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Abstract
I provide new results on how risk preferences affect optimal prevention. I identify a
comparative risk aversion and a comparative downside risk aversion effect and high-
light those cases where both effects are aligned. Alignment depends on a probability
threshold, which, in turn, only depends on the preferences of the benchmark agent.
This allows to define an entire class of decision-makers who all share the same com-
parative static prediction relative to the reference agent. I relatemy findings to different
intensity measures of downside risk aversion and apply them to parametric preference
changes and specific classes of utility functions.

Keywords Risk aversion · Downside risk aversion · Prevention · Self-protection

JEL Classification D61 · D81

1 Introduction

The old adage “better safe than sorry” captures the common wisdom that there is
value in preventing adverse outcomes. Prevention opportunities arise in a variety of
contexts including for individuals and households, corporate risk management and
at the societal level. Individuals may decide to undergo regular checkups to increase
their chances of detecting illnesses early, which in many cases improves treatment
outcomes. Households may decide to install burglar alarm and surveillance systems
to reduce the probability of illegal entry. Businesses can invest in workplace safety
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trainings to reduce the frequency of accidents. Society’s efforts to mitigate climate
change lower the probability of catastrophic consequences.1

Almost 50 years ago, Ehrlich and Becker (1972) presented the first formal model
of prevention and called it “self-protection.” The basic trade-off is that prevention
involves an upfront investment at the benefit of lowering the probability of a bad
outcome. One may conjecture that risk aversion stimulates the demand for prevention
in the sense thatmore risk-averse agents should exertmore effort.Using a simplemodel
of prevention, Dionne and Eeckhoudt (1985) found that this is not necessarily true
because an increase in risk aversion à la Pratt (1964) may well lead to less prevention,
not more. This negative result has puzzled economists for decades and has produced a
series of contributions to identify comparability conditions that allow for unambiguous
comparative statics (see Sect. 7 for some literature).

In this paper, I revisit the question how risk preferences determine optimal pre-
vention. I extend Eeckhoudt and Gollier’s (2005) approach to benchmark agents who
are not necessarily risk-neutral. To do this, I rewrite the problem in terms of a risk-
neutral probability distribution,which removes the endogeneity associatedwith Jullien
et al.’s (1999) threshold result. Comparative risk aversion and comparative downside
risk aversion may have conflicting effects on optimal prevention. I discuss those cases
where effects are aligend and show how to adapt Dionne and Li’s (2011) approach
to sign some of the indeterminate cases. The findings motivate the consideration of
parametric preference changes, for which more specific results are obtained.2 I also
compare my results against alternative measures of downside risk aversion (see Chiu
2005b;Huang and Stapleton 2014;Modica and Scarsini 2005;Keenan and Snow2012,
2009) and discuss parametric classes of utility functions for illustration.

The paper is organized as follows. I introduce the standard prevention model with
a binary risk in the next section. Section three revisits Eeckhoudt and Gollier’s (2005)
result for a risk-neutral benchmark agent. In the fourth section, I extend their result to
arbitrary benchmark agents and use Dionne and Li’s (2011) approach to resolve some
of the indeterminate cases. Section five interprets the results in terms of alternative
measures of downside risk aversion and section six applies the results to parametric
classes of utility functions. I summarize related literature in section seven and offer
concluding thoughts in the last section.

2 Model and notation

I consider an agent with initial wealth w0, who faces the risk of losing an amount
L < w0. She can engage in prevention, also called self-protection, to mitigate this
binary loss risk. Investing an amount e ≥ 0 decreases the probability of loss from p(0)
to p(e). The agent’s final wealth in the bad state is then given by w0 − e − L and final

1 Chiu (2000) provides additional examples of prevention and points out some links between the prevention
problem, incentive contracting and the contesting literature.
2 Parametric preference changes are a “happy medium” between Pratt’s (1964) approach, which is fully
nonparametric, and specific classes of utility functions that measure risk aversion with a single parameter,
which is fully parametric. If only the transformation function is parametric, it may still be applied to any
(nonparametric) utility function of a benchmark agent.
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wealth in the good state by w0 − e. Consumption cannot be negative, which restricts
effort byw0− L , and obviously the agent would never spend more than L because this
would make her worse off compared to inaction. Therefore, I set e � min{w0 − L , L}
as the upper bound on the level of prevention. The collection of relevant prevention
technologies is then given by

P � {p : [0, e] → [0, 1], p decreasing}.

Throughout the paper, I assume that the agent’s preferences over consumption are
characterized by a strictly increasing vNM utility function of final wealth. I denote
the collection of relevant utility functions by

U � {u : [0, w0] → R, u increasing}.

For prevention technology p ∈ P and utility function u ∈ U , the agent maximizes the
following expected-utility objective:

max
e∈[0, e]U (e) � p(e)u(w0 − e − L) + (1 − p(e))u(w0 − e).

If p and u are continuous, then U is continuous as well and thus attains a maximum on
the compact interval [0, e]. I assume that U is concave in effort3 and focus on interior
solutions.4 In this case, the optimal level of effort, denoted by eu , is characterized by
the following first-order condition:

− p′(eu)[u(w0 − eu) − u(w0 − eu − L)]

− [
p(eu)u

′(w0 − eu − L) + (1 − p(eu))u
′(w0 − eu)

] � 0.
(1)

The first term represents the agent’s marginal utility benefit, and the second term her
marginal utility cost of prevention. For optimality, the marginal utility benefit and
the marginal utility cost of prevention must coincide so that there is no incentive to
deviate.

If v ∈ U represents the preferences of another agent, one may wonder whether
agent v exerts a higher or lower effort than agent u. If V denotes agent v’s objective
function and ev her optimal effort level, the first-order approach yields ev ≥ eu if and
only if V ′(eu) ≥ 0. I will derive conditions that facilitate the comparison of both effort
levels. Let

t : [u(0), u(w0)] → [v(0), v(w0)], u(w) �→ v(w)

3 Fagart and Fluet (2013) provide conditions on the primitives for the objective function to be concave in
effort. Their Proposition 2 shows thatU is concave in e if the utility function exhibits nonincreasing absolute
risk aversion and the cumulative distribution function of outcomes is log-convex. The latter is equivalent to
p being log-convex, which characterizes a decreasing rate of return on prevention (Courbage et al. 2017).
4 If no effort were optimal, any preference change can only lead to more effort, and if the maximum effort
was optimal, any preference change can only lead to less effort. Both cases are trivial for lack of trade-off.

123
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be the transformation function that maps utility levels under u onto utility levels under
v. Both u and v are strictly increasing, and therefore t is strictly increasing as well. I
will briefly revisit the risk-neutral benchmark case and then relax the assumption of
risk neutrality.

3 Risk-neutral benchmark

Assume that u is linear representing risk-neutral preferences. In this case, first-order
condition (1) simplifies to−p′(en)L−1 � 0, where en denotes the risk-neutral agent’s
optimal effort level. I denote by pn � p(en) the associated probability of loss. I can
take u to be the identity because any linear utility function represents risk-neutral
preferences. Then, t � v so that the transformation function coincides with the other
agent’s utility function. The following result holds.

Proposition 1 (Eeckhoudt and Gollier 2005) For p ∈ P , take the optimal effort level
of a risk-neutral agent as a benchmark.

(i) If pn � 1/2, all agents with linear marginal utility select the same effort.
(ii) If pn � 1/2, all prudent (imprudent) agents select a lower (higher) effort.
(iii) If pn ≥ 1/2 (pn ≤ 1/2), all risk-averse and prudent (imprudent) agents select

a lower (higher) effort.

