show
that a Ramsey–Euler policy function is optimal if (i) it is either continuous or co-
monotone, and (ii) the propensity to consume is bounded away from zero; condition
(ii) is required to hold only if the worst case production function is unproductive near
zero or if the best case production allows for unbounded expansion. This result is a
generalization of the optimality conditions inMitra and Roy (2017). Note that produc-
tion functions with multiplicative shock structure are widely used in macroeconomics
and resource economics; further, the deterministic production function can be seen as
a special case of multiplicative shock.

For more general production functions where the random shock is not necessarily
multiplicative, we show that a Ramsey–Euler policy is optimal if (i) holds and the
propensity to consume is bounded below by a generalized lower bound that depends
on the extent of variation (due to random shock) in the elasticity of the production
function.

We also show that if the utility function belongs to a special family (that includes,
for instance, all bounded utility functions), then conditions (i) and (ii)mentioned above
continue to be sufficient for optimality of a Ramsey–Euler policy even if the random
shock is not multiplicative.

It is well known that in our model, the optimal consumption policy function
is unique, continuous, and both the optimal consumption and investment are non-
decreasing (in fact, strictly increasing) in current output; further, if the optimal policy
is interior it must satisfy the Ramsey–Euler condition.9 This paper shows that these

6 Similarly, renewable resources stocks may not be able to regenerate and grow (regardless of the stock
size and the amount of harvesting) if environmental conditions are highly adverse.
7 For analysis of exogenous growth models where the technology may be “productive at infinity” see,
among many others, Gale and Sutherland (1968), Levhari and Srinivasan (1969), Majumdar and Zilcha
(1987), Jones and Manuelli (1990), de Hek (1999) and de Hek and Roy (2001).
8 See, for instance, Jones et al. (2005). In many applcations, the shocks enter the production function
multiplicatively and are assumed to have a lognormal distribution. Our framework however assumes that
the shocks are bounded.
9 See, for instance, Kamihigashi (2007).
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global properties of the policy function that are necessary for optimality may not be
sufficient for optimality once we allow for production technologies that are potentially
unproductive at zero or productive at infinity. Optimality is however ensured if one
can, in addition, verify a condition on the limiting behavior of the propensity to con-
sume (though this may not be necessary for optimality); taken together, they replace
the transversality condition in the set of sufficient conditions for the optimality.

Continuity or monotonicity of the Ramsey–Euler policy can be easily verified; it
is also easy to verify whether our condition on the propensity to consume is satisfied
(for instance, whether it is bounded away from zero) for a candidate consumption
function. Our result allows us to immediately verify optimality of explicit solutions to
the Euler equation in certain applications with specific functional forms for the utility
and production functions where the policy function is linear so that propensity to
consume is constant.10 Linearity is however an exception, rather than the rule. As new
examples are developed in the future with non-linear Ramsey–Euler consumption
functions (as in the examples outlined in this paper), our result will continue to be
useful as a way to verify optimality.11 Our main result can also be a useful theoretical
tool in proving optimality of an implicitly defined policy function.

The paper is organized as follows. Section 2 outlines the model, the assumptions
and some definitions. Section 3 outlines some benchmark results for the classical
version of the model with bounded growth technology that is productive near zero.
Section 4 outlines two important examples to illustrate the fact that a continuous
and co-monotone Ramsey–Euler consumption function may not be optimal and that
the main result in Mitra and Roy (2017) may not hold for a more general class of
production technologies. Section 5 contains the main results of the paper on sufficient
conditions for optimality of a Ramsey–Euler policy. Section 6 concludes. Section 7
is the appendix and contains proofs of all results and some details of the example in
Sect. 4.1 (including an explanation of the method by which we arrived at an explicit
nonlinear solution to the Ramsey–Euler functional equation).

2 Themodel

Weconsider an infinite horizon one-good representative agent economy.LetR+ (R++)
denote the set of all non-negative (strictly positive) real numbers. Time is discrete and
is indexed by t = 0, 1, 2, .... At each date t ≥ 0, the representative agent observes the
current stock of output yt ∈ R+ and chooses the level of current investment xt , and

10 See, for instance, Benhabib and Rustichini (1994).
11 Our alternative sufficient condition for optimality of a Ramsey–Euler policy is based on the duality
approach to the characterization of optimality. A different approach, based on dynamic programming,
involves guessing the value function from the Ramsey–Euler condition and verifying that this “candi-
date” value function satisfies the the Bellman equation (see, for instance, Stokey and Lucas 1989). This
approach is useful if the solution to the Bellman equation is unique (for instance, if the utility func-
tion is bounded in the stochastic growth model). Recent advances have extended the applicability of this
approach to unbounded utility functions; see, among others, Rincón-Zapatero and Rodriguez-Palmero
(2003), Matkowski and Nowak (2011) and Kamihigashi (2014).
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60 T. Mitra, S. Roy

the current consumption level ct , such that

ct ≥ 0, xt ≥ 0, ct + xt ≤ yt .

This generates yt+1, the output stock next period through the relation

yt+1 = f (xt , rt+1)

where f (x, r) is the production function and rt+1 is a random production shock
realized at the beginning of period (t + 1).

2.1 Production

We now describe aspects of the above mentioned production process formally. We
begin by specifying the nature of the exogenous shocks to production as follows

(R.1) The sequence of random shocks {rt }∞t=1 is assumed to be an independent
and identically distributed random process defined on a probability space (�,F , P),

where the marginal distribution is denoted by μ. The support of this distribution
function is a non-empty compact set A ⊂ R. The distribution function corresponding
to μ is denoted by F .

The production function is a map f fromR+ × A toR+. We impose the following
assumptions12 on the production function f :

(T.1) Given any r ∈ A, f (., r) is assumed to be continuous, strictly increasing and
concave on R+, with f (0, r) = 0, and differentiable on R++, with f ′(·, r) > 0 on
R++. Further, for any x ≥ 0, f (x, .) : A → R+, is a (Borel) measurable function.

Define the lower envelope production function f (x) : R+ → R+ by

f (x) = inf
r∈A

f (x, r).

It is easy to check that f (x) is non-decreasing on R+ and f (0) = 0. Further, f (x)

is concave on R+. It follows that the “worst case” average productivity of investment
[ f (x)/x] is non-increasing in x on R++. The upper envelope production function

f (x) is defined on R+ by:
f (x) = sup

r∈A
f (x, r)

We assume that:
(T.2)

f (x) > 0, f (x) < ∞ for all x > 0.

12 Note that we do not require the production function to be monotonic or continuous in the realization of
the production shocks.
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Given an initial stock y ≥ 0, a stochastic process {yt (y, ω), ct (y, ω), xt (y, ω)} is
feasible from y if it satisfies y0 = y, and:

(i) ct (y, ω) ≥ 0, xt (y, ω) ≥ 0 for t ≥ 0
(i i) ct (y, ω) + xt (y, ω) ≤ yt (y, ω), yt+1(y, ω) = f (xt (y, ω), rt+1(ω)) for t ≥ 0

and if for each t ≥ 0 {ct (y, ω), xt (y, ω)} areFt adapted where Ft is the (sub) σ -field
generated by partial history from periods 0 through t .13

2.2 Preferences

Consumption in each period generates an immediate return according to a utility
function, u : R++ → R. The following assumption is imposed on the utility function:

(U.1) u is continuously differentiable, strictly increasing and strictly concave on
R++ with u′ > 0 on R++.

We define
u(0) ≡ lim

c↓0 u(c),

where the limit is allowed to be finite or −∞.

The agent discounts future utility using a time invariant discount factor denoted by
ρ ∈ (0, 1).

2.3 The optimization problem

Given initial stock y ≥ 0, the representative agent’s objective is to maximize the
expected value of the discounted sum of utilities from consumption:

E

[ ∞∑
t=0

ρt u(ct )

]

subject to feasibility constraints.
Given y ≥ 0, define the stochastic process of consumption {cM

t (y, ω)} by:
cM
0 (y, ω) = y, cM

t+1(y, ω) = f (cM
t (y, ω), rt+1(ω)) for all t ≥ 0. Then, for every

ω and t, cM
t (y, ω) is an upper bound on feasible consumption in period t . We assume

that:
(D.1) For all y ≥ 0,

E

[ ∞∑
t=0

ρt u(cM
t (y, ω))+

]
< ∞

where u(c)+ = max{u(c), 0}.
13 We skip formal definitions of sigma fields and sub sigma fields as these constructs are standard in the
theory of stochastic processes.
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Assumption (D.1) ensures that for any feasible stochastic process {yt (y, ω),

ct (y, ω), xt (y, ω)} from y ≥ 0, the objective of the representative agent

E

[ ∞∑
t=0

ρt u(ct (y, ω))

]

is well defined though it may equal −∞, and that (see, Kamihigashi 2007)

E

[ ∞∑
t=0

ρt u(ct (y, ω))

]
=

∞∑
t=0

ρt E[u(ct (y, ω))] (1)

Note that (D.1) is always satisfied if either u is bounded above or alternatively, if
limsupx→∞[ f (x)/x] < 1 i.e., the technology exhibits bounded growth.

