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Abstract
While the diffuse prior has been widely used in applied economic theory for its tech-
nical convenience and as a way of modeling complete lack of knowledge, it is not
formally defined, nor are ex ante payoffs in games under this prior. In this paper, we
provide a formal treatment of the diffuse prior which can validate its application in
games. We consider stationary games, in which players’ signals are translation invari-
ant in the true state and players’ payoffs are translation invariant in actions together
with the state. We show that strategies which admit well-defined expected payoffs
under the diffuse prior are essentially stationary, being almost translation invariant in
signals. Our analysis builds on two formal definitions. We define the diffuse prior
through a limit construction, using sequences of well-defined priors that become
increasingly dispersed. A class of strategy profiles is admissible if for any strategy
profile, each player’s ex ante payoff along these sequences converges to a limit that
does not depend on the particular sequence. A secondary contribution of the paper is
an extension of the concept of distributional strategies (Milgrom and Weber in Math
Oper Res 10:619–632, 1985) to a class of multistage games.

Keywords Diffuse prior · Stationary games · Distributional strategies

JEL Classification C72 · D80

1 Introduction

The diffuse, or uninformative, prior is often interpreted informally as a uniform dis-
tribution on the real line. This prior has two advantages for use in economics: first,
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as it represents complete ignorance, it is appropriate for modeling situations in which
agents have no advance knowledge of the environment; and second, it makes updating
beliefs through Bayes’ rule computationally simpler. This tractability comes from ex
ante symmetry across all states. When signals are the sum of the state and a condi-
tionally i.i.d. noise, posterior beliefs about the state given two signal values are simply
translations of one another. However, although the diffuse prior is commonly used, it
is not formally defined: any uniform distribution must have constant density and must
integrate to one, but any positive constant density, integrated over the real line, yields
infinity, and zero density integrates to zero. This lack of a formal representation means
that ex ante expected payoffs are not defined when driven by a random variable drawn
from a diffuse prior distribution. The existing literature has circumvented this issue
by leaving expected payoffs undefined and instead focusing on payoffs conditional on
signal realizations (for example, Friedman 1991; Klemperer 1999; Morris and Shin
2002, 2003; Myatt and Wallace 2014).

In this paper, we develop a method for formally defining expected payoffs under
a diffuse prior, and thereby bringing them into the realm of traditional game theory,
where expected payoffs are assumed to be well-defined for all strategy profiles of a
game. This can be directly useful in applications for various reasons. One might be
interested in ex ante (or behind the veil of ignorance) welfare evaluation. Or in some
contexts it is natural to allow for an ex ante participation constraint for one of the
players. For example, when a management consultant is hired to examine and improve
a firm’s performance, the management consultant has to decide whether to accept the
task before inspecting the firm’s internal structure and production. In other contexts
an agent might need her strategy approved by a principal ex ante, before acquiring
private information, which only leads to a well-defined problem if the principal can
form ex ante payoff expectations. Our method validates the conventional but informal
approach of handling a diffuse prior, and providing rigorous foundations for diffuse
prior might encourage more applied theory research to feature analytically tractable
games with diffuse prior.

We claim that the diffuse prior can be rigorously constructed as a limit of well-
defined distributions, and that expected payoffs under a diffuse prior can be defined
in certain cases. We define a class of games with stationary information and payoff
structures, where signals and payoffs are translation invariant in the following way:
the distribution of signals is translation invariant in the true state, and payoffs are
translation invariant in all actions together with the true state. We then show that as
long as a class of strategy profiles includes all stationary strategies, then admissibility
requires that all strategies are nearly stationary in a precise sense.

We capture the main features of this uninformative prior by using a sequence of
(proper) measures that diffuse in a formal sense (Definition 4). We say that a class of
strategies is admissible (Definition 5) when ex ante expected payoffs, taken along any
diffusing sequence of proper priors, have a well-defined limit that does not depend
on the particular sequence.1 Stationary strategies are unsurprisingly admissible, as
given any stationary strategy profile, expected payoffs conditional on all signal real-

1 In a paper largely unrelated to our work, Dale and Morgan (2015) consider specific sequences of proper
priors diffusing in a similar sense as in our definition, in the context of a specific game fromMorris and Shin
(2002). They do not investigate the possibility of defining ex ante expected payoffs in the game; instead
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izations are the same. Our main result (Theorem 1) states roughly that in any class
of admissible strategy profiles that includes all stationary strategies, every strategy is
nearly stationary in a particular sense (Definition 3). Furthermore, every such strat-
egy is payoff-equivalent to some stationary strategy. We extend this result to a class
of multistage games in Sect. 4.

An interpretation of our results is as follows. We offer a limit construction of the
diffuse prior which allows ex ante payoffs under this prior to be defined as limits of
payoffs under proper priors. However, the existence of such ex ante payoffs places
limits on the strategy profiles available. To the extent that formal equilibrium concepts
or welfare analyses require well-defined ex ante payoffs, it is useful to identify an
admissible class of strategy profiles within which ex ante payoffs are guaranteed to
be well-defined, and hence we define admissibility as a property of strategy profiles.
In stationary games it is natural to assume that strategy sets include stationary strate-
gies, and hence we require an admissible class to include all stationary strategies; in
other words, strategies must yield well-defined payoffs when played against station-
ary strategies. This notion of admissibility then implies that all strategies are close to
stationary strategies.2

We demonstrate the applicability of our results in two contexts: (i) in the context of
beauty contest games introduced in Morris and Shin (2002),3 and (ii) in the delegation
framework of Ambrus et al. (2019).

A secondary contribution of our paper is an extension of the concept of distributional
strategies (MilgromandWeber 1985) to a class ofmultistage games. The key additional
feature of distributional strategies for multistage games is that a player’s actions in
later stages can depend on actions by other players in earlier stages, and thus the
distributional strategy includes dimensions for past actions.

Before proceeding, we briefly comment on the existing literature in statistics and
probability theory on the subject of noninformative priors. Analysts have long debated
the best way to impose a prior belief when performing parameter estimation and have
recognized various desirable features. Laplace (1951) argued for a uniformor flat prior,
from a principle of insufficient reason: without further information, any two possible
values of the parameter should be considered equally likely. Jeffreys (1946, 1961)
proposed a particular rule for selecting a prior, later known as the Jeffreys prior, for a
givendata-generating processwhichwould be invariant to reparameterizations.4 While
the Jeffreys prior need not be uniform, in the case of data drawn from a unidimensional
normal distribution with known variance and unknown mean (as in many economic
applications, including those considered in this paper), the Jeffreys prior is indeed
uniform. (Of course, over the real line, this results in an improper prior.) Hence our
use of a diffuse prior is consistent both with economic applications and with both
approaches mentioned above. We refer the reader to Kass and Wasserman (1996) for

they are interested in comparing equilibrium predictions of the model with proper versus improper priors.
Equilibrium (and in general, strategic) analysis is not part of the current paper.
2 In Sect. 6, we explore alternative notions of admissibility.
3 See also Hellwig and Veldkamp (2009) and Angeletos et al. (2010).
4 For a parameter θ and data X ∼ f (x |θ), the prior density is, up to a scaling factor, det(I(θ))1/2, where

I (θ) is the Fisher information matrix I(θ)i j = E

[
− ∂2l

∂θi ∂θ j

]
and where l is the log-likelihood function.
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an extensive review of the literature on noninformative priors, and to Yang and Berger
(1998) for a catalog of such priors.

The paper is structured as follows. Section 2 gives an overview of the main ideas
and outlines the steps of the main proof. Section 3 gives the formal analysis for single-
stage games, and Sect. 4 extends this analysis to multistage games. Section 5 shows
how our results can be applied to a beauty contest game and to a companion paper
on delegation. Section 6 discusses alternative approaches to handling nonstationary
strategies, and Sect. 7 concludes. Appendix contains proofs not provided in the body
of the paper.

2 Overview

To capture the diffuse prior as a limit object, we define sequences of propermeasures to
be diffusing if, roughly, themeasures become increasingly uniform and spread out over
the real line. Our definition allows for a large class of diffusing sequences, including
sequences of uniform distributions on [−n, n] or sequences of normal distributions
centered at zero with variance n, with n going to infinity.

Wewill define payoffs under a diffuse prior in cases where the limit of payoffs taken
along anydiffusing sequence exists and is independent of the sequence.Before defining
the class of games we consider, we demonstrate how some concrete functions from R

toR stand up to this criterion. Clearly, a constant function,when integratedwith respect
to any probability measure, integrates to that constant, and so all diffusing sequences
result in the same limit, and thus a constant function is admissible. In addition, the
function x �→ 1[0,1](x), which takes the value 1 if x ∈ [0, 1] and 0 otherwise,
is also admissible; it is not difficult to show that along any diffusing sequence, the
expected value approaches 0. On the other hand, a function like x �→ 1[0,∞) is not
admissible. One could obtain a limit of 0 by defining a diffusing sequence (P1

n)n∈N
with the densities

1[−n2,n]
n2+n

and a limit of 1 by a different diffusing sequence (P2
n)n∈N

with densities
1[−n,n2]
n2+n

. The key property of admissible functions here is that they are
constant or “nearly” constant in some formal sense. As we are interested in games
of asymmetric information, and not real-valued functions per se, the exercise is more
subtle than the above examples suggest. Nonetheless, the above intuition plays a key
role in the analysis that follows.

In the baseline model, we analyze static n-player games with asymmetric informa-
tion. At the beginning of the game, the state of the world θ ∈ R is drawn according
to a diffuse prior, and players receive private, conditionally i.i.d. signals si about θ .
Players then simultaneously choose real-valued actions. We assume that the game
has a stationary structure in terms of signals and payoffs: (i) for each player there is
some distribution Fi such that for all θ , si − θ is drawn from this distribution and (ii)
payoffs are invariant to a translation of all actions and θ by a constant. The model also
accommodates uninformed players.

Strategies must specify (distributions over) actions given a player’s private signal.
Since we start from strategy sets that are not restricted to be stationary, we need to
provide a flexible and careful formal definition of strategies. Since the state space is
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uncountable, it is not practical to define strategies as products of signal-dependent
distributions over actions. The key tension is that desirable topologies should be both
rich enough so that payoff functions are continuous in strategies, but also coarse
enough so that the strategy space is compact. We follow the approach of Milgrom
and Weber (1985) in using distributional strategies, which are measures μi over the
product space of signals and actions. A distributional strategy induces a conditional
distribution on actions for any given signal, and by integrating over signals, it induces
a conditional distribution on actions for any given θ .