For completeness, I provide a proof in Appendix A.1. Result (i) corresponds to
Proposition 1 in Eeckhoudt and Gollier (2005), result (ii) is their Proposition 2 and
result (iii) is their Corollary 1. Relative to a risk-neutral benchmark, prudence tends
to reduce optimal effort. While this may seem counterintuitive, the underlying reason
is related to a prudent individual’s precautionary motive. If the loss is sufficiently
likely, the prudent thing to do is to invest less in prevention because this increases
consumption in the bad state. Prevention does not reduce risk in the sense of Rothschild
and Stiglitz (1970); instead, it may raise the level of downside risk as was first pointed
out by Briys and Schlesinger (1990). Intuitively, if the loss happens, having invested
in prevention is unfortunate because all it did was to lower final wealth in the bad state.
This is undesirable for prudent individuals because they are downside risk-averse (see
Menezes et al. 1980).

4 Other benchmarks

Comparing effort choices against a risk-neutral benchmark is instructive for intuition
but also restrictive. This section presents the main results, which facilitate the com-
parison of effort choices against other benchmarks. For u ∈ U and p ∈ P , recall that
eu denotes agent u’s optimal effort level. Let pu � p(eu) be the associated probability
of loss and

p̂u � puu′(w0 − eu − L)

puu′(w0 − eu − L) + (1 − pu)u′(w0 − eu)
(2)
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Table 1 Proposition 2(iii):
p̂u ≥ 1/2

t ′′ < 0 t ′′ > 0

t ′′′ ≥ 0 ev ≤ eu indet.
t ′′′ ≤ 0 indet. ev ≥ eu

Table 2 Proposition 2(iv):
p̂u ≤ 1/2

t ′′ < 0 t ′′ > 0

t ′′′ ≥ 0 indet. ev ≤ eu

t ′′′ ≤ 0 ev ≥ eu indet.

the distorted probability of loss. The distortion factors, u′(w0 − eu − L)/[puu′(w0 −
eu − L) + (1 − pu)u′(w0 − eu)] for the bad state and u′(w0 − L)/[puu′(w0 − eu −
L) + (1 − pu)u′(w0 − eu)] for the good state represent a Radon-Nikodym derivative,
and the distorted probability distribution is analogous to the risk-neutral probability
distribution in asset pricing. The following result holds.

Proposition 2 For p ∈ P , take agent u’s optimal effort level as a benchmark and
denote by p̂u the corresponding risk-neutral probability of loss.

(i) If p̂u � 1/2, all agents with t ′′′ � 0 select the same effort.
(ii) If p̂u � 1/2, all agents with t ′′′ > 0 (t ′′′ < 0) select a lower (higher) effort.
(iii) If p̂u ≥ 1/2, all agents with t ′′ < 0 and t ′′′ > 0 (t ′′ > 0 and t ′′′ < 0) select a

lower (higher) effort.
(iv) If p̂u ≤ 1/2, all agents with t ′′ < 0 and t ′′′ < 0 (t ′′ > 0 and t ′′′ > 0) select a

higher (lower) effort.

I provide a proof in Appendix A.2. The structural similarity between Propositions 1
and 2 is apparent. For an arbitrary benchmark agent u who is not necessarily risk-
neutral, the distorted probability of loss p̂u plays the same role in Proposition 2 as
the risk-neutral agent’s probability of loss pn in Proposition 1, and the transformation
function t plays the same role in Proposition 2 as the other agent’s utility function
in Proposition 1. Indeed, Proposition 2 reduces to Proposition 1 if u is risk-neutral
because then p̂u � pu � pn and t coincides with the utility function of the other
agent. Tables 1 and 2 summarize the content of Proposition 2 in compact form. If one
of the inequalities involving p̂u or t ′′′ is strict, so is the inequality between the two
effort levels.5

The intuition behind Proposition 2 derives from the presence of two economic
effects.6 There is a comparative downside risk aversion effect, which is negative when
t ′′′ > 0 and positive when t ′′′ < 0. In addition, there is a comparative risk aversion

5 Chiu (2012) establishes a correspondence between an individual’s willingness to pay and her optimal
purchase of a stochastic improvement (see his Propositions 6 and 7). His results allow for an alternative
proof of the statements involving t ′′ < 0. My proof uncovers the analogy between Propositions 1 and 2 and
identifies the probability threshold explicitly.
6 To develop this intuition, one can analyze agent v’s marginal utility benefit and marginal utility cost at
agent u’s optimal effort level or by using a cubic Taylor series approximation of agent v’s expected utility.
See Peter (2019) for details.
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effect, which is jointly determined by the curvature of t and agent u’s distorted loss
probability. If p̂u ≥ 1/2, the comparative risk aversion effect is negative for t ′′ < 0
and positive for t ′′ > 0. If p̂u ≤ 1/2 instead, the comparative risk aversion effect is
positive for t ′′ < 0 and negative for t ′′ > 0. This is why there is alignment between the
two effects for the combinations on the diagonal in Table 1 and for the combinations
off the diagonal in Table 2. If the two effects point in opposite directions, the ordering
between ev and eu remains inconclusive.

Proposition 4 in Jullien et al. (1999) states that an increase in risk aversion leads to
more effort if and only if pu is below an endogenous threshold. Proposition 2 in this
paper also involves a probability threshold, and one may wonder about the difference
between the two results. In Proposition 2, the threshold only depends on the benchmark
agent u and not on the other agent. In Jullien et al. (1999), the endogenous threshold
depends on both utility functions.7 In other words, while one increase in risk aversion
may produce an endogenous threshold above agent u’s loss probability, leading to
more effort, a different increase in risk aversionmay produce an endogenous threshold
below agent u’s loss probability, thus implying less effort. Their result does not allow
to define a class of agents who all exhibit the same behavior relative to agent u, and it
is necessary to carry out a case-by-case analysis. Proposition 2 solves this problem at
the expense of a restriction on the sign of t ′′′.

While the comparison of p̂u with 1/2 does not require knowledge of the other agent’s
preferences, it does involve the benchmark agent’s marginal utilities. It follows easily
from the definition of p̂u in Eq. (2) that risk aversion of agent u implies p̂u > pu

because u′(w0 − eu) < u′(w0 − eu − L). Hence, Proposition 2(iii) has the following
corollary, see also Lee and Wong (2019).

Corollary 1 Assuming risk aversion, if pu ≥ 1/2, all agents with t ′′ < 0 and t ′′′ > 0
(t ′′ > 0 and t ′′′ < 0) select a lower (higher) effort.

Another corollary can be obtained by focusing on specific transformation functions.

Definition 1 The change in preferences from agent u to agent v is quadratic if t ′′′ � 0.
Specifically, t ′ > 0, t ′′ < 0 and t ′′′ � 0 represents a quadratic increase in risk aversion
while t ′ > 0, t ′′ > 0 and t ′′′ � 0 represents a quadratic decrease in risk aversion.

To characterize quadratic changes in risk aversion, let u ∈ U be a benchmark agent
with utility levels ranging from u(0) to u(w0). Then, any quadratic change in risk
aversion takes the form t(u) � u − αu2 with α < 1/2u(w0) to ensure positive mono-
tonicity. If α > 0, it is a quadratic increase in risk aversion, if α < 0, it is a quadratic
decrease in risk aversion.8 While the assumption of p̂u � 1/2 in Proposition 2(i) and
(ii) mutes the comparative risk aversion effect, t ′′′ � 0 mutes the comparative down-
side risk aversion effect (see Keenan and Snow 2009). This provides the following
result (see Appendix A.3 for a proof).

