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Abstract
We consider sequential multi-player games with perfect information and with deter-
ministic transitions. The players receive a reward upon termination of the game, which
depends on the state where the game was terminated. If the game does not terminate,
then the rewards of the players are equal to zero. We prove that, for every game in this
class, a subgame perfect ε-equilibrium exists, for all ε > 0. The proof is constructive
and suggests a finite algorithm to calculate such an equilibrium.

Keywords Perfect information game · Recursive game · Subgame perfect
equilibrium

JEL Classification C73

1 Introduction

We studymulti-player games where play proceeds from one state to another andwhere
each transition is decided by one of the players. That is, each state is controlled by one
of the players and it is the controlling player of a state who decides what the next state
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will be. We do not consider chance moves in our model and the number of states is
finite. The players receive a (possibly negative) reward upon termination of the game.
Termination is decided by the controlling player of the active state, who always has
this option instead of moving to another state. The rewards to the players depend on
the state where the game is terminated. Infinite play is a possibility in these games, as
no player is forced to terminate the game (unless the structure of the game leaves him
no other option). Infinite play is associated with a zero reward for all players.

Our games belong to the more general class of dynamic games with perfect infor-
mation, which have numerous applications in economic theory, computer science, and
other disciplines. One of the main goals in the literature has always been to identify
conditions that guarantee the existence of a subgame perfect equilibrium, or at least
of a subgame perfect ε-equilibrium for every positive error term ε. For our class of
games, we prove the existence of a subgame perfect ε-equilibrium, for every ε > 0.
Our existence result extends several earlier results, where further restrictions were
imposed on either the transition structure or the reward structure of the game. A sub-
game perfect ε-equilibrium, for every ε > 0, was previously established in games with
only nonnegative rewards (Flesch et al. 2010a), in free transition games (Kuipers et al.
2013), and in games where each player only controls one state (Kuipers et al. 2016).
In the literature, we can also find sufficient conditions for other classes of games,
such as in the classical papers by Fudenberg and Levine (1983) and Harris (1985),
and more recently, in the papers by Solan and Vieille (2003), Flesch et al. (2010b),
Purves and Sudderth (2011), Brihaye et al. (2013), Roux and Pauly (2014), Flesch and
Predtetchinski (2016), Roux (2016),Mashiah-Yaakovi (2014), Cingiz et al. (2019) and
Flesch et al. (2019). We further refer to the recent book by Alós-Ferrer and Ritzberger
(2016), and the surveys by Jaśkiewicz and Nowak (2016) and Bruyère (2017).

In most economic models, payoffs are bounded and discounted, and this automat-
ically guarantees continuity at infinity, a condition defined by Fudenberg and Levine
(1983). For the topological meaning of continuity at infinity, we refer to Alós-Ferrer
and Ritzberger (2016, 2017). Even though in our model payoffs are not discounted,
our results have an implication for the discounted case. Indeed, the joint strategies that
we construct are not only subgame perfect ε-equilibria in the undiscounted game, but
also in the discounted game, provided that the discount factor is sufficiently close to
1 [cf. the notion of uniform ε-equilibrium, e.g., the survey by Jaśkiewicz and Nowak
(2016)]. The strategy profile is thus independent of the discount factor, provided it is
large enough, so the knowledge of the exact discount factor is not required.

The undiscounted game on its own is also interesting in the context of negotiations
or delegation problems, when there is no specific deadline given for an agreement.
An example of this can be found in the paper by Bloch (1996), where the negotiation
process for coalition formation is modeled as a positive recursive game. A positive
recursive model is limited to situations where any agreement is always better than no
agreement, for all players. The generalization to recursive games that are not neces-
sarily positive removes this limitation and allows for models, where some players may
wish to sabotage certain outcomes.

The relevance of our paper, we think, mostly lies in the fact that we obtain insight in
the structure of equilibria in perfect information games with deterministic transitions.
Let us briefly discuss this. In general, one can distinguish two essentially different
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Fig. 1 Game where player 2 can
threaten player 1 with
termination of the game

reasons why an error term may be needed for equilibrium play in a dynamic game.
It could be that, in subgame perfect ε-equilibrium play, every action that is played
with positive probability gives the player a reward that is very close or equal to his
initially expected reward. Let us say that this is an error term of the first type. It could
also be that, in subgame perfect ε-equilibrium play, a player must place a very small
probability on an action that will lead to a substantially lower reward than initially
expected. Let us say that this is an error term of the second type. For a game in our
class, if an error term ε is required, it is always of the second type, and the suboptimal
action that is played with small probability invariably serves as a threat to one of the
other players to make him follow the plan (Fig. 1).

Example 1 The following game was introduced in Solan and Vieille (2003). There are
two players, player 1 and player 2, and two states, s1 and s2. Player 1 controls state s1
and player 2 controls state s2. In state s1, player 1 has two actions: he can nominate
state s2, or terminate the game with reward −1 for himself and reward 2 for player 2.
In state s2, player 2 has two actions: he can nominate state s1, or terminate the game
with reward −2 for player 1 and reward 1 for himself. If no player ever terminates the
game, then the reward is 0 for each player. This game can be represented as follows:

Player1 prefers that the gamewill never terminate, as hewould then obtain reward0,
whereas he will obtain a negative reward, either−1 or−2, upon termination. Player2
is interested in termination of the game. He can always force termination at state s2
with reward1 for himself, but he prefers that player1will terminate at state s1, in which
case he will obtain reward2. Notice that, if the game terminates, then player1 also
prefers termination at state s1 instead of s2.

As Solan and Vieille (2003) show, this game has the following two important
properties: There is no subgame perfect ε-equilibrium in pure strategies for small ε >

0, and there is no subgame perfect 0-equilibrium, not even in randomized strategies.
Nevertheless, they show that the following stationary strategies constitute a sub-

game perfect ε-equilibrium for ε ∈ (0, 1): player1 in state s1 terminates with
probability1 (regardless the history), whereas player2 in state s2 nominates state s1
with probability 1 − ε and terminates with probability ε (regardless the history).

Let us briefly argue that this strategy profile is indeed a subgame perfect ε-
equilibrium. It is easy to see that player2 cannot improve his reward by more than
ε, as his expected reward, when starting in state s2, is (1 − ε) · 2 + ε · 1 = 2 − ε.
Player1 cannot improve his reward at all. Indeed, player 2’s strategy prescribes to
always terminate with the same positive probability whenever the play is in state s2,
so player 2’s strategy makes sure that one of the players will eventually terminate.
Intuitively, termination by player 2 with probability ε can be seen as a threat against
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Fig. 2 Detours in a subgame
perfect ε-equilibrium

player 1, which retaliates any deviations by player 1. Note that the error term ε is of
the second type. We remark that all subgame perfect ε-equilibria in this game have
this feature: player 2 threatens player 1 with termination at s2. ��

It was shown by Flesch et al. (2010a), who studied perfect information games
with positive recursive rewards and with chance moves, that, for their game model, a
subgame perfect ε-equilibrium exists for every ε > 0. Here, the error term ε is always
of the first type and arises as the consequence of chance moves in the model. Indeed,
they showed that, in the absence of chance moves, a subgame perfect equilibrium
in pure strategies exists. When chance moves are eliminated from the model studied
by Flesch et al. (2010a), we obtain a special case of the model we study here, with
nonnegative rewards. Thus, the error term ε is not needed when the rewards in our
model are nonnegative. One can get some intuitive understanding for this by realizing
that, when the rewards are all nonnegative, all players have an interest in termination
of the game. By contrast, in the presence of negative rewards, some players may want
to obstruct termination of the game when they foresee termination with a negative
reward for them. This is when a threat, executed with small probability, is necessary
to keep such players in check.

Another interesting feature is that subgame perfect ε-equilibrium play for a game
in our class is mostly deterministic: At most once after each deviation will there be
a stage where a small probability is placed on a threat action. In order to play such
a strategy, a player needs to have two pieces of data in memory: (i) the most recent
deviation from equilibrium play (if there was indeed a deviation) and (ii) whether a
lottery took place after the most recent deviation to decide on the execution of a threat
action, and if so, the outcome of the lottery.

Example 2 The following instructive game shows that, in order to obtain a subgame
perfect ε-equilibrium, it may be necessary to make detours in the game, such that the
same state must be visited twice, first on the way to reach a player who can execute a
threat action, then to reach the player who should terminate the game (Fig. 2).

This game is played by three players and has three states. The controlling player, the
state, the possible actions of the controlling player and the rewards upon termination
are represented similarly to Example1. The rewards for players 1 and 2 in states s1
and s2 are exactly as in Example1, i.e., −1 and 2 in state s1 and −2 and 1 in state
s2. Player 3 can be seen as an additional player, who is not interested in terminating
himself, as it gives him the worst possible reward −1.

One can verify that, for ε ∈ (0, 1), this game has the following subgame perfect ε-
equilibrium that is very similar to the one in Example1. Player 1 in state s1 terminates
with probability 1 (regardless the history). Player 2 in state s2 nominates state s3 with
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probability 1− ε and terminates with probability ε (regardless the history). Player 3’s
strategy is not stationary: if state s3 is reached from state s1 then player 3 nominates
state s2 with probability 1, whereas if state s3 is reached from state s2 then player 3
nominates state s1 with probability 1.

In this strategy profile, if player 1 deviates by nominating state s3, then instead of
moving back to state s1 directly, a detour is made via player 2, because player 2 is
the only player who has a threat action against player 1. One can verify that such a
detour, at least with a positive probability, is necessary to obtain a subgame perfect
ε-equilibrium. This underlines the difficulty to construct subgame perfect ε-equilibria
in our class of games. We remark that, in more complex games, a threat is sometimes
not immediate termination by a player with small probability, but rather a complete
sequence of actions that a player can start with small probability. ��

Interestingly, our analysis shows that just one computational effort suffices to find
a subgame perfect ε-equilibrium for every ε > 0. The only difference between these
equilibria is the probability with which a threat action should be executed. Examples1
and 2 indicate how this works. The analysis in this paper suggests that it is unlikely that
such a computation can be done efficiently: A naive implementation of the procedure
we propose in this paper obviously requires super-exponential time. This is in contrast
with the situation of nonnegative rewards, for which Flesch et al. (2010a) proved that
a subgame perfect equilibrium can be computed in polynomial time.

Although the exact computation of a subgame perfect ε-equlibrium likely becomes
intractable already for moderately sized problems, our results are probably useful for
finding a good quality of solutions. As an illustration, let us see what happens if we
introduce a discount factor β ∈ (0, 1) in the model to simplify the analysis. It follows
from a result by Fink (1964) and Takahashi (1964) that the discounted model has a
subgame perfect equilibrium in stationary strategies. For Example1, we then have
precisely one stationary equilibrium, which is also subgame perfect, and where both

players should terminate the game with probability 1−β2

β(2−β)
when they are active. This

means that the game will terminate with probability1, and when β is close to1, both
states have a probability of approximately 1

2 of termination. This totally ignores the
fact that, given termination of the game, both players have an interest in termination
at state1.

Readers who are only interested in the construction of a subgame perfect ε-
equilibrium for a game in our class and why it is indeed an equilibrium, can limit
themselves to reading the first four sections of this paper. We formally introduce our
model in Sect. 2, we introduce terminology and strategic concepts in Sect. 3, and we
give a proof of our main result Sect. 4. The proof in Sect. 4 makes use of a fixed point
theorem, which we prove in Sect. 5.

2 Formal model

Our class of games was informally introduced as consisting of games that potentially
have infinite horizon, but where players only obtain a nonzero reward if one of them
chooses to terminate. We formally introduce our class as always having infinite play.
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This is done by letting termination correspond to entering an absorbing state, after
which the game continues, but is strategically over.We consider the classG of dynamic
games given by

(1) a non-empty set of players N = {1, . . . , n}, where n ∈ N,
(2) a non-empty and finite set S of non-absorbing states and a set S∗ of absorbing

states such that there is a one-to-one correspondence between states in S and S∗;
the state in S∗ that corresponds to t ∈ S is denoted by t∗,

(3) for each state t ∈ S ∪ S∗, an associated controlling player it ∈ N ,
(4) for each state t ∈ S, a set of actions A(t) ⊆ {t∗} ∪ (S\{t}) with t∗ ∈ A(t); for

each state t∗ ∈ S, we have A(t∗) = {t∗},
(5) for each state t ∈ S, an associated reward vector r(t) ∈ R

N .

A game in G is to be played at stages in N in the following way. At any stage m
one state is called active. If t ∈ S is active, then player it announces a state in A(t),
and the announced state will be active at the next stage. If t∗ ∈ S∗ becomes active,
then the unique state t∗ ∈ A(t∗) will be active at the next stage and thus, t∗ will be
active forever. The game is then strategically finished and the rewards to the players
are according to r(t). The game starts with an initial state s ∈ S.

We assume complete information (i.e., the players know all the data of the game),
full monitoring (i.e., the players observe the active state and the action chosen by the
active player), and perfect recall (i.e., the players remember the entire sequence of
active states and actions).

3 Strategic concepts

3.1 Basic concepts and terminology

It will be necessary to develop a rather extensive notation and terminology in this
paper. Here, we introduce the basics.

Let us define the directed graph G by

G = (S ∪ S∗, {(x, y) | x ∈ S ∪ S∗ and y ∈ A(x)}).

This graph can obviously be interpreted as the graph on which the game is played.
Whenever we refer to an ordered pair (x, y) as an edge, it is implicit that (x, y) is an
edge of the directed graph G, and hence that y ∈ A(x).

Let us also have notation for the set of non-absorbing states that are controlled by
one particular player. For every i ∈ N , we define

Si = {t ∈ S | it = i}.

Obviously, the sets Si form a partition of the set S of non-absorbing states.
Let us now introduce the basic concepts of this paper.

Plans: A plan is an infinite sequence of states g = (tm)m∈N, such that (tm, tm+1) is
an edge for all m ∈ N. A plan is interpreted as a prescription for play for a game with
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initial active state t1. The set of non-absorbing states that become active during play
if plan g is executed is denoted by S(g), i.e.,

S(g) = {t ∈ S | ∃m ∈ N : tm = t}.
Notice that, if the initial state of g is an element of S∗, then g is of the form (t∗, t∗, . . .),
with t∗ ∈ S∗. Such a plan will also be denoted as (t∗). Also, if plan g contains a state
in S∗, say t∗, and the initial state of g is an element of S, then we must have t ∈ S(g)
and there must be a stage M with tM = t and with tm = t∗ for all m > M . This is
interpreted as a prescription for player it to announce his absorbing state t∗ at stage
M . We say that the plan absorbs at t if this is the case. Otherwise, we say that the
plan is non-absorbing. An absorbing plan, for example (r , s, t, t∗, t∗, . . .) will also be
denoted as (r , s, t, t∗). We denote by φi (g) the reward to player i ∈ N when play is
according to g, i.e.,φi (g) = ri (t) if g absorbs at t , andφi (g) = 0 if g is non-absorbing.
The initial state of plan g is denoted by first(g).

Paths: A path (or history) is a finite sequence p = (tm)km=1 with k ≥ 1, such that
(tm, tm+1) is an edge for all m ∈ {1, . . . , k − 1}. The number k − 1 is called the
length of p. The initial state t1 of p is denoted by first(p) and the final state tk is
denoted by last(p). We will sometimes want to concatenate a number of paths to
make a longer path or a plan, or we may want to concatenate a finite number of paths
and a plan to make another plan. We allow concatenation if p1, p2, . . . , pm are paths
that satisfy last(pk) = first(pk+1) for all k ∈ {1, . . . ,m − 1}. The concatenation
of these paths is denoted by 〈p1, p2, . . . , pm〉 and it represents the path that follows
the prescription of p1 from first(p1) to last(p1) = first(p2), then follows the
prescription of p2 until last(p2) = first(p3) is reached, and so on, until last(pm)

is reached. Also, if g is a plan with first(g) = last(pm), then the plan that first
follows the prescription of 〈p1, p2, . . . , pm〉 and then switches to g is denoted by
〈p1, . . . , pm,g〉. Finally, if we have an infinite number of paths p1, p2, . . . with the
property last(pk) = first(pk+1) for all k ∈ N, then 〈p1, p2, . . .〉 represents the
path1 or plan that subsequently follows the prescription of p1, p2, etc.

Strategies: A strategy π i for player i ∈ N is a decision rule that, for any path p
with last(p) ∈ Si , prescribes a probability distribution π i (p) over the elements of
A(last(p)). We use the notation Π i for the set of strategies for player i . A strategy
π i ∈ Π i is called pure if every prescription π i (p) places probability1 on one of
the elements of A(last(p)). We use the notation Π for the set of joint strategies
π = (π i )i∈N with π i ∈ Π i for i ∈ N . A joint strategy π = (π i )i∈N is called pure if
π i is pure for all i ∈ N .

Expected rewards: Consider a joint strategy π ∈ Π and a path p. Suppose that the
game has developed along the path p and that state last(p) is now active. Suppose
further that all players, starting at last(p), follow the joint strategy π , taking p as the
history of the game. Denote the overall probability of absorption at t by P

p,π (t). In
our model, where nonzero reward are only obtained in absorbing states, the expected
reward for player i ∈ N can then be expressed as

1 The concatenation of an infinite number of paths is still a path if only finitely many of them have positive
length.
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ψ
p
i (π) :=

∑

u∈S
P
p,π (u)ri (u).

Equilibria: Consider a joint strategy π ∈ Π and a game that has developed along the
path p. The joint strategy π = (π i )i∈N ∈ Π is called a (Nash) ε-equilibrium for path
p, for some ε ≥ 0, if

ψ
p
i

(
σ i , (π j ) j∈N\{i}

)
≤ ψ

p
i (π) + ε ∀σ i ∈ Π i , ∀i ∈ N ,

which means that, given history p, no player i can gain more than ε by a unilateral
deviation from his proposed strategy π i to an alternative strategy σ i . The joint strategy
π is called an ε-equilibrium for initial state s ∈ S if π is an ε-equilibrium for path (s).
The joint strategy π is called a subgame perfect ε-equilibrium if π is an ε-equilibrium
for every path p.

3.2 Strategic concepts and an update procedure

In this section, we introduce the strategic concepts that we need for the description of
a subgame perfect ε-equilibrium. These concepts all involve the assignment of a real
number to each of the non-absorbing states, represented by a real vector α ∈ R

S . One
of the key concepts in the paper is that of an α-viable plan. These are plans g where
every player who controls a state t ∈ S on g will receive a reward of at least αt when
plan g is executed. The vector α is chosen such that every plan that can possibly occur
in a subgame perfect ε-equilibrium is surely contained in the set of α-viable plans.
Initially, the set of α-viable plans may also contain plans that do not occur in any
subgame perfect ε-equilibrium play for small enough ε. Our aim is to eliminate those
plans by increasing one or more coordinates of α in an update procedure. The update
procedure is repeated until no further increase in the coordinates of α is possible. The
final vector α will then be used to construct a subgame perfect ε-equilibrium for every
ε > 0.

Viable plans: For α ∈ R
S , a plan g and a state t ∈ S, we say that t is α-satisfied by

g if φit (g) ≥ αt . We define sat(g, α) = {t ∈ S | t is α-satisfied by g}. We say that
plan g is α-viable if S(g) ⊆ sat(g, α). This means that, if play is according to g,
the controlling player of every non-absorbing state t that becomes active during play
will receive a reward of at least αt . For every state t ∈ S ∪ S∗, we denote the set of
α-viable plans g with first(g) = t by viable(t, α). Notice that a plan of the form
g = (t∗, t∗, . . .) with t∗ ∈ S∗ is trivially α-viable, since S(g) = ∅, and that the set
viable(t∗, α) consists of only the plan (t∗).

Compatible plans: Consider that a player i ∈ N can influence play by choosing a
specific action if play visits one of his states, say t ∈ S. Now, if every α-viable plan
after the selected action yields a strictly higher reward for player i than αt , then αt

can be increased without eliminating any plan that may occur in equilibrium. This
idea formed the basis for the iterative procedure in Flesch et al. (2010b) and Kuipers
et al. (2016). In those papers, it was sufficient to consider only one state at a time per
iteration to eventually eliminate all non-equilibrium plans.
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Fig. 3 A 1-player game

The approach fails for the trivial 1-player game in Fig. 3. Note that this game has
one subgame perfect equilibrium, which is for the one player to never terminate the
game. The values α1A = α1B = 0 correspond to this equilibrium. As an illustration,
we set α1A = α1B = −1, which are the rewards of the game at termination. Then every
plan is α-viable. If player1 specifies action 1B ∈ A(1A) for when state 1A is visited,
but does not specify a particular action for when 1B is visited, then termination at 1B is
in accordance with the specification and α-viable. An iterative procedure would reflect
this by letting α unchanged and thus fail to eliminate any of the absorbing plans. Our
iterative procedure should reflect the fact that player1 is able to coordinate his actions
in 1A and 1B . We therefore consider that a player can select an action at multiple states
simultaneously. This leads to the definition of compatible plans.

For α ∈ R
S and t, u ∈ S, we say that state t is α-safe at state u if t ∈ sat(g, α) for

all g ∈ viable(u, α). For t∗ ∈ S∗, it will be convenient to say that t∗ is α-safe at t∗.
We define, for all t ∈ S,

safestep(t, α) = {u ∈ A(t) | t is α-safe at u}.

For α ∈ R
S and a non-empty set F ⊆ S, we say that F is an α-plateau if there

exists i ∈ N such that it = i for all t ∈ F and if αs = αt for all s, t ∈ F . An α-plateau
that is maximal with respect to inclusion is called an α-level.

For α ∈ R
S , we say that a functionU : F → S∪ S∗ is an α-safe combination if the

domain F of U is an α-plateau and if we have U (t) ∈ safestep(t, α) for all t ∈ F .
If the domain of an α-safe combination U is not explicitly specified, then it will be
denoted by F(U ). We denote the set of all α-safe combinations by U(α) and the set
of α-safe combinations with given domain F by U(F, α).

For a plan g and an α-safe combinationU , we now say that plan g isU-compatible
if, for every state t ∈ S(g) ∩ F(U ), the first occurrence of t on g is followed byU (t).
A path p is U -compatible if, for every state t ∈ S(g) ∩ F(U ), the first occurrence
of t on p is followed by U (t) unless the first occurrence of t is at the end of p. For
every t ∈ S we denote the set of plans in viable(t, α) that are U -compatible by
viacomp(t,U , α).

