
Economic Theory (2020) 70:1045–1068
https://doi.org/10.1007/s00199-019-01242-3

RESEARCH ART ICLE

Characterizing monotone games

Anne-Christine Barthel1 · Eric Hoffmann1

Received: 29 October 2018 / Accepted: 6 December 2019 / Published online: 14 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Solution concepts in games of strategic heterogeneity (GSH), which include games
of strategic complements as a special case, have been shown to possess very useful
properties, such as the existence of highest and lowest serially undominated strategies,
and the equivalence of the stability of equilibria and dominance solvability. The main
result of this paper gives necessary and sufficient conditions for when a very general
class of games, referred to as games of mixed heterogeneity, can be transformed into
GSH in such a way so that these properties are preserved, allowing us to draw the
same strong conclusions about solution sets in games that are not originally GSH.
This is achieved by reversing the orders on the actions spaces of a given subset of
players. Our second main result shows, rather surprisingly, that under mild conditions
on the underlying ordering of action spaces, the reversal of orders is the only way
in which such a transformation can be achieved. Applications to aggregate games,
market games, and crime networks are given.

Keywords Strategic complements · Strategic substitutes · Monotone games ·
Heterogeneity

JEL Classification C60 · C70 · C72

1 Introduction

Solution sets in games in which players’ payoffs satisfy certain monotonicity con-
ditions have been shown to possess very useful properties. Milgrom and Shannon
(1994) show that in games of strategic complements (GSC), where each agent best
responds in a monotone increasing way to an increase in opponents’ strategies, there
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exist largest and smallest serially undominated strategies a∗ and a∗ which are also
Nash equilibria, and that the limits of all adaptive learning processes eventually fall
within the interval defined by [a∗, a∗]. Thus, if a unique serially undominated strategy
â exists, it can be guaranteed to be a globally stable Nash equilibrium in the sense
that any adaptive learning processes starting from any initial strategy will converge
to it. In fact, as Milgrom and Roberts (1990) show, dominance solvability is equiv-
alent to global stability. Roy and Sabarwal (2012) show that the same can be said
for games of strategic substitutes (GSS), where players best respond in a monotone
decreasing manner, with the exception that a∗ and a∗ need not be Nash equilibria.
Barthel and Hoffmann (2019) generalize both GSC and GSS by defining games of
strategic heterogeneity (GSH), where players may best respond either increasingly or
decreasingly to an increase in the joint action choice of opponents, and show that these
same aforementioned properties of solution sets hold in general GSH as well.

One sensible and alternativeway to generalize the notions ofGSCandGSSwould be
to allow each player to best respond either increasingly or decreasingly to an increase in
each individual opponent’s actions, as opposed to the joint action choice of opponents,
as in GSH. Notice, however, that such a formulation, which we term games of mixed
heterogeneity (GMH), is even more general than the notion of GSH, and quite a bit
more complex in that not only may the joint best response correspondence fail to be
monotonic, but the best response correspondence of each individual agent may fail
to be monotonic as well. Hence, it is unclear that the standard tools of monotonic
analysis can be applied to GMH in order to guarantee nice properties of solution sets.
The main contribution of this paper bridges this gap by providing both necessary and
sufficient conditions for when the notions of GSH and GMH “coincide,” in the sense
that a GMH may be viewed as GSH in such as way so that the order properties of
solution sets guaranteed in GSH may be guaranteed in a GMH as well.

Our paper first considers transformations which employ the simple approach of
“reversing” the order on the strategy spaces of some subset of players. Note that
the strategy of transforming a game by reversing orders is not new in the literature on
monotone games.Milgrom andRoberts (1990) show that a 2-firm oil exploration game
can be transformed into a GSC by reversing one of the firm’s strategy spaces, whereas
Amir (1996) shows that Cournot duopolies, which are GSS, can be transformed into a
GSC in the same way. Roy and Sabarwal (2012), however, pointed out the limitations
of this approach by constructing a three-player GSS possessing no Nash equilibria.
Because the existence of equilibria is independent of an underlying order, and GSC
always possess equilibria, it follows that not all GSS can be transformed into GSC.
An important question then remains as to what properties an initial underlying game
must possess in order to be transformed into a GSH in this way.