7 The fact that their probability threshold is a complex function of both agents’ preferences is particularly
evident from their approximation for small losses on page 25. Their threshold is endogenous to the change
in risk preferences.
8 In this case, the transformed utility function may no longer be risk-averse if α is negative enough. Even
in those cases, the first-order approach may remain valid, see Jindapon (2013).
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Corollary 2 For p ∈ P and u ∈ U , take agent u’s optimal effort level as a benchmark
and let p̂u be the corresponding risk-neutral probability of loss.

(i) If p̂u ≥ 1/2, all agents who are quadratically more (less) risk-averse than agent
u reduce (increase) effort.

(ii) If p̂u ≤ 1/2, all agents who are quadratically more (less) risk-averse than agent
u increase (reduce) effort.

For a general transformation function, several combinations of signs for t ′′ and
t ′′′ do not admit a clear ranking between effort levels due to conflicting effects. The
following concept will help resolve some of the indeterminate cases.

Definition 2 The relative curvature measure is given by C(u) �
∣∣∣ u·t ′′′(u)

t ′′(u)

∣∣∣.

This definition is akin to the notion of relative prudence in utility theory (Kimball
1990). The relative curvature measure compares the curvature of t and the curvature
of t ′. It can be equivalently defined as the elasticity of t ′′(u). I take the absolute value
to ensure that C is nonnegative. When applied to those combinations in Tables 1 and 2
where the sign is indeterminate, I obtain the following result (see Appendix A.4 for a
proof).

Proposition 3 For p ∈ P , take agent u’s optimal effort level as a benchmark and
denote by p̂u the corresponding risk-neutral probability of loss. Furthermore, ug and
ub are shorthand for agent u’s utility in the good state and the bad state, respectively.

(i) For p̂u ≥ 1/2,any agent with t ′′ > 0, t ′′′ > 0 (t ′′ < 0, t ′′′ < 0)and C(u) ≤ 2 p̂u−1
1− p̂u

for all u ∈ [ub, ug] selects a higher (lower) effort.

(ii) For p̂u ≤ 1/2,any agent with t ′′ < 0, t ′′′ > 0 (t ′′ > 0, t ′′′ < 0)and C(u) ≤ 1−2 p̂u
1− p̂u

for all u ∈ [ub, ug] selects a higher (lower) effort.

To apply this result, take the upper right cell in Table 1 as an example. The effect of
the preference change on effort is inconclusive here because the comparative downside
risk aversion effect is negative while the comparative risk aversion effect is positive.
The upper bound on the relative curvature measure ensures that the comparative risk
aversion effect dominates the comparative downside risk aversion effect, resulting in
higher effort. Likewise, the lower left cell in Table 1 is indeterminate because the
comparative downside risk aversion effect is positive, whereas the comparative risk
aversion effect is negative. Again, the upper bound on the relative curvature measure
ensures that the comparative risk aversion effect predominates, resulting in a negative
net effect. Proposition 3(i) helps sign some of the indeterminate cases in Table 1 and
Proposition 3(ii) does the same for some indeterminate cases in Table 2.

Proposition 3(i) has a corollary involving only the benchmark agent’s probability
of loss but not her marginal utilities. The proof follows from p̂u > pu , which holds
by risk aversion.

Corollary 3 Assuming risk aversion, if pu ≥ 1/2, any agent with t ′′ > (<) 0, t ′′′ >

(<) 0 and C(u) ≤ 2pu−1
1−pu

for all u ∈ [ub, ug] selects a higher (lower) effort.
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To provide a specific application, I introduce the class of iso-elastic preference
changes.

Definition 3 For γ , η > 0, the change in preferences from agent u to agent v is
iso-elastic if the associated transformation function t has the following shape:

t(u) �

⎧
⎪⎨

⎪⎩

[
(1 − γ ) · u

] 1−η
1−γ /(1 − η), γ 	� 1, η 	� 1

ln
[
(1 − γ ) · u

] 1
1−γ , γ 	� 1, η � 1

u, γ � 1, η � 1.

(3)

For t in Eq. (3) to be well-defined, I require u ≥ 0 for γ < 1 and u ≤ 0 for γ > 1.
This is without loss of generality because if u fails to have the appropriate sign, one
can simply switch to a different utility representation of the same preference that does
have the required sign.9 The term iso-elastic is motivated by the observation that the
elasticity of t(u) with respect to u is given by (1 − η)/(1 − γ ). So the transformation
function is unit-elastic if η � γ , and then there is no change in preferences. In all
other cases, the preference change affects risk aversion and downside risk aversion.
An iso-elastic preference change exhibits t ′′ < 0 if and only if η > γ and t ′′′ > 0 if
and only if (γ − η)(2γ − η − 1) > 0, see Appendix A.5 and panel (a) in Fig. 1.

For an iso-elastic preference changes, I obtain C(u) � |2γ − η − 1|/|1 − γ |. The
case of p̂u ≤ 1/2 admits clear comparative statics for t ′′ > 0 and t ′′′ > 0 (less effort)
and for t ′′ < 0 and t ′′′ < 0 (more effort). Proposition 3 then allows to speak to the
case of t ′′ < 0 and t ′′′ > 0 as well. Define τ � 1−2 p̂u

1− p̂u , which is between zero and one
for p̂u ≤ 1/2; for γ > 1, if η ≤ (2 + τ )γ − (τ + 1), then C(u) ≤ τ and more effort
is optimal. This is shown in panel (b) of Fig. 1. The parameter combinations between
a colored dotted line and the black solid line representing η � 2γ − 1 belong to the
regionwhere t ′′ < 0 and t ′′′ > 0 and Proposition 2(iv) does not apply. Proposition 3(ii)
resolves the case because C(u) is small enough. The comparison of the dotted lines
also shows that the upper bound on C(u) becomes larger the smaller p̂u so that more
cases can be signed.

5 Measures of downside risk aversion and optimal prevention

Proposition 2 is formulated in terms of t ′′ and t ′′′. Keenan and Snow (2009) provide
a justification for interpreting t ′′′ ≥ 0 as a measure of greater downside risk aversion
in the large but other measures have been proposed in the literature, see Huang and
Stapleton (2017). Here is an overview.

Definition 4 Agent u has the following coefficients related to her risk attitude.

a) Arrow-Pratt risk aversion: Ru(w) � − u′′(w)
u′(w) .

b) Coefficient of absolute prudence: Pu(w) � − u′′′(w)
u′′(w) .

9 Technically, this is achieved by a suitable positive affine transformation that either shifts u(0) upwards
until it is nonnegative or that shifts u(w0) downward until it is nonpositive.
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Fig. 1 Some parametric results for iso-elastic preference changes

c) Modica-Scarsini downside risk aversion: Du(w) � u′′′(w)
u′(w) .

d) Schwarzian derivative: Su(w) � Du(w) − 3
2 (Ru(w))2.

e) The measure of DARA: du(w) � −R′
u(w).

The Arrow-Pratt measure is well known to economists as a ranking of utility func-
tions in terms of risk aversion with useful local and global properties (see Pratt 1964;
Arrow 1965). Kimball (1990) introduces Pu(w) to measure the strength of the precau-
tionary saving motive. Chiu (2005b) states conditions under which prudence can be
used to measure the intensity of downside risk aversion. Modica and Scarsini (2005)
introduce Du(w) to measure downside risk aversion and discuss its local properties
(see also Crainich and Eeckhoudt 2008). Keenan and Snow (2002, 2012) identify
invariance properties of the Schwarzian derivative that make it well-suited as a rank-
ing of downside risk aversion. Liu and Meyer (2012) introduce the DARAmeasure as
an alternative definition of increased downside risk aversion.10

It is possible to rewrite t ′′′ based on a given measure of downside risk aversion,
which is summarized in the following lemma (see Appendix A.6 for a proof).