Now consider again the 1-player game in Fig. 3, where we set α by α1A = −1
and α1B = −1. We define U by U (1A) = 1B and U (1B) = 1A. Notice that
U is indeed an α-safe combination. Also notice that the α-viable plans (1A, 1∗

A),
(1A, 1B, 1∗

B), (1B, 1∗
B), and (1B, 1A, 1∗

A) are not elements of viacomp(t,U , α). Nev-
ertheless, there are still plans in viacomp(t,U , α) that should be eliminated if we
wish to find the unique subgame perfect equilibrium associated with this exam-
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ple. The plans (1A, 1B , 1A, 1∗
A) and (1B, 1A, 1B, 1∗

B) are examples of this. The set
viacomp(t,U , α) thus only serves as a pre-selection of plans that are subject to further
scrutiny to see if they can remain. For this, we introduce the concept of an admissible
plan.

Admissible plans: Consider again the game depicted in Fig. 1, where we set α by
αs1 = −1 and αs2 = 2.We defineU byU (s1) = s2. ThenU is an α-safe combination,
and the plan (s1, s2, s1, s∗

1 ) is an element of viacomp(t,U , α). Here, we do not wish
to eliminate the plan, as it is a plan that can occur in equilibrium play. The reason
this plan will be considered admissible is the fact that player2, who controls state s2
on the plan, can threaten player1 with termination of the game at s2. If player1
does not follow the plan and nominates s2 always when s1 is active, then the threat
will eventually become reality if player2 places a small probability on executing the
threat. So the intuition here is that player1 has no possibility to force a better outcome
than (s1, s2, s1, s∗

1 ). This is in contrast with the plan (1A, 1B, 1A, 1∗
A) for the game

in Fig. 3, where player1 can easily force a non-absorbing plan without the possibility
of retaliation. The formal criteria for admissibility distinguishes between these two
situations and are given below.

Let α ∈ R
S , let U ∈ U(α), and let t ∈ F(U ). For a plan g ∈ viacomp(t,U , α),

we say that g is (t,U , α)-admissible if it satisfies at least one of the following four
conditions.

AD-i αt > 0 or there exists a state x on g with ix = it and αx > αt that appears on
g before any state of F(U ) has appeared for the second time;

AD-ii g is non-absorbing;
AD-iii each state of F(U ) occurs at most once on g;
AD-iv there exists a threat pair (x, v) for g. Here, x and v are a state and a plan

respectively that satisfy the following properties:

(a) x ∈ S and x appears on g before any state of F(U ) has appeared for the second
time on g,

(b) ix �= it ,
(c) v is an α-viable plan with first(v) ∈ A(x),
(d) first(v) differs from the state on g that follows the first occurrence of x on g,
(e) x, t /∈ sat(v, α).

We denote the set of plans that are (t,U , α)-admissible by admiss(t,U , α). We can
gain some additional insight in the definition of a (t,U , α)-admissible plan, by con-
sidering, for a plan g ∈ viacomp(t,U , α) an associated plan gU . Plan gU is the plan
where player it chooses his selected actions defined byU always, and the other players
keep their actions the same as in g. We may have gU = g, for example when every
state in F(U ) appears at most once on g. The plans g and gU may also differ, which
happens when at least one state of t ∈ F(U ) appears at least twice on g and t is not
always followed byU (t). In the latter case gU is a non-absorbing plan, where a certain
part of g is followed infinitely many times. We compare the plans g and gU . If the
comparison comes out in favor of gU , then plan g can be discarded, i.e., plan g will
not be considered admissible. Let us interpret the conditions for admissibility one by
one in this way.
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Condition AD-i: If αt > 0 and the plan gU is non-absorbing, then gU gives a lower
reward to it than g does. If αt > 0 and the plan gU is absorbing then gU = g. In
either case, g cannot be discarded in favor of gU . If there exists x on the plan g with
ix = it = i and αx > αt , then g is guaranteed to give a strictly higher reward than
αt . Here, we keep g because this will not hinder an increase in αt . Also, it will be
convenient to exclude this situation when we later consider plans that satisfy AD-iv,
but not AD-i, AD-ii, or AD-iii.

Condition AD-ii: If g is non-absorbing, then both g and gU are non-absorbing, with
the same reward0. There is therefore no reason to discard g.

Condition AD-iii: If each state of F(U ) appears at most once on g, then g = gU .

Condition AD-iv: This describes a situation, where a player other than it , who controls
a state x on the U -compatible plan g, has the possibility to switch from g to an α-
viable plan v with t, x /∈ sat(v, α). Due to condition AD-iv-(a), state x is also on plan
gU . State x does not necessarily lie on the part of gU that is repeated, but to obtain
intuition we assume that state x does lie on that part. Now imagine that the players
are supposed to follow plan g, except for the player ix , who is required to place a
very small probability on the switch to v when state x is active. Then play will be
according to g with very high probability if players indeed follow this prescription. If
however player it deviates by always playing U (s) for all s ∈ F(U ) when s is active,
in an attempt to force play according to gU , then this will eventually fail, since the
switch to v will then be made with probability1. Thus, the deviation by player it is
not profitable for him, since t /∈ sat(v, α). The requirement x /∈ sat(v, α) is there
because player ix should not be tempted to increase the probability of a switch to v.
These considerations are the motivation to call g admissible and to not discard g in
favor of gU .
An update procedure: Let α ∈ R

S and let U ∈ U(α). We define, for all t ∈ F(U ),

β(t,U , α) = min{φit (g) | g ∈ admiss(t,U , α)}.

Weuse the conventionmin∅ = ∞, so that β(t,U , α) is well defined for all t ∈ F(U ).
We also define

γ (U , α) = min{β(t,U , α) | t ∈ F(U )}.

Note that the plans in admiss(t,U , α) are all α-viable, for every t ∈ F(U ). Thus,
β(t,U , α) ≥ αt for all t ∈ F(U ), and hence also γ (U , α) ≥ αt for any representative
t ∈ F(U ). One can interpret the number γ (U , α) as the worst possible reward for
the player controlling the states of F(U ) when play visits a state t ∈ F(U ) and if he
selects action U (t) when this happens.

Now, we replace in α the number αt by the number γ (U , α) at every coordinate t
with t ∈ F(U ). Let us denote the updated vector by δ(U , α).

The update procedure performs a simultaneous update on the states of a given α-
plateau. The idea is to repeat the procedure over and over until the updates do not
change any α-values, for any given α-plateau.
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Fig. 4 A game with 3 players
and with 4 non-absorbing states

Fig. 5 α-safe combinations at
the beginning of iteration 1

Example 3 The example in Fig. 4 represents a game with 3 players and with 4 non-
absorbing states.

The game admits the following subgame perfect ε-equilibrium. When state 1a is
active, player1 should nominate state2, when state2 is active, player2 should nom-
inate state1b, and when state1b is active, player1 should nominate state3 with high
probability and place a small probability on terminating the game. Finally, player3
should terminate the game when state3 is active. We will go through the process of
updating to see how it all works.

Initialization: We choose α such that every plan in equilibrium play will surely be
α-viable. A good choice is to set αt at the reward for player it if play terminates at t .
Thus, we set

α1a = −2, α2 = 1, α1b = −1, α3 = −1.

Iteration 1: To obtain an overview of all α-safe combinations, we determine the sets
safestep(t, α) for all t ∈ S. The result can be seen in the picture below, where (x, y)
is represented by a solid arrow if y ∈ safestep(x, α) and by a dashed arrow otherwise
(Fig. 5).

Note that an α-safe combination U with U (t) = t∗ for all t ∈ F(U ) will not lead
to an increase of any α-value. Thus, there is only one α-safe combination of interest,
which is defined by U (2) = 1b. For the update associated with this choice of U , it is
important to see that the plans (2, 1b, 1a, 1∗

a) and (2, 1b, 1a, 2, 2∗) are not α-viable,
and therefore not in admiss(2,U , α). Here, the set admiss(2,U , α) coincides with
viacomp(2, α) and these sets consist of the plans that start at 2, then visit 1b, and
terminate either at 1b or at 3. Thus, β(2,U , α) = γ (U , α) = 2 and we update the
value of α2 from1 to2. We proceed with

α1a = −2, α2 = 2, α1b = −1, α3 = −1.

Iteration 2: We now have (Fig. 6)
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Fig. 6 α-safe combinations at
the beginning of iteration 2

Fig. 7 α-safe combinations at
the beginning of iteration 3

Fig. 8 α-safe combinations at
the beginning of iteration 4

There is again one α-safe combination of interest, defined byU (1a) = 2. Here, the
plan (1a, 2, 1b, 1∗

b) is (1a,U , α)-admissible due to condition AD-iii. It is also the plan
that determines the number β(1a,U , α) = γ (U , α). We thus have γ (U , α) = −1.
We proceed with

α1a = −1, α2 = 2, α1b = −1, α3 = −1.

Iteration 3: We now have (Fig. 7)
Here, we have several α-safe combinations to consider, all involving the states of

player1. The good choice is to define U by U (1a) = 2 and U (1b) = 3. Observe
that all plans in viacomp(1a,U , α) and viacomp(1b,U , α) terminate at state3, and
that admiss(t,U , α) = viacomp(t,U , α) for t = 1a, 1b. Thus, β(1a,U , α) =
β(1b,U , α) = 2. The updated vector α is defined by

α1a = 2, α2 = 2, α1b = 2, α3 = −1.

Iteration 4: Further attempts to update α do not lead to an increase in any of its
coordinates. The current α-values indicate that, under equilibrium play, the game will
terminate at state3 (with high probability) (Fig. 8).

A final calculation will demonstrate how the subgame perfect ε-equilibrium should
be played. Note that 1a ∈ safestep(3, α). We define the α-safe combination U by
U (3) = 1a . Then the plan (3, 1a, 2, 1b, 3, 3∗) is an element of viacomp(3,U , α).
Observe that this plan is also element of admiss(3,U , α) due to condition AD-iv: The
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threat pair is (1b, v) with v = (1∗
b), which is also the threat pair needed in equilibrium

play.

4 Construction of a subgame perfect "-equilibrium

4.1 Introduction

For this section, we choose an arbitrary game G in the class G. We also choose the
parameter ε > 0. We keep G and ε fixed throughout this section and we prove that
the game G has a subgame perfect ε-equilibrium.

For the description of a subgame perfect ε-equilibrium for G, we will use the fact
that a vector α∗ ∈ R

S exists with the following properties:

F-i: For every t ∈ S, we have viable(t, α∗) �= ∅.
F-ii: For every U ∈ U(α∗), we have δ(U , α∗) = α∗.

The proof that such a vector indeed exists is delayed until Sect. 5. The properties F-i
and F-ii essentially describe the existence of a fixed point for the update procedure
from Sect. 3.

Property F-i can be used to formulate a (pure) joint strategy such that, for every
state t ∈ S that is visited during play, player it can expect a reward of at least α∗

t .
This can be achieved by prescribing an α∗-viable plan that should be executed in its
entirety with probability1.

Property F-ii can be used to formulate a (pure) joint strategy such that, for every
state t ∈ S that is visited during play, player it can expect a reward of at most α∗

t if
he plays an action that is not prescribed by the joint strategy. This can be achieved
by selecting a new α∗-viable plan to follow after a deviation. The following lemma
shows that property F-ii makes the selection of such a new plan indeed possible.

Lemma 1 Let t ∈ S and u ∈ A(t).

(i) If u ∈ safestep(t, α∗), then there exists g ∈ viable(u, α∗) with φit (g) = α∗
t .

(ii) If u /∈ safestep(t, α∗), then there exists g ∈ viable(u, α∗) with φit (g) < α∗
t .

Proof Proof of (i): Let t ∈ S and let u ∈ safestep(t, α∗). Denote byU be the α∗-safe
combination with domain {t} and with U (t) = u. By property F-ii, we have

β(t,U , α∗) = γ (U , α∗) = δt (U , α∗) = α∗
t .

By definition of the number β(t,U , α∗), there exists a plan h ∈ admiss(t,U , α∗)
with φit (h) = β(t,U , α∗). Thus, we have φit (h) = α∗

t . The plan h is α∗-viable, since
admiss(t,U , α∗) is by definition a subset of viable(t, α∗). The part of h that starts at
the second state (i.e., at u) is the required plan g ∈ viable(u, α∗) with φit (g) = α∗

t .
Claim (ii) of the lemma follows by the definition of the set safestep(t, α∗). ��
An informal description of a subgame perfect ε-equilibrium. Consider a determin-

istic joint strategy, where initially, an α∗-viable plan is selected for the players to
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follow in its entirety. Only if a player deviates, a new α∗-viable plan is selected, such
that the new plan minimizes the payoff to the deviating player. Note that a single devi-
ation or even finitely many deviations do not profit a deviating player, by the result of
Lemma1. If α∗ ≥ 0, then infinitely many deviations do not help the deviating player
either. Indeed, if α∗ ≥ 0, then the formulated joint strategy constitutes a subgame
perfect 0-equilibrium. The situation is more complex when the vector α∗ has negative
coordinates. The game of Example1 is typical for this situation, where play according
to a subgame perfect ε-equilibrium was achieved by placing a small probability on
a non-credible threat. This way of playing a subgame perfect ε-equilibrium can be
generalized to work for every game in our class. Specifically, at each stage of the
game, the players are given a prescription of play that consists of a main plan g and
possibly, depending on the properties of g, a threat pair (x, v) for g. If the prescription
consists of only the main plan g, then the players are supposed to follow plan g. If the
prescription consists of amain plan g together with a threat pair (x, v), then the players
are supposed to follow plan g until the first occurrence of state x on g is reached. The
controlling player of state x is then required to perform a lottery, where he places a
high probability on the continuation of plan g and a small probability on the switch to
plan v.

A joint strategy can now be formulated as follows. The game begins with an initial
prescription, which could be any α∗-viable main plan g. A new prescription is selected
when a player does not choose an action with positive probability according to the
current prescription. Note that the lottery player may deviate from the prescription
without instigating a new prescription, as long as he chooses a continuation of the
main plan or a switch to the threat plan. A new prescription is chosen such that its
main planminimizes the reward of the deviating player among the available admissible
plans. Note that a threat pair (x, v) can be part of the new prescription only if the main
plan g is admissible due to condition AD-iv, as threat pairs are defined only for such
plans. If this happens, then the execution of plan v is indeed a threat to the deviating
player (who is identified as the player controlling the initial state of g), since this player
strictly prefers g over v, by AD-iv-(e). Moreover, the execution of v is a non-credible
threat, since player ix , who must make the switch from g to v, also strictly prefers g
over v, by AD-iv-(e). A non-credible threat makes sure that player ix cannot make a
profit by increasing the probability of a switch to v.

Now, prescriptions consisting of amain planwith a threat pair are essentially there to
make it impossible for a deviating player to deviate infinitelymany times. Conceivably
however, the deviating player may still establish infinite play when lotteries with
a threat are prescribed as retaliation for his deviations. This would happen if the
deviating player became active again and again after every deviation, before the lottery
state is reached and before absorption takes place. By an appropriate choice of the
prescriptions,we can however establish a bound on the number of times that a deviating
player can avoid absorption or the execution of a lottery. This will ensure a lottery at
more or less regular intervals and finally execution of the threat plan with probability1
when a player keeps deviating.

In Sect. 4.2, we will establish a ranking of the states of each α∗-level. The ranking
will be the tool to make sure that infinitely many deviations cannot occur. In Sect. 4.3,
we give a description of a joint strategy πε, which is the detailed and complete version
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of the description given here. Then, in Sect. 4.4 we prove our main result, which is
that πε is a subgame perfect ε-equilibrium.

Let us choose α∗ ∈ R
S such that it has properties F-i and F-ii and let us keep α∗

fixed for the remainder of this section.

4.2 A ranking of the states

Let U ∈ U(α∗). We will be interested in all admissible plans that can be associated
with the α∗-safe combination U . We define therefore

admiss(U , α∗) = ∪t∈F(U )admiss(t,U , α∗).

For every g ∈ admiss(U , α∗), we wish to identify the set of states on g, where the
deviating player could sensibly deviate from g, to avoid a lottery or to avoid absorption
at a state with negative reward for him. The following definition of the set D(g,U )

simply lists the cases. We define, for g ∈ admiss(U , α∗), the set D(g,U ) by

D-i D(g,U ) = ∅ if g satisfies AD-i or AD-ii. (Here, infinitely many deviations do
not profit the deviating player.)

D-ii If g violates the conditions AD-i and AD-ii, but satisfies condition AD-iii, then
we define D(g,U ) = S(g−)∩ F(U ), where g− is the part of g that starts at the
second state of g. (Here, any deviation before absorption could be profitable, if
it could be infinitely repeated.)

D-iii In all other cases, i.e., if g violates the conditions AD-i, AD-ii, and AD-iii, but
satisfies condition AD-iv, there exists a threat pair (x, v) for g. In this case, we
choose state x as close as possible to the initial state of g, and we define D(g,U )

as the set of states in F(U ) that appear on g from the second state of g until the
first occurrence of x on g. (Here, a deviation should really be before the lottery,
as there are only finitely many opportunities available after the lottery.)

Notice that the first state of g can only be a member of D(g,U ) if that state reappears
on g. This is because we will interpret the first state of a plan in admiss(U , α∗) as the
state where a deviation just took place and the second state as the deviation.

Let t ∈ S and u ∈ A(t). Imagine that the choice for u ∈ A(t) at state t is not
according to the prescription and that u ∈ safestep(t, α∗). Then, for the purpose of
punishment, we choose U ∈ U(α∗) with t ∈ F(U ) and U (t) = u, and a plan g in
admiss(t,U , α∗) that minimizes the reward to player it . By property F-ii, the reward
equals α∗

t . Ideally, we choose g such that also D(g,U ) = ∅ holds. This may not
always be possible, but we do have the following lemma.

Lemma 2 For every U ∈ U(α∗), there exists g ∈ admiss(U , α∗) with D(g,U ) = ∅

and with φi (g) = α∗
t , where i is the controlling player of the states in F(U ) and t is

any state in F(U ).

Proof LetU ∈ U(α∗). Because we have δ(U , α∗) = α∗ byF-ii, there exists s ∈ F(U )

with β(s,U , α∗) = α∗
s . Further, by the definition of the number β(s,U , α∗), there

exists a plan h ∈ admiss(s,U , α∗) with φis (h) = β(s,U , α∗), hence with φis (h) =
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α∗
s . Now, if D(h,U ) = ∅, then the claim of the lemma follows immediately by setting

t = s and g = h. We assume further that D(h,U ) �= ∅. This rules out the possibility
that h satisfies AD-i or AD-ii. We distinguish between the two remaining possibilities.

Case 1: Assume that plan h satisfiesAD-iii. Then each element of D(h,U ) is visited
exactly once on h. We define t as the state of D(h,U ) that is visited last on h and
we define g as the plan with first(g) = t that follows the prescription of h from the
unique occurrence of t on h. It is obvious that g ∈ admiss(t,U , α∗) due to property
AD-iii and that D(g,U ) = ∅.

Case 2: Assume that plan h satisfies AD-iv but not AD-iii. Then there exists a threat
pair (x, v) for h. By condition AD-iv, every element of D(h,U ) is visited exactly once
on h before the first occurrence of x on h. Define t as the state of D(h,U ) visited last
on h before x . Construct plan g with first(g) = t as follows.

Follow plan h from the first occurrence of t on h until the next occurrence of a
state in F(U ), say r . If r is a state of F(U ) that is visited for the first time during the
construction of g and if the corresponding location of r on h is not the first occurrence
of r on h, then we jump back to the first occurrence of r on h. From there, we follow
h again. We proceed, jumping back to an earlier location on h every time a state of
F(U ) is visited for the first time during construction of g and if the corresponding
location on h is not the first occurrence of that state on h.

The construction trivially results in a plan g with S(g) ⊆ S(h). It is also clear
that a jump back during the construction can occur only a finite number of times.
The resulting plan g will therefore have its tail the same as h, which implies that
φ(g) = φ(h). It follows that S(g) ⊆ S(h) ⊆ sat(h, α∗) = sat(g, α∗), proving that
g is α∗-viable. Further, g is U -compatible, since at the first visit of a state in F(U )

during construction of g, the action of that state’s first occurrence on h is copied to g.
Thus, g ∈ viacomp(s,U , α∗).

Notice that the construction of g starts at the first occurrence of t on h, after which
the construction of g proceeds uninterrupted by jump backs until x is reached. Indeed,
by the choice of t , there are no states of F(U ) on h between t and x where such a
jump back might occur. This demonstrates obviously that x appears on plan g, that the
only element of F(U ) appearing on g before x is t , and that t appears exactly once
before x . Thus, the threat pair (x, v) for h can also serve as threat pair for plan g, and
we may conclude that g ∈ admiss(t,U , α∗) due to property AD-iv. Now, if g does
not satisfy AD-iii, then definition D-iii applies, and we may conclude that D(g,U )

consists of the states of F(U )\{t} that appear before x on g. That is, we may conclude
D(g,U ) = ∅.

It remains to prove that AD-iii does not apply to g, i.e., that one of the states of
F(U ) appears more than once on g. By assumption, plan h does not satisfy AD-iii,
so we have a state r ∈ F(U ) that appears more than once on h. At least one of the
occurrences of r on h comes after the first occurrence of x on h, as all states of F(U )

before x are different. It follows that state r appears on plan g, since obviously, all
states on h that come after t are eventually visited during the construction of g. If the
first appearance of r during the construction of g is upon arrival at the first location
of r on h, then r will obviously reappear during the construction of g at a later stage,
at the latest upon arrival at the second location of r on h. If the first appearance of r
during the construction of g corresponds to the arrival at the second location of r on
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plan h, then a jump back to the first location on h will take place. Then too state r will
reappear during the construction of g, as there will be another arrival at the second
location of r on h. ��

The result of Lemma2 does not guarantee that, for a given t ∈ S and u ∈
safestep(t, α∗), an appropriate U ∈ U(α∗) and g ∈ admiss(t,U , α∗) exist that we
consider ideal for punishment.However, the result is sufficient to prove that, for an arbi-
trary α∗-plateau F , there is at least one t ∈ F , such that for every u ∈ safestep(t, α∗),
an ideal pair U ∈ U(α∗) and g ∈ admiss(t,U , α∗) for punishment exists.

Let F be an α∗-plateau and let t ∈ F . Say that t is tied to F if, for every
u ∈ safestep(t, α∗), there exists U ∈ U(F, α∗) with U (t) = u and a plan
g ∈ admiss(t,U , α∗) with φit (g) = α∗

t and D(g,U ) = ∅. We define

tied(F) = {t ∈ F | t is tied to F}.

Lemma 3 For every α∗-plateau F, the set tied(F) is a non-empty subset of F.