It is convenient to normalize distributional strategies by setting the marginal dis-
tribution over the signal dimension to be some fixed, arbitrary distribution G with
positive density g on the real line.5 To describe behavior and payoffs conditional
on arbitrary θ , it is useful to exploit the stationary structure of the game and define
“recentered” strategies μx

i , which, roughly speaking, specify behavior relative to the
private signal as if that signal had been shifted down by the constant x . A stationary
strategy then, as we define it, is one which is translation invariant, in the sense that
if the signal is shifted by a constant, then actions are shifted by the same constant;
it follows that for stationary strategies, all of its recentered strategies are the same
strategy. Under a mild assumption on the action sets, we show that the space of all
distributional strategies, denoted Mi , is compact.6 We say that a strategy μi has a
limit strategy μ∗

i ∈ Mi if limθ→−∞ μθ
i = limθ→+∞ μθ

i = μ∗
i (Definition 3). We

show that whenever this property holds, the strategy μ∗
i must be stationary, and hence

we call μi nearly stationary.
We assume that the game is irreducible in the sense that there are no redundant

strategies—there are no two strategies which always yield the same payoffs. Without
this assumption, there would be no hope of disciplining the set of admissible strategies,
since a player could combine such redundant strategies in arbitrary ways without
affecting payoffs.

Our main result, Theorem 1, has two components. First, it says that the class of
nearly stationary strategies is admissible, so near stationarity is sufficient for admis-
sibility. Second, it says that in any admissible class of strategies which is at least as
large as the set of stationary strategies, all strategies are nearly stationary. Since these
strategies are payoff-equivalent to stationary strategies, we argue that for a game with
diffuse prior to have well-defined ex ante expected payoffs, essentially all strategies
have to be stationary.

We begin the proof of the necessity part of Theorem 1 by establishing the existence
of some distribution μ∗

i ∈ Mi with the following property: for all η > 0, μθ
i is within

η of μ∗
i for an infinite measure set of θ (Lemma 7). We then call μ∗

i an attraction. We
show that this is a weaker condition than near stationarity; a necessary condition for
μi to be near μ∗

i is that μ
∗
i is an attraction.

Next, we argue that there can be at most one such attraction for any strategy which
is part of an admissible class. The proof of this claim is by contradiction and contains

5 Here we emphasize that G is not necessarily the actual distribution over player types, in a departure from
Milgrom and Weber (1985). See the discussion following Definition 1.
6 We use the topology of weak convergence for measures and distributions, which is metrized by the
Prokhorov distance, dP , and we use the usual topology for R; continuity and compactness are with respect
to these topologies.
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several steps. We suppose that μ∗
i and μ̂i are two distinct attractions for player i’s

strategy μi . We argue that by the irreducibility assumption, there must exist some
profile of stationary strategies of the rivals, μ−i , against which these distributions
yield distinct expected payoffs. Given η > 0, we can construct a sequence of measures
(P1

n)n∈N (resp. (P2
n)n∈N) that places increasing mass on θ such that μθ

i is within η of
μ∗
i (resp. μ̂i ). By continuity and translation, the limit of expected payoffs can be

close to either of two distinct values. This violates admissibility, giving the desired
contradiction.

Given the unique attraction μ∗
i , we show that μ∗

i is a limit strategy for μi . If μi has
any limit strategy, that strategy must be an attraction, so μ∗

i is the only candidate. We
show that if μ∗

i is not a limit strategy for μi , then there is a compact set of strategies
that does not contain μ∗

i but contains μθ
i for a measurable set of infinitely many θ .

This compact set itself contains an attraction, and this contradicts the uniqueness of
the attraction μ∗

i .
To complete the proof, we argue thatμ∗

i is stationary, so thatμi is nearly stationary.

3 Model

In this section, for expositional reasons, we consider single-stage games; we later
extend the results to multistage games in Sect. 4. Before analyzing the diffuse prior,
we specify the class of games we consider, which consists of an information structure
and a payoff structure.7

3.1 Setup

Let Γ denote the game. There are n players indexed by i ∈ I := {1, 2, . . . , N }.
All players assign a diffuse prior (formalized in Sect. 3.3) to the state of the world,
θ ∈ Θ := R. Players are categorized as either informed or uninformed. Informed
players receive signals si ∈ Si := R which are conditionally independent given θ

with distributions si − θ =: ŝi ∼ Fi for some cumulative distribution function Fi on
R admitting a bounded, positive density fi ; uninformed players do not receive such
a signal. We use I inf and Iun to denote the sets of informed and uninformed players,
respectively. Let S := ×i∈I inf Si (and likewise for s and ŝ) and let F be the joint
CDF, F(ŝ) = ×i∈I inf Fi (ŝi ). We let Xi denote a copy of R, one for each player; each
player simultaneously chooses an action ai from a set of available actions, denoted
Ai (si ) ⊂ Xi for i ∈ I inf and Ai ⊂ Xi for i ∈ Iun. Given θ and a vector of actions
a = (ai , a−i ) where a−i := (a1, . . . , ai−1, ai+1, . . . , aN ), players receive payoffs
ui (ai , a−i , θ). We assume that the payoff functions ui are continuous in all arguments.

Informally, a mixed strategy is a randomization over pure strategies. However, in
games of incomplete information with uncountable type spaces (such as in our class
of games), topological problems arise from interpreting strategies as mixed strate-
gies (i.e., distributions over pure strategies) or behavioral strategies (i.e., products of

7 Since we are concerned with admissibility, equilibrium plays no role in our analysis, and we do not
specify an equilibrium concept.
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history-contingent distributions over actions). Although the standard way to define
mixed strategies in games with finite or countable signal spaces is as products, over
signals, of signal-dependent distributions, this approach runs into problems when
signal spaces are uncountable. As an alternative, Milgrom and Weber (1985) (here-
after “MW”) introduce the notion of distributional strategies, whereby strategies are
defined as joint distributions over signals and actions. We adapt this concept to our
needs in Definition 1.

Toward Definition 1, let G be an arbitrary distribution over R (the common signal
space for informed players) with bounded density g > 0, and let φ denote the measure
induced by this distribution G. Let λ denote the Lebesgue measure; note that φ and
λ are mutually absolutely continuous, that is, they have the same zero-measure sets.8

We use μi (·|si ) to denote (versions of) the conditional distribution over actions given
signals. We are now ready to define strategies, which for informed players take the
form of distributional strategies.

Definition 1 (Strategies) A strategy for a player i ∈ I inf is a probability measure μi

on Si × Xi such that:

– (Marginal Distribution over Signals) For all measurable T ⊆ Si , μi (T × Xi ) =
φ(T ).

– (Proper Support) For any version of the conditional distributionμi (·|si ), for si ∈ Si
except on a set of measure zero, the support of μi (·|si ) is a subset of Ai (si ).

A strategy for a player i ∈ Iun is a probability measure μi on Xi whose support is a
subset of Ai .

A few comments on Definition 1 are in order. The first property is a normalization
and represents a departure fromMW. The key feature is that the distribution G (which
defines φ) has full support over the reals. The strategic content of a distributional strat-
egy is in the conditional distributions μi (·|si ) which describe how the player behaves
given a particular signal si ; this content is independent of the particular marginal dis-
tribution G. In contrast, MW use the actual distribution over types (here, signals) to
play the role of G. We argue that this is not necessary, since the strategic content is
contained in the conditional distributions, and the marginal distribution is merely a
tool for “packaging” these into a joint distribution. In addition, it is not possible to use
the actual type distribution in our setting since, prior to the θ realization, signals for
informed players have ex ante diffuse distributions over R. The same applies to our
multistage version in Sect. 4.

The second property in Definition 1 ensures that with probability one, actions
are chosen from Ai (si ). For uninformed players, we can dispense with the signal
dimension and define strategies as measures over actions alone.

Under the above definition, a pure strategy for an informed player i is one such
that for almost all si , μi (·|si ) places all mass on a single point (which can depend
on si ), where μi (·|si ) here denotes the regular conditional probability. That is, for
almost every si , there exists x ∈ Xi such that for all measurable Y ⊆ Xi ,μi (Y |si ) = 1
if x ∈ Y and 0 otherwise. (A pure strategy for an uninformed player has the analogous
property.)

8 For example, G can be taken to be the CDF of the standard normal distribution.
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Since Xi and Si×Xi are complete and separable, the spaces of probabilitymeasures
Δ(Xi ) and Δ(Si × Xi ), under the topology of weak convergence, are metrized by the
Prokhorov distance.9 We letMi denote the space of all strategies for player i , where
Mi ⊂ Δ(Xi ) if player i is uninformed andMi ⊂ Δ(Si × Xi ) if player i is informed;
on each Mi , we use the same Prokhorov distance.

3.2 Stationarity

As the diffuse prior implies symmetry across states, we focus on games where this
symmetry holds for all components of the game. We label these games stationary.
Below we define stationarity of signals, payoffs and strategies.

We assume that the signal structure of the game is stationary so that conditional on
any realization θ , the values si are drawn i.i.d. with si − θ ∼ Fi for some distribution
Fi on R as described earlier. In addition, we assume that payoffs are stationary, in the
sense that for any fixed strategy profile of the uninformed players, all players’ payoffs
are invariant to a shift in the informed players’ actions and the state shifted by the
same constant: for all i ∈ I, and strategy profiles a, ui (a, θ) = ui (a − θ inf, 0), where
we use θ inf to denote the vector of length N whose i th component takes the value θ if
i ∈ I inf and 0 otherwise.10

Compactness of the strategy space is useful throughout our analysis. We therefore
assume that the action space available after each signal is a compact set; since we are
focusing on stationary games, we also assume that action sets after different signals
are translations of one another.

Assumption 1 For any player i ∈ I inf, the action space available after signal 0, Ai (0),
is compact, and for all si 
= 0, Ai (si ) = Ai (0) + si . For i ∈ Iun, the action space
available Ai is compact.

For example, suppose action sets are compact intervals, centered at the signal for
informed players; specifically, suppose that for each informed player i there exists
some constant Mi > 0 such that for all si , Ai (si ) = [si − Mi , si + Mi ], and for
each uninformed player i there exists Mi > 0 such that Ai = [−Mi , Mi ]. Then
Assumption 1 is satisfied. An implication ofAssumption 1with our notion of strategies
is the following.

Lemma 1 Under Assumption 1, each Mi is compact.