Lemma 1 If t denotes the transformation function from utility u onto utility v, then

t ′′(u(w)) � v′(w)

(u′(w))2
[Ru(w) − Rv(w)] and

t ′′′(u(w)) � v′(w)

(u′(w))3

{
Rv(w)[Pv(w) − 3Ru(w)] − Ru(w)[Pu(w) − 3Ru(w)]

}

� v′(w)

(u′(w))3

{
[Dv(w) − Du(w)] − 3Ru(w)[Rv(w) − Ru(w)]

}

� v′(w)

(u′(w))3

{
[Sv(w) − Su(w)] + 3

2 [Rv(w) − Ru(w)]2
}

� v′(w)

(u′(w))3

{
[dv(w) − du(w)] + [Rv(w) − Ru(w)][Rv(w) − 2Ru(w)]

}
.

10 Huang and Stapleton (2014) relate cautiousness, defined as (1/Ru (w))′, to a strong increase in skewness.
I do not discuss cautiousness here for lack of a clear relationship with t ′′′.
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Combining Proposition 2(iii) and (iv) with Lemma 1 then provides additional
results.

Proposition 4 For p ∈ P , take agent u’s optimal effort level as a benchmark and
denote by p̂u the corresponding risk-neutral probability of loss.

(i) If p̂u ≥ 1/2 and Pu(w) ≥ 3Ru(w), an increase (decrease) in risk aversion
coupled with an increase (decrease) in prudence leads to lower (higher) effort.

(ii) If p̂u ≤ 1/2 and Pu(w) ≤ 3Ru(w), an increase (decrease) in risk aversion
coupled with a decrease (increase) in prudence leads to higher (lower) effort.

(iii) If p̂u ≤ 1/2, an increase (decrease) in risk aversion coupled with a decrease
(increase) in Modica-Scarsini downside risk aversion leads to higher (lower)
effort.

(iv) If p̂u ≥ 1/2, an increase in risk aversion coupled with an increase in the
Schwarzian derivative leads to lower effort.

(v) If p̂u ≤ 1/2, a decrease in risk aversion coupled with an increase in the
Schwarzian derivative leads to lower effort.

(vi) If p̂u ≥ 1/2, an increase in risk aversion by more than a factor of two coupled
with an increase in the measure of DARA leads lower effort.

(vii) If p̂u ≤ 1/2, an increase in risk aversion by less than a factor of two coupled
with a decrease in the measure of DARA leads to higher effort; a decrease in
risk aversion coupled with an increase in the measure of DARA leads to lower
effort.

Results (i) and (ii) use the coefficient of absolute prudence and are consistent with
Keenan and Snow’s (2010) Proposition 2 where they relate prudence to t ′′′ ≥ 0. They
also discuss the conditions Pu(w) � 3Ru(w) for HARA utility and their occurrence
in the principal-agent literature. Result (iii) uses the Modica-Scarsini measure. There
is no corresponding result for p̂u ≥ 1/2 because an increase in risk aversion coupled
with an increase in downside risk aversion à la Modica-Scarsini does not guarantee
t ′′′ ≥ 0, see Proposition 3 in Keenan and Snow (2010). Results (iv) and (v) involve the
Schwarzian derivative. Given how t ′′′ depends on the change in risk aversion and the
change in the Schwarzian (see Lemma 1), only the cases with t ′′′ ≥ 0 are presented.
Results (vi) and (vii) use the DARA measure. t ′′′ depends on the DARA measure in
such a way that only the case of a sufficiently strong increase in risk aversion can be
signed for p̂u ≥ 1/2 while both cases are possible for p̂u ≤ 1/2.

The coexistence of the differentmeasures reveals that there is no dominant approach
in defining comparative downside risk aversion. Likewise, Propositions 2 and 4 show
that different measures of downside risk aversion explain optimal prevention differ-
ently. The commonality is that, for a high risk-neutral probability ( p̂u ≥ 1/2), the
effects of risk aversion and downside risk aversion are concordant because one can
typically sign those cases where both changes go in the same direction. For a low
risk-neutral probability ( p̂u ≤ 1/2), the effects of risk aversion and downside risk
aversion are discordant because definitive results are often obtained when the changes
go in opposite direction. This is evident from Proposition 2 but extends to measures
of downside risk aversion other than t ′′′.

When moving beyond directional changes, one can use Lemma 1 to express t ′′′
as a function of the magnitude of the changes in risk aversion and downside risk
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Fig. 2 Arrow-Pratt risk aversion, the Schwarzian derivative and the signs of t ′′ and t ′′′

aversion. The simplest case is that of the Schwarzian derivative. Let ΔR � Rv − Ru

denote the change in Arrow-Pratt risk aversion and ΔS � Sv − Su the change in the
Schwarzian derivative, where I suppress wealth for compactness. In the (ΔR, ΔS)-
plane, condition t ′′′ � 0 defines a parabola with vertex (0, 0) that opens downward.
Combinations above the parabola represent t ′′′ > 0 and those below the parabola
correspond to t ′′′ < 0. Combinations to the left of the y-axis imply t ′′ > 0 while those
to the right of the y-axis imply t ′′ < 0 (see Fig. 2 for a graphical representation). This
makes it simple to identify the areas in the (ΔR, ΔS)-plane where optimal prevention
admits unambiguous comparative statics. Starting from Lemma 1, similar graphs can
be derived for the other measures of downside risk aversion.

6 Some results for parametric classes of utility functions

I will now consider several parametric classes of utility functions as applications
including quadratic utility, negative exponential utility and iso-elastic utility. To show
the versatility of the approach, I will also make a comparison between exponential
and iso-elastic utility.

Quadratic utility. Consider u(w) � w − αw2 with α > 0 small enough to ensure
positive marginal utility, that is, α < 1/(2w0). Then, Ru(w) � 2α

1−2αw
, Pu(w) �

Du(w) � 0, Su(w) � − 6α2

(1−2αw)2
and du(w) � − 4α2

(1−2αw)2
. Let v(w) � w − βw2 be
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another quadratic utility function with β > 0 small enough to ensure positive marginal
utility. Per Lemma 1

t ′′(u(w)) � 1 − 2βw

(1 − 2αw)2
·
[

2α

1 − 2αw
− 2β

1 − 2βw

]
� 2(α − β)

(1 − 2αw)3
,

and v is more risk-averse than u if and only if β > α. Also per Lemma 1, I find that

t ′′′(u(w)) � 12(α − β)β

(1 − 2αw)3(1 − 2βw)

so that t ′ is convex (concave) if α > (<) β. In particular, an increase (decrease) in
risk aversion is always accompanied by t ′′′ < (>) 0.11 Proposition 2 then implies the
following.

Corollary 4 For quadratic utility, an increase (decrease) in risk aversion raises (low-
ers) optimal effort if p̂u ≤ 1/2.

This is consistent with Dionne and Eeckhoudt (1985) who show directly that an
increae in risk aversion raises optimal prevention for quadratic utility agents if pu <

1/2. In our case, p̂u ≤ 1/2 implies pu < 1/2 because pu < p̂u for risk-averse agents.
Negative exponential utility. If u(w) � 1 − exp(−Aw) for A > 0, then Ru(w) �

Pu(w) � A, Du(w) � A2, Su(w) � − 1
2 A2 and du(w) � 0. If v(w) � 1− exp(−Bw)

denotes another negative exponential utility function with B > 0, Lemma 1 renders

t ′′(u(w)) � exp((2A − B)w) · (A − B),

and v is more risk-averse than u if and only if B > A. Lemma 1 also implies that

t ′′′(u(w)) � exp((3A − B)w) · (B − A)(B − 2A).