Theorem 1 provides a conclusive answer to this question by giving necessary and
sufficient conditions for when a GMH can be transformed into a GSH through a
reversal of orders. We provide similar necessary and sufficient conditions for games
to be specifically transformed intoGSC orGSS.Other authors have considered various
ways in which an order can be constructed so that a game satisfies the definition of a
GSC or GSS, ensuring that the order properties of solution sets in GSH are preserved
with respect to some original order is amore complicatedmatter. For example, suppose
we consider a market game G where firms must choose some level of output or price
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x ∈ [0, x̂] ∈ R, where [0, x̂] inherits the natural order� onR. Suppose that an analyst
constructs an alternative ordering�∗ on action spaces, so that G satisfies the definition
of a GSH. Then, by the above discussion, it is clear that under �∗, an interval [a∗, a∗]
can be constructed which contains all serially undominated strategies, where a∗ and
a∗ are themselves serially undominated, and which contains the limits of all adaptive
learning processes. However, this does not guarantee that such an interval can be
constructed in G under the natural order � on R. Furthermore, because the notion of
an adaptive dynamic also relies on how an order is defined, it is not guaranteed that
a globally stable equilibrium under �∗ remains so under �, and vice versa. However,
Proposition 1 ensures that if a GMH can be transformed into a GSH by means of the
reversal of the orders, then the set of solutions in a GMH can be guaranteed to possess
all of the order properties inherent in a GSH.

A natural question then arises as to what other orderings can be constructed which
transform a GMH into a GSH. Theorem 2, our second main contribution, shows that,
under very general conditions, transforming a GMH into a GSH can only be done by
some reversal of orders. Specifically, if one hopes to transform a strict GMH into a
GSHor vice versa, then the only orders which can accomplish this while not increasing
or decreasing the number or ordered pairs are those in which each player has either
their original order, or their reversed order. This encompasses many scenarios, such
as when the original and transformed orders are complete orders. This result, along
with our previous discussion regarding the preservation of order properties of solution
concepts, serves to justify our focus on searching for transformations through order
reversals.

Our approach is most similar to Cao et al. (2018), who show that under some
conditions, a GSC or any game where players have either increasing or decreasing
differences with respect to opponents’ actions can be embedded into a larger GSS
through the reversal of orders on strategy spaces, such that the set of Nash equilibria
of the original game is a projection of the set of Nash equilibria of the embedding
GSS. They conclude that the existence of such transformations show that GSS are
more fundamental than GSC. However, in order to achieve this, they introduce so-
called bridge players, who serve to reverse the strategic relationship between players
in the original game. Thus, the original game and its embedding are fundamentally
different games, with potentially different utility functions and an expanded set of
players. Echenique (2004) takes a similar approach, but instead gives conditions under
which a game, which may not have a previously defined order on action spaces, may
be endowed with an order so that it satisfies the definition of a GSC. Here it is shown
that for games with two or more equilibria, an order may be derived in which the
game may be seen as a GSC. This result is very interesting in terms of addressing how
generally one can describe payoffs in a given strategic scenario as exhibiting strategic
complementarities under some order. However, notice that the existence of such an
order can be guaranteed only with prior information about the equilibrium set, and
that it need not adhere to any intuitive notion of how actions should be ordered.

In contrast to Cao et al. (2018) and Echenique (2004), who are interested in finding
orders under which a game can be viewed as a GSS or GSC, respectively, we are
interested in conditions under which a game’s solution set possesses the properties of
more general GSH under some initial order, such as the natural order� onR discussed
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above. We give conditions under which the existence of an order that transforms G
into a GSH allows us to draw conclusions about the set of solutions with respect to the
original order�. In particular, with respect to�, there exist highest and lowest serially
undominated strategies a∗ and a∗ whose interval [a∗, a∗] contains all other serially
undominated strategies, and the limits of all adaptive dynamics fall within [a∗, a∗].
Hence, G is dominance solvable if and only if it is globally stable.

This paper is organized as follows: Sect. 2 gives the relevant definitions and estab-
lishes necessary preliminary results. Section 3 states our main result (Theorem 1).
Section 4 states our second main result (Theorem 2), which shows that under mild
conditions, one can only hope to transform a GMH into a GSH with some reversal of
orders. Section 5 concludes with supporting examples.

2 Model and definitions

A set X is called partially ordered if there exists a binary relation � on X × X which
is reflexive, transitive, and anti-symmetric.1 We call a partially ordered set a lattice if
for each pair of elements x, y ∈ X , the supremum and infimum are contained in X ,
which we denote by sup�(x, y) and inf�(x, y), respectively. X is a complete lattice if
for each non-empty subset S ⊂ X , we have that the supremum and infimum of S are
contained in X , which we denote by sup�(S) and inf�(S), respectively. Finally, given
a set X with an order �, the order interval topology on X is that topology which
takes all order intervals [a, b] ⊂ X as a sub-basis for closed sets.