Proof Let F be an α∗-plateau and suppose that tied(F) = ∅. Then, for every s ∈ F ,
we can choose us ∈ safestep(s, α∗) such that, for allU ∈ U(F, α∗)withU (s) = us ,
every plan v ∈ admiss(s,U , α∗) satisfies D(v,U ) �= ∅ or φis (v) > α∗

s .
Now, define Û : F → S ∪ S∗ by Û (s) = us for all s ∈ F . Then obviously

Û ∈ U(F, α∗). ByLemma2,we can choose t ∈ F and g ∈ admiss(t, Û , α∗) such that
D(g, Û ) = ∅ and φit (g) = α∗

t . On the other hand, by the fact that Û (t) = ut , every
plan v ∈ admiss(t, Û , α∗) satisfies D(v, Û ) �= ∅ or φit (v) > α∗. Contradiction. ��

Let us apply Lemma3 to an α∗-level L . The fact that tied(L) is non-empty shows
that there exist states in L , where a deviation can always be retaliated by an ideal pun-
ishment plan, that is, a punishment plan which avoids all states of L , until absorption
or until a lottery is executed. Let us apply Lemma3 again, now to the set L\tied(L)

(assuming that this set is non-empty). The lemma then shows that there is a non-empty
subset of states of L\tied(L), where any deviation can be retaliated by a plan that
may visit other states of L before absorption or lottery, but only those in tied(L). So,
after a deviation at a state in tied(L\tied(L)), another deviation before absorption or
lottery may be possible, but after the second deviation, there will be an ideal punish-
ment plan in place. This suggests that an α∗-level L can be partitioned into a hierarchy
of α∗-plateaus, where each plateau is given a rank indicating the maximum number
of deviations to go before an ideal punishment plan is in place.

Let L be an α∗-level. We define

rank(1, L) = tied(L).

Then, for k > 1, we define recursively

rank(k, L) = tied(L\ ∪k−1
�=1 rank(�, L)).

We stop the recursive definitions when ∪k
1rank(�, L) = L . It follows by repeated

application of Lemma3 that the process will indeed terminate, say at iteration K , and
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that the sets rank(k, L) for k = 1, . . . , K form a partition of L . We define the rank
of a state t ∈ L as the unique index k for which t ∈ rank(k, L) and we denote its
rank by r(t).

We now demonstrate, for a state t ∈ L and a deviation u ∈ safestep(t, α∗), a
punishment plan exists that, insofar it visits other states of L before absorption or
lottery, it only visits those of rank strictly less than r(t). The implication is that at state
t , at most r(t) deviations are possible (including the one at t) before absorption or a
lottery will take place.

Lemma 4 Let L be an α∗-level, let t ∈ L, and let F = {x ∈ L | r(x) ≥ r(t)}. Then,
for all u ∈ safestep(t, α∗), there exists U ∈ U(F, α∗) with U (t) = u, together with
a plan g ∈ admiss(t,U , α∗), such that D(g,U ) = ∅ and φit (g) = α∗

t .

Proof We have rank(r(t), L) = tied(L\ ∪r(t)−1
�=1 rank(�, L)) by the recursive defi-

nition, and we have F = L\∪r(t)−1
�=1 rank(�, L) by the definition of F . Thus, we have

t ∈ rank(r(t), L) = tied(F). Now, let u ∈ safestep(t, α∗). Then, by definition of
the set tied(F) and by the fact that t is an element of this set, there exists an α∗-safe
combination U ∈ U(F, α∗) with U (t) = u and a plan g ∈ admiss(t,U , α∗) such
that D(g,U ) = ∅ and φit (g) = α∗

t . ��

4.3 Description of the joint strategy�"

We will associate with each pair (t, u) with t ∈ S and u ∈ A(t) a main plan gtu .
In some cases, depending on the properties of the main plan gtu , we may associate
additionally a threat pair (xtu, vtu)with (t, u). These plans and combinations of a plan
and a threat pair will be used in prescription for play as outlined in Sect. 4.1.

Let t ∈ S and u ∈ A(t).

Case 1: α∗
t ≥ 0. Then we choose gtu ∈ viable(u, α∗) with φit (g

tu) ≤ α∗
t . This

is possible by Lemma1. We do not choose a threat pair.
Case 2: α∗

t < 0 and u /∈ safestep(t, α∗). Then we choose gtu ∈ viable(u, α∗)
with φit (g

tu) < α∗
t . This is possible by Lemma1. We do not choose a threat pair.

Case 3: α∗
t < 0 and u ∈ safestep(t, α∗). Then let L denote the α∗-level to

which t belongs and let F = {x ∈ L | r(x) ≥ r(t)}. By Lemma4, there exists
U ∈ U(F, α∗) with U (t) = u and a plan gtu ∈ admiss(t,U , α∗) such that
φit (g

tu) = α∗
t and such that D(gtu,U ) = ∅. If gtu is admissible due to condition

AD-iv and not due to AD-i, AD-ii, or AD-iii then we choose additionally a threat
pair (xtu, vtu) for gtu .

(The reader may note that the plan gtu starts at t in Case3, and that it starts at u
in Cases1 and2. This is inconsequential regarding its use as a prescription. In all
three cases, if the prescription becomes current, the active state is already u when that
happens.)

In Table 1, we listed the choices of the main plan gtu and the threat pair (xtu, vtu)
for the game of Example3, for every (t, u).

With the above choices, we are set to formulate a joint strategy in the way that was
already outlined in4.1, by providing a prescription for play at every stage of the game.
Here, we fill in the details.
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Table 1 Main plan and threat
pair after each possible deviation

(t, u) gtu (x, vtu)

(1a , 1∗
a) (1∗

a) −
(1a , 2) (2, 1b, 3, 3

∗) −
(1b, 1

∗
b) (1∗

b) −
(1b, 1a) (1a , 2, 1b, 3, 3

∗) −
(1b, 3) (3, 3∗) −
(2, 2∗) (2∗) −
(2, 1b) (1b, 3, 3

∗) −
(3, 3∗) (3, 3∗) −
(3, 1a) (3, 1a , 2, 1b, 3, 3

∗) (1b, (1
∗
b))

The prescription for the players, at any stage, is given in two possible forms. A type
I prescription consists of a main plan g alone. A type II prescription consists of a main
plan g together with a threat pair (x, v). If the prescription is of type I, then the players
are supposed to follow the main plan g in its entirety. If the prescription is of type II,
then the players are supposed to follow the main plan g until the first occurrence of
x on g. The player who controls x is then required to perform a lottery, where it is
decided whether plan g is continued or whether a switch to plan v is made. A type II
prescription will only be current until the lottery. After the lottery, a prescription of
type II automatically reduces to a prescription of type I. It reduces to the main plan g
if the lottery player chose continuation of g, or to the threat plan v if the lottery player
decided to make the switch to v.

A renewal of the prescription becomes necessary if one of the players chooses
an action with zero probability according to the current prescription. If this should
happen, the new prescription becomes the one associated with the pair (t, u), where
t ∈ S is the state where the deviation took place, and u ∈ A(t) is the state that was
nominated.

To complete our description of a joint strategy, it remains to provide the specifics
of the lotteries that may have to take place. This is where the parameter ε plays a role.
Let us determine an upper bound M on the absolute value of the expected reward to
any player in the game G. We define

qε = min

(
1

2
,

ε

4M

)
.

Toplay according to the joint strategyπε , a lottery playermust always place probability
1 − qε on continuation of the main plan and probability qε on a switch to the threat
plan.

4.4 Main result

Before we prove the claim that πε is a subgame perfect ε-equilibrium for the game G,
let us first establish a property of play when one player deviates while other players
stick to πε .
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Lemma 5 Let p be an arbitrary path. Assume that play has developed along path p
and that t = last(p) is the current state. Suppose that player i = it chooses an
action that has probability0 according to the prescription dictated by πε at state t ,
and suppose that each player j ∈ N\{i} is going to use strategy π

j
ε after p. Suppose

further that player i becomes active again after his deviation at t , say at state s. (Player
i may or may not be active between t and s.) Then α∗

s ≤ α∗
t . Moreover, if α∗

s = α∗
t < 0

and if no lottery took place during play from t to s, then r(s) < r(t).

Proof Say that player i violates the prescription at t with the action u ∈ A(t). After
this, the new prescription of πε is given by the main plan gtu , possibly together with
the threat pair (xtu, vtu).

Let us first assume that all players acted according to prescription from u to s. For
the claim α∗

s ≤ α∗
t , we distinguish between two cases.

Case 1: Assume that state s does not lie on plan gtu . This is only possible if the
main plan gtu is associated with a threat pair (xtu, vtu), if state xtu was active before
s, and if the lottery player chose the switch to plan vtu . Thus, state s lies on plan vtu .
We then have t /∈ sat(vtu, α∗) by the properties of a threat plan (see AD-iv), and
s ∈ sat(vtu, α∗), because plan vtu is α∗-viable. It follows that α∗

s < α∗
t .

Case 2: Assume that state s lies on plan gtu . We have φi (gtu) ≤ α∗
t by the choice of

plan gtu . We also have φi (gtu) ≥ α∗
s , since s lies on the α∗-viable plan gtu . It follows

that α∗
s ≤ α∗

t .
For the second claim of the lemma, assume that α∗

s = α∗
t < 0 and that no lottery

took place during play from t to s. Then u ∈ safestep(t, α∗), as otherwise a plan gtu
with φi (gtu) < α∗

t would have been chosen, and we would have α∗
t > φi (gtu) ≥ α∗

s .
We have gtu ∈ admiss(t,U , α∗), whereU is an α∗-safe combination withU (t) =

u with domain F = {x ∈ L | r(x) ≥ r(t)}, and where L denotes the α∗-level to
which t belongs. Moreover, we have D(gtu,U ) = ∅ and φi (gtu) = α∗

t , by the choice
of gtu . We see that gtu does not satisfy AD-i as we assume α∗

t < 0. We also see that
gtu does not satisfy AD-ii, since φi (gtu) = α∗

t < 0 implies that gtu is absorbing. Thus,
plan gtu satisfies AD-iii or AD-iv.

Notice that s and t must be different states. Indeed, if gtu satisfies AD-iii, this
follows from the fact that all states of F on gtu are different. If gtu satisfies AD-iv,
then state t is also different from s, by our assumption in the lemma that s comes
before the lottery and the fact that, by AD-iv-(a), all states of F on gtu before xtu are
different.

We now prove that s /∈ F . Suppose to the contrary that s ∈ F , and hence that
s ∈ (S(gtu)∩F)\{t}. If gtu satisfiesAD-iii, then it follows that s ∈ (S(gtu)∩F)\{t} =
D(gtu,U ). If gtu satisfies AD-iv, then it follows that s is a state in (S(gtu) ∩ F)\{t}
that comes before the lottery, hence that s ∈ D(gtu,U ). This contradicts that gtu has
the property D(gtu,U ) = ∅.

We proved that s /∈ F , hence that s ∈ L\F = {x ∈ L | r(x) < r(t)}. Thus,
r(s) < r(t).

Now assume that player i did not only deviate at state t , but that he deviatedmultiple
times before s was reached. Then we apply the result for a single deviation multiple
times, for each play between one deviation and the next. This then shows that the
lemma also holds for multiple deviations. ��

123



624 J. Kuipers et al.

Theorem 1 Joint strategy πε is a subgame perfect ε-equilibrium for the game G.

Proof Let p be an arbitrary path and let i ∈ N . Assume that play has developed along
path p, that all players j ∈ N\{i} are going to use strategy π

j
ε after p, and that i is the

only player who does not necessarily play according to πε. Let us denote the strategy
of player i by σ i and the resulting joint strategy by σ . We will prove that the reward to
player i is at most ε higher in expectation if, after p, play is according to σ , compared
to i’s reward if play is according to πε: ψ

p
i (σ ) ≤ ψ

p
i (πε) + ε.

Let us first provide a lower bound for the expected reward for i if play is according
to the joint strategy πε. For this, we denote by gp the main plan from the prescription
of πε, given to the players, when play has reached the last state of path p. If the
prescription of πε comes without a threat pair, then plan gp will be executed with
probability1, and the expected reward for player i equals φi (gp). If the prescription
consists of the main plan gp together with a threat pair (x p, v p), then the expected
reward for player i equals (1 − qε)φi (gp) + qεφi (v

p), as gp will be executed with
probability 1−qε and v p with probability qε. In both cases, the numberφi (gp)−2qεM
is a lower bound for the expected reward for player i under joint strategy πε, i.e.,

ψ
p
i (πε) ≥ φi (g

p) − 2qεM . (1)

Recall that, by definition of qε, we have 2qεM ≤ 1
2ε. Thus, it will be sufficient

to prove that the expected reward for player i under joint strategy σ is bounded from
above by φi (gp) + 2qεM , i.e.,

ψ
p
i (σ ) ≤ φi (g

p) + 2qεM . (2)

We divide the proof in three cases, depending on the number of deviations by
player i after p. For each case, we either bound the expected reward of the deviating
player i from above by φi (gp) + 2qεM , or we prove that the case has probability0 of
happening.

Case I: Player i does not deviate during play after history p under σ .Wedistinguish
three subcases.

(a): Assume that the prescription is given by the main plan gp without a threat pair.
Then the expected reward to player i is equal to φi (gp).

(b): Assume that the prescription is given by the main plan gp together with the
threat pair (x p, v p), and that player i is the controlling player of state x p. Then it is still
true that either plan gp or plan v p will be executed, because we assume no deviations.
By the properties of a threat pair, we have x p ∈ sat(gp, α∗) and x p /∈ sat(v p, α∗),
hence φi (v

p) < φi (gp). Therefore, the expected reward for player i in this subcase is
bounded from above by φi (gp).

(c): Assume that the prescription is given by the main plan gp together with the
threat pair (x p, v p), and that player i is not the controlling player of state x p. Then,
like under strategy πε, plan gp will be executed with probability 1 − qε and plan
v p will be executed with probability qε. Here, player i may gain if v p is executed,
but in expectation the gain will be small: The expected reward for i under σ is (1 −
qε)φi (gp) + qεφi (v

p) ≤ φi (gp) + 2qεM .
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We see that (2) holds in each of the cases (a), (b), and (c).
Case II: Player i deviates at least once after history p under σ , but only finitely

many times. Let us denote the state where player i makes his first deviation by t ∈ S
and the state where i makes his last deviation by s ∈ S. Let us further denote the
chosen action by player i at state s by u ∈ A(s). After the last deviation by player i ,
prescribed play according to πε is given by the main plan gsu , possibly together with
the threat pair (xsu, vsu). Since no further deviations will take place, either plan gsu

or vsu will be executed in its entirety. We have φi (gsu) ≤ α∗
s and φi (v

su) < α∗
s by the

choices for gsu and vsu . Therefore, the expected reward for player i is at most α∗
s . By

Lemma5, we have α∗
s ≤ α∗

t , so we can bound the expected reward to player i from
above by α∗

t .
Let h denote the main plan in the prescription of πε just before player i wants to

make his first deviation at t . (We have h = gp or possibly h = v p if a lottery takes
place before player i makes his first deviation.) Then φi (h) ≥ α∗

t , since t lies on h and
since h is an α∗-viable plan. Thus, the reward to player i will be at least as good if he
just follows the prescription of the main plan with probability1, which is a strategy
where he does not deviate. We have already seen in Case I that his reward is then
bounded from above by φi (gp) + 2qεM .

Case III: Player i deviates infinitely many times after history p under σ . We will
prove that this case occurs with probability0.

Let t denote the state where player i first deviates. First assume that α∗
t ≥ 0.

Infinitely many deviations by player i obviously implies infinite play along non-
absorbing states. Therefore, the reward to player i will be zero if this happens. Let h
denote the main plan in the prescription of πε just before player i wants to make his
first deviation at t . We have φi (h) ≥ α∗

t , since s lies on h and since h is α∗-viable.
Thus, the reward to player i will be at least as good if he just follows the prescription
of the main plan with probability1, which is a strategy where he does not deviate. We
have seen in Case I that his reward is then bounded from above by φi (gp) + 2qεM .

Now assume that αt < 0. By assuming that player i deviates infinitely many times,
it is implied that infinitely many times a state in Si becomes active. The α∗-value of
subsequent states in Si does not increase, by Lemma5. Therefore, after a while, theα∗-
value of the visited states in Si becomes a constant, say c. Then we have c < 0, since
we assume αt < 0. Then, by Lemma5, the rank of visited states in Si strictly decreases
until a lottery is executed by a player j �= i . Since the rank of a state can decrease
only finitely many times, the execution of a lottery will happen infinitely many times.
If at the lottery, where the prescription is given by say main plan h together with a
threat pair (y, w), player iy chooses plan w, then player i will not be able to deviate
again at a state with the constant α∗-value c. Thus, at every lottery the outcome must
be continuation of the main plan. The probability of this happening is0. ��

5 A fixed point theorem

There is one thing left to do, which is to prove that a vector α ∈ R
S with propertiesF-

i andF-ii exists. For this, we introduce, in Sect. 5.1, a non-empty set � ⊆ R
S of

semi-stable vectors, for which we prove that
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α ∈ � and U ∈ U(α) ⇒ admiss(t,U , α) �= ∅ for all t ∈ F(U ).

This implies that, for α ∈ � and U ∈ U(α), the updated vector δ(U , α) is finite
and satisfies δ(U , α) ≥ α (see Sect. 5.2). Now, if we could prove additionally that
δ(U , α) ∈ �, then it would be an easy corollary to establish the existence of a fixed
point in �. However, as was demonstrated in Kuipers et al. (2016) by means of an
example, for certain vectors α ∈ � and U ∈ U(α), we have δ(U , α) /∈ �. This
motivates the definition of a set �∗ ⊆ � of stable vectors, in Sect. 5.3. The results
derived in Sects. 5.1 and 5.2 for vectors of the set � hold for vectors of the set �∗
as well, as �∗ is by definition a subset of �. The main effort in Sects. 5.3, 5.4, and
5.5 will therefore go into proving that, for all α ∈ �∗ and all U ∈ U(α), the vector
δ(U , α) is an element of �∗. The fixed point theorem is subsequently established in
Sect. 5.6.

5.1 Semi-stable vectors and their properties

In this subsection, we present a condition for α ∈ R
S , which we call semi-stability.

This condition guarantees the existence of a (t,U , α)-admissible plan for allU ∈ U(α)

and all t ∈ F(U ), even with the additional property that, for every edge (x, y) of the
plan, x is α-safe at state y. For α ∈ R

S , let us therefore define the edge set

A(α) = {(x, y) | x ∈ S ∪ S∗ and y ∈ safestep(x, α)}

and the graph

G(α) = (S ∪ S∗,A(α)).

In the following, our aim is to impose an appropriate set of properties on the subsets
of S, and then deduce the existence of a plan g ∈ admiss(t,U , α) in G(α) for all
U ∈ U(α) and all t ∈ F(U ). For α ∈ R

S and X ⊆ S, we define

pos(X , α) = {x ∈ X | αx > 0},

esc(X , α) = {x ∈ X | ∃y ∈ (S ∪ S∗)\X : y ∈ safestep(x, α)}.

We also define

C = {X ⊆ S | A(x) ∩ X �= ∅ for all x ∈ X},

and for α ∈ R
S , we define

P(α) = {X ⊆ S | pos(X , α) �= ∅},

E(α) = {X ⊆ S | esc(X , α) ∩ pos(X , α) = ∅}, and

X (α) = P(α) ∩ E(α) ∩ C.
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Nowweprovide some intuition for the setX (α). ConsiderU ∈ U(α) and t ∈ F(U ).
Let us assume the existence of a plan in G(α) that is element of admiss(t,U , α). To
consider the critical case, let us assume that every such plan satisfies AD-iv, but not
AD-i, AD-ii, or AD-iii. Choose such a plan, say g. Now, the crucial role is played by
the states that are visited on g from the start at t to the point where a state in F(U ) is
visited for the second time. Let X denote the set of these states. Notice that there is
indeed a second occurrence of a state in F(U ), since g does not satisfy AD-iii, so X
is well-defined. It is not difficult to argue from the assumptions that X ∈ X (α). So,
the set X (α) contains all sets of states where AD-iv is crucial.

Let X ⊆ S and let e = (x, y) be an edge. We say that e is an α-exit from X if
x ∈ X , y ∈ (S ∪ S∗)\X , and if, for all v ∈ viable(y, α),

esc(X , α) ⊆ sat(v, α) �⇒ x ∈ sat(v, α). (3)

The implication in (3) is trivially satisfied by the edge (x, y) if there exists z ∈
esc(X , α) with iz = ix and αz ≥ αx (and in particular if x ∈ esc(X , α)). To fil-
ter out such edges, we say that e = (x, y) is a legitimate α-exit from X if it is an α-exit
from X and if αz < αx for all z ∈ esc(X , α) with iz = ix .

Legitimate α-exits from X with X ∈ X (α) are used to derive the existence of a
threat pair for admissible plans that happen to visit all states of X . To see how, let
(x, y) be a legitimate α-exit from X . The fact that (x, y) is legitimate ensures that y /∈
safestep(x, α), so it ensures the existence of v ∈ viable(y, α) with x /∈ sat(v, α).
From the fact that (x, y) is an α-exit from X , we conclude that t ∈ esc(X , α) exists
with t /∈ sat(v, α). We see that (x, v)is a candidate to serve as a threat pair for an
admissible plan g that starts at t and visits all states of X .

We say that α ∈ R
S is semi-stable if the following two conditions hold:

(i) for all t ∈ S, there exists a plan in G(α) that is element of viable(t, α),
(ii) for all X ∈ X (α), there exists a legitimate α-exit from X .

We denote the set of semi-stable vectors in R
S by �. In Lemma12 we prove that, for

all α ∈ �, for allU ∈ U(α), and for all t ∈ F(U ), a plan inG(α) exists that is element
of admiss(t,U , α). In Lemma17 we prove that, for all α ∈ � and for all U ∈ U(α),
the vector δ(U , α) satisfies condition (i) of semi-stability.

Example 4 Let us return to Example3 for an illustration of the definitions. For this
example, we have C = {{1a, 1b, 2}, {1a, 1b, 2, 3}}. Therefore, for any α ∈ R

S , the
collection X (α) contains at most two subsets of S. For each stage of the update
procedure, we calculated the set X (α) and the α-exits, we check that conditions (i)
and (ii) are satisfied, and we verify that Lemma17 holds.
Initialization: We started the update procedure with

α1a = −2, α2 = 1, α1b = −1, α3 = −1.

• The set X (α): We have X (α) = ∅, since 2 ∈ esc(X , α) ∩ pos(X , α) for both
X = {1a, 1b, 2} and X = {1a, 1b, 2, 3}.

• α-exits: We do not check for α-exits, since X (α) = ∅.
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• Condition (i) of semi-stability: For all t ∈ S = {1a, 1b, 2, 3}, the plan (t, t∗) is an
α-viable plan in G(α).