The change from u to v is a quadratic increase in risk aversion if and only if absolute risk
aversion doubles. If it increases by more (less) than a factor of two, then t ′′′ > (<) 0.
If risk aversion decreases, t ′ is always convex. Proposition 2 implies the following
result.

Corollary 5 For negative exponential utility:

(i) If p̂u ≥ 1/2 and risk aversion increases by a factor of two or more, effort
decreases.

(ii) If p̂u ≤ 1/2 and risk aversion increases by a factor of two or less, effort
increases.

(iii) If p̂u ≤ 1/2 and risk aversion decreases, effort decreases.

11 Both u and v are quadratic but the change in preferences is not because t ′′′ � 0 only if t ′′ � 0.
Furthermore, both u and v are downside risk-neutral despite the fact that t ′′′ 	� 0.
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Dionne and Eeckhoudt (1985) state that “even the direction of the change in the
marginal benefit and in the marginal cost are undetermined” for exponential utility.
Dachraoui et al. (2004) use the notion of more mixed risk-averse, which applies to
exponential utility, to show that, if pu ≥ 1/2, an increase in risk aversion reduces
optimal effort. Result (i) requires a sufficiently large increase in risk aversion; this
is because p̂u ≥ 1/2 includes cases where pu may not exceed 1/2, for example if
p̂u � 1/2. Dachraoui et al. (2004) remain silent about pu ≤ 1/2 other than saying it
is necessary for an increase in mixed risk aversion to yield more effort. The discus-
sion here reveals that it is not sufficient. However, if p0 � p(0) < 1/2 denotes the
loss probability without prevention, results (ii) and (iii) imply a positive relationship
between risk aversion and effort at least up to B � ln((1− p0)/p0)/L , see Appendix
A.7.

Iso-elastic utility. If u(w) � w1−γ /(1− γ ) for a positive γ 	� 1 and u(w) � ln(w)
for γ � 1, I obtain Ru(w) � γ /w, Pu(w) � (γ + 1)/w, Du(w) � γ (γ + 1)/w2,
Su(w) � γ (2 − γ )/(2w2) and du(w) � γ /w2. Now if v(w) is another iso-elastic
utility function with relative risk aversion η > 0, Lemma 1 yields

t ′′(u(w)) � w−η

(
w−γ

)2 ·
[ γ

w
− η

w

]
� w2γ−η−1 · (γ − η).

Obviously, v is more risk-averse than u if and only if η > γ . For t ′′′, Lemma 1 provides

t ′′′(u(w)) � w3γ−η−2 · (γ − η)(2γ − η − 1).

A preference change within the class of iso-elastic utility functions is itself iso-elastic
in the sense of Definition 3. It is quadratic if and only if η � 2γ − 1. For example,
an increase in relative risk aversion from 2 to 3 is a quadratic increase in risk aversion
and a decrease in relative risk aversion from 3/4 to 1/2 is a quadratic decrease in risk
aversion. For η > γ , t ′ is convex (concave) if η > (<) 2γ − 1, whereas for η < γ , t ′
is convex (concave) if η < (>) 2γ − 1. Proposition 2 implies the following corollary.

Corollary 6 For iso-elastic utility:

(i) If p̂u ≥ 1/2, all agents with η > max(γ , 2γ − 1) decrease effort.
(ii) If p̂u ≥ 1/2, all agents with η ∈ (2γ − 1, γ ) increase effort.
(iii) If p̂u ≤ 1/2, all agents with η < min(γ , 2γ − 1) decrease effort.
(iv) If p̂u ≤ 1/2, all agents with η ∈ (γ , 2γ − 1) increase effort.

The intervals in statements (ii) and (iv) are nonempty for γ < 1 and γ > 1,
respectively, see Fig. 1(a). Parameter changes within the class of iso-elastic utility
functions are iso-elastic preference changes so Proposition 3 applies. The only place
in the literature where iso-elastic utility is discussed is Dionne and Eeckhoudt (1985)
who use a specific log-utility function to provide a numerical example where increased
risk aversion leads to less effort.

Negative exponential versus iso-elastic utility. Let u(w) � w1−γ /(1 − γ ) for a
positive γ 	� 1 and u(w) � ln(w) for γ � 1. If eu denotes agent u’s optimal level
of prevention, let wb � w0 − eu − L and wg � w0 − eu be shorthand for agent u’s
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final wealth in the bad and the good state, respectively. If v(w) � 1 − exp(−Aw) for
A > 0, Lemma 1 yields the following:

t ′′(u(w)) �Aw2γ−1 exp(−Aw)
[
γ − Aw

]
,

t ′′′(u(w)) �Aw3γ−2 exp(−Aw)
[

A2w2 − 3Aγw + γ (γ − 1)
]
.

The transformation function approach simplifies the comparison between agents u and
v to solving a linear and quadratic inequality on [wb, wg]. The following corollary
holds.

Corollary 7 Take optimal effort for iso-elastic utility with parameter γ > 0 as a
benchmark. Let agent v have negative exponential utility with parameter A.

(i) If p̂u ≥ 1/2, then A ≥ γ
2wb

(
3 +

√
5 + 4

γ

)
implies less effort.

(ii) If p̂u ≤ 1/2, then A ∈
[

γ
wb

, γ
2wg

(
3 +

√
5 + 4

γ

)]
implies more effort.

(iii) If p̂u ≥ 1/2, then A ∈
[

γ
2wb

(
3 −

√
5 + 4

γ

)
, γ

wg

]
implies more effort.

(iv) If p̂u ≤ 1/2, then A ≤ γ
2wg

(
3 −

√
5 + 4

γ

)
implies less effort.

A proof is provided in Appendix A.8. The gaps in the parameter space come from
the fact that u and v may not be comparable in terms of risk preferences. Take, for
example, A between γ

wg
and γ

wb
; then t switches from convex to concave on [wb,

wg], and u and v are non-comparable in terms of risk aversion. Although specific,
the results are consistent with those obtained within a class of utility functions. For
instance, result (ii) shows that an increase in risk aversion from u to v raises effort
if this increase is not too large because otherwise a positive comparative downside
risk aversion effect cannot be ensured. For results (iii) and (iv), the round bracket is
positive as long as γ > 1, and a simple restriction on the loss size guarantees for the
intervals in (ii) and (iii) to be non-empty, see Appendix A.8.