Let G = {I, (Ai , πi )i∈I ,�} denote a strategic form game, where I =
{1, 2, . . . , N } is the set of N players. For an action space A = ∏

i∈I Ai , we let
�= (�i )i∈I describe a partial order �i on Ai for each player i . We will abuse nota-
tion and allow � to represent the product order on A. Also, for any player i ∈ I, we
will allow �−i be the corresponding product order on A−i = ∏

j �=i A j . Through-
out the paper, we will assume that for each i ∈ I, (Ai ,�i ) is a complete lattice.
Moreover, for each i ∈ I, πi is continuous in a (in the order interval topology), and
quasisupermodular in ai .2

The literature on monotone games furthermore assumes that each player responds
in a monotone way to the joint action of all opponents. Well-known results in this
literature establish that player i’s best response is increasing (decreasing) in the joint
action of opponents if πi satisfies the single-crossing property (SCP) (resp. decreasing
SCP).3 If for all i ∈ I, πi satisfies the SCP (resp. decreasing SCP) in (ai , a−i ), a
game G is called a game of strategic complements (GSC) (resp. game of strategic
substitutes (GSS)).4 If for each i ∈ I, πi satisfies either the SCP in (ai , a−i ), or

1 � is reflexive if for all x ∈ X , x � x . � is transitive if for all x, y, z ∈ X , y � x and z � y imply z � x .
� is anti-symmetric if for all x, y ∈ X , x � y and y � x imply x = y.
2 For a definition of quasisupermodularity, see Topkis (1998).
3 The set of best responses is increasing in the sense of the strong set order. See Milgrom and Shannon
(1994) and Roy and Sabarwal (2010) for details. For a formal definition of the SCP, confer Topkis (1998).
This property is often also referred to as the “single-crossing difference,” as in Milgrom (2004), Quah and
Strulovici (2009) and Cao et al. (2018).
4 For a summary of recent contributions in the literature on supermodular games, see Amir (2019).
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decreasing SCP in (ai , a−i ), then G is also called a game of strategic heterogeneity
(GSH).

In this paper, we will consider games that are very similar to those in the standard
literature on monotone games, with the exception that we only require that each player
has such a monotone relationship with each of her opponents individually as opposed
to a monotone relationship with the joint action of opponents.5 To that end, we will
assume that πi satisfies the pairwise SCP6 (respectively, pairwise decreasing SCP)7

with respect to (ai , a j ) instead of the standard SCP with respect to (ai , a−i ). With this
in mind, we have the following definition:

Definition 1 Consider G = {I, (Ai , πi )i∈I ,�}.
1. If for each i, j ∈ I, πi satisfies either the pairwise single-crossing property (SCP)

in (ai , a j ), or the pairwise decreasing SCP in (ai , a j ), G is a game of mixed
heterogeneity (GMH).

2. If for each i ∈ I, πi satisfies either the pairwise SCP in (ai , a j ) for all j �= i , or
the pairwise decreasing SCP in (ai , a j ) for all j �= i , then G is also called a game
of strategic pairwise heterogeneity (GSPH).

Given an order �i for some player i ∈ I, define �̃i on Ai as, for each x, y ∈ Ai ,
x �̃i y if and only if y �i x . That is, �̃i is the reversed order of �i . We will
then explore the following question: Given a GMH G = {I, (Ai , πi )i∈I ,�}, which
conditions are necessary and sufficient to guarantee the existence of some �̂ = (�̂i )i∈I
such that G = {I, (Ai , πi )i∈I , �̂} is a GSC, GSS, or general GSH, where for each
player i , we have that �̂i is equal to either �i or �̃i?

In order to address this question, we first establish that reversing the orders of a set
of players in a GMH so that it becomes a GSPH is enough to conclude that it is a GSH
as well. Cao et al. (2018) show that part (3) of Lemma 1 for the case of increasing
and decreasing differences. For the sake of completeness, we provide a proof for the
ordinal case as well.

Lemma 1 Let G = {I, (Ai , πi )i∈I ,�} be a GMH. Consider the GMH given by G =
{I, (Ai , πi )i∈I , �̂}, where for each player i , �̂i is equal to either �i or �̃i .

1. For each i ∈ I, if (Ai ,�i ) is a complete lattice, then (Ai , �̃i ) is a complete lattice.
Furthermore, if πi satisfies quasisupermodularity under the order �i , it does so
as well under the order �̃i .

2. For each i ∈ I, if πi is continuous in actions under the order interval topology
resulting from�, then it is continuous in actions under the order interval topology
resulting from �̂.