Given initial stock y ≥ 0, a feasible stochastic process {yt (y, ω), ct (y, ω), xt (y, ω)}
is optimal from y if for every feasible stochastic process {y′

t (y, ω), c′
t (y, ω), x ′

t (y, ω)}
from y,

E

[ ∞∑
t=0

ρt u(ct (y, ω))

]
≥ E

[ ∞∑
t=0

ρt u(c′
t (y, ω))

]

2.4 The optimal consumption function

A consumption (policy) function, is a function c : R+ → R+, satisfying:

0 ≤ c(y) ≤ y for all y ∈ R+

Note that this implies c(0) = 0. Associated with a consumption function c(·), is an
investment (policy) function x : R+ → R, defined by

x(y) = y − c(y) for all y ∈ R+

Thus, the investment function x(·) satisfies:

0 ≤ x(y) ≤ y for all y ∈ R+

A feasible stochastic process {yt (y, ω), ct (y, ω), xt (y, ω)} is said to be generated by
a consumption function c(y) from initial stock y ∈ R+ if for all ω ∈ �

y0(y, ω) = y; yt+1(y, ω) = f (yt (y, ω) − c(yt (y, ω)), rt+1(ω)) for t ≥ 0;
ct (y, ω) = c(yt (y, ω)), xt (y, ω) = x(yt (y, ω)) = yt (y, ω) − c(yt (y, ω)) for t ≥ 0.

A consumption function c(y) is called an optimal consumption function if for
every y ∈ R+, the feasible stochastic process {yt (y, ω), ct (y, ω), xt (y, ω)} generated
by c(y) is optimal from initial stock y.
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A consumption function c(y) is said to be interior (or, to satisfy interiority) if

0 < c(y) < y for all y > 0.

A consumption function c(y) is said to be co-monotone if c(y) and x(y) = y−c(y)

are non-decreasing in y on R+.

2.5 Ramsey–Euler and transversality conditions

An interior consumption function c(y) is said to satisfy the Ramsey–Euler condition
if

u′(c(y)) = ρ

∫
A

u′(c( f (y − c(y), r))) f ′(y − c(y), r)d F(r) for all y > 0 (RE)

In this case we refer to the consumption function c(y) as a Ramsey–Euler (consump-
tion) policy.

For any interior consumption function c(y), the feasible stochastic process
{yt (y, ω), ct (y, ω), xt (y, ω)} generated by the consumption function c(y) from any
initial stock y > 0 satisfies:

yt (y, ω) > 0, ct (y, ω) > 0, xt (y, ω) > 0 for all t ≥ 0 and for all ω ∈ �.

An interior consumption function c(y) is said to satisfy the transversality condition
if for all y > 0 :

lim
t→∞ E{ρt u′(ct (y, ω))xt (y, ω)} = 0 (TC)

where {yt (y, ω), ct (y, ω), xt (y, ω)} is the feasible stochastic process generated by the
consumption function c(y) from initial stock y.

3 Optimality of Ramsey–Euler policy: benchmark

It is known that if a consumption function is interior, satisfies the Ramsey–Euler con-
dition (RE) and the transversality condition (TC), then it is an optimal consumption
function; in otherwords, aRamsey–Euler policy is optimal if it satisfies the transversal-
ity condition (TC). This was established byMirman and Zilcha (1975) in the “bounded
growth” case; it has since been established in more general settings. A specific version
of this sufficiency result (for the model outlined in Sect. 2) is reported in this paper as
Lemma 1 (in the Appendix) and is used in the proof of our main results. It should be
mentioned that the transversality condition (TC) has also been shown to be necessary
for optimality of a Ramsey–Euler policy.

As mentioned earlier, the transversality condition essentially involves the entire
stochastic process of consumption and capital generated by a policy function; it cannot
be verified immediately by inspecting the policy function. Depending on the specific
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utility and production functions, verification of the transversality condition can require
some work (see, Mitra and Roy 2017 for some more discussion of this issue). It is
therefore interesting to explore whether there are alternative conditions for optimality
of a policy function that are easier to verify than the transversality condition; in other
words, can the transversality condition be replaced by some fairly apparent properties
of the policy function.

Mitra and Roy (2017) establish alternative conditions for optimality of a policy
function for the “canonical” version of the one sector optimal stochastic growth model
where the technology exhibits bounded growth (i.e., there is a maximum sustainable
capital stock) and is productive (for sure) near zero. The main result in that paper is
stated below for ease of comparison:

Proposition 1 (Theorem 1, Mitra and Roy 2017) Assume the following:

(E .1) There is K > 0 such that
[

f (x)/x
]

< 1 for all x > K
(E .2) limx↓0[ f (x)/x] > 1

Suppose that c(·) is an interior consumption function. Then the following statements
are equivalent:

(a) c(y) is continuous and satisfies the Ramsey–Euler condition (RE)
(b) c(y) and y − c(y) are nondecreasing on R+ (i.e., c(y) is co-monotone) and c(y)

satisfies the Ramsey–Euler condition (RE)
(c) c(y) and y−c(y) are strictly increasing onR+ and c(y) satisfies the Ramsey–Euler

condition (RE)
(d) c(y) is optimal.

The key implication of this result is that for the canonical version of the model, a
Ramsey–Euler policy function is optimal as long as it is continuous (or alternatively,
co-monotone).

The proof of this result in Mitra and Roy (2017) uses the end-point conditions
(E .1) and (E .2) on the production technology. This naturally leads to the question
whether their result extends to economic environments where either (E .1) or (E .2)
does not hold i.e., the production technology is not necessarily productive near zero
for all realizations of the shock or alternatively, allows for unbounded expansion of
capital and consumption (or both). In the next section, we outline two examples to
show that their result may not hold if the production technology does not satisfy either
condition (E .1) or condition (E .2).

4 Non-optimal continuous and co-monotone Ramsey–Euler policy:
two examples

In this section, we outline two examples of economies with deterministic production
technologies that do not satisfy the endpoint conditions assumed in Proposition 1.
In first example, the production function is unproductive at all levels of investment
and therefore violates condition (E .2). In the second example, the production func-
tion is productive at all levels of investment i.e., allows for unbounded expansion of
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capital and consumption, and therefore violates condition (E .1). For each example,
we explicitly specify an interior consumption function that solves the Ramsey–Euler
equation (RE), is continuous and co-monotone, but is not optimal.

4.1 Example 1: unproductive technology

In this example, the production function is deterministic, linear and unproductive at
all positive input levels. It is given by

f (x) = x

2
for all x ≥ 0 (2)

We specify the utility function u to be:

u(c) =
{
ln c for all c > 0
−∞ for c = 0

(3)

Finally, let the discount factor ρ = 1
2 . Then, all of our assumptions in Sect. 2 are

satisfied.
The Ramsey–Euler functional equation (RE) for this example reduces to:

c

(
y − c(y)

2

)
= c(y)

4
for all y > 0 (4)

It is easy to see that the consumption function:

c∗(y) = y

2
for all y ≥ 0

solves the Ramsey–Euler function equation (4) and the path {c∗
t , x∗

t , y∗
t } generated by

this policy function satisfies the transversality condition (TC).14Therefore, (using for
instance, Lemma 1 in the appendix), c∗(y) is in fact the optimal consumption policy
function. Note that strict concavity of the utility and production functions implies that
the optimal consumption function is unique.