• Condition (ii) of semi-stability: The vector α trivially satisfies condition (ii) of
semi-stability, since X (α) = ∅.

• Admissible plans in G(α): For all t ∈ S and U defined by U (t) = t∗, the plan
(t, t∗) is a plan in G(α) that is element of admiss(t,U , α). For t = 2 and U
defined by U (2) = 1b, the plan (2, 1b, 1∗

b) will do.

Iteration 1: Recall that, after the first iteration, we obtained

α1a = −2, α2 = 2, α1b = −1, α3 = −1.

• The set X (α): We now have X (α) = C = {{1a, 1b, 2}, {1a, 1b, 2, 3}}.
• α-exits: The edge (2, 2∗) is a legitimate α-exit from both {1a, 1b, 2} and

{1a, 1b, 2, 3}.
• Condition (i) of semi-stability: For t ∈ {1a, 1b, 3}, the plan (t, t∗) is an α-viable
plan in G(α). For t = 2, we can take the plan (2, 1b, 1∗

b).• Condition (ii) of semi-stability: Satisfied.
• Admissible plans in G(α): For t ∈ {1a, 1b, 3} and U defined by U (t) = t∗, the
plan (t, t∗) is a plan in G(α) that is element of admiss(t,U , α). For t = 1a and
U defined by U (1a) = 2, we take (1a, 2, 1b, 1∗

b). For t = 2 and U defined by
U (2) = 1b, the plan (2, 1b, 1∗

b) will do.

Iteration 2: After the second iteration2, we have

α1a = −1, α2 = 2, α1b = −1, α3 = −1.

• The set X (α): We still have X (α) = C = {{1a, 1b, 2}, {1a, 1b, 2, 3}}.
• α-exits: The edge (2, 2∗) is still a legitimate α-exit from both {1a, 1b, 2} and

{1a, 1b, 2, 3}. Also the edge (1a, 1∗
a) is now an α-exit from both sets. It is not

legitimate though, since 1b ∈ esc(X , α), for each X ∈ X (α).
• Condition (i) of semi-stability: For t ∈ {1b, 3}, the plan (t, t∗) is an α-viable plan
in G(α). For t = 1a , we can take the plan (1a, 2, 1b, 1∗

b). For t = 2, we can take
the plan (2, 1b, 1∗

b).• Condition (ii) of semi-stability: Satisfied.
• Admissible plans in G(α):

– For U defined by U (1a) = 2, the plan (1a, 2, 1b, 3, 3∗) ∈ admiss(1a,U , α)

is in G(α).
– For U defined by U (1b) = 1∗

b, the plan (1b, 1∗
b) ∈ admiss(1b,U , α) is in

G(α).
– For U defined by U (1b) = 3, the plan (1b, 3, 3∗) ∈ admiss(1b,U , α) is in

G(α).
– For U defined by U (1b)=1a , the plan (1b, 1a, 2, 1b, 1∗

b)∈admiss(1b,U , α)

is in G(α). This plan is admissible due to AD-iv and is related to the α-exit
(2, 2∗).

– For U defined by U (1a) = 2 and U (1b) = 1∗
b, the plans (1a, 2, 1b, 1∗

b) ∈
admiss(1a,U , α) and (1b, 1∗

b) ∈ admiss(1b,U , α) are both in G(α).
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– For U defined by U (1a) = 2 and U (1b) = 3, the plans (1a, 2, 1b, 3, 3∗) ∈
admiss(1a,U , α) and (1b, 3, 3∗) ∈ admiss(1b,U , α) are both in G(α).

– For U defined by U (1a) = 2 and U (1b) = 1a , the plans (1b, 1a, 2, 1b, 1∗
b) ∈

admiss(1b,U , α) and (1a, 2, 1b, 1a, 2, 1b, 1∗
b) ∈ admiss(1a,U , α) are both

in G(α). The plans are admissible due to AD-iv and are related to the α-exit
(2, 2∗).

– For U defined by U (2) = 1b, the plan (2, 1b, 1∗
b) ∈ admiss(2,U , α) is in

G(α).
– For U defined by U (3) = 3∗, the plan (3, 3∗) ∈ admiss(3,U , α) is in G(α).

Iteration 3: After the third iteration, we have

α1a = 2, α2 = 2, α1b = 2, α3 = −1.

• The set X (α): We still have X (α) = C.
• α-exits: The edge (2, 2∗) is still a legitimate α-exit from {1a, 1b, 2}. The edge

(2, 2∗) is now not an α-exit from {1a, 1b, 2, 3}. Instead, the edge (1b, 1∗
b) is a

legitimate α-exit from {1a, 1b, 2, 3}.
• Condition (i) of semi-stability: For t = 1a , the plan (1a, 2, 1b, 3, 3∗) is an α-viable
plan in G(α). For t = 1b, we take the plan (1b, 3, 3∗). For t = 2, we take the
(2, 1b, 3, 3∗). For t = 3, we take (3, 3∗).

• Condition (ii) of semi-stability: Satisfied.
• Admissible plans in G(α):

– For U defined by U (1a) = 2, the plan (1a, 2, 1b, 3, 3∗) ∈ admiss(1a,U , α)

is in G(α).
– For U defined by U (1b) = 3, the plan (1b, 3, 3∗) ∈ admiss(1b,U , α) is in

G(α).
– ForU definedbyU (1b) = 1a , the plan (1b, 1a, 2, 1b, 3, 3∗) ∈ admiss(1b,U , α)

is in G(α). The plan is related to (2, 2∗), the α-exit from {1a, 1b, 2}.
– For U defined by U (1a) = 2 and U (1b) = 3, the plans (1a, 2, 1b, 3, 3∗) ∈
admiss(1a,U , α) and (1b, 3, 3∗) ∈ admiss(1b,U , α) are both in G(α).

– For U defined by U (1a) = 2 and U (1b) = 1a , the plans (1b, 1a, 2, 3, 3∗) ∈
admiss(1b,U , α) and (1a, 2, 1b, 1a, 2, 1b, 3, 3∗) ∈ admiss(1a,U , α) are
both in G(α). The plans are related to the α-exit (2, 2∗).

– For U defined by U (2) = 1b, the plan (2, 1b, 3, 3∗) ∈ admiss(2,U , α) is in
G(α).

– For U defined by U (3) = 3∗, the plan (3, 3∗) ∈ admiss(3,U , α) is in G(α).
– For U defined by U (3) = 1a , the plan (3, 1a, 2, 1b, 3, 3∗) ∈ admiss(3,U , α)

is in G(α). It is related to (1b, 1∗
b), the α-exit from {1a, 1b, 2, 3}.

The set � of semi-stable vectors is non-empty. Indeed, let us define ρ ∈ R
S as the

vector where, for all t ∈ S, the number ρt is the reward to player it when he decides
to play his absorbing action t∗ at state t . In the following lemma, we show that ρ ∈ �.

Lemma 6 Let ρ be the vector defined by ρt = rit (t) for all t ∈ S. Then X (ρ) = ∅

and ρ ∈ �.
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Proof Notice that, for all t ∈ S, the plan (t, t∗) is a ρ-viable plan inG(ρ). This shows
immediately that the vector ρ satisfies condition (i) of semi-stability.

We now prove that X (ρ) = ∅. Notice that by proving this claim of the lemma,
we also prove that condition (ii) of semi-stability holds trivially true for ρ, hence it
finishes the proof.

Let X ⊆ S. If X /∈ P(ρ) then trivially X /∈ P(ρ)∩E(ρ)∩C = X (ρ). If X ∈ P(ρ),
then

pos(X , ρ) ∩ esc(X , ρ) = pos(X , ρ) �= ∅,

where the equality is by the fact that esc(X , ρ) = X and non-emptiness is by the fact
that X ∈ P(ρ). This shows that X /∈ E(ρ), hence X /∈ X (ρ) = P(ρ) ∩ E(ρ) ∩ C.
This proves that indeed X (ρ) = ∅. ��
Lemma 7 Let α ∈ �. Then

(i) for all t ∈ S ∪ S∗, we have safestep(t, α) �= ∅,
(ii) for all X ⊆ S, we have esc(X , α) = ∅ �⇒ pos(X , α) = ∅.

Proof Proof of (i): For t∗ ∈ S∗, we have safestep(t∗, α) = {t∗} by convention, and
for t ∈ S, the set safestep(t, α) is non-empty due to condition (i) of semi-stability.

Proof of (ii): Let X ⊆ S and assume that esc(X , α) = ∅. Let t ∈ X . We will
demonstrate that αt ≤ 0.

Choose a plan g in G(α) that is element of viable(t, α), which is possible by
condition (i) of semi-stability. Notice that there is no path inG(α) from t to an element
of S∗, as the existence of such a path would also imply the existence of an edge (x, y)
in G(α) with x ∈ X and y ∈ (S ∪ S∗)\X , contradicting that esc(X , α) = ∅. Thus,
plan g is a non-absorbing plan. As g is also α-viable, it follows that αt ≤ φit (g) = 0.

��
For any subgraph H of G and a subset X of the vertex set V (H) of H, we say that

X is an ergodic set of H if

(i) for all x, y ∈ X , there exists a path p in H from x to y that has positive length
and that lies entirely in X ,

(ii) for all x ∈ X and y ∈ V (H)\X , there is no path in H from x to y.

The following lemma is an easy result in graph theory. It is stated without proof.

Lemma 8 Let H = (V (H), E(H)) be a directed graph, such that for every vertex
x ∈ V (H), there exists y ∈ V (H) with (x, y) ∈ E(H). Then, for every x ∈ V (H),
there is a path from x to an element of an ergodic set of H.

Lemma 9 Let α ∈ �. Then

(i) for all t ∈ S, there exists a path in G(α) from t to an element in an ergodic set
of G(α),

(ii) for all t∗ ∈ S∗, the set {t∗} is an ergodic set of the graph G(α),
(iii) an ergodic set of G(α) is either a singleton from the set S∗ or a subset of S.
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Proof (i): The graph G(α) satisfies the condition that every vertex has an outgoing
edge by Lemma7-(i). Therefore, Lemma8 applies.

(ii): The edge (t∗, t∗) is a path of positive length in G(α) from t∗ to t∗, and there
is no other outgoing edge from t∗ in G(α). Thus, the set {t∗} satisfies the conditions
for an ergodic set.

(iii): This result follows from(ii) and the general fact that different ergodic sets in
the same graph are always disjoint. ��
Lemma 10 Let α ∈ �, let p be a path in G(α), and let g be an α-viable plan such
that first(g) = last(p). Then the plan 〈p, g〉 is α-viable.

Proof Write p = (z j )kj=1 with k ≥ 1. Define, for all j ∈ {1, . . . , k}, the plan g j =
〈(z j , . . . , zk), g〉. We prove by induction on j that all plans g j with j ∈ {1, . . . , k} are
α-viable. Trivially, the plan gk = g is α-viable. Now assume that g j+1 with j < k is
α-viable. Then S(g j )\{z j } ⊆ S(g j+1) ⊆ sat(g j+1, α) = sat(g j , α). Thus, to prove
that S(g j ) ⊆ sat(g j , α), i.e., to prove that g j is α-viable, it suffices to show that
z j ∈ sat(g j , α).

We have z j+1 ∈ safestep(z j , α), since p is a path in G(α). It follows that z j ∈
sat(g j+1, α), since g j+1 is an α-viable plan with first(g j+1) = z j+1. Because
sat(g j , α) = sat(g j+1, α), we indeed obtain z j ∈ sat(g j , α). ��
Lemma 11 Let α ∈ �. Then for all t ∈ S and for all U ∈ U(α), there exists a plan in
G(α) that is element of viacomp(t,U , α).

Proof Let t ∈ S and letU ∈ U(α). Consider the set κ ofU -compatible paths inG(α)

with first(p) = t . The set κ is non-empty as it contains the path (t) of length0.
Among the paths in κ , we choose one, say p, for which the cardinality of the

set F(U ) ∩ S(p) is maximal. We denote last(p) by s. We also choose r with r ∈
safestep(s, α), which is possible by Lemma7-(ii). If s ∈ F(U ), then we further
specify our choice of r and we choose r = U (s). Note that the choice of r makes
the edge (s, r) a U -compatible path. We complete our choices with a plan g in G(α)

that is element of viable(r , α), which is possible, since α satisfies condition (i) of
semi-stability.

We will now prove the lemma by showing that the plan h = 〈p, (s, r), g〉 is a
plan inG(α) and an element of viacomp(t,U , α). Plan h is obviously a plan inG(α)

and it is an element of viable(t, α) by Lemma10. To see that h = 〈p, (s, r), g〉 is
U -compatible, we prove that F(U )∩S(g) ⊆ S(p). Suppose that this is not true. Then
we choose u ∈ F(U ) that is on plan g and not on path p. If there is more than one
candidate, we choose u as close to the beginning of g as possible. Let g′ denote the
path that follows g from start until the first occurrence of u.

We claim that the path p′ = 〈p, (s, r), g′〉 is U -compatible. To prove the claim,
consider a first occurrence of x ∈ F(U ) on p′. If x = u, then we found the only
occurrence of x on p′ and it is at the end of p′. We then have no condition to check
for U -compatibility. If x ∈ F(U )\{u}, then the first occurrence of x on p′ is on path
p, and not on g′, by the choice of u. If the first occurrence of x is on p, not at the end,
then x is followed by U (x), because p is a U -compatible path. If the first occurrence
of x is at the end of path p, then x = s and x is followed by r = U (s) = U (x). Thus,
p′ is indeed U -compatible.
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We proved that p′ ∈ κ . We obviously have F(U ) ∩ S(p′) ⊇ F(U ) ∩ S(p). The
inclusion is strict, because we have u ∈ F(U ) ∩ S(p′) and u /∈ F(U ) ∩ S(p). This
contradicts the choice of p as an element of κ that maximizes the cardinality of
F(U ) ∩ S(p). Thus, F(U ) ∩ S(g) ⊆ S(p) as claimed.

We now see that, for any u ∈ F(U ) appearing on h = 〈p, (s, r), g〉, its first
occurrence lies on path p. Then we also see that the first occurrence of u on h is
followed by U (u), as required for a U -compatible plan. ��

The main result of this section concerns the existence of admissible plans.

Lemma 12 Let α ∈ �. Then for all U ∈ U(α) and for all t ∈ F(U ), there exists a
plan in G(α) that is element of admiss(t,U , α).

Proof Let U ∈ U(α) and let t ∈ F(U ). By Lemma11, there exists a plan in G(α)

that is element of viacomp(t,U , α). If among these plans one satisfies AD-i, AD-ii
or AD-iii, we are done. Assume further that no such plan exists. We will demonstrate
that a plan satisfying AD-iv exists.

Let us say that a U -compatible path p is strongly U-compatible if each element of
F(U ) appears at most once on p. Now define

X = {x ∈ S ∪ S∗ | a strongly U -compatible path in G(α) from t to x exists}.

The proof relies on the fact that X ∈ X (α). This and more will be shown in the
following.

I: Proof that t ∈ X and X ⊆ S: We have t ∈ X , since the path (t) of length0 is a
strongly U -compatible path from t to t .

To see that X ⊆ S, suppose to the contrary that s∗ ∈ X ∩ S∗ exists. Then let p
be a strongly U -compatible path in G(α) from t to s∗. The plan g = (s∗, s∗, . . .)
is trivially in G(α) and is trivially α-viable. Now, the plan 〈p, g〉 is also trivially in
G(α), it is obviously U -compatible, and it is α-viable by Lemma10. Thus, 〈p, g〉 ∈
viacomp(t,U , α). Now notice that plan 〈p, g〉 satisfies condition AD-iii, by the fact
that p is a strongly U -compatible path and the fact that g contains no elements of
F(U ). This contradicts our assumption that there is no (t,U , α)-admissible plan in
G(α) that satisfies AD-iii.

II: Proof that esc(X , α) ⊆ F(U ): The set esc(X , α) is indeed defined, by the result
of I. Suppose x ∈ esc(X , α)\F(U ). We will prove a contradiction by showing that
y ∈ X for all y ∈ safestep(x, α). Let y ∈ safestep(x, α). Choose a strongly U -
compatible path p in G(α) from t to x . If y appears on path p, then obviously the
part of p that goes from t to y is a strongly U -compatible path in G(α) from t to y.
Then it follows immediately that y ∈ X . Assume further that y does not appear on
p. It suffices to prove that the path q = 〈p, (x, y)〉 is a strongly U -compatible path
in G(α) from t to y. The path q is a path in G(α), since p is a path in G(α) and the
edge (x, y) is also an edge of G(α). The path q is U -compatible, by the fact that p is
U -compatible and by the fact that the additional edge (x, y) in q does not originate
from a state in F(U ). Further, the occurrence of y at the end of q cannot be the second
occurrence of a state in F(U ), since we assume that y does not appear on p. Thus,
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each state of F(U ) appears at most once on q. So indeed, q is a stronglyU -compatible
path in G(α) from t to y, and hence y ∈ X . Contradiction.

III: Proof that U (x) ∈ safestep(x, α)∩ X for all x ∈ F(U )∩ X: Let x ∈ F(U )∩ X .
We haveU (x) ∈ safestep(x, α) by definition of an α-safe combination, so it remains
to prove that U (x) ∈ X . Choose a strongly U -compatible path p in G(α) from t to
x . If U (x) appears on path p, then obviously the part of p that goes from t to U (x)
is a stronglyU -compatible path inG(α) from t toU (x). Then it follows immediately
that U (x) ∈ safestep(x, α) ∩ X . Assume further that U (x) does not appear on p. It
suffices to prove that the path q = 〈p, (x,U (x))〉 is a strongly U -compatible path in
G(α) from t to U (x). The path q is a path in G(α), since p is a path in G(α) and the
edge (x,U (x)) is also an edge ofG(α). The path q isU -compatible, by the fact that p
isU -compatible and by the fact that the (unique) occurrence of x ∈ F(U ) is followed
by U (x) on q. Further, the occurrence of U (x) at the end of q cannot be the second
occurrence ofU (x), since we assume thatU (x) does not appear on p. Thus, each state
of F(U ) appears at most once on q. Therefore, q is a strongly U -compatible path in
G(α) from t to U (x). This demonstrates that U (x) ∈ X .

IV: Proof that safestep(x, α) ∩ X �= ∅ for all x ∈ X: Let x ∈ X . If x ∈ F(U ) ∩ X ,
then the fact that safestep(x, α)∩X is non-empty follows by the result of III. Assume
further that x ∈ X\F(U ). Then by the result of II, we have x ∈ X\esc(X , α). Hence,
safestep(x, α) ⊆ X . It follows that safestep(x, α) ∩ X = safestep(x, α) �= ∅,
where non-emptiness is by Lemma7-(i).

V: Proof that X ∈ C. For all x ∈ X , we have A(x) ∩ X ⊇ safestep(x, α) ∩ X �= ∅.
Here, the inclusion is trivial and non-emptiness is by the result of IV.

VI: Proof that X ∈ P(α): Suppose to the contrary that pos(X , α) = ∅. By the result
of III, we have for all x ∈ X , an element y ∈ X such that (x, y) is an edge of G(α).
Moreover, for every x ∈ F(U ) ∩ X we may choose y = U (x). Thus, it is possible to
construct a non-absorbing U -compatible plan g with first(g) = t , with S(g) ⊆ X ,
and such that every edge of g is in the edge set ofG(α). Notice that g ∈ viable(t, α),
by the assumption that pos(X , α) = ∅, and by the fact that a non-absorbing plan gives
reward0 to all players. Then g is a plan inG(α) that is element of admiss(t,U , α) due
to condition AD-ii. This contradicts our earlier assumption that no such plan exists.

VII: Proof that X ∈ E(α) and that αt ≤ 0: By Lemma11, there is a plan inG(α) that
is element of viacomp(t,U , α). The assumption that this plan does not satisfy AD-i
implies that αt ≤ 0. Then obviously αs ≤ 0 for all s ∈ F(U ). We may write this
as F(U ) ∩ pos(X , α) = ∅. We have esc(X , α) ⊆ F(U ), by II. Thus, esc(X , α) ∩
pos(X , α) = ∅.

VIII: Proof that, for all x ∈ X with ix = it , we have αx ≤ αt : Suppose to the contrary
that x ∈ X with ix = it and αx > αt exists. Then we choose a stronglyU -compatible
path in G(α) from t to x , which is possible because x ∈ X . We also choose a plan g
in G(α) that is element of viacomp(x,U , α), which is possible by I and Lemma11.
Now, the plan h = 〈p, g〉 is obviouslyU -compatible, and it is α-viable by Lemma10.
Thus, h ∈ viacomp(t,U , α). Observe that h satisfies condition AD-i of admissibility,
due to the fact that x with ix = it and αx > αt appears on plan h before an element
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of F(U ) has appeared for the second time. Thus, h ∈ admiss(t,U , α) due to AD-i.
Also, by construction, h is a plan in G(α). This contradicts our assumption that there
exists no plan in G(α) that is (t,U , α)-admissible due to AD-i, AD-ii or AD-iii.

IX: Construction of a plan in G(α) that is element of admiss(t,U , α): We have
X ∈ X (α) by V, VI and VII. Then, by condition (ii) of semi-stability, a legitimate
α-exit from X exists. Choose one and denote it by (x, y).

Since x ∈ X , there exists a stronglyU -compatible path p inG(α) from t to x . Also,
there exists a plan g in G(α) that is element of viacomp(x,U , α), by Lemma11. We
claim that h = 〈p, g〉 is a plan in G(α) that is element of admiss(t,U , α).

Plan h = 〈p, g〉 is obviously inG(α). The plan isU -compatible, because both p and
g areU -compatible. The plan is α-viable by Lemma10. Thus, h ∈ viacomp(t,U , α).
It now suffices to demonstrate that h satisfies AD-iv.

We have x ∈ X\esc(X , α) because the α-exit (x, y) is legitimate. Therefore y /∈
safestep(x, α), and hence we can choose an α-viable plan v with first(v) = y and
with x /∈ sat(v, α). We will prove that (x, v) is a threat pair for h.

(a): The location of the first occurrence of x on h is such that each element of F(U )

appears at most once on h before the first occurrence of x . Indeed, this follows from
the fact that x lies on the strongly U -compatible path p.

(b): Proof that ix �= it : We have X ⊆ S by I and pos(X , α) �= ∅ by VI. Then
esc(X , α) �= ∅ by Lemma7-(ii), so we can choose s ∈ esc(X , α). It follows by II
that s ∈ F(U ), so we have s ∈ F(U ) ∩ esc(X , α) and is = it .

Now suppose that ix = it . We then have αx ≤ αt by the result of VIII. Since
s ∈ esc(X , α) and since ix = it = is , it follows by the definition of a legitimate α-
exit that αx > αs . Thus, αs < αx ≤ αt . This contradicts that αs = αt , as s, t ∈ F(U ).