5 Notice that while the definition of a GSH in Monaco and Sabarwal (2016) allows for such pairwise
monotone relationships, their main results require some players to have substitutes and complements with
the joint action of opponents.
6 πi satisfies the pairwise SCP in (ai , a j ) if for every a−i, j ∈ A−i, j , a

′
i �i ai and a′

j � j a j ,

πi (a
′
i , a j , a−i, j ) ≥ πi (ai , a j , a−i, j ) ⇒ πi (a

′
i , a

′
j , a−i, j ) ≥ πi (ai , a

′
j , a−i, j ) and πi (a

′
i , a j , a−i, j ) >

πi (ai , a j , a−i, j ) ⇒ πi (a
′
i , a

′
j , a−i, j ) > πi (ai , a

′
j , a−i, j ) .

7 πi satisfies the pairwise decreasing SCP in (ai , a j ) if for every a−i, j ∈ A−i, j , a
′
i �i ai and a

′
j � j a j ,

πi (ai , a j , a−i, j ) ≥ πi (a
′
i , a j , a−i, j ) ⇒ πi (ai , a

′
j , a−i, j ) ≥ πi (a

′
i , a

′
j , a−i, j ) and πi (ai , a j , a−i, j ) >

πi (a
′
i , a j , a−i, j ) ⇒ πi (ai , a

′
j , a−i, j ) > πi (a

′
i , a

′
j , a−i, j ) .
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3. For each i ∈ I, if πi satisfies the pairwise (decreasing) SCP in (ai , a j ) for each
j �= i , then πi satisfies the (decreasing) SCP in (ai , a−i ), where A−i is endowed
with the product order �−i .

Proof See “Appendix.” 
�
Therefore, if an analyst hopes to reverse some collection of the �i so that a GMH

can be seen as a GSH, it is sufficient (and equivalent) to transform it into a GSPH.
We now discuss the properties that a GMH inherits given the existence of some

order reversal which transforms it into a GSH. First, given a game G, and player i ∈ I,
consider some subset of actions Z−i ⊂ A−i . We then define the set

Ui (Z−i ) = {ai ∈ Ai | ∀a′
i ∈ Ai , ∃a−i ∈ Z−i , πi (ai , a−i ) ≥ πi (a

′
i , a−i )}

as player i’s undominated responses to Z−i . For Z ⊂ A, let Z−i be the projection of Z
ontoA−i . ThenU (Z) = (Ui (Z−i ))i∈I is defined as the set of undominated responses
to Z . Consider the following process:

1. Z0 = U (A).
2. For all n ≥ 1, Zn = U (Zn−1).

We then call S = ∩n≥0 Zn the set of serially undominated strategies in G.
For some sequence of actions (an)∞n=0, define

P(T , t) = {an | t > n ≥ T }
as the history of play between time periods T and t . We then say that (an)∞n=0 is an
adaptive dynamic if for each T ≥ 0 there exists some T ′ ≥ 0, such that for each
t ≥ T ′,

at ∈ [inf�U (P̂(T , t)), sup�U (P̂(T , t))],

where P̂(T , t) = [inf�P(T , t), sup�P(T , t)]. The class of adaptive learning pro-
cesses include learning rules such as best response dynamics and fictitious play, among
many others. Notice that the definition of an adaptive dynamic relies on the underlying
order in the game, as it depends on the relevant notion of an order interval. Also, we
will call a Nash equilibrium â ∈ A globally stable as long as every adaptive dynamic
(an)∞n=0 which is non-constant converges to â.8

The next proposition, due to Barthel and Hoffmann (2019), highlights why trans-
forming a game into a GSH is of interest. In particular, we see that given a game
G and an original order �= (�i )i∈I , then the existence of some reversal of orders
�̂ = (�̂i )i∈I under which G is a GSH allows us to draw strong conclusions about
solution concepts in G with respect to the original ordering �= (�i )i∈I . The proof of
this statement requires some slight modifications for our setting, which are given in
“Appendix.”

8 Requiring only that all non-constant adaptive dynamics converge to â ignores trivial dynamics which
begin at another fixed point y ∈ A and remain there indefinitely. This is therefore a slight weakening of
the notion of global stability defined in Milgrom and Roberts (1990) in that it allows for the possibility of
a globally stable equilibrium in the presence of multiple equilibria.
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Characterizing monotone games 1051

Proposition 1 (Barthel and Hoffmann) Let G be a GMH under �= (�i )i∈I . Suppose
that G is a GSH under some �̂ = (�̂i )i∈I , where for each player i ∈ I, we have that
either �̂i =�i or �̂i = �̃i . Then, with respect to the original ordering �= (�i )i∈I ,

1. There exist upper and lower serially undominated strategies a∗ and a∗ such that
the limit of all adaptive learning processes falls within the interval defined by
[a∗, a∗].