For informed players, a strategy as defined above gives a distribution over signals
and actions with an arbitrary fixed marginal distribution over the signal dimension
G. To describe joint distributions over actions and signals (and ultimately, to describe
payoffs) conditional on arbitrary θ values, it is useful to define a “recentering function.”
Formally, for any i ∈ I inf, strategy μi ∈ Mi , and x ∈ R, we define a strategy μx

i by
specifying its conditional distributions μx

i (Y |si ) = μi (Y − x |si − x) for all Y ⊆ Xi

and all si ∈ Si except on a set of measure zero under φ, where Y − x denotes the

9 See Billingsley (2009, Theorem 6.8).
10 Likewise, we use θ

inf
−i to denote the vector of length N − 1 formed from θ inf by excluding player i .
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set Y shifted by −x . We then say that μx
i is a recentered strategy; note that in the

case of x = 0, we have μ0
i = μi . For intuition, it is helpful for a moment to interpret

strategies as inducing distributions over markups, that is, actions minus signals. Then
the strategy μx

i gives the same distribution over markups after signal si as strategy μi

does after signal si − x . Example 1 gives more detail. For completeness, we define
μx
i = μi for uninformed players in this section.
The recentering function also allows us to readily define stationarity of strategies.

Definition 2 (Stationary strategies) For i ∈ I inf, a strategy μi is stationary if the
distribution over i’s action and i’s private signal is together translation invariant: for
all x ∈ R, μi = μx

i . For i ∈ Iun, all strategies are stationary.

A stationary strategy in the case of single-stage games can be described by a single
distribution over Ai (0), interpreted as a (possibly random)markup x so that the action
chosen after receiving signal si is ai = si + x . As we prove later (see Lemma 5 in
appendix), for an arbitrary strategy μi , the map θ �→ μθ

i from R to Mi is uniformly
continuous.

Example 1 Suppose the (nonstationary) strategy μi specifies

– if si < 1, play ai ∼ U [si , si + 1] (i.e., a markup distributed U [0, 1], )
– if si ≥ 1, play ai ∼ U [si + 2, si + 3] (i.e., a markup distributed U [2, 3]. )
The recentered strategy μ

1/2
i (where x = 1/2) prescribes the following behavior.

If si < 3/2 is observed, apply a random markup distributed U [0, 1] (as the original
strategyμi specifies for a signal si −x = si −1/2 < 1), that is, play ai ∼ U [si , si +1];
if si ≥ 3/2 is observed, apply a markup distributedU [2, 3] (asμi specifies for a signal
si − x = si − 1/2 ≥ 1), that is, play ai ∼ U [si + 2, si + 3]. Note that μi here is
not stationary, but given the first bullet point, it would be stationary if for all si ,
ai ∼ U [si , si + 1].

As mentioned, the recentering function allows us to easily express ex interim
expected payoffs (that is, conditional on θ ) for arbitrary θ realizations. Since we
consider a stationary payoff and signal structure, we can calculate expected payoffs
under strategies μi conditional on θ = x as the expected payoffs under strategies μ−x

i
conditional on θ = 0 (see Eq. (1)). Let μx denote the strategy profile where each
player i ∈ I plays μx

i (and in particular, each player i ∈ Iun plays μi ).
Aprofile of strategies induces ex interimexpectedpayoffs for eachplayer as follows:

ui (μ, θ) :=
∫

ŝ∈R|Iinf|

∫

a∈X
ui (a, θ) d((× j∈I infμ j,X j (a j |ŝ j + θ))

× (× j∈Iunμ j (a j )))dF(ŝ)

=
∫

ŝ∈R|Iinf|

∫

a∈X
ui (a − θ inf, 0) d((× j∈I infμ j,X j (a j |ŝ j + θ))

× (× j∈Iunμ j (a j )))dF(ŝ)

=
∫

ŝ∈R|Iinf|

∫

a∈X
ui (a, 0) d((× j∈I infμ j,X j (a j + θ |ŝ j + θ))
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× (× j∈Iunμ j (a j )))dF(ŝ)

=
∫

ŝ∈R|Iinf|

∫

a∈X
ui (a, 0) d((× j∈I infμ

−θ
j,X j

(a j |ŝ j ))
× (× j∈Iunμ j (a j )))dF(ŝ)

= ui (μ
−θ , 0), (1)

where the second line uses stationarity of payoffs, the third line performs a change of
variables for each a j , j ∈ I inf, the fourth line uses the definition of the recentering
function, and the fifth line uses the definition from the first line. Note that if all players
play stationary strategies, then it can be seen from (1) that they obtain the same interim
payoffs for all θ realizations, as μ−θ = μ and hence ui (μ−θ , 0) = ui (μ, 0) in that
case.

In general, ex post payoffs can vary widely due to the noise in the signals. To ensure
that the ex interim payoffs (given a realization of θ , but not the signal realization) are
finite, we impose the following assumption, which is a joint condition on the payoff
function, action sets and signal distribution. Here, for each noise realization ŝ, A(ŝ+θ)

denotes the set of action profiles a such that a j ∈ A j (ŝ j + θ) for all j ∈ I inf and
a j ∈ A j for all j ∈ Iun.

Assumption 2 (Bounded Interim Payoffs) Together, the signal distributions, action
sets, and payoff functions are such that

∫
ŝ∈R|Iinf| supa∈A(ŝ+θ) |ui (ai , a−i , θ)|dF(ŝ) is

bounded over all i ∈ I and θ ∈ R.

Assumption 2 holds, for example, when payoff functions are finite polynomial, the
signal distributions conditional on the state are normal (which includes the commonly
analyzed case of normally distributed signals and quadratic loss functions), and action
sets are intervals of bounded size containing the signal. This assumption ensures that
expected interim payoffs are bounded.

Lemmas 5 and 6 in appendix establish useful continuity properties of the recentering
function and interim payoffs.

Next we define a weakening of stationarity that we will later prove to be both
necessary and sufficient for admissibility. Recall that our arbitrary specification G
for the marginal distribution over signals allows us operate with distributional strate-
gies, which are joint distributions over signals and actions. Hence, to describe the
distance between strategies, we must use a suitable metric for distances between dis-
tributions, and thus we use the Prokhorov metric. Convergence of strategies in the
Prokhorov metric means that the measure these strategies assign to well-behaved sets
(of pairs of signals and actions) also converge. Toward defining near stationarity,
we begin by defining a limit strategy (if it exists) as a strategy that a given strategy
approaches in the limit when recentering at extreme states, with distance between
strategies being measured by the Prokhorov metric. In other words, the original strat-
egy behaves increasingly similar to the limit strategy when the state becomes very
high or very low.

Definition 3 (Limit strategies and near stationarity) For any i ∈ I and any strategyμi ,
we say that a strategy μ∗

i is a limit strategy for μi if limθ→−∞ μθ
i = limθ→+∞ μθ

i =
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μ∗
i , with limits taken with respect to the Prokhorov metric. If μ∗

i is stationary, then we
classify μi as nearly stationary.

Note that stationarity implies near stationarity, as a stationary strategy is its own
limit strategy. In particular, for i ∈ Iun in static games, any μi is nearly stationary.

It is immediate from Definition 3 that a strategy can have at most one limit strategy.
However, a strategy need not have any limit strategy. For a counterexample, consider
a game with a single player receiving some signal si where si − θ has distribution
Fi conditional on θ , and suppose the action space given si is {si , si + 1}. Then the
following strategy, call it μi , has no limit strategy: assign action ai = si + 1 for all
signals si ≥ 0 and action ai = si for all signals si < 0. As θ → +∞, μθ

i → κ0,
where we use κx to denote the stationary strategy characterized by ai (si ) = si + x
with probability 1 for all si ∈ R. Hence κ0 is the only candidate for a limit strategy.
But as θ → −∞, μθ

i → κ1 
= κ0, and thus μi has no limit strategy.
To see that nearly stationary does not imply stationary, modify the example above

so that μi is characterized by ai = si + 1 for all si ∈ [−K , K ] for some K > 0,
and ai = si otherwise. We have limθ→−∞ μθ

i = limθ→+∞ μθ
i = κ0, so μi is nearly

stationary, but it is not stationary.
The next lemma provides a useful property equivalent to the one in Definition 3.

It says that a strategy μ∗
i is a limit strategy for μi if and only if μi is close to μ∗

i for
“most” θ , that is for all θ except for some set of finite measure. Recall that λ denotes
the Lebesgue measure.

Lemma 2 For i ∈ I inf, a strategy μ∗
i is a limit strategy for μi if and only if

λ
({θ : dP,i (μ

θ
i , μ

∗
i ) ≥ η}) < ∞ for all η > 0, where dP,i is the Prokhorov met-

ric.

The following lemma shows that the first part of Definition 3 implies the second.

Lemma 3 Ifμ∗
i is a limit strategy ofμi in the sense ofDefinition 3, thenμ∗

i is stationary
and thus μi is nearly stationary.

Proof If μ∗
i is not stationary, then there exists θ such that μ∗,θ

i 
= μ∗
i . Now if μ∗

i is a

limit strategy ofμi , thenμ
∗,θ
i is a limit strategy ofμθ

i . But also note that ifμ
∗
i is a limit

strategy of μi , then μ∗
i is a limit strategy of μθ ′

i for all θ ′ ∈ R, including θ ′ = θ , and
thus μ∗

i is a limit strategy of μθ
i . Since a strategy can have at most one limit strategy,

we have μ
∗,θ
i = μ∗

i , a contradiction. We conclude that μ∗
i is stationary. �

For ease of exposition, from now onwe require that the game involves no redundant
strategies, i.e., strategies, which are indistinguishable from other strategies in their
payoff implications.

Assumption 3 (Irreducibility) The game is irreducible in that there are no distinct
strategies μi 
= μ′

i for any player i such that for all θ ∈ R and all profiles μ−i of
stationary strategies for the rivals, ui (μi , μ−i , θ) = ui (μ′

i , μ−i , θ).
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3.3 The diffuse prior

The informal concept of diffuse prior has two key properties. The first property is that
all real numbers are in the support of the prior. The second property is uniformity—all
points are weighted equally. Hence, we define a sequence of proper measures to be
diffusing if these properties hold in the limit—that is, sufficiently far into the sequence,
the properties hold arbitrarily closely. The following definition formalizes this idea.