(c): Plan v is obviously an α-viable plan with first(v) ∈ A(x).
(d): The state following x on plan h, say z, is not equal to state first(v) = y.

Indeed, we have z ∈ safestep(x, α) because h is a plan in G(α), and we have
y /∈ safestep(x, α).

(e): It remains to prove that t /∈ sat(v, α). Suppose to the contrary that t ∈
sat(v, α). Then F(U ) ⊆ sat(v, α), since αs = αt for all s ∈ F(U ). It subse-
quently follows that esc(X , α) ⊆ sat(v, α), since esc(X , α) ⊆ F(U ), by the result
of II. By definition of an α-exit, we have,

esc(X , α) ⊆ sat(v, α) �⇒ x ∈ sat(v, α),

so we conclude that x ∈ sat(v, α). This contradicts our choice of v such that x /∈
sat(v, α). ��

5.2 Properties of an updated semi-stable vector

Let us continue with some fairly immediate consequences of Lemma12.

Lemma 13 Let α ∈ � and let U ∈ U(α). Then α ≤ δ(U , α) < ∞.

Proof Proof that δ(U , α) < ∞: Choose t ∈ F(U ). The set admiss(t,U , α) is non-
empty by Lemma12. Thus, the number
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β(t,U , α) = min{φit (v) | v ∈ admiss(t,U , α)}

is finite and also the number γ (U , α) = min{β(u,U , α) | u ∈ F(U )} is finite. It
follows that every coordinate of δ(U , α) is finite.

Proof that αu ≤ δu(U , α) for all u ∈ S: Choose t ∈ F(U ) such that β(t,U , α) =
γ (U , α). We have αt ≤ φit (v) for all v ∈ viable(t, α). Then also αt ≤ φit (v) for all
v ∈ admiss(t,U , α), since admiss(t,U , α) ⊆ viable(t, α). It follows that

αt ≤ min{φit (v) | v ∈ admiss(t,U , α)} = β(t,U , α) = γ (U , α).

Now, let u ∈ S. If u /∈ F(U ), then we trivially have αu = δu(U , α). If u ∈ F(U ),
then αu = αt ≤ γ (U , α) = δu(U , α). ��
Lemma 14 Let α ∈ � and let U ∈ U(α). Denote the vector δ(U , α) by δ. Then

(i) viable(t, δ) ⊆ viable(t, α) for all t ∈ S,
(ii) safestep(t, δ) ⊇ safestep(t, α) for all t ∈ S\F(U ),
(iii) U (t) ∈ safestep(t, δ) ⊆ safestep(t, α) for all t ∈ F(U ),
(iv) esc(X , δ)\F(U ) ⊇ esc(X , α)\F(U ) for all X ⊆ S,
(v) esc(X , δ) ⊇ esc(X , α) for all X ⊆ S with F(U ) ∩ X ⊆ esc(X , δ).

Proof Proof of (i): By Lemma13 we have δ ≥ α. Then, if a plan is δ-viable, it is
obviously also α-viable.

Proof of (ii): Let t ∈ S\F(U ) and let u ∈ safestep(t, α).We need to prove that u ∈
safestep(t, δ). Choose an arbitrary plan g ∈ viable(u, δ). Then g ∈ viable(u, α)

by (i), and since u ∈ safestep(t, α), it follows that t ∈ sat(g, α). Since t /∈ F(U ),
we have αt = δt , hence t ∈ sat(g, δ). So indeed, we have u ∈ safestep(t, δ).

Proof of (iii), part 1: Let t ∈ F(U ). To prove that U (t) ∈ safestep(t, δ), we must
show that t ∈ sat(g, δ) for every g ∈ viable(U (t), δ). So, let g ∈ viable(U (t), δ).

Case 1: Assume that F(U ) ∩ S(g) = ∅. Plan g is α-viable by the result
of (i). Then plan h = 〈(t,U (t)), g〉 is α-viable by Lemma10 and the fact that
U (t) ∈ safestep(t, α) (by definition of an α-safe combination). It follows from
the assumption F(U ) ∩ S(g) = ∅ that plan h isU -compatible and satisfies condition
AD-iii. It follows that h ∈ admiss(t,U , α), and hence that φit (g) ≥ β(t,U , α) ≥ δt .
Then indeed, t ∈ sat(g, δ).

Case 2: Assume that F(U )∩S(g) �= ∅, say s ∈ F(U ) is on plan g. Then it follows
from the δ-viability of g that s ∈ sat(g, δ). It subsequently follows that t ∈ sat(g, δ)
from the fact that δt = δs .

Proof of (iii), part 2: Let t ∈ F(U ) and let u ∈ safestep(t, δ). We must show that
t ∈ sat(g, α) for every g ∈ viable(u, α). So, let g ∈ viable(u, α).

Case 1: Assume that F(U )∩S(g) = ∅. Then g ∈ viable(u, δ), since αx = δx for
all x ∈ S(g). It follows that t ∈ sat(g, δ) by the fact that u ∈ safestep(t, δ). Then
also t ∈ sat(g, α) as αt ≤ δt by Lemma13.

Case 2: Assume that F(U ) ∩ S(g) �= ∅, say that s ∈ F(U ) is on plan g. Then
it follows from the α-viability of g that s ∈ sat(g, α). It subsequently follows that
t ∈ sat(g, α) from the fact that αt = αs .

Proof of (iv): This follows immediately from (ii).
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Proof of (v): Let X ⊆ S be such that F(U )∩X ⊆ esc(X , δ), and let x ∈ esc(X , α).
If x ∈ F(U ), then x ∈ esc(X , δ) by assumption of (v). If x ∈ X\F(U ), then x ∈
esc(X , δ) by the result of (iv). ��
Lemma 15 Let α ∈ �, let U ∈ U(α), and let t ∈ F(U ). Then admiss(t,U , α) ⊆
viable(t, δ), where δ denotes the vector δ(U , α).

Proof Let g ∈ admiss(t,U , α). By definition of the vector δ, we have δt ≤ φit (g).
For every state x ∈ F(U ) that appears on g, we then have δx = δt ≤ φit (g) = φix (g).
For every state x /∈ F(U ) on g, we have δx = αx ≤ φix (g), where the inequality
follows, since g ∈ admiss(t,U , α) ⊆ viable(t, α). Thus, plan g is indeed δ-viable.

��
Lemma 16 Let α ∈ �, let U ∈ U(α), and let t ∈ F(U ). If g is an absorbing plan in
G(α) that is element of admiss(t,U , α), then g is a plan inG(δ), where δ denotes the
vector δ(U , α).

Proof Let g be an absorbing plan in G(α) that is element of admiss(t,U , α) and let
(x, y) be an edge of g. We will prove that (x, y) is an edge of G(δ). We distinguish
four different cases.

Case 1: x ∈ S∗. In this case, we have y = x and (x, y) = (x, x) is trivially an edge
of G(δ).

Case 2: x ∈ S\F(U ). Notice that y ∈ safestep(x, α), as (x, y) is an edge ofG(α).
Then y ∈ safestep(x, δ) by Lemma14-(ii). Thus, (x, y) is an edge of G(δ).

Case 3: x ∈ F(U ) and y = U (x). Then y ∈ safestep(x, δ) by Lemma14-(iii),
and hence (x, y) is an edge of G(δ).

Case 4: x ∈ F(U ) and y �= U (x). Let v ∈ viable(y, δ). We need to prove that
x ∈ sat(v, δ).

Let p denote the path that follows g from start t to the occurrence of x on g that
corresponds with the edge (x, y). The path 〈p, (x, y)〉 is a part of g and is therefore
a path in G(α). The plan v is α-viable by Lemma14-(i). Therefore, the plan h =
〈p, (x, y), v〉 is α-viable by Lemma10.

Notice that the occurrence of x on g that corresponds with the edge (x, y) is not
the first occurrence of x on g, as the first occurrence of x is followed byU (x) because
g ∈ admiss(t,U , α). The path p contains the occurrence of x that corresponds with
the edge (x, y), and hence p has at least two different occurrences of x .

We further distinguish between two subcases.
(4a): Assume that plan v is non-absorbing. Then plan h = 〈p, (x, y), v〉 is also

non-absorbing. Since we demonstrated that h is α-viable, it follows that αz ≤ 0 for
all states z that lie on the path p. Now, path p contains a path of positive length
from x to x , as it contains the first two occurrences of x on g. Denote this path by q
and observe that the plan (p, q, q, . . .) is a non-absorbingU -compatible and α-viable
plan. Therefore, (p, q, q, . . .) is an element of admiss(t,U , α) by AD-ii. It follows
that δx = δt ≤ 0. It also follows that x ∈ sat(v, δ).

(4b): Assume that plan v is absorbing. If one of the elements of F(U ) is located
on v, say s, then it is obvious that s ∈ sat(v, δ), hence that x ∈ sat(v, δ). We may
therefore assume additionally that there are no elements of F(U ) located on v. We
claim that h = 〈p, (x, y), v〉 is an element of admiss(t,U , α).
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The path 〈p, (x, y)〉 is part of g and is therefore a U -compatible path. The plan v

does not contain any states of F(U ), hence the plan h = 〈p, (x, y), v〉 isU -compatible.
Since h is also α-viable, we conclude that h ∈ viacomp(t,U , α).

If plan g is (t,U , α)-admissible due to AD-i, then αt > 0 or there exists a state z
on g with iz = it and αz > αt , located on g before any state of F(U ) appears for the
second time on g. In the former case, h is (t,U , α)-admissible due toAD-i. In the latter
case, notice that state z must be located on p, since there are at least two occurrences
of x ∈ F(U ) located on p. We then see that plan h is also (t,U , α)-admissible due to
AD-i, since h has path p as its initial part.

Plan g is not (t,U , α)-admissible due to AD-ii, because g is absorbing. Also, plan
g is not (t,U , α)-admissible due to AD-iii, because x ∈ F(U ) appears more than once
on g.

If plan g is (t,U , α)-admissible due toAD-iv, then there exists a threat pair for g, say
(z, w), such that state z appears on g before any state of F(U ) appears for the second
time on g. State z must then be located on p, since there are at least two occurrences
of x ∈ F(U ) located on p. We now see that plan h is also (t,U , α)-admissible due to
AD-iv, since plan h has path p as its initial part.

Thus, we have indeed h ∈ admiss(t,U , α). It follows that δx = δt ≤ φit (h) =
φit (v) = φix (v), and hence x ∈ sat(v, δ). ��

We conclude this section with a proof that the vector δ(U , α) satisfies condition (i)
of semi-stability, for all α ∈ � and all U ∈ U(α).

Lemma 17 Let α ∈ � and let U ∈ U(α). Then for all t ∈ S ∪ S∗, there exists a plan
in G(δ) that is element of viable(t, δ), where δ = δ(U , α).

Proof Let t ∈ S ∪ S∗. We distinguish between the cases t ∈ F(U ) and t /∈ F(U ).
Case 1: Assume that t ∈ F(U ). Then we can choose a plan g in G(α) that is

element of admiss(t,U , α), by Lemma12. We distinguish three subcases.
(1a): Plan g is absorbing. Then g is the required plan, as it is inG(δ) by Lemma16,

and it is an element of viable(t, δ) by Lemma15.
(1b): Plan g is a non-absorbing plan in G(δ). Then g is the required plan in G(δ)

that is element of viable(t, δ), by Lemma15.
(1c): Plan g is non-absorbing and not every edge of g is an edge of G(δ). Then let

(x, y) denote the first edge of g that is not of G(δ).
We have y ∈ safestep(x, α), as (x, y) is an edge of G(α) and we have

y /∈ safestep(x, δ), as (x, y) is not an edge of G(δ). It follows that x ∈ F(U )

by Lemma14-(ii). It also follows that y �= U (x) by Lemma14-(iii). The fact that
x ∈ F(U ) and y �= U (x) implies that x appears more that once on g and that the
occurrence of x associated with the edge (x, y) is not the first occurrence, because g is
aU -compatible plan. Now, let p denote the path with first(p) = t and last(p) = x
that follows g from start to the occurrence of x on g that corresponds with the edge
(x, y) of g. Let further q denote the path with first(q) = last(q) = x that fol-
lows g from the first occurrence of x until the second occurrence. Then the plan
g′ = 〈p, q, q, . . .) is a non-absorbing plan in G(δ). Plan g′ is also an element of
viable(t, δ), since all states on the plan are states that also lie on the non-absorbing
plan g. Thus, g′ is the required plan.
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Fig. 9 Exits and the update procedure

Case 2: Assume that t /∈ F(U ). Then we choose a plan g inG(α) that is element of
viable(t, α), which is possible by Lemma11. If plan g does not contain any elements
of F(U ), then every edge of g is an edge of G(δ) by Lemma14-(ii). In that case, g is
the required plan. We assume further that plan g has at least one state of F(U ). Then
let x ∈ F(U ) denote the first such state on g. Let p denote the path with first(p) = t
and last(p) = x that follows g from start to the first occurrence of x . Notice that p
is a path in G(δ) by Lemma14-(ii). We now choose a plan h in G(δ) that is element
of viable(x, δ), which is possible by the proof of Case1. Then the plan g′ = 〈p, h〉
is a plan in G(δ). The plan g′ is also an element of viable(t, δ), which follows by
Lemma10 (applied to δ ∈ R

S). Thus, g′ is the required plan. ��
We showed that, for all α ∈ � and all U ∈ U(α), the vector δ(U , α) is finite and

satisfies δ(U , α) ≥ α (see Lemma13). The vector δ(U , α) also satisfies condition (i)
of semi-stability (see Lemma17). If we could now prove that δ(U , α) satisfies condi-
tion (ii) of semi-stability as well (and hence δ(U , α) ∈ �), then it would be an easy
corollary to establish the existence of a fixed point in �. However, for certain vectors
α ∈ � we have δ(U , α) /∈ �, as was demonstrated in Kuipers et al. (2016) by means
of an example. A similar example is given below in Fig. 9.

Example 5 For the game depicted in Fig. 9, one can verify that the vector α defined
by

α1 = 2, α2 = −1, α3a = −1, α3b = −2, α3c = −1,

is an element of�, and that (3a, 3b) is a legitimateα-exit from {1, 2, 3a} ∈ X (α). Now,
an update of state 3b increases the value of α3b from−2 to−1. One can check that, for
the updated vectorα, we still have {1, 2, 3a} ∈ X (α), but there is no longer a legitimate
α-exit from {1, 2, 3a}. Thus, the updated α is not in �. (If we now continue with an
update of state3a , then the value of α3a increases from−1 to0. Finally, an update of
state2 increases the value of α2 from−1 to∞, since we then have admiss(2,U , α) =
∅, where U is defined by U (2) = 3a .) ��

5.3 Stable vectors and exit sequences

The findings of Example5 are the motivation for the definition of a set �∗ of sta-
ble vectors. The set �∗ is defined by replacing condition (ii) of semi-stability by a
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stronger condition and by keeping condition (i) the same. The strengthened condi-
tion (ii) requires the existence of a certain sequence of edges for every X ∈ X (α),
which contains a legitimate α-exit from X , but also contains an edge (x, y) with
αx > 0. The set �∗ is thus by definition a subset of �. Therefore, all results derived
in Sects. 5.1 and 5.2 for vectors of the set � hold for vectors of the set �∗ as well.
The main effort in this section will therefore go into proving that, for all α ∈ �∗ and
all U ∈ U(α), the vector δ(U , α) satisfies condition (ii) of stability, and that hence
δ(U , α) ∈ �∗.

Let α ∈ �, X ⊆ S and Z ⊆ X . We say that an edge (x, y) is an (α, Z)-exit from X
if x ∈ X and y ∈ (S ∪ S∗)\X , and if, for all v ∈ viable(y, α),

Z ∪ esc(X , α) ⊆ sat(v, α) �⇒ x ∈ sat(v, α).

Note that an (α, ∅)-exit from X is simply an α-exit from X . We say that a sequence
of edges e = (x j , y j )kj=1 is an α-exit sequence from X if, for all j ∈ {1, . . . , k}, the
edge (x j , y j ) is an (α, {x1, . . . , x j−1})-exit from X . For technical reasons, we allow
k = 0, i.e., the empty sequence will also be called an α-exit sequence from X .

We say that an edge (x, y) = (x j , y j ) in the sequence e is legitimate if αx > αz

for every z ∈ {x1, . . . , x j−1} ∪ esc(X , α) with iz = ix . We say that the sequence e is
legitimate if it is non-empty and if at least one of its edges is legitimate. We say that
the edge (x, y) is positive if x ∈ pos(X , α). We say that the sequence e is positive if
it is non-empty and if at least one of its edges is positive.

We now say that a vector α ∈ R
S is stable if

(i) for all t ∈ S, there exists a plan in G(α) that is element of viable(t, α),
(ii) for all X ∈ X (α), there exists a positive α-exit sequence from X .

We denote the set of stable vectors in R
S by �∗.

The motivation for these definitions can be explained by observing what goes
‘wrong’ in Example5. In that example, we initially have a legitimate α-exit (x, y)
from a set X ∈ X (α). After the update, which is an update of a state not in X , the set
X is still in X (α), but (x, y) is no longer a legitimate α-exit from X , since now x is
α-safe at y. No other α-exit comes in its place, so the updated vector is not in �. The
issue is solved when we have a positive α-exit sequence from X ∈ X (α). Then it is
easy to prove that the sequence contains a legitimate α-exit from X (see Lemma18).
After an update of a state not in X , essentially two things can happen. If, after the
update, x is α-safe at y, where (x, y) is a positive edge in the sequence, then X is
no longer an element of X (α), because we then have x ∈ esc(X , α) ∩ pos(X , α).
Otherwise, if x is not α-safe at y after the update, then it is easy to prove that a positive
α-exit sequence from X remains, where (x, y) will be a positive edge in the sequence.

For an example of a positive α-exit sequence, the reader can refer to Example4.
Here, we see that the edge (2, 2∗) is a legitimate α-exit from the set {1a, 1b, 2, 3}
after the first and the second iteration. This single edge then also forms a positive
α-exit sequence from {1a, 1b, 2, 3}. After the third iteration, the edge (1b, 1∗

b) is a
legitimate α-exit from {1a, 1b, 2, 3}, and the sequence ((1b, 1∗

b), (2, 2
∗)) is a positive

α-exit sequence from {1a, 1b, 2, 3}.
The following lemma states some basic facts about exit sequences.
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Lemma 18 Let α ∈ � and let X ⊆ S.

(i) If e is a non-empty α-exit sequence from X, then its first edge is an α-exit from
X.

(ii) If e is anα-exit sequence from X, and if (x, y) is an edge of e that is not legitimate,
then the sequence e obtained from e by deleting the edge (x, y) is also an α-exit
sequence from X. Moreover, every edge that is legitimate in e is also legitimate
in e.

(iii) If a legitimate α-exit sequence from X exists, then a legitimate α-exit from X
exists.

(iv) If e and f are both α-exit sequences from X, then the concatenation of these two
sequences, denoted by (e, f), is also an α-exit sequence from X.

(v) If e is a positive α-exit sequence from X and if X ∈ X (α), then the first positive
edge of e is a legitimate edge.

(vi) If e = (x j , y j )kj=1 is an α-exit sequence from X, and if (xh, yh) and (x�, y�)with
h < � are such that ixh = ix�

and such that (x�, y�) is legitimate, then αxh < αx�
.

Proof Proof of (i): If e is a non-empty α-exit sequence from X , then its first edge is
by definition an (α, ∅)-exit from X . That is also the definition of an α-exit from X .

Proof of (ii): Let e = (x j , y j )kj=1 be an α-exit sequence from X . Suppose that the
edge (xh, yh) = (x, y) is not legitimate. Then z ∈ {x1, . . . , xh−1} ∪ esc(X , α) exists
with iz = ix and αz ≥ αx .

Now let e denote the sequence obtained by deleting the edge (x, y) from e. To see
that e is an α-exit sequence from X , we need to check that (x j , y j ) is an (α, {x� | � <

j, � �= h})-exit from X , for all j ∈ {1, . . . , k} with j �= h.
Let j ∈ {1, . . . , k}\{h}, let g ∈ viable(y j , α) and assume that

{x� | � < j, � �= h} ∪ esc(X , α) ⊆ sat(g, α). (4)

We need to prove that x j ∈ sat(g, α).
If j < h, then assumption (4) is equivalent to

{x1, . . . , x j−1} ∪ esc(X , α) ⊆ sat(g, α).

In this case x j ∈ sat(g, α) follows immediately by the fact that (x j , y j ) is an
(α, {x1, . . . , x j−1})-exit from X .

Now consider the case j > h. Then {x1, . . . , xh−1} ⊆ {x� | � < j, � �= h}.
Since we have z ∈ {x1, . . . , xh−1} ∪ esc(X , α), it follows that z ∈ {x� | � < j, � �=
h} ∪ esc(X , α). Assumption (4) therefore implies that z ∈ sat(g, α). Then also xh =
x ∈ sat(g, α), becauseαx ≤ αz and ix = iz . This result combinedwith assumption (4)
implies

{x1, . . . , x j−1} ∪ esc(X , α) ⊆ sat(g, α).

Now x j ∈ sat(g, α) follows by the fact that (x j , y j ) is an (α, {x1, . . . , x j−1})-exit
from X .

We proved that e is an α-exit sequence from X . Now assume that the edge (x�, y�) is
a legitimate edge of the sequence e.We then haveαx�

> αz for all z ∈ {x1, . . . , x�−1}∪
esc(X , α) with iz = ix�

. Obviously, � �= h, so the edge (x�, y�) is also an edge of the
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sequence e. Also obviously, αx�
> αz for all z ∈ ({x1, . . . , x�−1}\{xh}) ∪ esc(X , α)

with iz = ix�
. Then (x�, y�) is a legitimate edge of the sequence e.

Proof of (iii): Let e = (x j , y j )kj=1 be a legitimate α-exit sequence from X . Let h
be the smallest index such that the edge (xh, yh) is legitimate. Denote by e the edge-
sequence obtained from e by deleting all edges (x j , y j ) from e with j < h. Then
the edge-sequence e is an α-exit sequence from X , by (ii). The first edge of e (i.e.,
(xh, yh)) is an α-exit from X , by (i). Then obviously, it is a legitimate α-exit from X .

Proof of (iv): Let e = (x j , y j )kj=1 and f = (x j , y j )�j=k+1 be two α-exit sequences

from X . To see that (x j , y j )�j=1 is an α-exit sequence from X , let j ∈ {1, . . . , �}, and
let v ∈ viable(y j , α) be such that {x1, . . . , x j−1}∪esc(X , α) ⊆ sat(v, α). We need
to prove that x j ∈ sat(v, α). If j ≤ k, this follows from the fact that (x j , y j ) is an
(α, {x1, . . . , x j−1})-exit from X . If j > k, this follows from the fact that (x j , y j ) is
an (α, {xk+1, . . . , x j−1})–exit from X .