We now show that there is a continuous and co-monotone solution to the Ramsey–
Euler functional equation (4) that is different from c∗(y) and is therefore, not optimal.
Consider the function φ(y) defined by:

φ(y) = (1 + 4y) − (1 + 8y)
1
2

8
for all y ≥ 0 (5)

Note that φ(0) = 0, and since (1 + 8y)
1
2 < (1 + 8y + 16y2)

1
2 = (1 + 4y) for all

y > 0, we have φ(y) > 0 for all y > 0. Further, since (1 + 8y)
1
2 > 1 for all y > 0,

we have:
φ(y) < (4y/8) = (y/2) = c∗(y) for all y > 0 (6)

14 ρt u′(c∗
t ))x∗

t = (1/2)t → 0 as t → ∞.
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Thus,φ is an interior consumption function. Clearly,φ is continuous and differentiable
on R+. By differentiating (5), we see that:

8φ′(y) = 4 − 4

(1 + 8y)
1
2

> 0 for all y > 0

so that φ′(y) > 0 for y > 0, and φ is strictly increasing on R+. Further, φ′(y) < 1
2

for all y > 0. Thus, the interior consumption function φ(y) is continuous and co-
monotone on R+. We now claim that c(y) = φ(y) is a solution to the Ramsey–Euler
functional equation (4). To see this, define ψ : R+ → R+ by:

ψ(c) = 2c + c
1
2 for all c ≥ 0 (7)

Note that ψ(0) = 0, and ψ(c) > 0 for all c > 0. In fact, ψ(c) > 2c for all c > 0.
Further, ψ(c) is strictly increasing and strictly concave in c on R+. One can directly
verify that the functions ψ and φ are inverses of each other i.e., ψ(φ(y)) = y for
all y ≥ 0 and φ(ψ(c)) = c for all c ≥ 0; details are contained in Sect. 7.1 of the
Appendix.

The difficulty in solving the functional equation (4) arises from the composition of
the unknown function with itself on the left-hand side. To get around this difficulty,
one writes down its conjugate functional equation:

g(c/4)) = (1/2)(g(c) − c) for c ≥ 0 (8)

(8) can be rewritten as:
g(c) = c + 2g(c/4) for c ≥ 0 (9)

We show that g(c) = ψ(c), where ψ is defined by (7 ), solves (9) and that its inverse
φ(y), defined in ( 5), is a solution to the Ramsey–Euler functional equation ( 4). These
results are explicitly established in Sect. 7.1 of the Appendix.

One interesting feature of the Ramsey–Euler consumption function φ(y) in the
above example is that the propensity to consume [φ(y)/y] → 0 as y → 0. We will
see that this is a possible source of non-optimality of φ(y).

To the best of our knowledge, this is the first explicit example of a smooth, nonlinear
and strictly increasing consumption function that solves the Ramsey–Euler equation in
the canonical stochastic growth model. Even though it is not an optimal consumption
function, it may be useful for researchers in the field to understand how one would
“guess at” a solution like (5) to the Ramsey–Euler functional equation. Section 7.2 in
the appendix explains this in details for a somewhat more general set of parameters.

4.2 Example 2: unbounded growth technology

Wenowoutline an example of an economywhere the production technology allows for
unbounded expansion of consumption and output i.e., the end point condition (E .1)
in Proposition 1 does not hold. In this economy, there is a non-optimal Ramsey–Euler
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consumption function that is continuous and co-monotone. The example is contained
in Mitra and Roy (2017: Example 3, Sect. 5); key aspects are reproduced below for
ease of reference. Define the utility function u to be:

u(c) =
√

c

1 + √
c

for all c ≥ 0

Then, u satisfies (U .1). The production technology is deterministic and is given by

f (x) = 2x

which satisfies (T.1). Set ρ = (1/2). Consider the consumption function defined by:

c(y) =
{

(1/2)y for 0 ≤ y ≤ 2
1 for y > 2

Observe that c(y) is interior and continuous; further, c(y) and y − c(y) are non-
decreasing in y. For 0 < y ≤ 2, we have c(y) = (1/2)y, and f (y − c(y)) =
2(y − (1/2)y) = y, so that c( f (y − c(y))) = (1/2)y = c(y). Thus

ρu′(c{ f (y − c(y))}) f ′(y − c(y)) = 1

2
u′((1/2)y)2 = u′(c(y))

verifying (RE) for y ∈ (0, 2]. For y > 2, we have 2(y − 1) = 2y − 2 > 2, and so
c{ f (y − c(y))} = c{2(y − 1)} = 1. Thus,

ρu′(c{ f (y − c(y))}) f ′(y − c(y)) = (1/2)u′(c{ f (y − c(y))})2
= u′(1) = u′(c(y))

verifying (RE) for y > 2. Finally, consider a different consumption function γ (·)
defined by:

γ (y) = (1/2)y for all y ≥ 0

Starting from y = 4, the consumption function γ (·) generates a path (ỹt , c̃t , x̃t )where
consumption c̃t = 2 for all t ≥ 0. On the other hand, the path (yt , ct , xt ) starting from
y = 4, generated by the consumption function c(·), has yt ≥ 4 for all t ≥ 0 and so
ct = 1 for all t ≥ 0, so that the discounted sum of utilities along the path (yt , ct , xt ) is
strictly smaller than along the path (ỹt , c̃t , x̃t ). Thus, c(·) isnot an optimal consumption
function. This concludes the example.

Observe that somewhat similarly to Example 1, an interesting feature of the non-
optimal Ramsey–Euler consumption function c(y) in Example 2 is that the propensity
to consume [c(y)/y] → 0 as y → ∞.
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5 Optimality of Ramsey–Euler policy: sufficient conditions

In this section, we outline properties of a Ramsey–Euler consumption function that are
sufficient to ensure that it is optimal even if the production technology is unproductive
or allows for unbounded expansion of capital and consumption.

Recall that f , f are the upper and lower envelopes of the production function
defined in Sect. 2; they correspond to “best” and “worst” possible realizations of the
random shock.

Define K ≥ 0 by:
K = sup{x ≥ 0 : f (x) ≥ x}

K = ∞ if the production technology allows for unbounded growth i.e., f (x) > x for
all x > 0; further, K = 0 if the technology is unproductive for sure and f (x) < x for
all x > 0.

Define K ≥ 0 by:

K = inf{x > 0 : f (x) ≤ x}
= ∞, if f (x) > x for all x > 0

K > 0 if the “worst case” technology is productive near zero i.e., limx↓0[ f (x)/x] > 1;

K = 0 if limx↓0[ f (x)/x] ≤ 1 so that15 f (x) ≤ x for all x ≥ 0 i.e., the “worst case”

technology is globally unproductive. Finally, note that K ≤ K .

5.1 Main result

In this subsection, we consider the general model outlined in Sect. 2. For each x > 0,
r ∈ A, let the inverse elasticity of the production function η(x, r) > 1 be defined by

η(x, r) = f (x, r)

f ′(x, r)x

and let
η(x) = sup

r∈A
η(x, r), η(x) = inf

r∈A
η(x, r).

We now specify a technical assumption on the production function that is used in
the next proposition and simplifies our analysis considerably:

(T.3) (i) There exists a, b ∈ A, z0, z1 ∈ R++ such that

f (x) = f (x, a) for all x ∈ [0, z1]
f (x) = f (x, b) for all x ≥ z2

15 Note that f is concave on R+.
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(ii)

τ0 = lim
x→0

sup
η(x)

η(x, a)
< ∞

τ∞ = lim
x→∞ sup

η(x)

η(x, b)
< ∞

Under (T.3)(i), there is a specific “worst” case production shock a associated with
the lower envelope of the production function for investment levels close to zero, and
a specific “best” case production shock b associated with the upper envelope of the
production function when investment is large enough. (T.3)(ii) essentially requires
that the variation due to random shock in the elasticity of the production function
at zero and infinity are bounded. If the random shock enters the production function
multiplicatively, then η(x, r) is independent of r so that τ0 = τ∞ = 1 and assumption
(T.3)(ii) is satisfied. Note that (T.3) is also satisfied by some well known production
functions that are not ordered by the shock such as f (x, r) = xr , r ∈ A ⊂ (0, 1).

Recall that f ′(0, r) = limx→0+ f ′(x, r) is the marginal productivity at zero for
realization r of the random shock ( f ′(0, r) may equal +∞).

We are now ready to state our main proposition:

Proposition 2 Assume (T .3). Consider a Ramsey–Euler consumption function c(y)

that is either continuous or co-monotone on R+. Further, suppose that

lim
y→0

inf
c(y)

y
> 1 − 1

τ0
, if f ′(0, a) ≤ τ0 (GP1)

lim
y→∞ inf

c(y)

y
> 1 − 1

τ∞
, if K = ∞ (GP2)

Then, c(y) is optimal (and is, in fact, the unique optimal consumption function)

Proposition 2 provides a set of verifiable properties of a Ramsey–Euler policy func-
tion that ensures it is optimal in environments that allow for unproductive technology
as well as unbounded growth.