2. The following are equivalent statements:

(a) G is dominance solvable.
(b) a∗ = a∗.
(c) There exists a unique, globally stable Nash equilibrium â.

3. If G exhibits more than one Nash equilibrium, then no Nash equilibrium is globally
stable.

Proof See “Appendix.” 
�

The following example highlights the main concepts that have been discussed thus
far.

Example 1 As an example, consider the following three-player game, where each
player i ∈ {1, 2, 3} has the strategy space Ai = {L, H}.

P3

HL

2P2P

HLHL

P1
L 10, 10, 20 0, 20, 20

P1
L 10, 0, 15 10, 10, 0

H 20, 10, 10 10, 0, 20 H 0, 10, 5 0, 0, 0

Suppose that the Ai are endowed with orders �i such that H �i L for i = 1, 2,
and L �3 H for Player 3. It is straightforward to check that utility for Players 1 and
2 satisfy the decreasing SCP between each others’ actions, and that each satisfy the
SCP with respect to Player 3’s action. Also, the utility given for Player 3 satisfies the
SCP in each of her opponents’ actions. Hence, this game is a GMH.

Now suppose that the order on Player 3’s strategy space is reversed, so that A3 is
endowed with order �̃3, where H �̃3 L . Keeping the orders on A1 and A2 the same
as before, we see that utility for each player satisfies the decreasing SCP with respect
to each of her individual opponents. By Lemma 1, we may conclude that the game is a
GSS. Furthermore, as (H , L, L) is the unique, serially undominated strategy, we may
conclude from Proposition 1 that it is also globally stable when the original orders are
considered.
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1052 A.-C. Barthel, E. Hoffmann

3 Main results

We now come to the main results of the paper. Having established the notions of GMH
and GSH, we must first properly define the process of transforming one into another.
To this end, let R

N×N be the set of real-valued, N × N square matrices. It will be
useful to make the following definition:

Definition 2 Let G = {I, (Ai , πi )i∈I ,�} be a GMH. Then the strategic matrix
associated with G is the N × N matrix MG ∈ R

N×N whose ( j, i)th entry m j,i is
given by the following:

1. For all i ∈ I, mi,i = 0.
2. For all i, j ∈ I, i �= j , m j,i = 1 if πi satisfies the pairwise SCP in (ai , a j ).
3. For all i, j ∈ I, i �= j , m j,i = −1 if πi satisfies the pairwise decreasing SCP in

(ai , a j ).

Thus, MG fully determines the pairwise strategic relationships between each pair of
players, so that the i th column describes how player i best responds to an increase in
the strategy from each of her opponents. By convention, we set eachmi,i = 0, as player
i does not best respond to an action taken by herself. For example, let 1N×N ∈ R

N×N

be the N×N matrix whose every entry is 1, IN×N ∈ R
N×N be the identity matrix, and

Q ∈ R
N×N be the matrix whose off-diagonal elements are zero, but whose diagonal

elements qi,i are either 1 or −1. Consider the matrix

J = (1N×N − IN×N )Q. (1)

Then,

1. If qi,i = 1 for each i ∈ I, then J is the strategic matrixMG associated with some
game of strategic complements G.

2. If qi,i = −1 for each i ∈ I, then J is the strategic matrix MG associated with
some game of strategic substitutes G.

3. If qi,i = 1 or qi,i = −1 for each i ∈ I, then J is the strategic matrix MG
associated with some game of strategic heterogeneity G.
The next lemma describes how the strategic matrix associated with a game G

changes after the orders of any subset of players S ⊂ I are reversed.

Lemma 2 Let G = {I, (Ai , πi )i∈I ,�} be a GMH, and letMG be the corresponding
strategic matrix associated with a game G, with common entry m j,i . Let S ⊂ I be

any non-empty subset of players, and consider the game Ĝ = {I, (Ai , πi )i∈I , �̂},
where �̂ = (�̂i )i∈I is such that for all i ∈ S, �̂i = �̃i , and for all i /∈ S, �̂i =�i .
For each A ∈ R

N×N with common element ai, j , let TS : R
N×N → R

N×N be the
transformation described by

TS(A) j,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a j,i i ∈ S, j ∈ S

a j,i i /∈ S, j /∈ S

−a j,i i ∈ S, j /∈ S

−a j,i i /∈ S, j ∈ S.

(2)
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Characterizing monotone games 1053

Then, ifMĜ is the strategic matrix associated with Ĝ, we have that TS(MG) = MĜ .