Proof of (v): Let (x j , y j )kj=1 be a positive α-exit sequence from X with X ∈ X (α)

and let h denote the smallest index in {1, . . . , k}with the property xh ∈ pos(X , α). We
need to prove that (xh, yh) is a legitimate edge, i.e., we need to show that αxh > αz for
all z ∈ {x1, . . . , xh−1}∪esc(X , α)with iz = ixh . So let z ∈ {x1, . . . , xh−1}∪esc(X , α)

with iz = ixh . If z ∈ {x1, . . . , xh−1}, then we have αz ≤ 0, as h is the smallest index
with αxh > 0. Then indeed αxh > 0 ≥ αz . Now assume that z ∈ esc(X , α). We then
have αz ≤ 0, because pos(X , α)∩esc(X , α) = ∅ by the fact that X ∈ X (α) ⊆ E(α).
So indeed, αxh > 0 ≥ αz .

Proof of (vi): Let e = (x j , y j )kj=1 be an α-exit sequence from X . Suppose (xh, yh)
and (x�, y�) with h < � are two edges with ixh = ix�

and with αxh ≥ αx�
. Then the

edge (x�, y�) violates the conditions for a legitimate edge. ��

Lemma 19 We have ρ ∈ �∗ ⊆ �, where ρ is the vector defined by ρt = rit (t) for all
t ∈ S.

Proof First we prove that ρ ∈ �∗. The vector ρ is semi-stable by Lemma6; hence,
it satisfies condition (i) of semi-stability. Then the vector ρ satisfies condition (i) of
stability, as this is the same condition.

We haveX (ρ) = ∅ by Lemma6. Thus, the vector ρ trivially satisfies condition (ii)
of stability. It follows that ρ ∈ �∗.

Nowweprove that�∗ ⊆ �. Letα ∈ �∗. The vectorα trivially satisfies condition (i)
of semi-stability. To see that α satisfies condition (ii) of semi-stability, let X ∈ X (α).
Then a positive α-exit sequence from X exists, as α satisfies condition (ii) of stabil-
ity. The sequence is a legitimate α-exit sequence from X , by Lemma18-(v). Then
a legitimate α-exit from X exists, by Lemma18-(iii). We see that α indeed satisfies
condition (ii) of semi-stability. Thus α ∈ �. ��

Until further notice, we fix α ∈ �∗ and U ∈ U(α). We further denote the vector
δ(U , α) by δ. The vector δ then satisfies condition (i) of stability by Lemma17, as
α ∈ �∗ ⊆ �. The work needed to demonstrate that δ also satisfies condition (ii) of
stability, and that hence δ ∈ �∗, will be divided over two subsections as follows. We
partition the set X (δ) into two subsets:
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V(U , δ) = {X ∈ X (δ) | F(U ) ∩ X = ∅ or F(U ) ∩ esc(X , δ) �= ∅},
W(U , δ) = {X ∈ X (δ) | F(U ) ∩ X �= ∅ and F(U ) ∩ esc(X , δ) = ∅}.

Note that the set V(U , δ) contains the sets X ∈ X (δ) for which the updated states
are all outside of X , i.e., F(U ) ∩ X = ∅. Recall that this is the situation for which
Example5 demonstrated that themere existence of a legitimateα-exit does not guaran-
tee the existence of a legitimate δ-exit and which motivated us to consider the concept
of a positive α-exit sequence. The intuition which we developed for that situation
translates into a relatively easy proof that a positive δ-exit sequence from X exists, so
that condition (ii) of stability indeed holds for these sets X : For every set X ∈ V(U , δ),
we will show that X ∈ X (α) (Lemma20) and that every α-exit sequence from X is
also a δ-exit sequence from X (Lemma21). Then, a positive δ-exit sequence from X
exists, since we know that a positive α-exit sequence from X exists (Lemma22). This
is all handled in Sect. 5.4. We are then left to prove that a positive δ-exit sequence
from X exists for the sets X ∈ W(U , δ). This turns out to be the difficult case. It is
handled in Sect. 5.5.

In Sect. 5.4, we prove that, for all X ∈ V(U , δ), there exists a positive δ-exit
sequence from X . In Sect. 5.5, we deal with the setW(U , δ). The two results together
then imply that δ satisfies condition (ii) of stability.

5.4 Existence of ı-exit sequences: the easy case

Recall that α ∈ �∗, U ∈ U(α), and δ = δ(U , α) are fixed.
Our approach for demonstrating that every X in the set V(U , δ) has a positive δ-exit

sequence from X is straightforward. We first prove that every member of V(U , δ) is
also present in X (α). We then prove that, for all X ∈ V(U , δ), every α-exit sequence
from X is a δ-exit sequence from X .

Lemma 20 We have V(U , δ) ⊆ X (α).

Proof Let X ∈ V(U , δ).
We claim that F(U ) ∩ pos(X , δ) = ∅. This is obviously true if F(U ) ∩ X = ∅,

so assume further that F(U ) ∩ X �= ∅. Then, by definition of the set V(U , δ), we
have F(U ) ∩ esc(X , δ) �= ∅; hence, we can choose s ∈ F(U ) ∩ esc(X , δ). We have
esc(X , δ) ∩ pos(X , δ) = ∅, by the fact that X ∈ V(U , δ) ⊆ E(δ). It follows that
s /∈ pos(X , δ), as we chose s ∈ esc(X , δ). That is, we have δs ≤ 0. Then obviously,
δt ≤ 0 for all t ∈ F(U ) and the claim F(U ) ∩ pos(X , δ) = ∅ follows.

The fact that pos(X , δ) contains no elements of F(U ) implies αx ≤ δx ≤ 0 for
all x ∈ X ∩ F(U ). We also have αx = δx for all x ∈ X\F(U ). It follows that
pos(X , α) = pos(X , α)\F(U ) = pos(X , δ)\F(U ) = pos(X , δ). The set pos(X , δ)

is non-empty by the fact that X ∈ V(U , δ) ⊆ P(δ). Thus, the set pos(X , α) is also
non-empty, which demonstrates that X ∈ P(α).

The fact that pos(X , α) = pos(X , α)\F(U ) implies that

esc(X , α) ∩ pos(X , α) = (esc(X , α)\F(U )) ∩ pos(X , α).
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It follows that

esc(X , α) ∩ pos(X , α) = (esc(X , α)\F(U )) ∩ pos(X , α)

⊆ (esc(X , δ)\F(U )) ∩ pos(X , δ)

⊆ esc(X , δ) ∩ pos(X , δ)

= ∅.

Here, the first inclusion is by Lemma14-(iv) and the fact that pos(X , α) = pos(X , δ).
The final equality is by the fact that X ∈ V(U , δ) ⊆ E(δ). This demonstrates that
X ∈ E(α).

We have X ∈ C by the fact that X ∈ V(U , δ) ⊆ C. We proved X ∈ P(α) ∩ E(α) ∩
C = X (α). ��
Lemma 21 Let X ∈ V(U , δ). Then every α-exit sequence from X is a δ-exit sequence
from X.

Proof Let e = (x j , y j )kj=1 be an α-exit sequence from X .
Let j ∈ {1, . . . , k}, let g ∈ viable(y j , δ) and assume that

{x1, . . . , x j−1} ∪ esc(X , δ) ⊆ sat(g, δ). (5)

We need to prove that x j ∈ sat(g, δ). We distinguish between two cases.
Case 1: x j ∈ F(U ). Then apparently F(U ) ∩ X �= ∅, so we must have F(U ) ∩

esc(X , δ) �= ∅, by the fact that X ∈ V(U , δ). The fact that a representative of
F(U ), say t , exists in esc(X , δ) implies that t ∈ sat(g, δ), by Assumption (5). Then
obviously also x j ∈ sat(g, δ).

Case 2: x j /∈ F(U ).We claim that

{x1, . . . , x j−1} ∪ esc(X , α) ⊆ sat(g, δ). (6)

If F(U ) ∩ X = ∅, then esc(X , α) ⊆ esc(X , δ) by Lemma14-(v), hence (6) holds by
assumption (5). So assume F(U ) ∩ X �= ∅. Then we have F(U ) ∩ esc(X , δ) �= ∅,
since X ∈ V(U , δ). The fact that a representative of F(U ) exists in the set esc(X , δ)

makes clear that assumption (5) implies

{x1, . . . , x j−1} ∪ esc(X , δ) ∪ F(U ) ⊆ sat(g, δ). (7)

We have esc(X , α) ⊆ esc(X , δ) ∪ F(U ) by Lemma14-(iv). Thus, Eq. (7) implies
claim(6). We conclude that

{x1, . . . , x j−1} ∪ esc(X , α) ⊆ sat(g, δ) ⊆ sat(g, α), (8)

where the second inclusion is because we have α ≤ δ, by Lemma13. We also have
g ∈ viable(y j , δ) ⊆ viable(y j , α), which follows by Lemma14-(i). Then x j ∈
sat(g, α) follows by the fact that (x j , y j ) is an (α, {x1, . . . , x j−1})-exit from X .
Since x j /∈ F(U ), we have αx j = δx j , and we conclude that x j ∈ sat(g, δ). ��
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Lemma 22 Let X ∈ V(U , δ). Then there exists a positive δ-exit sequence from X.

Proof We have X ∈ X (α) by Lemma20. Therefore, a positive α-exit sequence from
X exists. The sequence is a δ-exit sequence from X by Lemma21. The sequence has
an edge (x, y) with x ∈ pos(X , α), because it is a positive α-exit sequence. Then
x ∈ pos(X , δ), as δ ≥ α. The sequence is thus a positive δ-exit sequence from X . ��

5.5 The existence of ı-exit sequences: the difficult case

5.5.1 Introduction

Recall that α ∈ �∗, U ∈ U(α) and δ = δ(U , α) are still fixed. We still need to prove
that a positive δ-exit sequence from X exists for every X in the set W(U , δ).

In this subsection, we will sometimes make use of additional notation. If e =
(x j , y j )kj=1 is a sequence of edges, we will use the notation x j (e) = x j and y j (e) =
y j for j ∈ {1, . . . , k}. We will also use the notation x(e) = {x1, . . . , xk}, y(e) =
{y1, . . . , yk}, and k(e) = k. We will further use the notation ø for the empty sequence.

Let us give a quick overview of the approach we will take. We first define, for any
X ⊆ S, a certain type of α-exit sequences from X , called α-exit sequences from X
disregarding U , that do not involve the members of F(U ) in any way. We order such
sequences e by the cardinality of the set x(e), and we are interested in the sequences
that are maximal in this sense.

It easily follows from the definition that every α-exit sequence from X disregarding
U is a δ-exit sequence from X (seeLemma24). Therefore, if anα-exit sequence from X
disregardingU exists that is positive, thenwe are done.Otherwise, amaximal sequence
e∗ can serve as the initial part of a positive δ-exit sequence from X . The crucial result
regarding the sequence e∗, when non-positive, can be found in Lemma32. It will imply
that, for certain t ∈ F(U )∩ X and for every v ∈ viable(s, δ)with s ∈ A(t), we have

{t} ∪ x(e∗) ∪ esc(X , δ) ⊆ sat(v, α) �⇒ t ∈ sat(v, δ).

The result hints at the fact that an edge of the form (t, s) with t ∈ F(U ) can be placed
directly after the sequence e∗ to make a δ-exit sequence from X . The details of how to
extend the sequence e∗ with an appropriate edge (t, s) are handled in Lemma33. The
final details are then handled in Lemma34: If δt > 0, then (e∗, (t, s))makes a positive
δ-sequence from X , and we are done. If δt ≤ 0, then we show that X ∈ X (α), so we
can choose a positive α-exit sequence from X , say f . We then show that (e∗, (t, s), f)
is a positive δ-exit sequence from X .

5.5.2 Exit sequences disregarding U,˛-caps and˛-hats

Let X ⊆ S, and let e = (x j , y j )kj=1 be an α-exit sequence from X . We will say that e
is an α-exit sequence from X disregarding U if F(U ) ∩ {x1, . . . , xk} = ∅, and if for
all j ∈ {1, . . . , k} and all v ∈ viable(y j , α),

{x1, . . . , x j−1} ∪ (esc(X , α)\F(U )) ⊆ sat(v, α) �⇒ x j ∈ sat(v, α).
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Later in Sect. 5.5 we will need the fact that Lemma18-(iv) is also valid for exit
sequences from X disregarding U . This is expressed in the following lemma.

Lemma 23 Let X ⊆ S. If e and f are both α-exit sequences from X disregarding U,
then the concatenation of these two sequences, denoted by (e, f), is also an α-exit
sequence from X disregarding U.

Proof Let e = (x j , y j )kj=1 and f = (x j , y j )�j=k+1 be two α-exit sequences from

X disregarding U . We need to prove that (x j , y j )�j=1 is an α-exit sequence from X
disregarding U . To see this, let j ∈ {1, . . . , �} and let v ∈ viable(y j , α) be such that
{x1, . . . , x j−1} ∪ (esc(X , α)\F(U )) ⊆ sat(v, α). If j ≤ k, we use the fact that e is
an α-exit sequence from X disregarding U to deduce that x j ∈ sat(v, α). If j > k,
we use the fact that f is an α-exit sequence from X disregarding U to deduce that
x j ∈ sat(v, α). ��

Later in Sect. 5.5 we will also use the fact that the claim of Lemma21 is valid for
exit sequences from X disregardingU and does not need the restriction X ∈ V(U , δ).
This is expressed in the following lemma.

Lemma 24 Let X ⊆ S. Then every α-exit sequence from X disregarding U is a δ-exit
sequence from X.

Proof Let e = (x j , y j )kj=1 be an α-exit sequence from X disregarding U . We will
prove that e is a δ-exit sequence from X .

The requirement x j ∈ X and y j ∈ (S ∪ S∗)\X for all j ∈ {1, . . . , k} is obviously
satisfied, because e is an α-exit sequence from X . Now, let j ∈ {1, . . . , k}, let g ∈
viable(y j , δ) and assume that

{x1, . . . , x j−1} ∪ esc(X , δ) ⊆ sat(g, δ).

It remains to prove that x j ∈ sat(g, δ).
We have esc(X , α)\F(U ) ⊆ esc(X , δ) by Lemma14-(iv). Therefore,

{x1, . . . , x j−1} ∪ (esc(X , α)\F(U )) ⊆ {x1, . . . , x j−1} ∪ esc(X , δ)

⊆ sat(g, δ)

⊆ sat(g, α).

Then x j ∈ sat(g, α) follows by the fact that e is an α-exit sequence from X disre-
garding U . We also have x j /∈ F(U ) by the fact that F(U ) ∩ {x1, . . . , xk} = ∅. The
combination x j ∈ sat(g, α) and x j /∈ F(U ) implies that x j ∈ sat(g, δ). ��

Let X ⊆ S and let e = (x j , y j )kj=1 be an α-exit sequence from X disregarding
U . It will be convenient to have terminology for an edge e = (x, y) such that the
concatenation (e, e) fails to be anα-exit sequence from X disregardingU only because
y ∈ X . We say that (x, y) is an α-cap for (X , e,U ) if x ∈ X\F(U ) and y ∈ X , and
if we have for all v ∈ viable(y, α) that

{x1, . . . , xk} ∪ (esc(X , α)\F(U )) ⊆ sat(v, α) �⇒ x ∈ sat(v, α).
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We denote by cap(X , e,U , α) the set of α-caps for (X , e,U ). Note that the set
cap(X , ø,U , α) is well-defined, as ø is an α-exit sequence from X disregarding U .

We also introduce terminology for an edge e = (x, y) expressing that (e, e) fails
to be an α-exit sequence from X disregarding U for the following two reasons: x ∈
F(U ) ∩ X and y ∈ X . We say that (x, y) is an α-hat for (X , e,U ) if x ∈ F(U ) ∩ X
and y ∈ X , and if we have for all v ∈ viable(y, α) that

{x1, . . . , xk} ∪ (esc(X , α)\F(U )) ⊆ sat(v, α) �⇒ x ∈ sat(v, α).

We denote by hat(X , e,U , α) the set of α-hats for (X , e,U ). Note that the set
hat(X , ø,U , α) is well-defined, as ø is an α-exit sequence from X disregarding U .

Lemma 25 Let X ∈ C. Then
(i) for every x ∈ X\(esc(X , α) ∪ F(U )), we have

∅ �= {(x, y) | y ∈ safestep(x, α)} ⊆ cap(X , ø,U , α);

(ii) for every x ∈ esc(X , α)\F(U ), we have

∅ �= {(x, y) | y ∈ A(x) ∩ X} ⊆ cap(X , ø,U , α);

(iii) for every x ∈ F(U ) ∩ X, we have

(x,U (x)) ∈ {(x, y) | y ∈ safestep(x, α) ∩ X} ⊆ hat(X , ø,U , α).

Proof let X ∈ C.
Proof of (i): Let x ∈ X\(esc(X , α) ∪ F(U )). Non-emptiness of the set {(x, y) | y ∈
safestep(x, α)} follows directly from Lemma7-(i).

Choose y ∈ safestep(x, α). We need to show that (x, y) ∈ cap(X , ø,U , α). The
requirement x ∈ X\F(U ) follows trivially from the fact that x ∈ X\(esc(X , α) ∪
F(U )). We have safestep(x, α) ⊆ X , since x ∈ X\esc(X , α). Therefore, the
requirement y ∈ X also follows. Now, let v ∈ viable(y, α) and assume that
esc(X , α)\F(U ) ⊆ sat(v, α). The fact that y ∈ safestep(x, α) implies that
x ∈ sat(v, α), which is the final requirement. So indeed, (x, y) ∈ cap(X , ø,U , α).
(Here, the assumption esc(X , α)\F(U ) ⊆ sat(v, α) and the fact that X ∈ C were
not needed.)

Proof of (ii): Let x ∈ esc(X , α)\F(U ).
Non-emptiness of the set {(x, y) | y ∈ A(x) ∩ X} follows from the fact that x ∈ X

and X ∈ C.
Choose y ∈ A(x) ∩ X . We need to show that (x, y) ∈ cap(X , ø,U , α). We

trivially have x ∈ X\F(U ) and y ∈ X . Now, let v ∈ viable(y, α) and assume that
esc(X , α)\F(U ) ⊆ sat(v, α). Here, the fact that x ∈ sat(v, α) follows trivially
from the assumption that esc(X , α)\F(U ) ⊆ sat(v, α).
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Proof of (iii): Let x ∈ F(U ) ∩ X .
We have U (x) ∈ safestep(x, δ) ⊆ safestep(x, α) by Lemma14-(iii). We have

safestep(x, δ) ⊆ X by the fact that X ∈ W(U , δ). These results together show that
U (x) ∈ safestep(x, δ) ⊆ safestep(x, α) ∩ X . Hence, (x,U (x)) ∈ {(x, y) | y ∈
safestep(x, α) ∩ X}.

Let y ∈ safestep(x, α) ∩ X . We need to show that (x, y) ∈ hat(X , ø,U , α).
The requirements x ∈ F(U ) ∩ X and y ∈ X are trivially satisfied. Now, let
v ∈ viable(y, α) and assume that esc(X , α)\F(U ) ⊆ sat(v, α). The fact that y ∈
safestep(x, α) implies x ∈ sat(v, α) (the assumption esc(X , α)\F(U ) ⊆ sat(v, α)

is not needed). This shows that (x, y) ∈ hat(X , ø,U , α). ��
Lemma 26 Let X ⊆ S and let e and f be two α-exit sequences from X disregarding
U. If x(e) ⊆ x(f), then cap(X , e,U , α) ⊆ cap(X , f,U , α) and hat(X , e,U , α) ⊆
hat(X , f,U , α).

Proof Assume that x(e) ⊆ x(f). Let (x, y) ∈ cap(X , e,U , α). We will verify that
(x, y) ∈ cap(X , f,U , α). Trivially, we have x ∈ X\F(U ) and y ∈ X . Now, let
v ∈ viable(y, α) and assume that

x(f) ∪ (esc(X , α)\F(U )) ⊆ sat(v, α).

Then also

x(e) ∪ (esc(X , α)\F(U )) ⊆ sat(v, α),

as x(e) ⊆ x(f). Now, x ∈ sat(v, α) follows from the fact that e is an α-exit
sequence from X disregarding U and the fact that (x, y) is an α-cap for (X , e,U ).
Then (x, y) ∈ cap(X , f,U , α). The proof that hat(X , e,U , α) ⊆ hat(X , f,U , α)

is entirely similar. ��

5.5.3 Graphs of˛-caps and˛-hats and their basic properties

For X ∈ W(U , δ) and an α-exit sequence e from X disregarding U , let us define
K(X , e,U , α) as the graph with vertex set X and edge set

cap(X , e,U , α) ∪ hat(X , e,U , α).

Notice that K(X , e,U , α) is indeed a graph with vertex set X , i.e., for every edge
(x, y) of K(X , e,U , α), both x and y are trivially elements of X , by definition of the
sets cap(X , e,U , α) and hat(X , e,U , α).

Let us also define H(X , e,U , α) as the graph with vertex set X and edge set

cap(X , e,U , α) ∪ {(t,U (t)) | t ∈ F(U ) ∩ X}.

The graphH(X , e,U , α) is a subgraph ofK(X , e,U , α), since for every t ∈ F(U )∩X ,
we have (t,U (t)) ∈ hat(X , e,U , α), by Lemmas25-(iii) and 26.
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Both graphs K(X , e,U , α) and H(X , e,U , α) have the property that, for every
x ∈ X , there exists y ∈ X such that (x, y) is an edge of the graph. Indeed,
for x ∈ X\(esc(X , α) ∪ F(U )), this is implied by Lemma25-(i) and Lemma26;
for x ∈ esc(X , α)\F(U ), this is implied by Lemma25-(ii) and Lemma26; for
x ∈ F(U ), it is implied by Lemmas25-(iii) and 26. As we now see that Lemma8
applies to these two graphs, we can freely use the fact that they have ergodic sets,
and that there is a path in these graphs from each x ∈ X to one of their ergodic
sets.

Lemma 27 Let X ∈ W(U , δ), let e be an α-exit sequence from X disregarding U.
Then

(i) for every ergodic set Z of the graph K(X , e,U , α), we have

esc(Z , α) = Z ∩ esc(X , α);

(ii) for every ergodic set Y of the graph H(X , e,U , α), we have

esc(Y , α)\F(U ) = (Y ∩ esc(X , α))\F(U ).