The proof of Proposition 2 is based on showing that the transversality condition (TC)
holds i.e., ρt E{u′(ct )xt } → 0 as t → ∞ where {ct } and {xt } are the consumption and
investment processes generated by the continuous (and co-monotone) Ramsey–Euler
consumption function c(y). This is trivial if the corresponding output process {yt }
lies almost surely in a closed interval that is bounded away from zero. The difficulty
arises when output and consumption are not bounded away from zero or infinity with
positive probability. Our proof is based on using the fact that xt ≤ yt with probability
one and showing that each term of the sequence {ρt E(u′(ct )yt )}∞t=0 is a contraction of
its previous term. This is different from the proof of optimality of Ramsey–Euler policy
in Mitra and Roy (2017) where the transversality condition is shown to hold without
demonstrating such a contraction property; the arguments in that proof cannot be
easily extended to production functions that are unproductive near zero or productive
at infinity.
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The sufficient conditions for optimality in Mitra and Roy (2017) impose no restric-
tion on the propensity to consume. The two examples in the previous section indicate
that some restrictions on the propensity to consume are needed for a Ramsey–Euler
policy function to be optimal when the technology is unproductive or allows for
unbounded growth. Conditions (GP1) and (GP2) impose lower bounds on the propen-
sity to consume; the bounds depend on the extent of variation in the elasticity of the
production function due to random shocks. These are sufficient conditions; we are
unable to determine whether they are necessary for optimality in such technological
environments.

It is worth noting that if the production function satisfies bounded growth i.e., K <

∞, then condition (GP2) no longer applies. However, condition (GP1)may continue to
apply even if the production technology is productive near zero i.e., K > 0. Thus, the
sufficient conditions in Proposition 2 are potentially stronger than and do not reduce to
the optimality conditions inMitra and Roy (2017) for production functions that satisfy
the assumptions in that paper (or alternatively, Proposition 1 under assumptions E.1
and E.2).

Proposition 2 also yields the following simpler result:

Corollary 1 Consider a Ramsey–Euler consumption function c(y) that is continuous
or co-monotone on R+. Further, suppose that

τ = sup
x>0

η(x)

η(x)
< ∞ and inf

y>0

c(y)

y
> 1 − 1

τ
.

Then, c(y) is optimal and in fact, is the unique optimal consumption function.

5.2 Multiplicative shock

In this subsection, we consider production functions where the random shock is mul-
tiplicative. Such production functions are widely used in the literature; further, both
examples in the previous section deal with deterministic production functions that can
be viewed as special cases of multiplicative shock. In particular, for this subsection
we assume:

f (x, r) = q(r)h(x), r ∈ A, x ≥ 0 (10)

Assumptions (T.1), (T.2) and (T.3) on f (x, r) hold under the following restrictions
on the function h and q:

(M.1) h : R+ → R+ is continuous, concave and strictly increasing, h(0) = 0 and
h is differentiable on R++, h′(x) > 0 for all x > 0 and h′(0) = limx→0 h′(x) ∈
R+ ∪ {+∞} satisfies

h′(0) > 0

(M.2) q : A → R++ is Borel-measurable and there exists a, b ∈ A such that

q(a) ≤ q(r) ≤ q(b) for all r ∈ A.
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Once again, a and b are respectively theworst and best shocks. Note that if q(r) = 1
for all r , we have a deterministic production function where f (x, r) = h(x).

It is easy to check that

η(x, r) = f (x, r)

f ′(x, r)x
= h(x)

h′(x)x

is independent of r so that
τ0 = τ∞ = 1.

Also, observe that K = 0 if, and only if,

q(a)h′(0) ≤ 1 = τ0.

Proposition 2 therefore immediately yields:

Corollary 2 Consider the class of production functions where the random shock is
multiplicative and in particular, (10) holds under restrictions (M.1) and (M.2). Let c(y)

be a Ramsey–Euler consumption function that is either continuous or co-monotone
on R+. Further, suppose that the propensity to consume (c(y)/y) satisfies:

lim
y→0

inf
c(y)

y
> 0, if K = 0 (C.1)

lim
y→∞ inf

c(y)

y
> 0, if K = ∞ (C.2)

Then, c(y) is optimal.

Note that under the assumptions of Mitra and Roy (2017), K > 0 and K < ∞
so that condition C.1 and C.2 in Proposition 2 do not apply and continuity or co-
monotonicity of Ramsey–Euler policy is sufficient for optimality. In other words, for
the multiplicative shock case, the sufficient conditions for optimality in Proposition 2
reduce to the optimality conditions in Mitra and Roy (2017) under their assumptions
(or alternatively, to those in Proposition 1 under restrictions E.1 and E.2). Within the
class of production functions with multiplicative shocks, Proposition 2 generalizes the
sufficient conditions in Mitra and Roy (2017) to a larger set of production functions.

5.3 A special class of utility functions

In this subsection, we restrict attention to a class of utility functions while allowing
the production function to have a fairly general structure. We show that for this class
of utility functions, a Ramsey–Euler policy is optimal as long as the propensity to
consume is bounded away from zero. In particular, we assume that in addition to (U.1)
and (U.2), the utility function u satisfies:

(U.3) u′(c)c is bounded on R++; in particular, there exists M ∈ R++ such that
u′(c)c < M for all c > 0.
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Note that (U.3) is satisfied if u is bounded on R+.16 Of course, u′(c)c may be be
bounded on R++ even if u is not bounded (for instance, u(c) = ln c).

Proposition 3 Assume (U.3). Consider a Ramsey–Euler consumption function c(y)

that is either continuous or co-monotone on R+; further,

inf
y>0

c(y)

y
> 0.

Then, c(y) is optimal.

Note that unlike Propositions 2, 3 does not require any restriction like (T.3) on the
production function; unlike Proposition 2, the proof of Proposition 3 is not based on
a “contraction” argument.

5.4 Application

The sufficient conditions for optimality of Ramsey–Euler policy can be useful in
verifying optimality of explicit solutions to the Ramsey–Euler functional equation for
specific utility and production functions. For instance, consider a CES utility function:

u(c) = c1−σ

1 − σ

where σ > 0, σ �= 1. The production function is given by

f (x, r) = r x

and {rt } is a sequence of i.i.d. random variable with distribution F with support [a, b],
0 < a < b < ∞. Note that the production technology may be unproductive (at least
for certain realizations of the shock) as well as allow for unbounded expansion with
positive probability. It is assumed that

k = [ρE(r1−σ
t )] 1

σ < 1.

It is easy to check (and fairly well known) that the linear consumption function

c̃(y) = (1 − k)y

16 Let u : R+ → R be a bounded, strictly concave and continuously differentiable function on R+ so that
in particular b ≤ u(c) ≤ B for all c ≥ 0, for some b, B ∈ R. Then

b − u(c) ≤ u(0) − u(c) ≤ u′(c)(−c) for all c > 0

and so:
u′(c)c ≤ u(c) − b ≤ B − b for all c > 0

i.e., the function u′(c)c is bounded on R++.
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solves the Ramsey–Euler equation for this problem. To assert that c̃(y) is optimal by
verifying that the consumption and investment process generated by c̃(y) satisfies the
transversality condition can take some work. On the other hand, by direct appealing
to Corollary 2 and noting that the propensity to consume c(y)/y = 1 − k is a strictly
positive constant, we can immediately assert optimality of c̃(y).17

As new examples are developed in the future with non-linear Ramsey–Euler con-
sumption functions our result will continue to be useful as a way to verify optimality.

6 Conclusion

The classical version of the one sector convex model of stochastic optimal growth
assumes that the technology is productive near zero and exhibits bounded growth with
probability one. In this framework, it has been shown that a policy function satisfying
the Ramsey–Euler condition is optimal as long it is continuous or alternatively, if both
consumption and investment are non-decreasing in current output. We outline two
counterexamples to show that this result may not hold once the classical model is
generalized to accommodate production functions that may be globally unproductive
for bad realizations of the shock or allow for unbounded expansion of consumption
and output. Our analysis indicates that a probable source of this non-optimality is low
propensity to consume exhibited by the candidate policy function.We show that in our
more general framework, a Ramsey–Euler policy function is optimal if in addition to
continuity or monotonicity properties, we can also verify a condition on the propensity
to consume. For production functions with multiplicative shock, our condition simply
requires the propensity to consume be bounded away from zero; a generalization of this
lower bound is shown to be sufficient for optimality in the case of non-multiplicative
shock; weaker conditions are outlined for a restricted class of utility functions that
includes bounded utility. The sufficient conditions for optimality outlined in this paper
can be significantly easier to verify than the transversality condition.