Definition 4 (Diffusing sequence) Consider a sequence (Pn)n∈N of Borel probability
measures on R. We say that this sequence is diffusing if for any set W with λ(W ) ∈
(0,∞) and any η > 0, there exists N ∈ N such that for all n ≥ N ,

• Pn(W ) > 0, and

• for all measurable Y ⊆ W ,
∣∣∣ Pn(Y )
Pn(W )

− λ(Y )
λ(W )

∣∣∣ < η.

From the definition, we can establish the following property of diffusing sequences
as a result.

Lemma 4 If (Pn) is diffusing, then for any set E ⊂ R with λ(E) < ∞,
limn→∞ Pn(E) = 0.

Proof Consider any set E ⊂ R with λ(E) < ∞ and any diffusing sequence (Pn). We
establish the result for λ(E) > 0, from which the result for λ(E) = 0 immediately
follows. Choose any arbitrarily small η > 0. Choose M > 1 sufficiently large that
(i) 1

M < η and (ii) λ(E \ [−M, M]) < ηλ(E). Let WM := [−M, M] and WM2 :=
[−M2, M2]. By applying Definition 4 twice, first with the set E playing the role of
W in the definition and again with WM2 playing the role of W , there exists K such
that for all n ≥ K ,

Pn(WM2) > 0

Pn(E) > 0∣∣∣∣
Pn(E \ WM )

Pn(E)
− λ(E \ WM )

λ(E)

∣∣∣∣ < η (2)
∣∣∣∣
Pn(WM )

Pn(WM2)
− λ(WM )

λ(WM2)

∣∣∣∣ < η. (3)

In (2), recall that by construction λ(E\WM )
λ(E)

< η and thus rearranging (2) yields

Pn(E \ WM ) < 2ηPn(E) < 2η. (4)

In (3), we have λ(WM )
λ(WM2 )

= 1
M < η and thus

Pn(WM ) < 2ηPn(WM2) < 2η. (5)

Adding (4) and (5) then yields

Pn(E) ≤ Pn(E \ WM ) + Pn(WM ) < 4η.
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(a) (b)

Fig. 1 Examples of diffusing sequences

Since η is arbitrary, we have Pn(E) → 0. �
For illustrative purposes, we highlight two specific diffusing sequences (see Fig. 1).
As one would expect, flattening sequences of the uniform distribution or normal dis-
tribution are diffusing according to our definition.

Example 2 Both (P1
n) given by the density 1

2n1[−n,n] and (P2
n) given by N (0, n) are

diffusing.

Proof If λ(W ) ∈ (0,∞), then for sufficiently large n, W ∩ [−n, n] 
= ∅ and

thus P
1
n(W ) > 0. Moreover, for any measurable Y ⊆ W ,

∣∣∣ P1n(Y )

P1n(W )
− λ(Y )

λ(W )

∣∣∣ =∣∣∣∣
∫
Y

1
2n1[−n,n](y)dλ∫

W
1
2n1[−n,n](w)dλ

− λ(Y )
λ(W )

∣∣∣∣ =
∣∣∣

∫
Y 1[−n,n](y)dλ∫
W 1[−n,n](w)dλ

− λ(Y )
λ(W )

∣∣∣ → 0 by the monotone con-

vergence theorem. Now P
2
n(W ) > 0 for all n ∈ N. Using a similar argument, for any

Y ⊆ W ,
∣∣∣ P2n(Y )

P2n(W )
− λ(Y )

λ(W )

∣∣∣ =
∣∣∣∣∣

∫
Y

1√
2πn

e−y2/(2n)dλ
∫
W

1√
2πn

e−w2/(2n)dλ
− λ(Y )

λ(W )

∣∣∣∣∣ =
∣∣∣∣

∫
Y e−y2/(2n)dλ∫
W e−w2/(2n)dλ

− λ(Y )
λ(W )

∣∣∣∣ →
0. �

3.4 Admissibility

Recall the example fromSect. 2, wherewe askedwhich functions of θ are “admissible”
in the sense that they yield consistent limits when integrated along certain kinds of
sequences of distributions. We suggested that admissible functions are nearly constant
in a particular way: there exists some constant such that for any ε > 0, the set of θ

on which the function deviates from that constant by more than ε has finite measure.
As we show in our main result, the spirit of this example extends to admissibility
of strategies. Since players only observe noisy signals of θ , their strategies are not
directly functions of θ but functions of their private signals. Nonetheless, having well-
defined expected payoffs will place restrictions on players’ strategies, similar to how
admissible functions are nearly constant.

Definition 5 (Admissibility) A class M0 ⊂ M of strategy profiles is said to be
admissible if for any profile (μ1, μ2, . . . , μN ) of strategies in M0, there exists
a vector u∗ ∈ R

N such that for any diffusing sequence (Pn) and all i ∈ I,
limn→∞

∫
θ∈R ui (μi , μ−i , θ) dPn(θ) = u∗

i .
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Let Ki denote the class of stationary strategies for player i . Note that for profiles
μ = (μi , μ−i ) of stationary strategies, the mapping θ �→ ui (μ, θ) is constant, and
hence the sequence of integrals in Definition 5 trivially converges to the same limit
for every diffusing sequence. Thus the class of profiles of stationary strategies is
admissible.

Given the definition of admissibility, we can define (ex ante) payoff equivalence
between two strategies.

Definition 6 (Payoff equivalence) Let M0 be a class of admissible strategy profiles.
Two strategies μi and μ′

i are said to be payoff equivalent for player i if for all strategy
profiles μ−i of the remaining players such that (μi , μ−i ), (μ

′
i , μ−i ) ∈ M0, player i

gets the same payoff under μi as under μ′
i : for all diffusing sequences (Pn),

lim
n→∞

∫

θ∈R
ui (μi , μ−i , θ) dPn(θ) = lim

n→∞

∫

θ∈R
ui (μ

′
i , μ−i , θ) dPn(θ).

We now present our main result for single-stage games. For the necessity direction,
our proof technique makes use of the assumption that the class of strategy profiles
contains stationary strategies. The reason is that when we consider payoffs conditional
on various θ , stationarity of the rivals’ strategies (together with stationarity of signals
and payoffs) means that an informed player i’s payoff is changing as if one is holding
θ fixed and changing the actual strategy of player i . By irreducibility, this means
that if i’s strategy is not nearly stationarity, then i’s payoff conditional on θ varies
significantly with θ , which we then show is inconsistent with admissibility.

Theorem 1 Suppose the game Γ satisfies Assumptions 1–3. Then

– (Sufficiency) The class of profiles of nearly stationary strategies is admissible.
– (Necessity) If M0 = ×i∈IM0

i is admissible and Ki ⊆ M0
i for all i , then every

μi ∈ M0
i is nearly stationary and payoff equivalent to some stationary strategy.

4 Multistage games

We now extend the analysis to a class of multistage games. The game has stages
indexed by t = 1, 2, . . . , τ for τ ∈ N. In each stage t , some nonempty subset of
players choose actions ati ∈ R; we use I(t) to denote this subset. As in the static
model, a subset of players I inf are informed and obtain a private signal si with the
same properties as in the static game, while the remaining players receive no such
signal. Each player acts in exactly one stage, denoted T (i). We assume that informed
players act in stage 1, while all uninformed players act in later stages. We assume that
uninformed players have a finite action set. Players observe other players’ past actions
perfectly. The public history at stage t > 1 is a record of all players’ past actions
through stage t − 1, and it is denoted ht . An informed player’s history is simply that
player’s initial signal si . To economize on notation, we define the history observed by
player i ∈ I(t) by hti := ht when t > 1 (and thus i ∈ Iun) and hti := si when t = 1
(and thus i ∈ I inf). The set of available actions for i ∈ I moving in stage t is At

i (h
t
i ).
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A pure strategy specifies for each player’s observed history hti an action in At
i (h

t
i ).

Given a realization of θ and sequence of action profiles taken in each stage, players
receive payoffs ui (ai , a−i , θ), where a−i is defined as before. In Definition 7, we
extend the definition of distributional strategies from Sect. 3.

In order to extend Theorem 1, wemust first adapt some other concepts from Sect. 3.
As in Sect. 3, payoffs are assumed stationary in that they are invariant to shifts in θ

and all informed players’ actions by the same constant. We adapt Assumption 1 to the
following:

Assumption 4 For all i ∈ I(1), A1
i (h

1
i ) is compact and satisfies A1

i (si ) = A1
i (0) + si .

For all t > 1 and all i ∈ I(t), At
i (h

t
i ) is finite and independent of hti .

Given Assumption 4, we use At
i to denote the action sets available to uninformed

players.
Given a realization of θ and sequence of action profiles taken in each stage, players

receive payoffs ui (ai , a−i , θ) for the game, where a−i is defined as before. As before,
we assume that the payoff functions ui are continuous in all arguments, and we assume
they are stationary in the same sense as in Sect. 3.

As in the static game, informed players’ only information is their private sig-
nal, so their strategies are defined exactly as in the static game. For uninformed
players, their information is the past actions of other players. For t > 1, let

Ht := (×i∈I inf Xi
) ×

(
×i∈Iun:T (i)<t A

T (i)
i

)
denote the set of public histories at stage

t . We formulate the strategies for players acting in stage t > 1 as joint distributions
over Ht and their stage t actions, fixing a marginal distribution over Ht . Any version
of the conditional distribution specifies behavior after a given history; under regular-
ity conditions discussed below, any two versions of the conditional distribution are
outcome-equivalent.

Definition 7 (Strategies—multistage version) A strategy for player i ∈ I inf is a prob-
ability measure μi on Si × Xi satisfying the properties of Definition 1. A strategy
for player i ∈ Iun acting in stage t is a probability measure μi on Ht × At

i with
the following property: the random variables induced by the marginal distributions
over the dimensions for actions of players acting earlier are mutually independent and
have distribution N (0, 1) for informed players and (discrete) uniform distribution for
uninformed players.

For an uninformed player i , the distributional strategy μi includes dimensions
for all the other players’ past actions. This results in some arbitrary detail which
serves a technical purpose only. The strategically meaningful information from μi is
in the distributions on the At

i dimension conditional on each history. The marginal
distributions for the past actions are not strategically meaningful, so for concreteness
we normalize those to the normal distribution for past actions by informed players and
discrete uniform distributions over finite sets for past actions by uninformed players;
we wish to emphasize that μi does not contain any conjecture about other players’
behavior. Part (iii) of Assumption 5 ensures that all actions by informed players occur
with probability zero (such as when all informed players play stationary strategies,

123



460 A. Ambrus, A. Kolb

due to the signal noise), and hence an uninformed player i’s behavior is well-defined,
as all versions of the uninformed players’ strategies are outcome-equivalent.