Proof See “Appendix.” 
�
In view of Lemmas 1 and 2, we have reduced our problem of finding an ordering �̂

under which a GMH may be written as a GSH to one of the findings, an appropriate
S ⊂ I, so that the corresponding TS transforms our original strategic matrix into one
that represents a GSH, as in Eq. (2). The next definition formalizes this notion:

Definition 3 LetG = {I, (Ai , πi )i∈I ,�}be aGMH, and letMG be the corresponding
strategic matrix associated with a game G. Then G can be transformed into a GSH
if there exists some non-empty S ⊂ I such that S �= I, and

TS(MG) = J ,

where J is the strategic matrix MĜ of some GSH. We similarly define the cases of
when G can be transformed more specifically into GSC or GSS.

It is easy to verify that when S = I, TS(A) = A for any matrix A. Hence, requiring
that S ⊂ I be non-empty and not equal to I itself simply rules out accounting for
transforming GSH into themselves. Obviously, this is with no loss of generality. We
now come to our first result, which gives necessary and sufficient condition for when
a GMH can be transformed into a GSH.

Theorem 1 Let G = {I, (Ai , πi )i∈I ,�} be a GMH, such that G is not a GSH. Then G
can be transformed into a GSH if and only if I can be partitioned into two non-empty
subsets I ′ and I ′′ such that

1. For all i ∈ I ′, πi satisfies either the pairwise SCP (ai , a j ) for each j ∈ I ′/{i}, or
satisfies the pairwise decreasing SCP (ai , a j ) for each j ∈ I ′/{i}.

2. For all i ∈ I ′′, πi satisfies either the pairwise SCP (ai , a j ) for each j ∈ I ′′/{i},
or satisfies the pairwise decreasing SCP (ai , a j ) for each j ∈ I ′′/{i}.

3. For all i ∈ I, if πi satisfies the pairwise SCP in (ai , a j ) for all j ∈ I ′/{i}, then πi

satisfies the pairwise decreasing SCP in (ai , a j ) for all j ∈ I ′′/{i}. If πi satisfies
the pairwise decreasing SCP in (ai , a j ) for all j ∈ I ′/{i}, then πi satisfies the
pairwise SCP in (ai , a j ) for all j ∈ I ′′/{i}.

Proof Given in “Appendix.” 
�
Because GSC can be guaranteed to possess upper and lower Nash equilibria, it is

often of particular interest to knowwhen a game can be transformed into a GSC, which
is addressed in our next result. Interestingly, Cao et al. (2018) allude to the “only if”
part concerning transforming a GSH into a GSC in Remark 2 of their paper. Proposi-
tion 2 thus serves as an extension to this observation by providing both necessary and
sufficient conditions for such a transformation in the case of both GSC and GSS.

Proposition 2 Let G = {I, (Ai , πi )i∈I ,�} be a GMH, such that G is not a GSC. Then
G can be transformed into aGSC if and only if I can be partitioned into two non-empty
subsets I ′ and I ′′ such that
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1054 A.-C. Barthel, E. Hoffmann

1. For all i, j ∈ I ′ such that i �= j , πi satisfies the pairwise SCP in (ai , a j ).
2. For all i, j ∈ I ′′ such that i �= j , πi satisfies the pairwise SCP in (ai , a j ).
3. For all i ∈ I ′ and j ∈ I ′′, πi satisfies the pairwise decreasing SCP in (ai , a j ).

Likewise, if G is such that G is not a GSS, then G can be transformed into a GSS if and
only if I can be partitioned into two non-empty subsets I ′ and I ′′ such that

1. For all i, j ∈ I ′ such that i �= j , πi satisfies the pairwise decreasing SCP in
(ai , a j ).

2. For all i, j ∈ I ′′ such that i �= j , πi satisfies the pairwise decreasing SCP in
(ai , a j ).

3. For all i ∈ I ′ and j ∈ I ′′, πi satisfies the pairwise SCP in (ai , a j ).

Proof Similar to that of Theorem 1, and given in “Appendix.” 
�
The next corollary gives necessary and sufficient conditions for transforming games
that are initially a GSH into either a GSC or GSS. More importantly, it shows that, as
long as there are more than two players, then if a GMH can be transformed into a GSH
that is not a GSC (respectively, a GSS), then one cannot hope to find an alternative
transformation which transforms it into such.

Corollary 1 Let G be a GSH that is not a GSC. Then G can be transformed into a GSC
if and only if it is a two-player GSS. Likewise, if G is a GSH that is not a GSS, then G
can be transformed into a GSS if and only if it is a two-player GSC.