Our analysis is a step forward in characterizing alternative conditions for optimality
in a class of dynamic optimization models that includes the stochastic growth model.
It will be useful to extend our analysis to stochastic growth models with “unbounded
shocks” (see, Stachurski 2002; Nishimura and Stachurski 2005; Kamihigashi 2007)
and irreversible investment (see, Olson 1989).

7 Appendix

7.1 Details of Example 1

(a) ψ and φ are inverses of each other:

17 It is worth noting for this family of utility and production functions and following the steps outlined
in Sect. 7.2 ,it is possible to derive non-linear policy functions that satisfy the Ramsey–Euler condition
(similar to Example 1 in Sect. 4) but do not satisfy our sufficient conditions for optimality; these non-linear
policies are in fact, not optimal.
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We first show that ψ(φ(y)) = y for all y ≥ 0. To this end, let us note that, by (5),
for all y ≥ 0,

φ(y) = (1 + 4y) − (1 + 8y)
1
2

8
=

[
(1 + 8y)

1
2 − 1

4

]2

which yields:

(1 + 8y) = {1 + 4[φ(y)] 12 }2 = 1 + 16φ(y) + 8[φ(y)] 12

and this implies:

y = 2φ(y) + [φ(y)] 12 = ψ(φ(y))

by using (7) and noting that φ(y) ≥ 0 for all y ≥ 0. We now show that φ(ψ(c)) =
c for all c ≥ 0. We start with the following identity for all c ≥ 0 :

[1 + 4c
1
2 ]2 = [1 + 8(2c + c

1
2 )]

which can be rewritten as:

2 + 8[2c + c
1
2 ] − 2[1 + 8(2c + c

1
2 )] 12 = 16c (11)

Using the definition of ψ in (7), we can rewrite (11) as:

[2 + 8ψ(c)] − 2[1 + 8ψ(c)] 12 = 16c

so that:
[1 + 4ψ(c)] − [1 + 8ψ(c)] 12

8
= c

and using the definition of φ in (5), we obtain:

φ(ψ(c)) = [1 + 4ψ(c)] − [1 + 8ψ(c)] 12
8

= c.

(b) g(c) = ψ(c) is a solution to conjugate functional equation (9) and its inverse
φ(y) is a solution to the Ramsey–Euler functional equation (4).

Let us write:

c + 2g(c/4) = c + 2ψ(c/4)

= c + 4(c/4) + 2(c/4)
1
2

= 2c + c
1
2 = ψ(c) = g(c) (12)
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where we have used the definition of ψ in the second line and again in the last line of
(12). Since we have just demonstrated that ψ is a solution to (9), we can write:

ψ(c/4) = ψ(c) − c

2
for c ≥ 0 (13)

Sinceφ(y) ≥ 0 for all y ≥ 0,we can use (13) towrite:ψ(φ(y)/4) = ψ(φ(y))−φ(y)
2 for

all y ≥ 0 i.e.,

ψ(φ(y)/4) = y − φ(y)

2
for all y ≥ 0 (14)

Since φ(y) ≤ y for all y ≥ 0, we can apply the function φ to both sides of (14) to

get: φ[ψ(φ(y)/4)] = φ
(

y−φ(y)
2

)
for all y ≥ 0 i.e.,

φ(y)

4
= φ

(
y − φ(y)

2

)
for all y ≥ 0

so that φ solves the Ramsey–Euler functional equation (4).

7.2 Non-linear solution to the Ramsey–Euler functional equation

In the interest of finding nonlinear solutions to the Ramsey–Euler functional equation,
it is worthwhile to explain how one arrives at an explicit solution like (5) in Example
1. Consider the deterministic linear production function f (x) = ax where a ∈ (0, 1).
Let the discount factor ρ ∈ (0, 1). (In Example 1, we chose a = ρ = 1/2.) The utility
function u is as specified in Example 1 i.e., u(c) = ln c. The Ramsey–Euler functional
equation is then given by:

c(a(y − c(y))) = ρac(y) for all y > 0 (15)

In what follows that our aim is to find some solution of (15) which is distinct from
the well-known linear solution: c(y) = (1 − ρ)y for all y ≥ 0. We can confine our
search to a more restrictive class of solutions [for example, all continuous and strictly
increasing solutions to the functional equation (15)].

Step 1: [The Conjugate Functional Equation]
As already noted in the text, the difficulty in solving the functional equation (15)

arises from the composition of the unknown function with itself on the left-hand side.
To get around this difficulty, one writes down its conjugate functional equation:

g(ρac) = a(g(c) − c) for c ≥ 0 (16)

If g : R+ → R+ is a function satisfying g(c) ≥ c for all c ≥ 0, which solves the
conjugate functional equation (16), and there is a function h : R+ → R+ such that
h(y) ≤ y for all y ≥ 0, and:

(i) h(g(c)) = c for all c ≥ 0
(i i) g(h(y)) = y for all y ≥ 0

}
(17)
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then h solves the functional equation (15). To see this, note that since h(y) ≥ 0 for all
y ≥ 0, we can use (16) to write: g(ρah(y)) = a[g(h(y)) − h(y)] for all y ≥ 0, and
then using (17 )(ii) we have:

g(ρah(y)) = a[y − h(y)] for all y ≥ 0 (18)

Since h(y) ≤ y for all y ≥ 0, we can apply the function h to both sides of (18) to
get: h[g(ρah(y))] = h{a[y − h(y)]} for all y ≥ 0. Using (17)(i) we then obtain:
ρah(y) = h{a[y − h(y)]} for all y ≥ 0 so that h solves the Ramsey–Euler functional
equation ( 15).

Step 2: [Solving the Conjugate Functional Equation]
Step 1 above suggests that if we can find a solution g to the conjugate functional

equation, and g has an inverse (note that g is increasing, in our context), then the
inverse of g would solve the Ramsey–Euler functional equation. As we want the
solution h(y) to (15) (a consumption function) to be strictly increasing and continuous
in y, we should be looking for strictly increasing and continuous solutions g(c) to the
conjugate functional equation. Unlike (15), the conjugate functional equation (16)
does not involve the composition of g with itself on either side; it belongs to the class
of iterated functional equations and can be solved through iterations. Pick any c ≥ 0,
and write, using (16) repeatedly,

g(c) = c + (1/a)g(ρac)

= c + (1/a)[ρac + (1/a)g(ρ2a2c)]
= c + ρc + (1/a2)g(ρ2a2c)

This iteration process can be continued to write for t ≥ 2,

g(c) = [c + ρc + ρ2c + · · · + ρt c] + (1/at+1)g(ρt+1at+1c) (19)

Note that the term in square brackets in (19) converges to c/(1 − ρ) as t → ∞.

So, if the final term in (19) goes to zero as t → ∞, we get g(c) = c/(1 − ρ) for
c ≥ 0, and we arrive at the well-known linear solution to the Ramsey–Euler functional
equation: c(y) = (1 − ρ)y for all y ≥ 0.

But, we don’t really know whether the final term in (19) converges to zero as
t → ∞. This will depend, after all, on the behavior of g near zero, and g is the
unknown function we are trying to find. It is perfectly legitimate to restrict our search
for solutions to (16) to a narrow class. Let us, then, confine our search to those g for
which the final term in (19) does have a limit as t → ∞. The limit will itself be a
function of c, and we denote it by q(c); we are interested in functions g for which
q(c) �= 0. Then, using (19), and letting t → ∞, we can write:

g(c) = [c/(1 − ρ)] + q(c) for all c ≥ 0 (20)
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The question then arises: what properties must q(c) satisfy in order for ( 20) to be a
valid solution to the conjugate functional equation (16). Given (16) and (20), we must
have:

(1/a){[ρac/(1 − ρ)] + q(ρac)} = (1/a)g(ρac) = (g(c) − c)

= [c/(1 − ρ)] + q(c) − c for c ≥ 0

which can be rewritten as:

q(c) = [q(ρac)/a] + (1/a){[ρac/(1 − ρ)] + c − [c/(1 − ρ)] = [q(ρac)/a] (21)

Recalling Step 1, we want the solution g(c) to (16), given by (20), to be strictly
increasing in c, so it is legitimate to confine our search to those functions q(c) which
are strictly increasing in c. This would mean that q(c) would be differentiable almost
everywhere on R+. So, we might as well confine our search to differentiable and
strictly increasing functions q(c).