Hence, there is an equivalence between distributional strategies under our for-
mulation and behavioral strategies, given the regularity condition mentioned above.
Specifically, for every distributional strategy, there exists an outcome-equivalent
behavioral strategy, and conversely, for every behavioral strategy, there exists an
outcome-equivalent distributional strategy. A distributional strategy specifies behavior
at each decision node via the conditional distributions over that player’s actions, condi-
tioning on the history; these conditional distributions and hence the player’s behavior
are uniquely determined except on a set of measure zero. Given a behavioral strategy,
one can construct a distributional strategy by specifying the marginal distributions on
earlier actions as in Definition 7, and by defining the conditional distributions as those
under the behavioral strategy.

Each player has a set of available strategies denotedMi ; as in Sect. 3, it is metrized
by the Prokhorov distance. In multistage games, some technical issues not present
in static games arise. For instance, small changes in one player’s strategy can lead to
discontinuous changes in the induced distribution over outcomes. To avoid such issues,
we assume thatM := ×i∈IMi satisfies some regularity conditions (Assumption 5).
Part (iii) ensures that each zero-measure set of actions occurs with zero probability, as
described above. Part (v) of the definition adapts irreducibility fromAssumption 3. As
in the single-stage case, given any θ realization, a profile of distributional strategies
(μi , μ−i ) induces a distribution over payoffs ui (ai , a−i , θ). We again abuse notation
and let ui (μi , μ−i , θ) denote ex interim payoffs conditional on θ .

Assumption 5 The classM = ×i∈IMi of profiles of available strategies satisfies the
following conditions: (i) Mi closed for all i ∈ I, (ii) μi ∈ Mi implies μθ

i ∈ Mi

for all θ ∈ R and i ∈ I, (iii) μi (Si × Y ) = 0 for all i ∈ I and Y ⊂ Xi such that
λ(Y ) = 0, (iv) for all i ∈ I, μ �→ ui (μ, 0) is continuous on M, and (v) for all
i ∈ I and strategies μi 
= μ′

i in Mi , there exist θ0 ∈ R and a profile μ−i ∈ M−i of
stationary strategies for the other players such that ui (μi , μ−i , θ0) 
= ui (μ′

i , μ−i , θ0).

Given Definition 7 and Assumption 4, Lemma 1 can be applied to the space of
measures satisfyingDefinition 7, and hence eachMi , as a closed subspace byAssump-
tion 5, is compact. By continuity of interim payoffs in strategies, interim payoffs are
bounded.

Recentered strategies: The recentering function for informed players is exactly as
in the static model. For uninformed players, let ht,xi denote the history hti modified
by adding x to all informed players’ (past) actions. We define the recentered strategy
μx
i as the strategy which satisfies, for all hti ∈ Ht except on a set of measure zero

and all Y ⊆ At
i , μ

x
i (Y |hti ) = μi (Y |ht,−x

i ). As in the single-stage case, for x = 0, we
have μ0

i = μi . For strategy profiles, we define μx as the profile in which each player
playsμx

i . Under the generalized recentering function defined above, we can now adapt
Definition 2 to multistage games.

Definition 8 A strategy μi is stationary if for all x ∈ R, μi = μx
i .

Wecan import several statements fromSect. 3with no change in notation, and there-
fore, there is no need to reproduce them here. In particular, we maintain the following
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definitions: (i) the definition of limit strategies and nearly stationary strategies (Defi-
nition 3), (ii) the definition of a diffusing sequence (Definition 4), (iii) the definition
of admissible strategies (Definition 5), and (iv) the definition of payoff equivalence
(Definition 6). We define Ki as the class of stationary strategies in Mi .

We now extend Theorem 1 to the class ofmultistage games presented in this section.

Theorem 2 Suppose Assumptions 4 and 5 are satisfied.

– (Sufficiency) The class of profiles of nearly stationary strategies is admissible.
– (Necessity) If M0 = ×i∈IM0

i is admissible and Ki ⊆ M0
i for all i , then every

μi ∈ M0
i is nearly stationary and payoff equivalent to some stationary strategy.

5 Applications

In this section, we apply our single-stage model to a beauty contest game and our
multistage model to a delegation (sender–receiver) game.

5.1 Beauty contests

An application of the single-stage version of our model is an adaptation of the beauty
contest model of Morris and Shin (2002). We assume that there is a finite number
N ≥ 2 of agents i ∈ {1, 2, . . . , N } and an underlying state of the world θ drawn
from a diffuse prior distribution. Each agent has a bias parameter bi and receives a
private signal si = θ + εi , where εi ∼ N (0, σ 2

ε ) and where the εi and θ are mutually
independent. Each agent chooses an action ai ∈ [si − M, si + M] for some large
constant M > 0 and receives a payoff

u(ai , a−i , θ) = −λ(ai − θ − bi )
2 − (1 − λ)(ai − ā)2,

where λ ∈ (0, 1) is a constant and ā :=
∑

j a j

N is the average of all players’ actions,
including player i . In other words, players want to choose actions that balance their
idiosyncratic preferences with a desire to match other agents’ actions.

The game described here has stationary payoffs and satisfies Assumptions 1–3, and
thus Theorem 1 applies. Hence, in order to guarantee well-defined ex ante expected
payoffs, the analyst must restrict strategy sets to nearly stationary strategies. In the
game we have described, stationary strategies are mixtures over constant markups:
each player chooses a (possibly random) markup ki ∈ [−M, M] and, given any si ,
plays the action ai (si ) = si + ki .

If we restrict players to stationary strategies, there is a unique Bayesian Nash equi-
librium of the game with diffuse prior, in which each player plays a pure strategy
characterized by ai (si ) = si + ki , where

ki = λbi + (1 − λ)

∑
j b j

N
. (6)
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Each player’s signal si is that player’s posterior mean belief about the state θ and
about all other agent’s signals s j for j 
= i , and thus the mean action of each other
player is si + k j . Each player’s payoff is a concave function and thus has a unique
maximizer given the strategies of the other players. It follows that any equilibrium is
in pure strategies. Equation (6) says that each player’s equilibriummarkup is a convex
combination of all players’ biases, and the weight assigned to one’s own bias is an
increasing function of λ. In the extreme case λ = 1, each player cares only about his
idiosyncratic preferences, and optimally sets ki = bi . For the other extreme, λ = 0,
the game is a pure coordination game and multiple equilibria exist, but in the limit as

λ → 0, ki →
∑

j b j

N ; with agents coordinating on the average bias of all agents.

5.2 Delegation

As a direct application of our model, we can also consider sender–receiver games. To
illustrate, consider gameswith two stages: one stage inwhich n senders simultaneously
choose actions after observing private signals, and a second stage in which the receiver
observes the senders’ actions and chooses an action. Depending on the application in
mind, the receiver’s action could be interpreted as a policy choice (as inmany games of
cheap talk) or as a sender’s identity (as in games of delegation with multiple experts).

In the case of delegation, the receiver’s available action choices may depend on the
actions chosen by the senders. For example, in a companion paper by Ambrus et al.
(2019), the senders are two experts who propose action choices, and the receiver must
choose one of them. All players have quadratic loss functions; senders have biases bi
relative to the receiver. The game unfolds as follows:

1. A state of the world θ ∈ R is realized, drawn from a diffuse prior distribution.
2. Senders (experts) i = 1, 2 receive conditionally i.i.d. signals si ∼ N (θ, σ 2).
3. Senders choose markups ki ∈ [−M, M] where M is some large constant.
4. The receiver (principal or decisionmaker, labeled player 3) observes ai = si+ki for

i ∈ {1, 2} and chooses the expert whose action will be implemented. Specifically,
the receiver chooses an action j from {1, 2}.

5. Payoffs are realized: receiver gets−(s j+k j−θ)2, sender j gets−(s j+k j−θ−b j )
2,

sender i 
= j gets −(s j + k j − θ − bi )2.

A stationary strategy for the receiver must have the property that C(a1, a2) =
C(a1 + x, a2 + x) for all x . This includes mixtures of the following fundamental
strategies: (i) always choose the higher offer, (ii) always choose the lower offer, (iii)
always choose the offer from sender 1, and (iv) always choose the offer from sender 2.
Ambrus et al. (2019) show that these are essentially the only possible best responses
of the principal to a pair of stationary strategies of the experts.

Suppose the receiver is restricted to the four pure strategies above, and denote this
strategy space byR. We show that this strategy space alone is enough to establish irre-
ducibility for the senders. Specifically, we show that any classM = M1 ×M2 ×R
of strategy profiles that satisfies parts (i)–(iv) of Assumption 5 must also satisfy part
(v), and hence (as Assumption 4 is clearly satisfied) Theorem 2 applies: all admissible
strategies are nearly stationary, and in particular, are nearly “constant markup strate-
gies” — that is, each sender’s strategy is nearly a stationary strategy in which there is
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a single “markup” distribution Hi over [−M, M] and actions are simply si plus the
draw from Hi .

Proposition 1 In the stationary game of Ambrus et al. (2019), suppose that strategy
spaces M1 and M2 each contain all the constant markup strategies and are such
that the class of strategy profiles M = M1 × M2 × R satisfies parts (i)–(iv) of
Assumption 5. Then part (v) is also satisfied, and Theorem 2 applies to the game.

6 Alternative approaches to nonstationary strategies

In this section, we consider alternative approaches to handling ex ante payoffs under
the diffuse prior.11

First, in some cases it is possible to make comparisons across strategy profiles —
for example, when an individual player considers a deviation—without requiring that
ex ante payoffs be well-defined before and after the deviation. For instance, consider a
single-stage game and suppose that all players are playing stationary strategies which
are mutual best responses within the class of stationary strategies. To verify that such
a strategy profile is a Bayesian Nash equilibrium, one would like to verify that no
player can benefit by deviating, including deviations to nonstationary strategies.While
nonstationary strategies (except nearly stationary strategies) do not yield well-defined
ex ante payoffs, the limit suprema of payoffs are well-defined; optimality implies these
must be bounded above by the (well-defined) payoff of the original, stationary strategy.
In this sense, deviations can be ruled out. Hence, while our approach would already
rule out such deviations on the basis of admissibility, an equilibrium concept could be
defined using a stronger notion of best response which allows deviations outside the
admissible class.