7 Related theoretical literature

Ehrlich and Becker (1972) introduced the dichotomy between self-insurance (loss
reduction) and self-protection (loss prevention). The first term describes a costly activ-
ity reducing the size of a loss, the second term refers to a costly activity lowering the
probability of loss.12 While market insurance and self-insurance are complements,
market insurance and self-protection can be complements or substitutes (Ehrlich and
Becker 1972). Due to this discrepancy, many researchers maintain this distinction and
analyze each activity separately.13

12 Most of the literature on optimal prevention and risk preferences has focused on financial risks. For
prevention of health risks, see Courbage and Rey (2006) and Menegatti (2014), among others.
13 An exception is Lee’s (1998) work on self-insurance-cum-protection, a costly activity reducing severity
and probability of a loss. See also Lee (2005) and Wong (2016). Some authors have studied self-protection
with conditional payments that only become due in case of a successful outcome (see Liu et al. 2009).
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It is natural to wonder how risk aversion affects the demand for risk-mitigating
activities. Dionne and Eeckhoudt (1985) found that an increase in risk aversion in
the sense of Pratt (1964) increases the optimal level of loss reduction but does not
necessarily increase the optimal level of loss prevention. This seemingly counterintu-
itive result has generated a stream of research to understand why it arises and how it
can be resolved. Briys and Schlesinger (1990) developed some intuition by showing
that actuarially fair self-insurance constitutes a mean-preserving contraction in the
sense of Rothschild and Stiglitz (1970). Actuarially fair prevention instead entails a
mean-preserving spread at low wealth levels and a mean-preserving contraction at
high wealth levels. This decomposition alludes to the role of downside risk attitudes
in explaining optimal prevention.14Jullien et al. (1999) revisited the effect of compar-
ative risk aversion on optimal prevention and formulate their well-known probability
threshold result: Risk aversion raises optimal prevention if and only if the probability
of loss is below an endogenous threshold. Their threshold depends on the preferences
of the benchmark agent and the preferences of the other agent.15

Eeckhoudt and Gollier (2005) study the relationship between prudence and optimal
prevention. Their analysis relies on a risk-neutral benchmark agent and so doesDionne
and Li’s (2011) who showed how to sign some of the indeterminate cases by restricting
Kimball’s (1990) coefficient of absolute or relative prudence. Chiu (2000) studied the
willingness to pay to self-protect and related it to the agent’s risk aversion and a
probability threshold. He found that the threshold is governed by the decision-maker’s
aversion to downside risk increases. Chiu (2005a) showed that under a condition
implying that small changes in prevention are mean preserving, a lower prudence
measure is associated with more effort. Meyer and Meyer (2011) use a Diamond and
Stiglitz (1974) approach to extend the analysis of prevention to more than two states of
the world. They too obtain results against a risk-neutral benchmark or restrict changes
in prevention to yield mean-utility-preserving risk increases and risk decreases of
equal size. The approach in this paper neither requires a risk-neutral benchmark agent
nor that prevention be mean-preserving. Denuit et al. (2016) compared the preference
over two given levels of prevention. If one decision-maker prefers the higher level,
they define changes in certain intensity measures of risk attitude that preserve this
preference. With two fixed prevention levels, neither one is necessarily optimal for the
agents considered.

More recently, the analysis of prevention has been extended to two periods (see
Menegatti 2009). In the absence of saving, prudence leads to more prevention but
the monoperiodic results are restored when agents take optimal consumption-saving
decisions (see Peter 2017). This is due to a substitution effect between saving and
prevention (see Menegatti and Rebessi 2011; Hofmann and Peter 2016). Besides
intertemporal motives, researchers have investigated wealth effects on prevention (see
Sweeney and Beard 1992; Lee 2005) and the role of background risk (see Courbage
andRey 2012; Eeckhoudt et al. 2012). Outside of the expected utilitymodel, the effects
of ambiguity aversion on optimal prevention (see Alary et al. 2013; Snow 2011; Huang

14 Indeed, Menezes et al. (1980) define a mean-variance-preserving transformation precisely as a mean-
preserving spread that precedes a mean-preserving contraction in the wealth distribution.
15 Dachraoui et al. (2004) derived a probability-threshold result based on a fixed threshold value. This
requires strong comparability assumptions on the utility functions, namely comparativemixed risk aversion.
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2012; Berger 2016) and the role of probability distortions (see Konrad and Skaperdas
1993; Etner and Jeleva 2014; Baillon et al. 2019) have received some attention. Given
the link between prevention and downside risk, viable areas of future research include
regret-risk aversion (see Gollier 2018) and reference dependence (see Kőszegi and
Rabin 2007; Lleras et al. 2019).

8 Conclusion

Howdo risk preferences determine optimal prevention? SinceDionne andEeckhoudt’s
(1985) negative result, this question has received continued research attention. I gen-
eralize several existing approaches in the literature, including Eeckhoudt and Gollier
(2005) and Dionne and Li (2011), to obtain new results on how decision-makers
trade-off comparative risk aversion against comparative downside risk aversion. For
a risk-neutral probability of loss above 1/2, both changes affect effort in the same
direction, and for a risk-neutral probability of loss below 1/2, they work in opposite
direction. The threshold condition in this paper only depends on the preferences of
the benchmark agent as opposed to the threshold in Jullien et al. (1999). I connect my
results to different intensitymeasures of downside risk aversion and discuss parametric
specifications as an application.

The findings provide new answers to the question who should exert more effort
because they allow to define a class of agents who all share the same comparative static
prediction relative to a benchmark. The approachwith a risk-neutral probability of loss
may also turn out to be useful in the context of incentive contracting or contesting.
While the first experimental papers support the theoretical predictions (see Krieger
and Mayrhofer 2017; Masuda and Lee 2019), more empirical work is needed to better
understand the descriptive determinants of individuals’ prevention behavior.
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A Appendix

A.1 Proof of Proposition 1

I denote bywb � w0−en − L andwg � w0−en consumption in the bad state and the
good state, respectively, at the risk-neutral agent’s optimal level of prevention. Then,

V ′(en) � − p′(en)L
v(wg) − v(wb)

L
− [

pnv′(wb) + (1 − pn)v
′(wg)

]

� 1

L

∫ wg

wb

v′(s) ds − 1

L

∫ wg

wb

[
wg − s

wg − wb
v′(wb) +

s − wb

wg − wb
v′(wg)

]
ds

+
( 1
2 − pn

)[
v′(wb) − v′(wg)

]
.
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The equality uses−p′(en)L � 1, the fundamental theorem of calculus and the formula
for the area of a trapezoid.16 The third term vanishes for pn � 1

2 and the first term is
strictly smaller (equal, strictly larger, resp.) than the second one if v′′′ > 0 (v′′′ � 0,
v′′′ < 0, resp.), which shows (i) and (ii). Result (iii) follows because risk aversion
implies v′(wb) > v′(wg).

A.2 Proof of Proposition 2

By the concavity of V , agent v’s optimal effort is larger than agent u’s if and only if

V ′(eu) � −p′(eu)[v(w0 − eu) − v(w0 − eu − L)]

− [
puv′(w0 − eu − L) + (1 − pu)v

′(w0 − eu)
] ≥ 0.

When solving agent u’s first-order condition in Eq. (1) for p′(eu), I obtain

p′(eu) � − puu′(w0 − eu − L) + (1 − pu)u′(w0 − eu)

u(w0 − eu) − u(w0 − eu − L)
.

Substituting this into V ′(eu), I arrive at

V ′(eu) �[
puu′(w0 − eu − L) + (1 − pu)u

′(w0 − eu)
]v(w0 − eu) − v(w0 − eu − L)

u(w0 − eu) − u(w0 − eu − L)

− [
puv′(w0 − eu − L) + (1 − pu)v

′(w0 − eu)
]

�[
puu′(w0 − eu − L) + (1 − pu)u

′(w0 − eu)
]·

{
v(w0 − eu) − v(w0 − eu − L)

u(w0 − eu) − u(w0 − eu − L)

− puv′(w0 − eu − L) + (1 − pu)v′(w0 − eu)

puu′(w0 − eu − L) + (1 − pu)u′(w0 − eu)

}
.

To sign the curly bracket, I denote by ub � u(w0 − eu − L) and ug � u(w0 − eu)
agent u’s utility in the bad state and the good state, respectively, at her optimal effort
level. Using v(w) � t(u(w)) and v′(w) � t ′(u(w))u′(w), the first fraction in the curly
bracket can be rearranged as follows:

v(w0 − eu) − v(w0 − eu − L)

u(w0 − eu) − u(w0 − eu − L)
� t(ug) − t(ub)

ug − ub
� 1

ug − ub

∫ ug

ub

t ′(s) ds.