Differentiating (21) with respect to c, we would get:

q ′(c) = q ′(ρac)ρ (22)

Using (21) and (22), we obtain (when q(c) �= 0),

q ′(c)
q(c)

= q ′(ρac)ρ

q(ρac)/a

which yields:

q ′(c)c
q(c)

= q ′(ρac)ρac

q(ρac)
for all c such that q(c) �= 0 (23)

This suggests that we can further restrict our search for q(c) to the iso-elastic class:

q(c) = c1−θ for all c ≥ 0 (24)

where 0 < θ < 1 is to be appropriately chosen. That is, our proposed “candidate
solution” g to the conjugate functional equation is:

g(c) = [c/(1 − ρ)] + c1−θ for all c ≥ 0 (25)

Note that this has all the desirable properties of g : it is a map from R+ to R+, it is
continuous and strictly increasing onR+ (also differentiable for c > 0),with g(c) > c
for all c > 0, and g(0) = 0.

The question then arises: what property must θ satisfy in order for ( 25) to be a
valid solution to the conjugate functional equation (16). Given (16) and (25), we must
have:

(1/a){[ρac/(1 − ρ)] + (ρac)1−θ } = (1/a)g(ρac) = (g(c) − c)
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= [c/(1 − ρ)] + c1−θ − c for c ≥ 0

That is,
(1/a)(ρac)1−θ = c1−θ for all c ≥ 0

This entails the parameter restriction:

(1/a)(ρa)1−θ = 1 (26)

Note that as θ → 0, the left hand side of (26) converges to ρ ∈ (0, 1).And, as θ → 1,
the left hand-side of (26) converges to (1/a) > 1. Thus, there is some θ ∈ (0, 1), such
that (26) holds. We have now verified that:

g(c) = [c/(1 − ρ)] + c1−θ for all c ≥ 0

with θ chosen to satisfy (26) solves the conjugate functional equation (16).
Step 3: [Solving the Ramsey–Euler Functional Equation (15)]
Note from the formof g in (25) that g is a continuous and strictly increasing function

from R+ onto R+. Consequently, given any y ∈ R+, there is a unique c ∈ R+ such
that g(c) = y; we denote this unique value c by h(y), so that we have h mapping
from R+ to R+ and:

g(h(y)) = y for all y ≥ 0 (27)

For any c ∈R+, g(c) ∈ R+ by (15 ). Let us denote g(c) by x, and noting that g(c) is in
the domain of h, let us denote h(g(c)) by z. Then, we get z ∈ R+, and so we evaluate
g at this z, and get g(h(g(c))) = g(z). Since g(c) ∈ R+, we can apply (27) to also
obtain g(h(g(c))) = g(c). Thus, we must have g(c) = g(z). Since g is one-to-one,
this implies that z = c. That is, by definition of z,

h(g(c)) = c for all c ≥ 0 (28)

From (28), we also see that h is a map from R+ onto R+. And, from (27), we infer
that h is strictly increasing onR+, since g is strictly increasing onR+. Next, note that
h is continuous on R+. To see this, let y1, y2 ∈ R+, with y1 > y2. Then, we have
c1 ≡ h(y1) > h(y2) ≡ c2. By using (25) and (27 ), we have:

y1 − y2 = g(c1) − g(c2) ≥ (c1 − c2)/(1 − ρ)

Thus, 0 < h(y1) − h(y2) ≤ (1 − ρ)(y1 − y2), so that h is Lipschitz, and hence
continuous. Finally note that by (25), g(c) ≥ c for all c ≥ 0, and since h is increasing
on R+, h(g(c)) ≥ h(c) for all c ≥ 0. Thus, using (28), we have h(c) ≤ c for all
c ≥ 0. Using Step 1, we can now infer that h (the inverse of g defined by (25)) solves
the Ramsey–Euler functional equation (15).

Step 4: [The Numerical Illustration in Example 1]
In the numerical illustration in Example 1 in the text, we have chosen a = (1/2) =

ρ. The parametric restriction on θ in (26) implies that we must have θ = (1/2).

Consequently, g defined in (25) takes the form: g(c) = 2c + c
1
2 for all c ≥ 0.
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Inverting this function (see Sect. 7.1) yields h(y) = (1+4y)−(1+8y)
1
2

8 , the formula
appearing in (5) in the main text.

7.3 A Useful lemma

Lemma 1 Consider a Ramsey–Euler consumption function c(y) such that

R.1 x(y) = y − c(y) is non-decreasing in y on R+
R.2 For any interval [y′, y′′] ⊂ R++, inf{c(z) : z ∈ [y′, y′′]} > 0.

Further, assume that the consumption and investment processes generated by c(y)

satisfy the Transversality Condition (TC). Then, c(y) is optimal.

Proof Let Y = R+. Fix initial stock ỹ ∈ Y with ỹ > 0. Consider the stochastic
process of output, consumption and investment {yt (ỹ, ω), ct (ỹ, ω), xt (ỹ, ω)}∞t=0 for
ω ∈ �, hereafter written as {yt , ct , xt }, generated by the consumption function c(y).
It is easy to check that yt > 0, ct > 0, xt > 0 for all t ≥ 0. Equality or inequalities
involving these random variables should be interpreted as holding for all ω ∈ �.Note
that {yt , ct , xt } is feasible from ỹ. We have to establish that it is optimal from ỹ.

Let {y
t
}, {yt } be the deterministic sequences defined by:

y
0

= y0 = ỹ, y
t+1

= f (x(y
t
)), yt+1 = f (x(yt )), t ≥ 0. (29)

Note that f (.), f (.) are nondecreasing on Y . Further, from R.1, it is easy to check
that for all t ≥ 0:

yt ≥ yt ≥ y
t

(30)

As x(z) > 0 for all z > 0 and f (x) > 0, f (x) < ∞ for all x > 0,

0 < y
t
≤ yt < ∞ for all t ≥ 0. (31)

Let {ct }, {ct } be the sequences defined by:

ct = inf{c(z) : z ∈ [y
t
, yt ]}, ct = sup{c(z) : z ∈ [y

t
, yt ]} for all t ≥ 0. (32)

Using R.2, we have, ct > 0 for all t ≥ 0; further, ct ≤ yt < ∞ for all t ≥ 0. Using
(30) and (32), we have:

∞ > ct ≥ ct = c(yt ) ≥ ct > 0 for all t ≥ 0. (33)

Thus, for every t ≥ 0 :

− ∞ < u(ct ) ≤ u(ct ) ≤ u(ct ) < ∞ (34)

so that for each t, u(ct ) is a bounded Ft− measurable function and has finite expec-
tation.
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Using (33), we can define the stochastic price process {pt (y, ω)}, hereafter written
as {pt }, by:

pt = ρt u′(ct ) for t ≥ 0. (35)

As before, equality or inequalities involving these random variables should be inter-
preted as holding for all ω ∈ �. It follows (from ( 33)) that for every t ≥ 0,

0 < ρt u′(ct ) ≤ pt ≤ ρt u′(ct ) < ∞

i.e., pt is a bounded Ft−measurable random variable (and hence integrable) for each
t .

For all c ≥ 0, and all t ≥ 0, we have by concavity of u and (35),

ρt u(ct ) − ptct ≥ ρt u(c) − pt c (36)

so that for each t ≥ 0, we have:

Eρt u(ct ) − Eptct ≥ Eρt u(̂ct ) − Ept ĉt (37)

for every bounded Ft measurable random variable ĉt ≥ 0 defined on �. Note that
(using (34)), Eρt u(ct ) is finite; further, as ĉt is a bounded random variable, Eρt u(̂ct )

on the right hand side of (37) is well defined though it may be −∞.