Second, in some cases it is possible to obtain well-defined expected payoffs from
profiles of strategies which are not nearly stationary. Our admissibility criterion has
imposed the inclusion of stationary strategies in an admissible class; we consider this
inclusion to be a natural requirement for stationary games. However, dropping this
requirement allows one to construct smaller admissible classes. Consider the following
example: two players i = 1, 2 obtain perfect signals si = θ and choose actions
ai ∈ [si , si +1]. Their payoffs are ui (a1, a2, θ) = −(a1−a2)2(ai −θ)2. Consider the
(singleton) class of strategy profiles {(a∗

1 , a
∗
2 )} where a∗

i (si ) := si + 1si≥0. This class
is clearly admissible, but the a∗

i are neither stationary nor nearly stationary. On the
other hand, the strategy a∗

2 does not yield a well-defined payoff against the stationary
strategy ã1 defined by ã1(s1) = s1; player 2’s ex post payoff would be 0 when θ < 0,
but it would be −1 when θ ≥ 0.

Third, there may be a “natural” labeling of the state space, or a natural choice of
the origin in some games, such as a status quo. In such games, strategies such as
a∗
i (si ) above may be quite reasonable, and one might wish to find an admissible class
which includes these. To that end, one could relax our requirement that all diffusing
sequences of priors yield the same expected payoffs in the limit and instead focus
on a restricted class of sequences of priors, or a particular sequence of priors such as

11 The authors thank an anonymous referee for several observations upon which this section is based.
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U ([−k, k]) for k = 1, 2, . . . . Note that even a particular sequence of priors such as this
one still disciplines the strategies. For example, consider perfect signals si = θ and
payoffs ui (ai , θ) = −(ai − θ)2, and define strategies by ai (si ) = si + 1 on intervals
of the form [−22n+1,−22n] or [22n, 22n+1] and ai (si ) = si elsewhere. The expected
payoff converges to −2/3 along a subsequence U ([−22n+1, 22n+1]) but converges to
−1/3 along a subsequenceU ([−22n, 22n]). On the other hand, the strategy a∗

i (si ) from
above, which is not nearly stationary, yields a well-defined expected payoff of 1/2 in
this case. Hence, restriction to a smaller class of sequences of priors appropriate for a
given problem can admit new strategy profiles while continuing to exclude others.

7 Conclusion

We have presented a formal method for defining ex ante payoffs in games with diffuse
prior. The key features of the diffuse prior can be captured using a limit construction,
in which sequences of proper priors exhibit these properties in a limiting sense. Under
our construction, stationary strategies admit well-defined payoffs in stationary games,
and conversely, all strategies admitting well-defined payoffs are nearly stationary in a
precise sense.

Our methodology can be readily extended in several directions. Although we have
considered a one-dimensional state of the world θ , in many applications, there is
uncertainty over multiple dimensions. One could model a diffuse prior over a multi-
dimensional state by generalizing our notion of a diffusing sequence. Another, related
direction would be to consider renewed uncertainty; in a multistage game, each stage
t might introduce more uncertainty through the realization of a state θt . We leave
detailed exploration of these directions to future work.

Although we have considered exogenous uncertainty over the state θ , our construc-
tion could also be used to allow a player to choose the diffuse prior as a mixed strategy.
That is, suppose an additional player i = 0 is introduced who chooses an action θ at
the beginning of the game. Under our construction, this player can play the diffuse
prior as a mixed strategy with a well-defined payoff.

Acknowledgements The authors thank Volodymyr Baranovskyi, Joel Sobel, Tom Wiseman, and anony-
mous referees for helpful comments and encouragement. The usual disclaimer applies.

A Proofs

Proof of Lemma 1 We prove the result for informed players; the arguments for unin-
formed players are essentially a subset of those here. Note thatMi is a metric space,
as it is a subspace of the metric space (with the Prokhorov metric) consisting of
measures over the complete and separable metric space (Si × Xi , dSi×Xi ) where
dSi×Xi ((si , xi ), (s

′
i , x

′
i )) = 1

2 max{|si − s′
i |, |xi − x ′

i |}.12 To show that Mi is com-
pact it suffices to show that it is relatively compact and that it is closed. We show

12 The factor of 1/2 here is not necessary, but it is useful in the proof of Lemma 5, so we adopt it here for
consistency.
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thatMi is relatively compact; to verify thatMi is also closed is straightforward and
only requires the tedious steps of showing that convergent sequences of strategies
converge to limits which satisfy the key properties of Definition 1. Given any η > 0,
pick any compact interval T ⊂ Si such that φ(T ) > 1 − η. Define Zi ⊂ Si × Xi by
Zi := {(si , xi ) : xi ∈ Ai (si ) and si ∈ T }. Now Zi is compact as a consequence of
Assumption 1, and it satisfies μi (Zi ) = φ(T ) > 1 − η. Hence, Mi is tight and by
Prokhorov’s theorem,13 it is relatively compact. Together with closedness, we con-
clude that Mi is compact. �

Before proving Lemma 2, we first state and prove Lemmas 5 and 6 (in the context
of the baseline model of Sect. 3); this does not involve any circularity.

Lemma 5 For all i ∈ I and all strategies μi ∈ Mi , the map θ �→ μθ
i from R to Mi

is uniformly continuous.

Proof The result is trivial for uninformed players, sinceμθ
i is constant in θ . Hence, we

prove the result for informed players. We first specify a few preliminaries. We recall
the space Si ×Xi is metrized by dSi×Xi defined in the proof of Lemma 1. For any subset
Y ⊆ Si × Xi and η > 0, let Y η := ⋃

z∈Y Nη(z), the union of all η-neighborhoods
(under the metric dSi×Xi ) centered at points in Y . It follows from these definitions
that for any η ∈ R (possibly negative), Y + η ⊆ Y |η|, where by our notational
convention Y +η denotes the translation of the set Y by η (with respect to the standard
metric on R) in all dimensions. The space of measures on Si × Xi is metrized by the
Prokhorov metric, dP,i (μi , μ̂i ) := inf{η > 0 : μi (Y ) ≤ μ̂i (Y η) + η and μ̂i (Y ) ≤
μi (Y η) + η for all Y ⊆ Si × Xi }. Define a measure χ(μi , θ, θ ′) on Si × Xi by
χ(μi , θ, θ ′)(Y ) := μθ

i (Y − (θ ′ − θ)), which differs from μθ ′
i only in its marginal

distribution over Si . Define Y (si ) := {xi ∈ Xi : (si , xi ) ∈ Y }.
To establish uniform continuity, we first show that for all η > 0, if |θ − θ ′| < η,

then dP,i (μ
θ
i , χ(μi , θ, θ ′)) < η. For Y ⊆ Si × Xi , we have

μθ
i (Y ) = χ(μi , θ, θ ′)(Y + θ ′ − θ) ≤ χ(μi , θ, θ ′)(Y |θ ′−θ |) < χ(μi , θ, θ ′)(Y η) + η,

and by a symmetric argument χ(μi , θ, θ ′)(Y ) < μθ
i (Y

η) + η. By the definition of
dP,i , dP,i (μ

θ
i , χ(μi , θ, θ ′)) < η.

Next, we show that for sufficiently small |θ ′ −θ |, dP,i (χ(μi , θ, θ ′), μθ ′
i ) < 3η. We

have

|μθ ′
i (Y ) − χ(μi , θ, θ ′)(Y )| ≤

∫

si∈Si
μθ ′
i (Y (si )|si )|g(si ) − g(si − (θ ′ − θ))|dsi

≤
∫

si∈Si
|g(si ) − g(si − (θ ′ − θ))|dsi ,

The last expression is less than 3η for sufficiently small |θ ′ − θ |. To see this, choose
[si , si ] such that

∫
Si\[si−1,si+1] g(si )dsi < η; hence

∫
Si\[si ,si ] g(si − β)dsi < η for all

13 See, Billingsley (2009, Theorem 5.1).
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β ∈ [−1, 1], so by the triangle inequality
∫
Si\[si ,si ] |g(si ) − g(si − (θ ′ − θ))|dsi <

2η whenever |θ ′ − θ | < 1. And by the bounded convergence theorem, the integral
over [si , si ] is less than η for sufficiently small |θ ′ − θ |. Summing these yields the
bound 3η for the integral over Si , and by the definition of the Prokhorov metric,
dP,i (χ(μi , θ, θ ′), μθ ′

i ) < 3η. By another application of the triangle inequality, for

sufficiently small |θ ′ − θ |, dP,i (μ
θ
i , μ

θ ′
i ) < 4η, giving us uniform continuity. �

Lemma 6 For all i ∈ I, ui (μ, θ) is uniformly continuous in μ j for each j ∈ I, and
in θ .

Proof To establish that ui (μ, θ) is continuous in eachμ j , for all strategy profilesμ and
all θ , define μ̃ is the product measure over Z := (×i∈IXi )× S induced by the strategy
profile μ, modified so that the marginal distribution over Si has density fi (si − θ).
We can then write u(μ, θ) = ∫

(a,s)∈Z ui (a, θ)dμ̃(a, s). Let ε > 0 and μ ∈ M be

arbitrary. Fix any compact set S ⊆ R
|I inf| of the form S = ×i∈I inf [si , si ] large enough

so that
∫
ŝ /∈S supa∈A(ŝ+θ) |u(ai , a−i , θ)|dF(ŝ) < ε, where we have used Assumption 2.

Let Z := (×i∈IXi ) × S, which is compact and has zero-measure boundary under μ̃.
Suppose a sequence (μn)n∈N converges to μ; then μ̃n → μ̃, and thus for sufficiently
large N , for all n ≥ N ,

|
∫

(a,s)∈Z
ui (a, θ)dμ̃n(a, s) −

∫

(a,s)∈Z
ui (a, θ)dμ̃(a, s)|

≤ |
∫

(a,s)∈Z
ui (a, θ)dμ̃n(a, s) −

∫

(a,s)∈Z
ui (a, θ)dμ̃(a, s)|

+ |
∫

(a,s)∈Z\Z
ui (a, θ)dμ̃n(a, s)| + |

∫

(a,s)∈Z\Z
ui (a, θ)dμ̃(a, s)|

< 3ε.