The second fraction in the curly bracket becomes

puv′(w0 − eu − L) + (1 − pu)v′(w0 − eu)

puu′(w0 − eu − L) + (1 − pu)u′(w0 − eu)

� put ′(ub)u′(w0 − eu − L)

puu′(w0 − eu − L) + (1 − pu)u′(w0 − eu)

16 Solving the second integral yields 1
L (wg − wb)

1
2 (v

′(wb) + v′(wg)) � 1
2 (v

′(wb) + v′(wg)) because
wg − wb � L .
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+
(1 − pu)t ′(ug)u′(w0 − eu)

puu′(w0 − eu − L) + (1 − pu)u′(w0 − eu)

� p̂u t ′(ub) + (1 − p̂u)t
′(ug).

The same steps as in the proof of Proposition 1 then show that

p̂u t ′(ub) + (1 − p̂u)t
′(ug) � 1

ug − ub

∫ ug

ub

[
ug − s

ug − ub
t ′(ub) +

s − ub

ug − ub
t ′(ug)

]
ds

− ( 1
2 − p̂u

)[
t ′(ub) − t ′(ug)

]
.

Therefore, the sign of V ′(eu) coincides with the sign of

1

ug − ub

∫ ug

ub

t ′(s) ds − 1

ug − ub

∫ ug

ub

[
ug − s

ug − ub
t ′(wb) +

s − ub

ug − ub
t ′(wg)

]
ds

+
( 1
2 − p̂u

)[
t ′(ub) − t ′(ug)

]
.

(4)

The third term vanishes for p̂u � 1
2 and the first term is strictly smaller (equal, strictly

larger, resp.) than the second one if t ′′′ > 0 (t ′′′ � 0, t ′′′ < 0, resp.), which shows
(i) and (ii). Results (iii) and (iv) follow because t ′′ < 0 implies t ′(ub) > t ′(ug) while
t ′′ > 0 implies t ′(ub) < t ′(ug).

A.3 Proof of Corollary 2

In case of a quadratic change in risk aversion, (4) reduces to

V ′(eu) � 1

ug − ub

( 1
2 − p̂u

)[
t ′(ub) − t ′(ug)

]
.

The round bracket is negative (positive) if p̂u ≥ (≤) 1/2. The square bracket is positive
(negative) for an increase (decrease) in risk aversion. Corollary 2 follows by combining
signs.

A.4 Proof of Proposition 3

From the proof of Proposition 2, I know that V ′(eu) has the same sign as

t(ug) − t(ub)

ug − ub
− [

p̂u t ′(ub) + (1 − p̂u)t
′(ug)

]
.

For u ∈ [0, ug − ub], I define the following auxiliary function:

H (u) � t(ub + u) − t(ub) − u · [
p̂u t ′(ub) + (1 − p̂u)t

′(ub + u)
]
.

Then H (0) � 0, and the sign of V ′(eu) coincides with the sign of H (ug − ub).
Furthermore,
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H ′(u) � p̂u
[
t ′(ub + u) − t ′(ub)

] − u(1 − p̂u)t
′′(ub + u)

so that H ′(0) � 0. The second derivative of H is

H ′′(u) �(2 p̂u − 1)t ′′(ub + u) − u(1 − p̂u)t
′′′(ub + u)

�(2 p̂u − 1)t ′′(ub + u) − (ub + u)(1 − p̂u)t
′′′(ub + u)

+ ub(1 − p̂u)t
′′′(ub + u).

Therefore, if H ′′(u) ≥ 0 for u ∈ [0, ug −ub], then H ′(u) ≥ 0 for u ∈ [0, ug −ub] and
H (ug − ub) ≥ H (0) � 0 implying higher effort. Likewise, if H ′′(u) ≤ 0 for u ∈ [0,
ug − ub], then H ′(u) ≤ 0 for u ∈ [0, ug − ub] and H (ug − ub) ≤ H (0) � 0 implying
lower effort.

For p̂u ≥ 1/2, the assumptions t ′′ > 0, t ′′′ > 0 and C(u) ≤ 2 p̂u−1
1− p̂u

are jointly

sufficient for H ′′(u) ≥ 0 for u ∈ [0, ug − ub] whereas t ′′ < 0, t ′′′ < 0 and C(u) ≤
2 p̂u−1
1− p̂u

are jointly sufficient for H ′′(u) ≤ 0 for u ∈ [0, ug − ub]. This proves (i). The
argument for p̂u ≤ 1/2 is analogous.

A.5 Derivatives of t for iso-elastic preference changes

For γ � η � 1, the transformation function is the identity and there is no change in
preferences. For γ 	� 1, I obtain the first three derivatives of t as follows:

t ′(u) �[
(1 − γ )u

] γ−η
1−γ ,

t ′′(u) �(γ − η)
[
(1 − γ )u

] 2γ−η−1
1−γ ,

t ′′′(u) �(γ − η)(2γ − η − 1)
[
(1 − γ )u

] 3γ−η−2
1−γ .

This yields the sign conditions for t ′′ and t ′′′. Furthermore, C(u) �
∣
∣∣ u·t ′′′(u)

t ′′(u)

∣
∣∣ �

|2γ−η−1|
|1−γ | .

A.6 Proof of Lemma 1

By direct computation I obtain

v′(w) �t ′(u(w))u′(w),

v′′(w) �t ′′(u(w))
(
u′(w)

)2 + t ′(u(w))u′′(w),

v′′′(w) �t ′′′(u(w))
(
u′(w)

)3 + 3t ′′(u(w))u′(w)u′′(w) + t ′(u(w))u′′′(w).

Solving for t ′ yields t ′(u(w)) � v′(w)/u′(w), which I substitute into v′′ to obtain
v′′(w) � t ′′(u(w))

(
u′(w)

)2 + v′(w)u′′(w)/u′(w). Solving for t ′′ renders
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t ′′(u(w)) � v′(w)

(u′(w))2
[Ru(w) − Rv(w)].

Substituting t ′ and t ′′ into v′′′ and solving for t ′′′ yields

t ′′′(u(w)) � v′(w)

(u′(w))3
{

v′′′(w)

v′(w)
− 3

(
v′′(w)

v′(w)(u′(w))2
− u′′(w)

u′(w)(u′(w))2

)
u′(w)u′′(w) − u′′′(w)

u′(w)

}
.

The rest follows by using the definitions of R(w), P(w), D(w), S(w) and d(w) and
rearranging.

A.7 Negative exponential utility and Corollary 5

Choose A � B/2; p̂u ≤ 1/2 is equivalent to pu ≤
[
1 + u′(w0−eu−L)

u′(w0−eu )

]−1
. The ratio of

marginal utilities simplifies to exp(AL) in case of exponential utility. Therefore, pu <

p0 ≤ [
1 + exp(BL)

]−1
<

[
1 + exp(AL)

]−1, and results (ii) and (iii) in Corollary 5
apply.

A.8 Proof of Corollary 7

t ′′ ≥ 0 if A ≤ γ
w
for all w ∈ [wb, wg], which holds for A ≤ γ

wg
. Likewise, t ′′ ≤ 0

for w ∈ [wb, wg] is ensured by A ≥ γ
wb

. If A ∈ ( γ
wg

, γ
wb

), t ′′ does not have a uniform
sign on [wb, wg] so that u and v are non-comparable in terms of risk aversion. To sign
t ′′′, I solve for the zeros of A2w2 − 3Aγw + γ (γ − 1), which are given by

w1 � γ

2A

(

3 −
√

5 +
4

γ

)

and w2 � γ

2A

(

3 +

√

5 +
4

γ

)

.