Using the Ramsey–Euler condition (RE) and (35), one can see that 18:

pt = ρt u′(ct ) = E{pt+1 f ′(xt , rt+1)|Ft } (38)

Using the concavity of f (in x) we have for all x ≥ 0 and all t ≥ 0,

f (x, rt+1) − f (xt , rt+1) ≤ f ′(xt , rt+1)(x − xt )

so that:
pt+1 f (x, rt+1) − pt+1 f (xt , rt+1) ≤ pt+1 f ′(xt , rt+1)(x − xt ) (39)

Thus, for every bounded Ft measurable random variable x̂t ≥ 0 defined on �, taking
the conditional expectation with respect to Ft in (39) with x = x̂t we get:

E{pt+1 f (̂xt , rt+1)|Ft } − E{pt+1 f (xt , rt+1)|Ft }
≤ E{pt+1 f ′(xt , rt+1)(̂xt − xt )|Ft }
= (̂xt − xt )E{pt+1 f ′(xt , rt+1)|Ft } = pt (̂xt − xt ) (40)

where the third line uses the fact that x̂t and xt are Ft measurable and the last line in
( 40) uses (38). Transposing terms in (40), for every bounded Ft measurable x̂t ≥ 0,
we have:

E{pt+1 f (xt , rt+1)|Ft } − ptxt ≥ E{pt+1 f (̂xt , rt+1)|Ft } − pt x̂t (41)

18 Strictly speaking, this involves switching from conditional expectation with respect to the distribution
function F to a conditional expectation with respect to a sub sigma field.
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so that:

E{pt+1 f (xt , rt+1)} − E{ptxt } ≥ E{pt+1 f (̂xt , rt+1)} − E{pt x̂t } (42)

Next, one can show that for any feasible stochastic process of output, consumption
and investment {̂yt , ĉt , x̂t } from initial stock ỹ, and for every T ∈ N

E

{
T∑

t=0

ρt u(̂ct )

}
− E

{
T∑

t=0

ρt u(ct )

}
≤ E{pT xT } − E{pT x̂T } (43)

To see (43), note that from (37) we have for t ≥ 1

Eρt u(̂ct ) − Eρt u(ct )

≤ Ept ĉt − Eptct = [Ept ŷt − Ept x̂t ] − [Eptyt − Eptxt ]
= [Ept ŷt − Ept−1̂xt−1] + [Ept−1̂xt−1 − Ept x̂t ]

−[Eptyt − Ept−1xt−1] − [Ept−1xt−1 − Eptxt ]
≤ [Ept−1̂xt−1 − Ept x̂t ] − [Ept−1xt−1 − Eptxt ]

where the first inequality uses (37) and the second inequality uses ( 42).
The transversality condition (TC) implies that

E{ptxt } → 0 as t → ∞ (44)

For any feasible stochastic process of output, consumption and investment {̂yt , ĉt , x̂t }
from initial stock y,

E

{ ∞∑
t=0

ρt u(̂ct )

}
− E

{ ∞∑
t=0

ρt u(ct ))

}
= lim

T →∞ E

{
T∑

t=0

ρt u(̂ct ) −
T∑

t=0

ρt u(ct ))

}

≤ lim
T →∞ sup

[
E{pT xT } − E{pT x̂T }] ≤ 0.

where the equality follows from (1), the first inequality uses ( 43) and the second
inequality uses the transversality condition (44). Hence, c(y) is optimal. This com-
pletes the proof of the lemma. ��

7.4 Proof of Proposition 2

Proof We claim that under the hypothesis of Proposition 2, we always have:

R.1 x(y) is non-decreasing on R+
R.2 For any interval [y′, y′′] ⊂ R++, c(y′, y′′) > 0.

R.1 and R.2 are obvious if c(y) is co-monotone. On the other hand, if c(y) is
continuous, R.2 follows immediately and one can show that R.1 holds i.e., x(y) is
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non-decreasing in y.19 The proof will use the properties R.1 and R.2 of the policy
function.

Fix any y0 > 0 and let {ct }, {xt } and {yt } be the stochastic processes of consumption,
investment and output generated by c(y) given y0.Wewill show that under the hypoth-
esis of the proposition, ρt E[u′(ct )yt ] → 0 as t → ∞.As xt ≤ yt this implies that the
transversality condition (TC) holds. As R.1 and R.2 hold, Lemma 1 then implies that
{ct }, {xt } and {yt } are optimal from y0; thus c(y) is an optimal consumption function.

Recall z1, z2 as defined in assumption (T.3)(i). There are (only) two possibilities
regarding the behavior of x(y) near zero:

(A.i) There exists a sequence {yn}∞n=1 → 0, yn > 0 for all n and

f (x(yn))

yn
≥ 1 for all n

(A.ii) There exists ε̂ ∈ (0, z1) such that

f (x(y))

y
= f (x(y), a)

y
< 1 for all y ∈ (0, ε̂)

There are (only) two possibilities regarding the behavior of the policy function for
large y:

(B.i) There exists a sequence {wn}∞n=1, wn > 0 for all n, {wn}∞n=1 → ∞ and f (x(wn))
wn ≤

1 for all n.

(B.ii) There exists ŷ > z2 such that f (x(y))
y = f (x(y),b)

y > 1 for all y ≥ ŷ.

The rest of the proof considers four cases based on combinations of these possibil-
ities.

CASE 1: (A.i) and (B.i) hold.

There exists N such that yN ≤ y0 ≤ wN . Fix N . Using R.1 and
f (x(yN ))

yN ≥ 1,
f (x(wN ))

wN ≤ 1, it is easy to check that yN ≤ yt ≤ wN for all t . Further, using R.2, we

have ct ≥ c(yN , wN ) > 0 with probability one and for all t . Thus,

0 ≤ E[u′(ct )yt ] ≤ E[u′(c(yN , wN ))wN ] for all t,

so that ρt E[u′(ct )yt ] → 0 as t → ∞.
CASE 2. Suppose that the candidate policy function satisfies (A.ii) and (B.ii).
As (A.ii) holds, for all y ∈ (0, ε̂),

f (x(y))

y
= f (x(y), a)

y
< 1 (45)

19 To see this, suppose x(y1) > x(y2) for 0 ≤ y1 < y2. Then, x(y1) > 0 so that y1 > 0. As x(y) = y −
c(y) is continuous and x(0) = 0, there exists y3 ∈ (0, y1) such that x(y3) = x(y2). Then, c(y3) < c(y2).
x(y3) = x(y2) implies that the right hand side of the Ramsey–Euler condition (RE) evaluated y = y2 and
y = y3 are equal, implying u′(c(y3)) = u′(c(y2)) that contradicts c(y3) < c(y2).
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First, consider the case where f ′(0, a) > τ0. Note that f ′(0, a) may equal +∞.

Choose λ0 ∈ (0, 1) such that
τ0

λ0
< f ′(0, a) (46)

Using (45) and (46),

lim
y→0

sup
f (x(y), a)

y

τ0

f ′(x(y), a)
≤ lim

y→0
sup

τ0

f ′(x(y), a)
< λ0 (47)

Next, consider the case where f ′(0, a) ≤ τ0. Using assumption (T.3)(ii), τ0 < ∞ so
that f ′(0, a) < ∞. The latter implies

lim
x→0

f (x, a)

f ′(x, a)x
= 1

so that (as limy→0 x(y) = 0)

f (x(y), a)

f ′(x(y), a)x(y)
→ 1 as y → 0 (48)

Let α = lim inf y→0
c(y)

y . Using Condition (GP1),

lim
y→0

sup
x(y)

y
= 1 −

(
lim
y→0

inf
c(y)

y

)
= 1 − α <

1

τ0
(49)

so that

lim
y→0

sup

[
f (x(y), a)

y

τ0

f ′(x(y), a)

]

= lim
y→0

sup
x(y)

y
τ0

(
f (x(y), a)

f ′(x(y), a)x(y)

)
= (1 − α)τ0 < 1 (50)

where we use (48) and (49) in the last line. Choose λ such that

λ ∈ (λ0, 1), if f ′(0, a) > τ0

∈ ((1 − α)τ0, 1) if f ′(0, a) ≤ τ0.