Proof See “Appendix.” 
�

4 Considering other orders

In light of the results of the previous section, it is natural to ask whether, given a game
G which is a GMH under�, other possible orders can be found which transform G into
a GSH besides reversing some combination of the original�i . In this section, we show
that in many settings, the answer is surprisingly no. To this end, we first consider the
class ofGSHunderwhich player’s utility satisfies increasing or decreasing differences,
as opposed to the ordinal SCP or decreasing SCP considered in the previous section.
Recall that in a set with a partial order �, two elements x and y are said to be strictly
ordered under � if and only if x � y and x �= y. Hence, any two elements are either
unordered, strictly ordered, or equal.

Definition 4 A tuple G = {I, (Ai , πi )i∈I ,�} is said to be a game of mixed hetero-
geneity with differences (GMHD) if we have the following:

For each i, j ∈ I, πi satisfies either pairwise increasing differences in (ai , a j ),9

or pairwise decreasing differences in (ai , a j ).10

9 πi satisfies pairwise increasing differences in (ai , a j ) if for every a−i, j ∈ A−i, j , a
′
i �i ai and

a′
j � j a j , πi (a

′
i , a

′
j , a−i, j ) − πi (ai , a

′
j , a−i, j ) ≥ πi (a

′
i , a j , a−i, j ) − πi (ai , a j , a−i, j ).

10 πi satisfies pairwise decreasing differences in (ai , a j ) if for every a−i, j ∈ A−i, j , a
′
i �i ai and

a′
j � j a j , πi (ai , a

′
j , a−i, j ) − πi (a

′
i , a

′
j , a−i, j ) ≥ πi (ai , a j , a−i, j ) − πi (a

′
i , a j , a−i, j ).

123



Characterizing monotone games 1055

Furthermore, if for all i ∈ I, πi satisfies either increasing differences in (ai , a−i ),
or decreasing differences in (ai , a−i ),11 then G is called a game of strategic hetero-
geneity with differences (GSHD).

Lastly, we define the strict versions of the above games by requiring that the inequal-
ities in the above requirements hold strictly for strictly ordered pairs of actions. In these
cases, we say either strict GMHD or strict GSHD.

Recall from the previous section that given reflexive, transitive, and anti-symmetric
orders �= (�i )i∈I on strategy spaces, we called �̂ = (�̂i )i∈I a reversed order of
� if, for some S ⊂ I, we have that �̂i = �̃i for each i ∈ S, and �̂i =�i for each
i ∈ I/S. Thus, given �, we will let the set R� denote the collection of all possible
reversed orders of �. Also, given �i on Ai , we will denote by A�

i as those pairs of
actions (ai , a′

i ) ∈ Ai which are ordered under �i . More precisely,

A�
i = {(ai , a′

i ) ∈ Ai × Ai | ai �i a
′
i , or a′

i �i ai }.

Lastly, for a game G = {I, (Ai , πi )i∈I ,�}, we let G∗ = {I, (Ai , πi )i∈I ,�∗} be
that game with the same elements as G, but with another arbitrary ordering on strategy
spaces �∗= (�∗

i )i∈I . In what follows, we will consider only those �∗ such that the
�∗
i are reflexive, transitive, and anti-symmetric as well.
Theorem 2 shows that given a strict GMHD G (respectively, GMHD) with ordering

�, then any other ordering �∗ which has the same collection of ordered pairs as �
and which transforms G into a GSHD (respectively, strict GSHD) must be such that
each �∗

i is either the original order �i , or the reversed order �̃i .

Theorem 2 Consider two games G = {I, (Ai , πi )i∈I ,�}, and
G∗ = {I, (Ai , πi )i∈I ,�∗}. Suppose that for each player i ∈ I, A�

i = A�∗
i , and

that each Ai has at least one strictly ordered pair. Then,

1. If G is a GMHD, and G∗ is a strict GSHD, then �∗∈ R�.
2. If G is a strict GMHD, and G∗ is a GSHD, then �∗∈ R�.

Proof Given in “Appendix.” 
�

It is apparent from the above proof that the requirements inTheorem2 can beweakened
evenmore, in that instead of requiring either strict increasing or decreasing differences
among all players, we only require that for each player j , there exists some other player
i so that πi exhibits strict increasing or decreasing differences in (ai , a j ). Also, note

that the requirement that A�
i = A�∗

i is automatically satisfied when �i and �∗
i are

complete orders.
It is a very natural question to ask whether the results of Theorem 2 can be extended

to ordinal games that satisfy the (decreasing) SCP instead of (decreasing) increasing
differences. We will address this questions in the following section in Example 6.

11 For a formal definition of increasing and decreasing differences, see Topkis (1998).
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5 Applications

We now present some examples. We will make use of the following observations on
a slightly more general version of the aggregative games defined in Acemoglu and
Jensen (2013), so that player i’s payoff is given by

ui = Fi (g(a), vi ((ai )),

where g : A → R
k is a k-dimensional aggregator function, and vi : Ai → R is

increasing. As in Acemoglu and Jensen (2013) will assume for i = 1, . . . , k, each
component function gi is additively separable, and assume further that each Fi is

separable in the gi , so that
∂2Fi

∂gm∂gl
= 0 for each l �= m.