Therefore, if w2 ≤ wb or w1 ≥ wg , then t ′′′ ≥ 0 for w ∈ [wb, wg], and if w1 ≤ wb <

wg ≤ w2, then t ′′′ ≤ 0 for w ∈ [wb, wg]. In all other cases, t ′′′ changes sign on [wb,
wg], and u and v are non-comparable in terms of downside risk aversion.

If A ≥ γ
2wb

(
3 +

√
5 + 4

γ

)
, then w2 ≤ wb and t ′′′ ≥ 0. Now

(
3 +

√
5 + 4

γ

)
> 2

for all γ > 0 so the lower bound on A also implies A >
γ
wb

. Hence t ′′ < 0 and

Proposition 2(iii) applies, which proves result (i). If A ∈
[

γ
wb

, γ
2wg

(
3 +

√
5 + 4

γ

)]
,

then t ′′ ≤ 0 and wg ≤ w2. But w1 ≤ wb holds as well because
(
3 −

√
5 + 4

γ

)
< 2

for all γ > 0 so that A ≥ γ
wb

implies A ≥ γ
2wb

(
3 −

√
5 + 4

γ

)
. Therefore, t ′′′ ≤ 0
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and Proposition 2(iv) applies, which proves (ii). The proof of results (iii) and (iv) is
analogous.

If L ≤ 1
2 (3 − √

5)w0, the intervals in (ii) and (iii) are non-empty. This follows

because 3 − √
5 < 1 so that L < w0 − L and e � L . But then

wg

wb
<

w0 − L

w0 − 2L
≤ 1

2

(
3 +

√
5
)

<
1

2

(

3 +

√

5 +
4

γ

)

,

where the middle inequality uses L ≤ 1
2 (3−√

5)w0. This chain of inequalities implies
γ
wb

<
γ

2wg

(
3 +

√
5 + 4

γ

)
. The argument for (iii) is similar and uses the same restriction

on L.

References

Alary, D., Gollier, C., Treich, N.: The effect of ambiguity aversion on insurance and self-protection. The
Economic Journal 123(573), 1188–1202 (2013)

Arrow, K.J.: Aspects of the theory of risk-bearing. Yrjö Jahnsson Foundation, Helsinki (1965)
Baillon, A., Bleichrodt, H., Emirmahmutoglu, A., Jaspersen, J.G., Peter, R.: When risk perception gets in

the way: Probability weighting and underprevention. Operations Research (forthcoming) (2019)
Berger, L.: The impact of ambiguity and prudence on prevention decisions. Theory and Decision 80(3),

389–409 (2016)
Briys, E., Schlesinger, H.: Risk aversion and the propensities for self-insurance and self-protection. Southern

Economic Journal 57(2), 458–467 (1990)
Chiu, W.H.: On the propensity to self-protect. Journal of Risk and Insurance 67(4), 555–577 (2000)
Chiu, W.H.: Degree of downside risk aversion and self-protection. Insurance: Mathematics and Economics

36(1), 93–101 (2005a)
Chiu, W.H.: Skewness preference, risk aversion, and the precedence relations on stochastic changes. Man-

agement Science 51(12), 1816–1828 (2005b)
Chiu, W.H.: Risk aversion, downside risk aversion and paying for stochastic improvements. The Geneva

Risk and Insurance Review 37(1), 1–26 (2012)
Courbage, C., Rey, B.: Prudence and optimal prevention for health risks. Health Economics 15(12),

1323–1327 (2006)
Courbage, C., Rey, B.: Optimal prevention and other risks in a two-period model. Mathematical Social

Sciences 63(3), 213–217 (2012)
Courbage, C., Loubergé, H., Peter, R.: Optimal prevention for multiple risks. Journal of Risk and Insurance

84(3), 899–922 (2017)
Crainich, D., Eeckhoudt, L.: On the intensity of downside risk aversion. Journal of Risk and Uncertainty

36(3), 267–276 (2008)
Dachraoui, K., Dionne, G., Eeckhoudt, L., Godfroid, P.: Comparative mixed risk aversion: Definition and

application to self-protection and willingness to pay. Journal of Risk and Uncertainty 29(3), 261–276
(2004)

Denuit, M., Eeckhoudt, L., Liu, L., Meyer, J.: Tradeoffs for downside risk-averse decision-makers and the
self-protection decision. The Geneva Risk and Insurance Review 41(1), 19–47 (2016)

Diamond, P., Stiglitz, J.: Increases in risk and in risk aversion. Journal of Economic Theory 8(3), 337–360
(1974)

Dionne, G., Eeckhoudt, L.: Self-insurance, self-protection and increased risk aversion. Economics Letters
17(1–2), 39–42 (1985)

Dionne, G., Li, J.: The impact of prudence on optimal prevention revisited. Economics Letters 113(2),
147–149 (2011)

Eeckhoudt, L., Gollier, C.: The impact of prudence on optimal prevention. Economic Theory 26(4), 989–994
(2005)

123



1280 R. Peter

Eeckhoudt, L., Huang, R.J., Tzeng, L.Y.: Precautionary effort: A new look. Journal of Risk and Insurance
79(2), 585–590 (2012)

Ehrlich, I., Becker, G.S.:Market insurance, self-insurance, and self-protection. Journal of Political Economy
80(4), 623–648 (1972)

Etner, J., Jeleva, M.: Underestimation of probabilities modifications: Characterization and economic impli-
cations. Economic Theory 56(2), 291–307 (2014)

Fagart, M.C., Fluet, C.: The first-order approach when the cost of effort is money. Journal of Mathematical
Economics 49(1), 7–16 (2013)

Gollier, C.: Aversion to risk of regret and preference for positively skewed risks. Economic Theory (forth-
coming) pp 1–29 (2018) https://doi.org/10.1007/s00199-018-1154-4

Hofmann, A., Peter, R.: Self-insurance, self-protection, and saving: On consumption smoothing and risk
management. Journal of Risk and Insurance 83(3), 719–734 (2016)

Huang, J., Stapleton, R.: Cautiousness, skewness preference, and the demand for options. Review of Finance
18(6), 2375–2395 (2014)

Huang, J., Stapleton, R.: Higher-order risk vulnerability. Economic Theory 63(2), 387–406 (2017)
Huang, R.J.: Ambiguity aversion, higher-order risk attitude and optimal effort. Insurance: Mathematics and

Economics 50(3), 338–345 (2012)
Jindapon, P.: Do risk lovers invest in self-protection? Economics Letters 121(2), 290–293 (2013)
Jullien, B., Salanié, B., Salanié, F.: Should more risk-averse agents exert more effort? The Geneva Risk and

Insurance Review 24(1), 19–28 (1999)
Keenan, D.C., Snow, A.: Greater downside risk aversion. Journal of Risk and Uncertainty 24(3), 267–277

(2002)
Keenan, D.C., Snow, A.: Greater downside risk aversion in the large. Journal of Economic Theory 144(3),

1092–1101 (2009)
Keenan, D.C., Snow, A.: Greater prudence and greater downside risk aversion. Journal of Economic Theory

145(5), 2018–2026 (2010)
Keenan, D.C., Snow, A.: The Schwarzian derivative as a ranking of downside risk aversion. Journal of Risk

and Uncertainty 44(2), 149–160 (2012)
Kimball, M.S.: Precautionary saving in the small and in the large. Econometrica 58(1), 53–73 (1990)
Konrad, K.A., Skaperdas, S.: Self-insurance and self-protection: A nonexpected utility analysis. TheGeneva

Papers on Risk and Insurance-Theory 18(2), 131–146 (1993)
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