Using (47) and (50), then there exists σ and ε1, 0 < ε1 < ε̂ , σ > 0, such that

f (x(y), a)

y

(1 + σ)τ0

f ′(x(y), a)
< λ for all y ∈ (0, ε1). (51)

Fix such σ, ε1. From the definition of τ0,there exists ε, 0 < ε < ε1, such that

η(x)

η(x, a)
≤ (1 + σ)τ0 for all x ∈ (0, ε)
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so that
η(x, r)

η(x, a)
≤ (1 + σ)τ0 for all x ∈ (0, ε), r ∈ A. (52)

As (B.ii) holds, it must be the case that

lim
x→∞

f (x, b)

x
≥ 1

so that

lim
x→∞

f ′(x, b)x

f (x, b)
= 1. (53)

Under assumption (T.3)(ii), τ∞ < ∞ and using condition (GP2)

α = lim
y→∞ inf

c(y)

y
> 1 − 1

τ∞

so that
τ∞(1 − α) < 1.

Choose ζ > 0, 0 < β < 1 such that

λ̃ = τ∞(1 + ζ )
1 − βα

β
< 1. (54)

Fix ζ, β. Using (53), there exists y > z2 such that for all y ≥ y

f ′(x(y), b)x(y)

f (x(y), b)
≥ β

c(y)

y
≥ βα,

and
η(x(y))

η(x(y), b)
≤ (1 + ζ )τ∞.

which implies that for all y ≥ y

η(x(y))

η(x(y), b)

{
f (x(y), b)

f ′(x(y), b)x(y)

}
x(y)

y
≤ (1 + ζ )τ∞(

1 − βα

β
) = λ̃. (55)

where λ̃ is defined in (54).
Let Et denote the expectation conditional on information available in period t .

Observe that

Et [u′(c(yt+1))yt+1]
= Et [u′(c(yt+1))yt+1 I{yt <ε}] + Et [u′(c(yt+1))yt+1 I{yt >y}]

+Et [u′(c(yt+1))yt+1 I{yt ∈[ε,y]}]
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Observe that

Et [u′(c(yt+1))yt+1 I{yt <ε}]
= Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt { f (xt , rt+1)

yt

1

f ′(xt , rt+1)
}I{yt <ε}

]

= Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt { xt

yt

η(xt , rt+1)

η(xt , a)
η(xt , a)}I{yt <ε}

]

≤ Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt { xt

yt
(1 + σ)τ0

1

η(xt , a)
}I{yt <ε}

]
, using (52)

= Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt { f (xt , a)

yt

1

f ′(xt , a)
(1 + σ)τ0}I{yt <ε}

]
≤ λEt

[
u′(c(yt+1)) f ′(xt , rt+1)yt I{yt <ε}

]
, using (51 ). (56)

Also,

Et [u′(c(yt+1))yt+1 I{yt >y}]
= Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt

{
f (xt , rt+1)

f ′(xt , rt+1)xt

}
xt

yt
I{yt >y}

]

= Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt

{
η(xt , rt+1)

η(xt , b)

}
η(xt , b)

xt

yt
I{yt >y}

]

≤ Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt

η(xt )

η(xt , b)

{
f (x(yt ), b)

f ′(x(yt ), b)x(yt )

}{
x(yt )

yt

}
I{yt >y}

]
≤ λ̃Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt I{yt >y}

]
, using (55) (57)

Finally, given fixed ε, y ∈ R++as defined above, yt ∈ [ε, y] implies that with proba-
bility one, yt+1 ∈ [ f (x(ε)), f (y)] ⊂ R++. Therefore for all t,

Et [u′(c(yt+1))yt+1 I{yt ∈[ε,y]}]
≤ u′(c( f (x(ε)), f (y))) f (y) = Q′. (58)

where 0 < Q′ < ∞, using R.2. Let λ̂ = max{λ, λ̃}. Then, λ̂ ∈ (0, 1) and using
(56),(57) and (58)

ρt+1Et [u′(c(yt+1))yt+1]
= ρt+1Et [u′(c(yt+1))yt+1 I{yt <ε}] + ρt+1Et [u′(c(yt+1))yt+1 I{yt >y}]

+ρt+1Et [u′(c(yt+1))yt+1 I{yt ∈[ε,y]}]
≤ ρt+1̂λ[Et [u′(c(yt+1)) f ′(xt , rt+1)yt (I{yt <ε} + I{yt >y})] + ρt+1Q′

≤ λ̂ρt+1Et [u′(ct+1) f ′(xt , rt+1)]yt + ρt+1Q′

= λ̂ρt u′(ct )yt + ρt+1Q′ (59)
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where the last equality follows from the Ramsey–Euler equation (RE). Taking uncon-
ditional expectation in (59) we have:

ρt+1E[u′(c(yt+1))yt+1]
≤ λ̂ρt E[u′(ct )yt ] + ρt+1Q′

for all t , which implies that ρt E[u′(ct )yt ] → 0 as t → ∞.
CASE 3. Suppose that the candidate policy function satisfies (A.i) and (B.ii).
As in CASE 1, as (A.i) holds, there exists N such that yN ≤ yt with probability

one for all t . As (B.ii) holds, using an identical argument as in CASE 2 (and with some
abuse of notation), condition (GP2) ensures that there exists 0 < β < 1, ζ > 0, y > 0
such that

0 < λ̃ = (1 + ζ )τ∞(
1 − βα

β
) < 1

and
η(x(y))

η(x(y), b)

{
f (x(y), b)

f ′(x(y), b)x(y)

}
x(y)

y
≤ λ̂ for all y > y

so that

Et [u′(c(yt+1))yt+1 I{yt >y}]
≤ λ̃Et

[
u′(c(yt+1)) f ′(xt , rt+1)yt I{yt >y}

]
Further,

Et [u′(c(yt+1))yt+1 I{yt ∈[ε,y]}] ≤ u′(c( f (x(yN )), f (y)))) f (y) = Q′′.

where 0 < Q′′ < ∞. Thus

Et [u′(c(yt+1))yt+1]
= Et [u′(c(yt+1))yt+1 I{yt >y}] + Et [u′(c(yt+1))yt+1 I{yt ∈[yn ,y]}]
≤ λ̃Et [u′(ct+1) f ′(xt , rt+1)]yt + Q′′

and the rest of the proof is identical to CASE 2.
CASE 4. Suppose that the candidate policy function satisfies (A.ii) and (B.i).
As (B.i) holds, using an identical argument as in the proof for CASE 1, there exists

n such that yt ≤ wn with probability one for all t . As condition (A.ii) holds, arguments
identical to those used in Case 2 imply that (with some abuse of notation) there exists
ε, λ, 0 < ε < ε̂ ,0 < λ < 1 such that

η(x(y), r)

η(x(y), a)
≤ (1 + σ)τ0,

f (x(y), a)

y

(1 + σ)τ0

f ′(x(y), a)
< λ for all y ∈ (0, ε).
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and therefore, using identical arguments leading to (56), we have

Et [u′(c(yt+1))yt+1 I{yt <ε}] ≤ λEt
[
u′(c(yt+1)) f ′(xt , rt+1)yt I{yt <ε}

]
.

Further,

Et [u′(c(yt+1))yt+1 I{yt ≥ε}] = Et [u′(c(yt+1))yt+1 I{ε≤yt ≤wn}]
≤ u′(c( f (x(ε)), f (x(wn))) f (wn) = Qˆ.

where 0 < Qˆ < ∞ using R.1. Then,

Et [u′(c(yt+1))yt+1]
= Et [u′(c(yt+1))yt+1 I{yt <ε}] + Et [u′(c(yt+1))yt+1 I{ε≤yt ≤wn}]
≤ λEt [u′(ct+1) f ′(xt , rt+1)]yt + Qˆ,

and the rest of the proof is identical to Case 2. This completes the proof of Proposition
2. ��

7.5 Proof of Proposition 3

Proof Using identical arguments as at the beginning of the proof of Proposition 2,
one can show that properties R.1 and R.2 in the antecedent of Lemma 1 hold. Fix any
y0 > 0 and let {ct }, {xt } and {yt } be the stochastic paths of consumption, investment
and output generated by c(y) given y0.We will show that under the hypothesis of the
proposition, ρt E[u′(ct )xt ] → 0 as t → ∞. Lemma 1 then implies that {ct }, {xt } and
{yt } are optimal from y0; thus c(y) is an optimal consumption function. Let α̂ > 0 be
defined by

inf
y>0

c(y)

y
= α̂

Then, α̂ ∈ (0, 1). Observe that for any t :

ρt E[u′(ct )xt ]
≤ ρt E[u′(ct )yt ] ≤ ρt E[u′(αyt )yt ]
= ρt

[
E(u′(αyt )αyt )

α̂

]
≤ ρt

[
M

α̂

]

which converges to 0 as t → ∞. ��
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