Hence ui (μ, θ) is continuous in eachμ j , and since theμ j lie in a compact domain,
this continuity is uniform. Next, since ui (μ, θ) = ui (μ−θ , 0) and by Lemma 5 each
μ−θ

j term is uniformly continuous in θ , we have uniform continuity in θ . �
Proof of Lemma 2 For the “only if” direction, note that by the definition of a limit,
limθ→+∞ μθ

i = limθ→−∞ μθ
i = μ∗

i implies that for all η > 0, there exists
M > 0 such that for all θ ≤ −M and all θ ≥ M , dP,i (μ

θ
i , μ

∗
i ) < η. Hence

{θ : dP,i (μ
θ
i , μ

∗
i ) ≥ η} ⊆ [−M, M] and thus λ

({θ : dP,i (μ
θ
i , μ

∗
i ) ≥ η}) < ∞. For

the “if” direction, we prove the contrapositive. Suppose that some arbitrary strategyμ∗
i

is not a limit strategy forμi . Then given anyη > 0, it is possible to construct a sequence
(θ j ) j∈N such that (i) for all j, k ∈ N with j 
= k, |θ j − θk | > 1 and (ii) for all j ∈ N,

dP,i (μ
θ j
i , μ∗

i ) ≥ 2η. Since themap θ �→ μθ
i is uniformly continuous (Lemma 5), there

exists δ > 0 such that whenever |θ − θ ′| < δ, dP,i (μ
θ
i , μ

θ ′
i ) < η. It follows that for all

k ∈ N and all θ ′ ∈ (θk −δ, θk +δ), dP,i (μ
θ ′
i , μ∗

i ) ≥ dP,i (μ
θk , μ∗

i )−dP,i (μ
θk
i , μθ ′

i ) >

2η − η = η. Hence
⋃

k∈N(θk − δ, θk + δ) ⊆ {θ : dP,i (μ
θ
i , μ

∗
i ) ≥ η}, and since

λ
(⋃

k∈N(θk − δ, θk + δ)
) = ∞, we have λ

({θ : dP,i (μ
θ
i , μ

∗
i ) ≥ η}) = ∞, conclud-

ing the proof of the contrapositive. �

123



On defining ex ante payoffs in games with diffuse prior 467

For the proof of the main result, we make use of a weaker property than that of
Definition 3.

Lemma 7 For any i ∈ I and strategy μi ∈ Mi , there exists μ∗
i ∈ Mi with the

property that for all η > 0,
λ

({θ ∈ R : dP,i (μ
θ
i , μ

∗
i ) < η}) = ∞, where λ denotes the Lebesgue measure and

dP,i denotes the Prokhorov distance defined on Mi . We say that any such μ∗
i is an

attraction for μi .

Proof We prove a more general result. Let (C, d) be a compact metric space, B ⊆ R

with λ(B) = ∞, and π : B → C a Lebesgue measurable function. We show there
exists c ∈ C with the property that for all η > 0, λ ({b ∈ B : d(π(b), c) < η}) =
∞. Suppose on the contrary that for each c ∈ C , there exists ηc > 0 such
that λ ({b ∈ B : d(π(b), c) < ηc}) < ∞. The collection {Nηc (c) : c ∈ C} is
an open covering of C , and by compactness, it has a finite subcovering denoted
{Nηi (ci )}ni=1 for some n ∈ N. It follows that B ⊆ ∪n

i=1π
−1(Nηi (ci )) and thus

λ(B) ≤ ∑n
i=1 λ

(
π−1(Nηi (ci ))

)
< ∞, a contradiction. Thus there exists c such

that the property holds. To conclude, note that this result specializes to the lemma
statement by setting C = Mi , d = dP,i , B = Θ = R and π to be the map θ �→ μθ

i ;
given the existence of c as above, we set μ∗

i = c. �
Lemma 7 says that every strategy has at least one attraction. Note that the example

immediately following Definition 3 has two attractions, κ0 and κ1, but as shown in
that example, it is not nearly stationary.

Proof of Theorem 1 We begin with sufficiency.
Sufficiency: Let M∗

i be the class of nearly stationary strategies for each player i ,
and consider any profile (μ1, μ2, . . . , μN ) of such strategies.

By definition, for each μi ∈ M∗
i , there exists a strategy μ∗

i such that μ∗
i is a limit

strategy for μi ; by Lemma 3, this μ∗
i is stationary and by Lemma 2, for all η > 0,

λ
({θ : dP,i (μ

θ
i , μ

∗
i ) ≥ η}) < ∞. (7)

Next, for all η > 0, define Θ≥η = {θ ∈ R : maxi∈I dP,i (μ
θ
i , μ

∗
i ) ≥ η}, which has

finite measure by (7) and the fact that there are finitely many players. Let Pn be any
diffusing sequence. For all n, by definition of the recentering function,

∫

θ∈R
ui (μi , μ−i , θ) dPn(θ) =

∫

θ∈R
ui (μ

−θ
i , μ−θ

−i , 0) dPn(θ). (8)

We can write the RHS of (8) as

∫

θ∈Θ≥η

ui (μ
−θ
i , μ−θ

−i , 0) dPn(θ) +
∫

θ∈R\Θ≥η

ui (μ
−θ
i , μ−θ

−i , 0) dPn(θ). (9)

In the first term of (9), by Assumption 2, the integrand ui (μ
−θ
i , μ−θ

−i , 0) is bounded
in absolute value by some quantity, call it M . For the second term of (9), note that by
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uniform continuity of ex interim payoffs, for any ε > 0, there exists η > 0 such that
for any profile of strategies (μ̃1, μ̃2, . . . , μ̃N ), if dP,i (μ̃i , μ

∗
i ) < η for all i ∈ I, then

|ui (μ̃i , μ̃−i , 0) − ui (μ
∗
i , μ

∗−i , 0)| < ε.

Define u∗
i := ui (μ∗

i , μ
∗−i , 0) and note that by the definition of Θ≥η, for θ ∈ R \ Θ≥η

we have maxi∈I dP,i (μ
θ
i , μ

∗
i ) < η and thus |ui (μ−θ

i , μ−θ
−i , 0) − ui (μ∗

i , μ
∗−i , 0)| < ε.

Putting these together,

∣∣∣∣
∫

θ∈R
ui (μi , μ−i , θ) dPn(θ) − u∗

i

∣∣∣∣ ≤
∫

θ∈Θ≥η

|ui (μ−θ
i , μ−θ

−i , 0) − u∗
i | dPn(θ)

+
∫

θ∈R\Θ≥η

|ui (μ−θ
i , μ−θ

−i , 0) − u∗
i | dPn(θ)

≤Pn(Θ≥η)(M + |u∗
i |) + ε · Pn(R \ Θ≥η)

≤Pn(Θ≥η)(M + |u∗
i |) + ε. (10)

Since Θ≥η has finite Lebesgue measure, by Lemma 4 there exists K such that for
n ≥ K , Pn(Θ≥η) < ε

M+|u∗
i | , and thus the RHS of (10) is less than 2ε. Since ε is

arbitrary, we have shown that
limn→∞

∫
θ∈R ui (μi , μ−i , θ) dPn(θ) = u∗

i , so by definition, the class of nearly sta-
tionary strategies is admissible.

Necessity: We prove by contradiction that every strategy μi ∈ M0
i is nearly sta-

tionary. Since strategies for uninformed players are stationary (and nearly stationary),
assume i is an informed player. Suppose toward a contradiction that μi ∈ M0

i but μi

is not nearly stationary. By Lemma 7, there exists an attraction μ∗
i ∈ Mi for μi .

Next, given the existence of an attractionμ∗
i ,we establish uniqueness. Suppose there

also exists an attraction μ̂i ∈ Mi for μi with μ̂i 
= μ∗
i . We show that there exists a

profile of stationary strategies of the rivals such that if player i plays μi , there is not a
well-defined expected payoff in the limit. By irreducibility of payoffs (Assumption 3),
there exists a state θ0 ∈ R and a profile μ−i of stationary rival strategies such that
u(μ∗

i , μ−i , θ0) 
= u(μ̂i , μ−i , θ0). We show that this contradicts admissibility.
Note that by Lemma 6, for any ε > 0, there exists η > 0 such that if dP,i (μ

θ
i , μ

∗
i ) <

η, then

ε > |ui (μθ
i , μ−i , θ0) − ui (μ

∗
i , μ−i , θ0)|. (11)

An analogous statement holds for μ̂i , so let us redefine η so that for μ̃i ∈ {μ∗
i , μ̂i },

dP,i (μ
θ
i , μ̃i ) < η implies |ui (μθ

i , μ−i , θ0) − ui (μ̃i , μ−i , θ0)| < ε.
Recall that by admissibility, there is some u∗

i such that limn→∞
∫
ui (μi , μ−i , θ)d

Pn(θ) = u∗
i for all diffusing sequences (Pn). For the contradiction, we construct two

sequence of measures (P1
n) and (P2

n) along which the limits
limn→∞

∫
ui (μi , μ−i , θ)dP1

n(θ) and limn→∞
∫
ui (μi , μ−i , θ)dP2

n(θ) differ. Let
v∗ = ui (μ∗

i , μ−i , θ0) and v̂ = ui (μ̂i , μ−i , θ0), and recall from above that v∗ 
= v̂.