Proof Let X ∈ W(U , δ) and let e be an α-exit sequence from X disregarding U .

Proof of (i): Let Z be an ergodic set of K(X , e,U , α). We will prove first that
esc(Z , α) ⊆ Z ∩ esc(X , α). Let x ∈ esc(Z , α). We trivially have x ∈ Z , so it
remains to prove that x ∈ esc(X , α).

Suppose that x ∈ X\(esc(X , α) ∪ F(U )). Then for all y ∈ safestep(x, α), the
edge (x, y) is an edge of the graphK(X , e,U , α), by Lemmas25-(i) and 26. Therefore,
every such y ∈ safestep(x, α) is also an element of Z , by the properties of an ergodic
set. It follows that safestep(x, α) ⊆ Z . This implies x /∈ esc(Z , α). Contradiction.

We can already conclude that x ∈ esc(X , α) ∪ F(U ). Suppose that x ∈ F(U ).
Then for every y ∈ safestep(x, α) ∩ X , the edge (x, y) is an edge of the graph
K(X , e,U , α), by Lemmas25-(iii) and 26. Therefore, every such y is also an element
of Z by the properties of an ergodic set. It follows that safestep(x, α)∩ X ⊆ Z . Now,
we choose y ∈ safestep(x, α) with y ∈ (S ∪ S∗)\Z , which is possible by the fact
that x ∈ esc(Z , α). We must have y /∈ X then. The fact that y ∈ safestep(x, α) and
y /∈ X demonstrates that x ∈ esc(X , α).

We will now prove that esc(Z , α) ⊇ Z ∩ esc(X , α). Let x ∈ Z ∩ esc(X , α).
Since x ∈ esc(X , α), we can choose y ∈ (S ∪ S∗)\X with y ∈ safestep(x, α). Then
obviously y ∈ (S ∪ S∗)\Z , since Z ⊆ X . It follows that x ∈ esc(Z , α).

Proof of (ii): Let Y be an ergodic set of H(X , e,U , α).
We will prove first that esc(Y , α)\F(U ) ⊆ (Y ∩ esc(X , α))\F(U ). Let x ∈

esc(Y , α)\F(U ). We trivially have x ∈ Y\F(U ), so it remains to prove that x ∈
esc(X , α).

Suppose that x ∈ X\esc(X , α). Then x ∈ X\(esc(X , α)∪F(U )), since x /∈ F(U ).
It follows that, for every y ∈ safestep(x, α), the edge (x, y) is an edge of the graph
H(X , e,U , α), by Lemmas25-(i) and 26. Therefore, every y ∈ safestep(x, α) is also
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an element ofY , by the properties of an ergodic set. It follows that safestep(x, α) ⊆ Y .
This implies x /∈ esc(Y , α). Contradiction. Thus, x ∈ esc(X , α).

We will now prove that esc(Y , α)\F(U ) ⊇ (Y ∩ esc(X , α))\F(U ). Let x ∈
(Y ∩ esc(X , α))\F(U ). Since x ∈ esc(X , α), we can choose y ∈ safestep(x, α)

with y ∈ (S∪S∗)\X . Then obviously y ∈ (S∪S∗)\Y , asY ⊆ X . Thus, x ∈ esc(Y , α).
Also obviously, x /∈ F(U ). It follows that x ∈ esc(Y , α)\F(U ). ��

Let X ∈ W(U , δ). Theα-exit sequences e from X disregardingU can be ordered by
the cardinality of the set x(e). Let us say that an α-exit sequence e from X disregarding
U is maximal if |x(e)| is maximal among the α-exit sequences from X disregarding
U .

Lemma 28 Let X ∈ W(U , δ), let e be an α-exit sequence from X disregarding U and
let e∗ be a maximal α-exit sequence from X disregarding U. Then x(e) ⊆ x(e∗).

Proof Define f = (e∗, e). The sequence f is an α-exit sequence from X disregarding
U by Lemma23. Then |x(e∗)| ≥ |x(f)| = |x(e∗) ∪ x(e)|, where the inequality is by
the maximality of e∗. This is only possible if x(e) ⊆ x(e∗). ��
Lemma 29 Let X ∈ W(U , δ) and let e∗ be a maximal α-exit sequence from X disre-
garding U. Let Y be an ergodic set of the graphH(X , e∗,U , α) and let f be an α-exit
sequence from Y disregarding U. Then f is an α-exit sequence from X disregarding
U.

Proof We trivially have x(f) ⊆ Y ⊆ X and x(f) ∩ F(U ) = ∅. The sequence f thus
trivially satisfies these two requirements for an α-exit sequence from X disregarding
U .

We next prove the requirement y(f) ⊆ (S ∪ S∗)\X by contradiction. Therefore,
suppose that y(f) � (S ∪ S∗)\X . Then there must be h ∈ {1, . . . , k(f)} with the
property yh(f) ∈ X . Choose the smallest h with this property. Let f = (xh(f), yh(f))
and let f̃ = (x j (f), y j (f))

h−1
j=1.

In our proof,weneed the fact that f̃ is anα-exit sequence from X disregardingU . The
requirements x(̃f) ⊆ X and x(̃f)∩F(U ) = ∅ are trivially satisfied and the requirement
y(̃f) ⊆ (S ∪ S∗)\X is satisfied due to the choice of h. Let j ∈ {1, . . . , h − 1}, let
v ∈ viable(y j (̃f), α), and assume that

{x1(̃f), . . . , x j−1(̃f)} ∪ (esc(X , α)\F(U )) ⊆ sat(v, α).

We need to prove that x j (̃f) ∈ sat(v, α). We have esc(Y , α)\F(U ) ⊆ esc(X , α)\
F(U ), which follows by Lemma27-(ii) applied to e∗. Also, we trivially have
{x1(̃f), . . . , x j−1(̃f)} = {x1(f), . . . , x j−1(f)}. Thus, it follows that

{x1(f), . . . , x j−1(f)} ∪ (esc(Y , α)\F(U )) ⊆ sat(v, α).

Then x j (̃f) = x j (f) ∈ sat(v, α), as f is an α-exit sequence from Y disregarding U .
This proves our claim that f̃ is an α-exit sequence from X disregarding U .

Now observe that the edge f is an α-cap for (X , f̃,U ). Indeed, the only reason why
(̃f, f ) fails to be an α-exit sequence from X disregarding U is because last( f ) =
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yh(f) ∈ X . We have x(̃f) ⊆ x(e∗) by Lemma28, as f̃ is an α-exit sequence from
X disregarding U and e∗ is a maximal one. It subsequently follows by Lemma26
that f ∈ cap(X , f̃,U , α) ⊆ cap(X , e∗,U , α). Thus, f is an edge of the graph
H(X , e∗,U , α). Now, since first( f ) = xh(f) ∈ Y and since Y is an ergodic set of
H(X , e∗,U , α), it follows that last( f ) = yh(f) ∈ Y . This contradicts that f is an
α-exit sequence from Y .

We proved that y(f) ⊆ (S∪S∗)\X , as required. To prove that f satisfies the remain-
ing requirement for an α-exit sequence from X disregarding U , let j ∈ {1, . . . , k(f)},
let v ∈ viable(y j (f), α), and assume that

{x1(f), . . . , x j−1(f)} ∪ (esc(X , α)\F(U )) ⊆ sat(v, α).

Weneed to prove that x j (f) ∈ sat(v, α). By Lemma27-(ii), we have esc(Y , α)\F(U )

⊆ esc(X , α)\F(U ). Therefore,

{x1(f), . . . , x j−1(f)} ∪ (esc(Y , α)\F(U )) ⊆ sat(v, α).

Then x j (f) ∈ sat(v, α) immediately follows, as f is an α-exit sequence from Y
disregarding U . ��
Lemma 30 Let X ∈ W(U , δ) and let e be an α-exit sequence from X disregarding U.
Let further p be a path in K(X , e,U , α) and let g ∈ viable(last(p), α). Then

x(e) ∪ (esc(X , α)\F(U )) ⊆ sat(g, α) �⇒ 〈p, g〉 ∈ viable(first(p), α).

Proof Assume that

x(e) ∪ (esc(X , α)\F(U )) ⊆ sat(g, α) (9)

We write p = (z j )kj=1, and we define gk = g and g j = 〈(z j , . . . , zk), g〉 for j ∈
{1, . . . , k − 1}.

Trivially, gk = g is α-viable. Now, let j ∈ {1, . . . , k−1} and assume that g j+1 is α-
viable. We will prove that g j = 〈(z j , z j+1), g j+1〉 is α-viable. For this, it is sufficient
to demonstrate that z j ∈ sat(g j+1, α). We trivially have z j = first(g j ) ∈ X , so we
can distinguish between the cases z j ∈ X ∩ F(U ) and z j ∈ X\F(U ).

Case 1: z j ∈ X ∩ F(U ). In this case, the edge (z j , z j+1) is an α-hat for (X , e,U ).
In assumption (9), we may replace the term sat(g, α) by the term sat(g j+1), as
φ(g j+1) = φ(g). We then see that z j ∈ sat(g j+1, α) follows by definition of an
α-hat.

Case 2: z j ∈ X\F(U ). In this case, the edge (z j , z j+1) is an α-cap for (X , e,U ).
We replace the term sat(g, α) by the term sat(g j+1) in assumption (9), and we see
that z j ∈ sat(g j+1, α) follows by definition of an α-cap.

We proved by induction that g j is α-viable for all j ∈ {1, . . . , k}. In particular,
〈p, g〉 = g1 is α-viable. ��
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Lemma 31 Let X ∈ W(U , δ) and let e be an α-exit sequence from X disregarding U
such that x(e)∩ pos(X , α) = ∅. Then there exist ergodic sets Y ofH(X , e,U , α) and
Z of K(X , e,U , α) such that pos(Y , α) �= ∅ and Y ⊆ Z.

Proof We first prove that an ergodic set Z of the graph K(X , e,U , α) exists with
pos(Z , α) �= ∅. Suppose therefore that pos(Z , α) = ∅ for every ergodic set Z of
K(X , e,U , α). We will demonstrate that pos(X , δ) = ∅, contradicting that X ∈
W(U , δ) ⊆ X (δ) ⊆ P(δ). Let x ∈ X .

Assume that x is element of an ergodic set Z of K(X , e,U , α). Then obviously
αx ≤ 0, by the assumption that pos(Z , α) = ∅. If x ∈ X\F(U ), then it follows
immediately that δx = αx ≤ 0. We assume further that x ∈ F(U ). The edge (z,U (z))
is an edge of K(X , e,U , α) for all z ∈ F(U ) ∩ X , since it is by definition an edge of
H(X , e,U , α) andH(X , e,U , α) is a subgraph ofK(X , e,U , α). Therefore, we have
U (z) ∈ Z for all z ∈ F(U ) ∩ Z , by the properties of an ergodic set of K(X , e,U , α).
Thus, it is possible to choose a non-absorbing andU -compatible plan gwith S(g) ⊆ Z
and with first(g) = x . Plan g is α-viable by the assumption that pos(Z , α) = ∅.
Then g ∈ admiss(x,U , α) as it satisfies AD-ii. It follows that δx ≤ φix (g) = 0.

Now assume that x is not an element of any ergodic set of K(X , e,U , α). Then
we can choose an ergodic set Z of K(X , e,U , α) and a U -compatible path p in
K(X , e,U , α) from x to an element of Z . We can also choose a non-absorbing and
U -compatible plan g with S(g) ⊆ Z and first(g) = last(p). Plan g is α-viable by
the assumption pos(Z , α) = ∅. We claim that plan 〈p, g〉 is also α-viable.

We have x(e) ⊆ sat(g, α) by the assumption x(e)∩pos(X , α) = ∅. We also have

(esc(X , α)\F(U )) ∩ pos(X , α) ⊆ esc(X , δ) ∩ pos(X , δ) = ∅.

Here, the inclusion follows by esc(X , α)\F(U ) ⊆ esc(X , δ) [Lemma14-(iv)] and
pos(X , α) ⊆ pos(X , δ), and the equality follows by the fact that X ∈ W(U , δ) ⊆
X (δ) ⊆ E(δ). Thus, esc(X , α)\F(U ) ⊆ sat(g, α). The claim that 〈p, g〉 is α-viable
now follows by Lemma30.

The fact that 〈p, g〉 is α-viable proves that αx ≤ φix (〈p, g〉) = 0. If x ∈ X\F(U ),
we have δx = αx ≤ 0. If x ∈ F(U ), then notice that 〈p, g〉 ∈ admiss(x,U , α)

due to AD-ii, which proves that δx ≤ φix (〈p, g〉) = 0. Then indeed pos(X , δ) = ∅.
Contradiction.

So, we can choose an ergodic set Z of K(X , e,U , α) with pos(Z , α) �= ∅. Now
suppose that pos(Y , α) = ∅ for every ergodic set Y of H(X , e,U , α) that is a subset
of Z . We will derive a contradiction by demonstrating that pos(Z , α) = ∅. Let x ∈ Z .

Assume that x is element of an ergodic set Y ofH(X , e,U , α). Then αx ≤ 0, since
we suppose that pos(Y , α) = ∅.

Now assume that x is not an element of any ergodic set ofH(X , e,U , α). Then we
choose an ergodic set Y of H(X , e,U , α) and a path p in H(X , e,U , α) from x to an
element of Y . Notice that path p lies entirely inside Z , because p is a path in the graph
K(X , e,U , α), the path starts in Z , and Z is an ergodic set ofK(X , e,U , α). Similarly,
we can argue that Y ⊆ Z . We can also choose a non-absorbing plan g with S(g) ⊆ Y
and with first(g) = last(p). Plan g is α-viable by the assumption pos(Y , α) = ∅.
We claim that plan 〈p, g〉 is also α-viable.
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We have x(e) ⊆ sat(g, α) by the assumption x(e)∩pos(X , α) = ∅. We also have

(esc(X , α)\F(U )) ∩ pos(X , α) ⊆ esc(X , δ) ∩ pos(X , δ) = ∅.

Here, the inclusion follows by esc(X , α)\F(U ) ⊆ esc(X , δ) [Lemma14-(iv)] and
pos(X , α) ⊆ pos(X , δ), and the equality follows by the fact that X ∈ W(U , δ) ⊆
X (δ) ⊆ E(δ). Thus, esc(X , α)\F(U ) ⊆ sat(g, α). The claim that 〈p, g〉 is α-viable
now follows by Lemma30.

The fact that 〈p, g〉 is α-viable proves that αx ≤ φix (〈p, g〉) = 0. So, we have
indeed pos(Z , α) = ∅. Contradiction. ��

5.5.4 Existence of ı-exit sequences

Let X ∈ W(U , δ) and let e∗ a maximal α-exit sequence from X disregarding U .
We will exploit the properties of the graphs H(X , e∗,U , α) and K(X , e∗,U , α) to
establish the existence of a δ-exit sequence from X .

Lemma 32 Let X ∈ W(U , δ) and let e∗ be a maximal α-exit sequence from X disre-
garding U. If x(e∗) ∩ pos(X , α) = ∅, then there exists an ergodic set Z in the graph
K(X , e∗,U , α) that satisfies pos(Z , α) �= ∅ and F(U ) ∩ Z �= ∅. Moreover, for all
t ∈ F(U ) ∩ Z and all v ∈ viable(s, δ) with s ∈ A(t), we have

{t} ∪ x(e∗) ∪ (esc(X , α)\F(U )) ⊆ sat(v, α) �⇒ t ∈ sat(v, δ).

Proof Assume that x(e∗)∩pos(X , α) = ∅. Then Lemma31 applies, sowe can choose
ergodic sets Y of H(X , e∗,U , α) and Z of K(X , e∗,U , α) with pos(Y , α) �= ∅ and
Y ⊆ Z . With these choices, it is obvious that pos(Z , α) �= ∅.

I: We prove by contradiction that F(U )∩Y �= ∅, which also proves F(U )∩ Z �= ∅.
Suppose therefore that F(U ) ∩ Y = ∅. We claim that Y ∈ X (α). We trivially have
Y ∈ P(α) and we have Y ∈ C by the properties of an ergodic set. It remains to prove
that Y ∈ E(α). We obviously have pos(Y , α) ⊆ pos(X , δ). We also have

esc(Y , α) = esc(Y , α)\F(U )

⊆ esc(X , α)\F(U )

⊆ esc(X , δ)\F(U )

⊆ esc(X , δ).

Here, the equality holds because we suppose F(U ) ∩ Y = ∅, the first inclusion is by
Lemma27-(ii), the second inclusion follows by Lemma14-(iv), and the third inclusion
is trivial. We now conclude that

esc(Y , α) ∩ pos(Y , α) ⊆ esc(X , δ) ∩ pos(X , δ) = ∅,

where the equality is because X ∈ X (δ) ⊆ E(δ). This proves that Y ∈ E(α).
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So we have indeed Y ∈ X (α). We can thus choose a positive α-exit sequence e
from Y , by the fact that α ∈ �∗. We now claim that e is an α-exit sequence from Y
disregarding U .

The requirements x(e) ⊆ Y and y(e) ⊆ (S∪S∗)\Y are obviously satisfied, because
e is an α-exit sequence from Y . The requirement F(U ) ∩ x(e) = ∅ is satisfied due to
the assumption F(U )∩Y = ∅. We further need to prove that, for all j ∈ {1, . . . , k(e)}
and all v ∈ viable(y j (e), α), we have

{x1(e), . . . , x j−1(e)} ∪ (esc(Y , α)\F(U )) ⊆ sat(v, α) �⇒ x j (e) ∈ sat(v, α).

(10)

By definition of an α-exit sequence from Y , the sequence e satisfies, for all j ∈
{1, . . . , k(e)} and all v ∈ viable(y j (e), α),

{x1(e), . . . , x j−1(e)} ∪ esc(Y , α) ⊆ sat(v, α) �⇒ x j (e) ∈ sat(v, α).

We see that (10) indeed holds, since we have esc(Y , α) = esc(Y , α)\F(U ) due to the
fact that we suppose F(U ) ∩ Y = ∅. This shows that e is indeed an α-exit sequence
from Y disregarding U .

Now, it follows by Lemma29 that e is an α-exit sequence from X disregarding U .
It follows even that e is a positive α-exit sequence from X disregarding U , as it is
a positive α-exit sequence from Y . But then e∗ must be a positive α-exit sequence
from X disregardingU as well, by the maximality of e∗. This contradicts that x(e∗)∩
pos(X , α) = ∅, a given assumption of this lemma.

II: Choose t ∈ F(U ) ∩ Y , let s ∈ A(t), and let g ∈ viacomp(s,U , α). Assume that

{t} ∪ x(e∗) ∪ (esc(X , α)\F(U )) ⊆ sat(g, α). (11)

We will prove that t ∈ sat(g, δ). The proof will be by contradiction, so we suppose
that t /∈ sat(g, δ). The contradiction will be derived in six steps.

II-i: For all x ∈ Y\{t}, we construct a plan hx ∈ viacomp(t,U , α) such that x lies
on hx , such that all states on hx from start to the first occurrence of x are different,
and such that hx /∈ admiss(t,U , α).

For all x ∈ Y\{t}, we can choose a path px in H(X , e∗,U , α) from t to x , as
both t and x are elements of the ergodic set Y . We choose px of minimum length to
ensure that each state appears at most once on px . We can also choose a path qx in
H(X , e∗,U , α) from x to t . We now define the plan hx by hx = 〈px , qx , (t, s), g〉.

Notice that plan 〈(t, s), g〉 is α-viable, which follows from the fact that g ∈
viacomp(s,U , α) ⊆ viable(s, α) and the fact that t ∈ sat(g, α) by assumption (11).
Assumption (11) also implies that

x(e∗) ∪ (esc(X , α)\F(U )) ⊆ sat(〈(t, s), g〉, α).

Further, 〈px , qx 〉 is a path inK(X , e∗,U , α), as px andqx are both paths in the subgraph
H(X , e∗,U , α) ofK(X , e∗,U , α). Thus, Lemma30 applies to the plan 〈(t, s), g〉 and
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the path 〈px , qx 〉. It follows that hx = 〈px , qx , (t, s), g〉 ∈ viable(t, α). Further, plan
hx isU -compatible, because the path 〈px , qx , (t, s)〉 andplan g are bothU -compatible.
Thus, hx ∈ viacomp(t,U , α).

Now, by definition, we have t ∈ sat(v, δ) for all v ∈ admiss(t,U , α). Apparently
then, hx /∈ admiss(t,U , α), as we suppose t /∈ sat(g, δ) = sat(hx , δ).

II-ii: We claim that αt ≤ 0 and that αx ≤ αt for all x ∈ Sit ∩Y . Notice thatU (t) ∈ Y ,
hence Y\{t} �= ∅. We can thus choose x ∈ Y\{t} and construct its associated plan hx .
The claim αt ≤ 0 immediately follows from the fact that hx does not satisfy condition
AD-i of admissibility.

Now suppose that x ∈ Sit ∩ Y exists with αx > αt . Recall that plan hx was
constructed such that all states on hx from start t to the first occurrence of x are
different. Thus, state x is reached on plan hx before any state of F(U ) appears for the
second time. Then hx is (t,U , α)-admissible due to AD-i. Contradiction.

II-iii: We claim that, for all x ∈ Y\Sit , we have

∀y ∈ A(x)\Y , ∀v ∈ viable(y, α) : t ∈ sat(v, α) ∨ x ∈ sat(v, α). (12)

Let x ∈ Y\Sit , let y ∈ A(x)\Y , and let v ∈ viable(y, α). We will check that the plan
hx and the pair (x, v) satisfy conditions AD-iv-(a),(b),(c),(d).

(a): The first occurrence of x on hx is before the second occurrence of a state in
F(U ), because all states on hx from start t to the first occurrence of x are different.
Thus, the pair (x, v) satisfies AD-iv-(a) of a threat pair for hx .

(b): We have ix �= it by the fact that x ∈ Y\Sit . Thus, (x, v) satisfies condition
AD-iv-(b).

(c): Plan v is an α-viable plan with first(v) = y ∈ A(x). Thus, (x, v) satisfies
condition AD-iv-(c).

(d): Notice that the elements of A(x)\Y do not coincide with the follower of x on
plan hx , since the follower of x is the second state on path qx , which lies inside Y .
Thus, (x, v) satisfies condition AD-iv-(d).

Part (e) of condition AD-iv must be violated then, as plan hx violates condition
AD-iv. It follows that t ∈ sat(v, α) or x ∈ sat(v, α). This proves (12).

II-iv: We claim that Y ∈ X (α). We trivially have Y ∈ P(α) and we have Y ∈ C by
the properties of an ergodic set. It remains to prove that Y ∈ E(α). By the result of
II-ii, we have F(U ) ∩ pos(Y , α) = ∅. We may therefore write

esc(Y , α) ∩ pos(Y , α) = (esc(Y , α)\F(U )) ∩ pos(Y , α).

We have

esc(Y , α)\F(U ) ⊆ esc(X , α)\F(U ) ⊆ esc(X , δ),

where the first inclusion is by Lemma27-(ii) and the second inclusion by Lemma14-
(iv). We also have pos(Y , α) ⊆ pos(X , δ), by the fact that Y ⊆ X and α ≤ δ.
Therefore,
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esc(Y , α) ∩ pos(Y , α) = (esc(Y , α)\F(U )) ∩ pos(Y , α)

⊆ esc(X , δ) ∩ pos(X , δ)

= ∅,

where the last equality is by the fact that X ∈ X (δ) ⊆ E(δ). This proves that Y ∈ E(α),
hence Y ∈ P(α) ∩ E(α) ∩ C = X (α).

II-v: We now prove the existence of a positive α-exit sequence from Y disregarding
U .

Since we have Y ∈ X (α) by the result of II-iv and since we have α ∈ �∗, we
can choose a positive α-exit sequence e from Y . We can choose e such that every
edge is legitimate. Indeed, if this is not already the case, then we remove, one by one,
every edge that is not legitimate. This results in a non-empty α-exit sequence from Y
in which every edge is legitimate, by Lemma18-(ii). The resulting sequence is still
positive, by Lemma18-(v).

Let e be the sequence that results from e by deleting all edges (x j (e), y j (e)) with
the property x j (e) ∈ F(U ). We claim that e is a positive α-exit sequence from Y
disregarding U .

Let us investigate the relation between e and e a bit more. If F(U )∩esc(Y , α) �= ∅,
then the sequence e contains no edges of the form (x, y) with ix = it and αx ≤ αt ,
as these are then not legitimate. Then in fact, the sequence contains e no edges of the
form (x, y) with ix = it at all, as there are no states in Y with ix = it and αx > αt ,
by the result of II-ii. Thus,

F(U ) ∩ esc(Y , α) �= ∅ �⇒ x(e) ∩ Sit = ∅ and e = e. (13)

If F(U ) ∩ esc(Y , α) = ∅, then we may have e �= e. Assume that this is indeed the
case. Then let h ∈ {1, . . . , k(e)} be such that xh(e) ∈ F(U ). Now, there may exist
j ∈ {1, . . . , k(e)} with ix j (e) = ixh(e) = it and j �= h. If this is so, then the relevant
thing to see is that this implies j < h. Indeed, if we suppose j > h, then αx j (e) > αt

by Lemma18-(vi), which contradicts the result of II-ii. Thus,

F(U ) ∩ esc(Y , α) = ∅ and xh(e) ∈ Sit �⇒ ∀ j ≤ h : x j (e) = x j (e). (14)

Let us now prove that e is a positive α-exit sequence from Y disregarding U . We
have x(e) ∩ F(U ) = ∅ due to the construction of e. We have x(e) ⊆ x(e) ⊆ Y and
y(e) ⊆ y(e) ⊆ (S ∪ S∗)\Y due to the fact that e is an α-exit sequence from Y .

Now, let j ∈ {1, . . . , k(e)}, let v ∈ viable(y j (e)), and assume that

{x1(e), . . . , x j−1(e)} ∪ (esc(Y , α)\F(U )) ⊆ sat(v, α). (15)

We need to prove that x j (e) ∈ sat(v, α).
First assume that x j (e) ∈ Sit . Then we have F(U ) ∩ esc(Y , α) = ∅, by the result

of (13). In assumption (15), we may therefore replace the term esc(Y , α)\F(U ) by
the term esc(Y , α). We also have {x1(e), . . . , x j−1(e)} = {x1(e), . . . , x j−1(e)} by the
result of (14). Assumption (15) is therefore equivalent to
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{x1(e), . . . , x j−1(e)} ∪ esc(Y , α) ⊆ sat(v, α).

It follows that x j (e) ∈ sat(v, α) by the fact that e is an α-exit sequence from Y . Then
x j (e) ∈ sat(v, α), as x j (e) = x j (e) by the result of (14).

Now assume that x j (e) ∈ Y\Sit . Then the result of II-iii applies, since we have
x j (e) ∈ Y\Sit and y j (e) ∈ A(x)\Y . Thus, we have t ∈ sat(v, α) or x j (e) ∈
sat(v, α). In fact, x j (e) ∈ sat(v, α) always holds. Indeed, when t ∈ sat(v, α)

holds, we have s ∈ sat(v, α) for all s ∈ F(U ). It then follows that

{x1(e), . . . , xi−1(e)} ∪ esc(Y , α) ⊆ sat(v, α),

where i ∈ {1, . . . , k(e)} is such that xi (e) = x j (e). It subsequently follows that
x j (e) = xi (e) ∈ sat(v, α), by the fact that e is an α-exit sequence from Y . We proved
that e is indeed an α-exit sequence from Y disregarding U . The sequence e is also
positive, since e is positive and since e was obtained from e by the deletion of edges
(x, y) that satisfy αx = αt ≤ 0.

II-vi: We can now derive the desired contradiction. By Lemma29, the sequence
e is not only an α-exit sequence from Y disregarding U , but it is also an α-exit
sequence from X disregarding U . It follows that x(e) ⊆ x(e∗), by Lemma28. Hence,
x(e) ∩ pos(X , α) ⊆ x(e∗) ∩ pos(X , α) = ∅. This contradicts that e is positive.

III: Now let t ∈ F(U ) ∩ Z , let s ∈ A(t), and let g ∈ viacomp(s,U , α). Assume
further that

{t} ∪ x(e∗) ∪ (esc(X , α)\F(U )) ⊆ sat(g, α). (16)

We will prove that t ∈ sat(g, δ). If t ∈ F(U ) ∩ Y , then the result of II applies and
we are done. Assume further that t ∈ F(U ) ∩ (Z\Y ).

We choose t ′ ∈ F(U ) ∩ Y , which is possible because the set is non-empty.
We further choose a U -compatible path p in the graph K(X , e∗,U , α) from U (t ′)
to t and a U -compatible path q in K(X , e∗,U , α) from t to t ′. Observe that
〈p, q, (t ′,U (t ′)), p, (t, s), g〉 is a U -compatible plan that starts at U (t ′) ∈ A(t ′).
We claim that the plan is α-viable.

The plan 〈(t, s), g〉 is α-viable, since g ∈ viacomp(s,U , α) ⊆ viable(s, α) and
since t ∈ sat(g, α) due to assumption (16). Further, 〈p, q, (t ′,U (t ′)), p〉 is a path
in K(X , e∗,U , α), and assumption (16) implies that x(e∗) ∪ (esc(X , α)\F(U )) ⊆
sat(g, α). We see that Lemma30 applies, and it follows indeed that h =
〈p, q, (t ′,U (t ′)), p, (t, s), g〉 is α-viable.

We proved that h ∈ viacomp(U (t ′),U , α). We now apply the result of II to deduce
that t, t ′ ∈ sat(g, δ).

IV: Now let t ∈ F(U ) ∩ Z , let s ∈ A(t), and let g ∈ viable(s, δ). Assume
further that Eq. (16) holds. We will prove that t ∈ sat(g, δ) by contradiction. Suppose
therefore that t /∈ sat(g, δ). Then plan g does not contain any elements of F(U ),
as g is δ-viable. This implies that g is U -compatible. Plan g is also α-viable, as
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g ∈ viable(s, δ) ⊆ viable(s, α). It follows that g ∈ viacomp(s,U , α). We see that
the result of III applies and it follows that t ∈ sat(g, δ). Contradiction. ��
Lemma 33 Let X ∈ W(U , δ) and let e∗ be a maximal α-exit sequence from X disre-
garding U. If x(e∗) ∩ pos(X , α) = ∅, then there exists a (δ, x(e∗))-exit from X of the
form (t, s) with t ∈ F(U ).

Proof Assume that x(e∗) ∩ pos(X , α) = ∅. Then, by Lemma32, we can choose an
ergodic set Z in the graph K(X , e∗,U , α) that satisfies pos(Z , α) �= ∅ and F(U ) ∩
Z �= ∅, and that satisfies, for all t ∈ F(U )∩Z and all v ∈ viable(s, δ)with s ∈ A(t),

{t} ∪ x(e∗) ∪ (esc(X , α)\F(U )) ⊆ sat(v, α) �⇒ t ∈ sat(v, δ). (17)

First assume that F(U ) ∩ esc(Z , α) �= ∅. Then we choose t ∈ F(U ) ∩ esc(Z , α).
Notice that t ∈ esc(X , α), as we have esc(Z , α) = Z ∩ esc(X , α) by Lemma27-(i).
Thus, we can choose additionally s ∈ safestep(t, α) with s ∈ (S ∪ S∗)\X . We claim
that (t, s) is the required edge. The requirements t ∈ X and s ∈ (S ∪ S∗)\X are
obviously satisfied.

Let g ∈ viable(s, δ) and assume that

x(e∗) ∪ esc(X , δ) ⊆ sat(g, δ). (18)

To see that (t, s) is indeed the required edge, it now suffices to prove that t ∈ sat(g, δ).
We have s ∈ safestep(t, α) and g ∈ viable(s, δ) ⊆ viable(s, α). Then t ∈
sat(g, α), by definition of the set safestep(t, α). We also have

x(e∗) ∪ (esc(X , α)\F(U )) ⊆ x(e∗) ∪ esc(X , δ) ⊆ sat(g, δ) ⊆ sat(g, α),

where the first inclusion is by Lemma14-(iv) and the second inclusion is by assump-
tion (18). Combining our results, we obtain

{t} ∪ x(e∗) ∪ (esc(X , α)\F(U )) ⊆ sat(g, α).

It follows that t ∈ sat(g, δ) by assumption (17).
Now assume that F(U ) ∩ esc(Z , α) = ∅. We then claim that Z ∈ X (α). We have

Z ∈ P(α) by Lemma32, and we have Z ∈ C by the properties of an ergodic set. Thus,
to prove Z ∈ X (α), it remains to prove that Z ∈ E(α). We have

esc(Z , α) = esc(Z , α)\F(U )

= (Z ∩ esc(X , α))\F(U )

⊆ esc(X , α)\F(U )

⊆ esc(X , δ),

where the first equality is by the assumption F(U ) ∩ esc(Z , α) = ∅, the second
equality is by Lemma27-(i), the first inclusion is trivial, and the second inclusion is
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by Lemma14-(iv). We also have pos(Z , α) ⊆ pos(X , δ), as Z ⊆ X and α ≤ δ. It
follows that

esc(Z , α) ∩ pos(Z , α) ⊆ esc(X , δ) ∩ pos(X , δ) = ∅.

This proves Z ∈ X (α). We can therefore choose a positive α-exit sequence f from Z ,
as α ∈ �∗.

Define f̃ = (x j (f), y j (f))hj=1, where h is the largest index such that x j (f) /∈ F(U )

for all j ≤ h. Thus, h = 0 in case x1(f) /∈ F(U ) and h = k(f) in case x(f) ⊆ F(U ).
We claim that f̃ is an α-exit sequence from X disregarding U . We have x(̃f) ∩

F(U ) = ∅ by construction, and we trivially have x(f) ⊆ Z ⊆ X . To prove that f̃
satisfies the other requirements as well, we define � as the largest index in {0, . . . , h}
such that {y1(f), . . . , y�(f)} ⊆ (S ∪ S∗)\X . We will first prove that the sequence
f̂ = (x j (f), y j (f))�j=1 is an α-exit sequence from X disregarding U , and we will then
prove that � = h.

Let j ∈ {1, . . . , �}, let g ∈ viable(y j (f), α) and assume that

{x1(f), . . . , x j−1(f)} ∪ esc(X , α)\F(U ) ⊆ sat(g, α).

We need to prove that x j (f) ∈ sat(g, α). We have

esc(Z , α) = esc(Z , α)\F(U ) = (Z ∩ esc(X , α))\F(U )) ⊆ esc(X , α)\F(U ),

(19)

where the first equality is by the assumption F(U ) ∩ esc(Z , α) = ∅ and the second
equality is by Lemma27-(ii). It follows that

{x1(f), . . . , x j−1(f)} ∪ esc(Z , α) ⊆ sat(g, α).

Then indeed x j (f) ∈ sat(g, α), since f is an α-exit sequence from Z .
We proved that the sequence f̂ = (x j (f), y j (f))�j=1 is anα-exit from X disregarding

U . We now prove that f̂ = f̃ , i.e., that � = h, by contradiction. So suppose that � < h.
Observe then that the edge (x�+1(f), y�+1(f)) is an α-cap for (X , f̂,U ). The edge
is then also an α-cap for (X , e∗,U ), by Lemma26 and the maximality of e∗. This
means that (x�+1(f), y�+1(f)) is an edge of the graph K(X , e∗,U , α). It follows that
y�+1(f) ∈ Z , since Z is an ergodic set ofK(X , e∗,U , α). This contradicts that f is an
α-exit sequence from Z .

We proved that f̃ is an α-exit sequence from X disregarding U . We therefore have
x(̃f) ⊆ x(e∗) by the maximality of e∗. Since f is a positive sequence and e∗ is not,
we have x(f) � x(e∗). Thus, we have f̃ �= f , i.e., we have h < k(f). The edge
(xh+1(f), yh+1(f)) therefore exists. The edge is of the form (t, s) with t ∈ F(U ),
because h was defined as the largest index such that x j (f) /∈ F(U ) for all j ≤ h.

Now, let g ∈ viable(s, δ), and assume that

x(e∗) ∪ esc(X , δ) ⊆ sat(g, δ). (20)
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We will prove that t ∈ sat(g, δ). We saw earlier that x(̃f) ⊆ x(e∗), because f̃ is
an α-exit sequence from X disregarding U and e∗ is a maximal one. We also have
esc(Z , α) ⊆ esc(X , α)\F(U ) by the result of (19), and we have esc(X , α)\F(U ) ⊆
esc(X , δ) by Lemma14-(iv). Thus, we have

{x1(f), . . . , xh(f)} ∪ esc(Z , α) ⊆ sat(g, δ) ⊆ sat(g, α).

It follows that xh+1(f) = t ∈ sat(g, α), since f is an α-exit sequence from Z . In
combination with assumption (20), we obtain

{t} ∪ x(e∗) ∪ esc(X , δ) ⊆ sat(g, α),

and as esc(X , α)\F(U ) ⊆ esc(X , δ) by Lemma14-(iv), it follows that

{t} ∪ x(e∗) ∪ (esc(X , α)\F(U )) ⊆ sat(g, α).

We now see that t ∈ sat(g, δ) holds, by the implication of (17).
Finally, we prove that s ∈ (S ∪ S∗)\X . Suppose that this is not true. We then claim

that (t, s) is an α-hat for (X , e∗,U ). We obviously have t ∈ F(U ) and we suppose
that s ∈ X . Now, let g ∈ viable(s, δ), and assume that

x(e∗) ∪ (esc(X , α)\F(U )) ⊆ sat(g, α).

We have esc(Z , α) ⊆ esc(X , α)\F(U ) by the result of (19), and we have
{x1(f), . . . , xh(f)} = x(̃f) ⊆ x(e∗), since f̃ is an α-exit sequence from X disregarding
U and e∗ is a maximal one. Therefore,

{x1(f), . . . , xh(f)} ∪ esc(Z , α) ⊆ sat(g, α).

It follows that t = xh+1(f) ∈ sat(g, α), as f is an α-exit sequence from Z . This
proves that (t, s) is indeed an α-hat for (X , e∗,U ). This means that (t, s) is an edge
of the graph K(X , e∗,U , α). The fact that t ∈ Z therefore implies s ∈ Z , as Z is an
ergodic set of the graph K(X , e∗,U , α). This contradicts that (t, s) is an edge of f ,
which is an α-exit sequence from Z .

We proved that the edge (t, s) with t ∈ F(U ) satisfies all requirements for a
(δ, x(e∗))-exit from X . ��
Lemma 34 Let X ∈ W(U , δ). Then there exists a positive δ-exit sequence from X.

Proof Let e∗ be amaximalα-exit sequence from X disregardingU . If e∗ is a positiveα-
exit sequence from X disregardingU , then it is also a positive δ-exit sequence from X ,
byLemma24. In this case,we are done.Assume fromhere that x(e∗)∩pos(X , α) = ∅.

We see that the result of Lemma33 applies, so we can choose a (δ, x(e∗))-exit from
X , say (t, s), with t ∈ F(U ). If t ∈ pos(X , δ), then (e∗, (t, s)) is the required positive
δ-exit sequence from X . Indeed, in this case, the sequence is obviously positive, and it
is a δ-exit sequence from X , by Lemma24 and the fact that (t, s) is a (δ, x(e∗))-exit.
Assume further that t /∈ pos(X , δ).
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We prove for this remaining case that X ∈ X (α). We have X ∈ C, because X ∈
W(U , δ) ⊆ C. The fact that t /∈ pos(X , δ) implies that αs ≤ δs = δt ≤ 0 for all
s ∈ F(U ). We also have αx = δx for all x ∈ X\F(U ). It follows that pos(X , α) =
pos(X , δ) = pos(X , δ)\F(U ). Then X ∈ P(α), as pos(X , α) = pos(X , δ) �= ∅,
where non-emptiness follows by the fact that X ∈ W(U , δ) ⊆ P(δ). To see that
X ∈ E(α), we observe that

esc(X , α) ∩ pos(X , α) = esc(X , α) ∩ (pos(X , α)\F(U ))

= (esc(X , α)\F(U )) ∩ pos(X , α) ⊆ esc(X , δ) ∩ pos(X , δ) = ∅.

Here, the inclusion follows by Lemma14-(iv) and the final equality is by the fact that
X ∈ E(δ).

We can choose a positive α-exit sequence f from X , since we proved that X ∈ X (α)

and since we have α ∈ �∗. We claim that h = (e∗, (t, s), f) is the required positive
δ-exit sequence from X .

The sequence h = (e∗, (t, s), f) obviously satisfies x(h) ⊆ X and y(h) ⊆ (S ∪
S∗)\X . The sequence h is positive with respect to δ, because part f is positive with
respect to α and α ≤ δ. Every edge in h = (e∗, (t, s), f) of the form (x j (e∗), y j (e∗))
is a (δ, {x1(e∗), . . . , x j−1(e∗)})-exit from X , because e∗ is a δ-exit sequence from X
by Lemma24. The edge (t, s) is a (δ, x(e∗))-exit from X , by the result of Lemma33.
It remains to prove that every edge in f , say (x, y) = (x j (f), y j (f)), is a (δ, x(e∗) ∪
{t} ∪ {x1(f), . . . , x j−1(f)})-exit from X .

Let g ∈ viable(y, δ), and assume that

x(e∗) ∪ {t} ∪ {x1(f), . . . , x j−1(f)} ∪ esc(X , δ) ⊆ sat(g, δ). (21)

We need to prove that x ∈ sat(g, δ). If x ∈ F(U ), this follows immediately, because
t ∈ sat(g, δ) is implied by assumption21. We assume further that x ∈ X\F(U ).

Wehave {t}∪esc(X , δ) ⊆ sat(g, δ) by assumption (21). Then F(U )∪esc(X , δ) ⊆
sat(g, δ), since αs = αt for all s ∈ F(U ). We also have esc(X , α) ⊆ esc(X , δ) ∪
F(U ) by Lemma14-(iv) and sat(g, δ) ⊆ sat(g, α) by the fact that α ≤ δ. It follows
that

esc(X , α) ⊆ esc(X , δ) ∪ F(U ) ⊆ sat(g, δ) ⊆ sat(g, α). (22)

As assumption (21) also implies {x1(f), . . . , x j−1(f)} ⊆ sat(g, δ) ⊆ sat(g, α), we
obtain

{x1(f), . . . , x j−1(f)} ∪ esc(X , α) ⊆ sat(g, α).

Then x = x j (f) ∈ sat(g, α) by the fact that f is an α-exit sequence from X . As we
assume x ∈ X\F(U ), it follows immediately that x ∈ sat(g, δ). ��

The following result is a direct consequence of Lemmas17,22 and 34 .

Corollary 1 δ = δ(U , α) ∈ �∗.
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5.6 Existence of a fixed point inÄ∗

We have arrived at the main result of this section, which is the existence of a fixed
point with respect to the update procedure described in Sect. 3.

Of course, since α ∈ �∗ and U ∈ U(α) were fixed, but chosen arbitrarily, the
results of Sects. 5.3, 5.4 and 5.5 are valid for all α ∈ �∗ and U ∈ U(α). From here,
we do not assume anymore that α ∈ �∗ and U ∈ U(α) are fixed.

Theorem 2 There exists a vector α∗ ∈ �∗ such that δ(U , α∗) = α∗ for all U ∈ U(α∗).

Proof Define

�∗∗ = {α ∈ �∗ | for all t ∈ S, there exists x ∈ S such that αt = rit (x) or αt = 0}.

The set �∗∗ is obviously finite and it is non-empty by Lemma19. We claim that

α ∈ �∗∗ and U ∈ U(α) �⇒ δ(U , α) ∈ �∗∗. (23)

To prove (23), let α ∈ �∗∗, let U ∈ U(α), and let t ∈ S.
If t ∈ S\F(U ), then we have δt (U , α) = αt , in which case δt (U , α) = 0 or the

existence of x ∈ S such that δt (U , α) = rit (x) follows trivially from the fact that αt

has this property.
If t ∈ F(U ), then we have δt (U , α) = γ (U , α). By definition of the number

γ (U , α), there exists s ∈ F(U ) such that γ (U , α) = β(s,U , α). By definition of
the number β(s,U , α), there exists a plan g such that β(s,U , α) = φis (g) = φit (g).
Thus, δt (U , α) = φit (g). If g is a non-absorbing plan, we have δt (U , α) = 0, and if
g absorbs at x ∈ S, we have δt (U , α) = rit (x). This proves claim(23).

For two vectors α, β ∈ R
S , we have already used the notation α ≥ β to mean

αt ≥ βt for all t ∈ S. Clearly, the relation ’≥’ defines a partial order on the set
�∗∗. As any finite poset has at least one maximal element, we can choose a maximal
element in �∗∗, which we denote by α∗.

Now, letU ∈ U(α∗).We proved δ(U , α∗) ∈ �∗∗. Thenwe cannot have δ(U , α∗) ≥
α∗ and δ(U , α∗) �= α∗, as this would contradict the choice of α∗ as a maximal element
in �∗∗. We do have δ(U , α∗) ≥ α∗ by Lemma13. Therefore, δ(U , α∗) = α∗.

It follows that δ(U , α∗) = α∗ for all U ∈ U(α∗). ��
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