Sinceμ∗
i is an attraction forμi and λ

(
{θ : dP,i (μ

θ0−θ
i , μ∗

i ) < η}
)

= ∞, for each n ∈
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N, there exists C1
n ⊂ {θ : dP,i (μ

θ0−θ
i , μ∗

i ) < η} \ [−n, n] with λ(C1
n) = 2n2. Define

B1
n := [−n, n] ∪ C1

n , and define P1
n(θ) := 1B1

n
(θ)/λ(B1

n ). By construction, (P1
n)n∈N

is a diffusing sequence of measures, and by the assumption that μi is admissible, we
must have limn→∞

∫
ui (μi , μ−i , θ)dP1

n = u∗
i . Pick any C > |v∗| such that C is an

upper bound, over all θ , on the magnitude of ui (μi , μ−i , θ) = ui (μ
θ0−θ
i , μ−i , θ0).14

We have

∣∣∣∣
∫

θ∈R
ui (μi , μ−i , θ)dP1

n(θ) − v∗
∣∣∣∣ =

∣∣∣∣
∫

θ∈R
ui (μ

θ0−θ
i , μ−i , θ0)dP

1
n(θ) − v∗

∣∣∣∣

≤
∫

θ∈R

∣∣∣ui (μθ0−θ
i , μ−i , θ0) − v∗

∣∣∣ dP1
n(θ)

=
∫

θ∈B1
n

∣∣∣ui (μθ0−θ
i , μ−i , θ0) − v∗

∣∣∣ dP1
n(θ)

=
∫

θ∈C1
n

∣∣∣ui (μθ0−θ
i , μ−i , θ0) − v∗

∣∣∣ dP1
n(θ)

+
∫

θ∈[−n,n]

∣∣∣ui (μθ0−θ
i , μ−i , θ0) − v∗

∣∣∣ dP1
n(θ)

≤ε · 2n2 + 2C · 2n
2n2 + 2n

→ ε,

where the final inequality uses (i) that, by the earlier construction, θ ∈ C1
n implies

dP,i (μ
θ0−θ
i , μ∗

i ) < η which implies |ui (μθ0−θ
i , μ−i , θ0)− v∗| < ε and (ii) that for all

θ , C > max{|v∗|, |ui (μθ0−θ
i , μ−i , θ0)|}. It follows that u∗

i ∈ [v∗ − ε, v∗ + ε].
Likewise, μ̂i is an attraction, so λ

(
{θ : dP,i (μ

θ0−θ
i , μ̂i ) < η}

)
= ∞, and choose

C2
n ⊂ {θ : dP,i (μ

θ0−θ
i , μ̂i ) < η}\[−n, n]withλ(C2

n ) = 2n2, B2
n := [−n, n]∪C2

n , and

P
2
n(θ) := 1B2

n
(θ)/λ(B2

n ), such that | ∫ ui (μi , μ−i , θ)dP2
n − v̂| ≤ ε·2n2+2C ·2n

2n2+2n
→ ε,

and thus u∗
i ∈ [v̂ − ε, v̂ + ε]. Since η is arbitrary, we choose ε <

|v∗−v̂|
2 and obtain

a contradiction of the fact that v∗ 
= v̂. Hence we conclude that there is a unique
attraction μ∗

i .
We now prove that μ∗

i is a limit strategy for μi in the sense of Definition 3. We
derive a contradiction by showing that otherwise, the uniqueness result abovewould be
violated. Suppose bywayof contradiction thatμ∗

i is not a limit strategyofμi , andhence
by Lemma 2, for some η > 0, λ(Θ≥η) = ∞ where Θ≥η := {θ : dP,i (μ

θ
i , μ

∗
i ) ≥ η}.

Let Q := {μ̃i ∈ Mi : ∃θ ∈ Θ≥η s.t. μ̃i = μθ
i }. By (the more general result shown

in the proof of) Lemma 7, there exists an attraction μ̂i ∈ Q for μi . By construction,
μ̂i 
= μ∗

i . This contradicts the uniqueness of the attraction μ∗
i as argued previously,

so μ∗
i must be a limit strategy for μi , as desired.

Finally,μ∗
i is stationary byLemma3, andμi is nearly stationary. Payoff equivalence

between μi and μ∗
i follows from a straightforward argument similar to the one given

for the sufficiency part of the proof. �
14 Here we have used that μθ0−θ

−i = μ−i by the stationarity of μ−i .
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Proof of Theorem 2 For sufficiency, consider any profile of nearly stationary strategies
μ ∈ M. Lemma 3 applies, and hence there exists a unique profile of stationary
strategies (μ∗

1, μ
∗
2, . . . , μ

∗
N ) such thatμ∗

i is a limit strategy ofμi for each i ∈ I. Since
M is closed, μ∗ ∈ M. By continuity of each ui in strategies, as θ → ±∞, we have
ui (μ, θ) = ui (μ−θ , 0) → u∗

i := ui (μ∗, 0). Now for any ε > 0, choose θ, θ ∈ R

with θ < θ such that θ /∈ [θ, θ ] �⇒ |ui (μ−θ , 0) − u∗
i | < ε for all i ∈ I. For any

diffusing sequence, Pn([θ, θ ]) → 0. Since ui (·, 0) is bounded in magnitude by some
M , the rest of the argument for sufficiency in the proof of Theorem 1 applies.

For necessity, suppose that there exists i ∈ I and μi ∈ M0
i such that μi is not

nearly stationary. Note that by Assumption 4, an extension of the arguments used in
the proof of Lemma 1 shows that each space of measures satisfying Definition 7 is
compact, and since eachMi is a closed subspace, eachMi is also compact. Hence, for
each i there exists an attraction μ∗

i ∈ Mi in the sense of Lemma 7. If μi is not nearly
stationary, then by definition μ∗

i is not a limit strategy. Hence, there exists η > 0 such
that the set Θ≥η := {θ ∈ R : dp,i (μθ

i , μ
∗
i ) ≥ η} satisfies λ(Θ≥η) = ∞. Since the set

Mi,≥η := {μ̃i ∈ Mi : dp,i (μ̃i , μ
∗
i ) ≥ η} is a closed subspace of Mi , it is compact,

and there exists an attraction μ̂i ∈ Mi,≥η for μi . Since μ∗
i /∈ Mi,≥η by construction,

μ∗
i 
= μ̂i . Hence, there exists θ0 ∈ R and a profile of stationary strategies μ−i ∈ M0−i

for the remaining players such that v∗ := ui (μ∗
i , μ−i , θ0) 
= v̂ := ui (μ̂i , μ−i , θ0).

Now choose any ε > 0 such that ε < |v∗ − v̂|/2. Since payoffs are continuous
in strategies, and the space Mi is compact, this continuity is uniform, so we can
choose η′ > 0 sufficiently small that for μ̃i ∈ {μ∗

i , μ̂i }, dP,i (μ
θ
i , μ̃i ) < η′ implies

|ui (μθ
i , μ−i , θ0)−ui (μ̃i , μ−i , θ0)| < ε. Then, by the same construction as in the proof

of Theorem 1, there exist two diffusing sequences (P1
n) and (P2

n) along which ex ante
payoffs for player i from playing μi against μ−i converge to limits in (v∗ − ε, v∗ + ε)

and (v̂ − ε, v̂ + ε), respectively. As these are disjoint intervals, the limits are distinct,
and hence μi is not part of an admissible class. �
Proof of Proposition 1 Stationarity of signals and payoffs is immediate from the defini-
tion of the game, as is compactness (Assumption 4), and finiteness of payoffs follows
from the quadratic payoff structurewith normally distributed signals. For concreteness,
let the marginal G in the senders’ strategies be simply N (0, σ 2), the distribution of
signals conditional on θ = 0. Suppose the classM satisfies parts (i)–(iv) of Assump-
tion 5; we establish irreducibility. Irreducibility for the principal is straightforward,
since for two distinct principal strategies, one can marginally adjust one or both of
the sender strategies and change the principal’s payoffs under those two strategies by
different amounts. We show irreducibility for sender 1, which by symmetry implies
irreducibility for sender 2. Suppose the principal always chooses the lower offer:
given offers a1 and a2, she chooses C(a1, a2) = argmin{a1, a2}. Consider two dis-
tinct strategies of expert 1, μ1 and μ̂1. We consider only b1 = 0; similar arguments
apply for any b1. We show that there exists a constant markup strategy κm for player 2
such that u1(μ1, κm,C, 0) 
= u1(μ̂1, κm,C, 0). By the definition of payoffs and sig-
nals in the model, u1(μ1, κm,C, 0) = − ∫

R2(min{a1, s2 + m})2(Q ⊗ Φ)(d(a1, s2)),
where Q is the CDF over player 1’s action induced by the strategy μ1, defined by
Q(x) = μ1({a1 : a1 ≤ x}), and where Φ is the CDF of N (0, σ 2). Define Q̂(x) for
μ̂1 likewise. Next, we show that we can differentiate w.r.t.m under the integral. Write
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a := (a1, s2), r(a,m) := (min{a1, s2 + m})2, and ν = Q ⊗ Φ. Note that for all
a ∈ R

2, r(a,m) is absolutely continuous in m on bounded intervals. We have

a(m) :=
∫

R2
r(a,m)ν(da) (12)

=
∫

R2

[
r(a,m0) +

∫ m

m0

rm(a, z)dz
]

ν(da) (13)

=
∫

R2
r(a,m0)ν(da) +

∫ m

m0

∫

R2
rm(a, z)ν(da)dz (14)

�⇒ a′(m) :=
∫

R2
rm(a,m)ν(da) a.e. m, (15)

where m0 < m can be chosen arbitrarily. To obtain (13) we have used the fact that
absolutely continuous functions are the integral of their derivatives.15 Fubini’s the-
orem is used to obtain (14). Differentiability-a.e. of the integral yields (15).16 By
the same arguments, we obtain a′′(m) = ∫

rmm(a,m)ν(da) = 2
∫
{a:a1>s2+m} ν(da)

a.e. m. Applying this to ν = Q ⊗ F2 and ν̂ = Q̂ ⊗ F2, it follows that
if u1(μ1, κm,C, 0) = u1(μ̂1, κm,C, 0) for all m ∈ R, then

∫
{a:a1>s2+m}(Q ⊗

F2)(d(a1, s2)) = ∫
{a:a1>s2+m}(Q̂ ⊗ F2)(d(a1, s2)) a.e. m. Rearranging, we have

∫

S2
(1 − Q(s2 + m)) f2(s2)ds2 =

∫

S2
(1 − Q̂(s2 + m)) f2(s2)ds2

�⇒ 0 =
∫

S2
(Q(m − s2) − Q̂(m − s2)) f2(s2)ds2, (16)

by the evenness of the normal distribution, where f2 is the PDF of N (0, σ 2), the noise
distribution for player 2. Letting K := Q − Q̂, (16) is a convolution equation:

[K ∗ f2](m) = 0 a.e. m.

Let F denote the normalized Fourier transform, F(g)(z) := ∫ ∞
−∞ e−2π i zx g(x)dx .

Both K and f2 are Lebesgue integrable functions, and thus by the convolution theo-
rem,17 F(K ∗ f2) = F(K ) · F( f2). But since K ∗ f2 ≡ 0, F(K ∗ f2) ≡ 0. Since
F( f2)(z) = e−2(πσ z)2 > 0 for all z, we must have F(K ) ≡ 0. Applying the inverse
Fourier transform,we have K = 0 almost everywhere. This contradicts the assumption
Q 
= Q̂, so it must be that u1(μ1, κm,C, 0) 
= u1(μ̂1, κm,C, 0) for some m.

�
15 See Royden and Fitzpatrick (1988, Corollary 5.15).
16 See Corollary 5.15 (1988, Theorem 5.10).
17 See Reed and Simon (1980, Theorem IX.3b).
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