For each player i and j , where i �= j , we can then write

∂2ui
∂ai∂a j

=
k∑

z=1

∂gz
∂a j

Di,z, (3)

where

Di,z = ∂2Fi
∂g2z

· ∂gz
∂ai

+ ∂2Fi
∂v∂gz

· ∂v

∂ai
.

Players i and j then have pairwise increasing differences in (ai , a j ) if
∂gz
∂a j

and Di,z

have the same signs for all z and pairwise decreasing differences in (ai , a j ) if ∂gz
∂a j

and Di,z have opposite signs for all z. We will apply this observation in the following
examples.

Example 2 (Cournot–Bertrand oligopoly) Consider an N firm Cournot–Bertrand
oligopoly, where I ′ ⊂ I are those firms who compete in quantity, and I ′′ ⊂ I
are those firms who compete in price. We will assume that there exists at least one
quantity competitor and at least one price competitor to focus on mixed oligopolies.
We will denote the number of quantity competitors by m. Let Qi (·) and Pi (·) denote
firm i’s demand and inverse demand functions in terms of each firm’s strategic vari-
able, respectively, which we assume are twice differentiable.12 For example, suppose
as in Matsumoto and Szidarovszky (2009) that for each i ∈ I market demand is given
by13

Pi = α − qi − γ
∑

j �=i

q j ,

12 Proposition 22 in Amir and De Castro (2017) uses the concept of “strategic quasicomplementarities” in
order to show that under mild conditions, pure strategy Nash equilibria are guaranteed to exist in the case
of a duopoly.
13 We are assuming homogeneous intercept terms for ease of discourse and notational simplicity. However,
similar arguments will allow for heterogeneous intercept terms.
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where α > 0 and −1 < γ < 1 with γ �= 0. That is, the goods are (imperfect)
substitutes for 0 < γ < 1 and (imperfect) complements for −1 < γ < 0. Expressing
demand and inverse demand in terms of each firm’s strategic variable results in, for
each i ∈ I ′,

Pi = A − bai − c
∑

j∈I ′, j �=i

a j + d
∑

j∈I ′′
a j ,

where

A = (1 − γ )α

1 + (N − m − 1)γ
, b = (1 − γ )(1 + (N − m)γ )

1 + (N − m − 1)γ
,

c = γ (1 − γ )

1 + (N − m − 1)γ
, d = γ

1 + (N − m − 1)γ
,

and for each i ∈ I ′′,

Qi = Â − b̂ai − ĉ
∑

j∈I ′
a j + d̂

∑

j∈I ′′, j �=i

a j ,

where

Â = (1 − γ )α

1 + (N − m − 1)γ
, b̂ = 1 + (N − m − 2)γ

(1 − γ )(1 + (N − m − 1)γ )
,

ĉ = γ (1 − γ )

(1 − γ )(1 + (N − m − 1)γ )
, d̂ = γ

(1 − γ )(1 + (N − m − 1)γ )
.

Demand functions satisfy the law of demand with a positive intercept when
A, Â, b, b̂ > 0, which holds for − 1

N−m < γ < 1.

Then for all i ∈ I ′, define gi = A − Pi (a) and for all i ∈ I ′′, let gi = Â − Qi (a),
which are aggregator functions as described above.Notice that profits for each quantity
competitor i ∈ I ′ can be written as

πi = Pi (gi (a))ai − Ci (ai ),

and for each price competitor i ∈ I ′′,

πi = Qi (gi (a))ai − Ci (gi (a)),

where we assume that each Ci is convex.
In order to apply Eq. 3, first note that for each i ∈ I, Di,i = −1, and for each

i, i ′ ∈ I ′ and j, j ′ ∈ I ′′ such that i �= i ′ and j �= j ′,
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sgn

(
dgi
dai ′

)

= sgn

(
dg j

dai ′

)

= sgn(γ ),

sgn

(
dgi
da j ′

)

= sgn

(
dg j

da j ′

)

= −sgn(γ ).

Then, we have by Eq. 3 that

sgn

(
∂2πi

∂ai ′∂ai

)

= sgn

(
dgi
dai ′

· Di,i

)

= −sgn(γ ),

sgn

(
∂2πi

∂a j∂ai

)

= sgn

(
dgi
da j

· Di,i

)

= sgn(γ ),

sgn

(
∂2π j

∂a j ′∂a j

)

= sgn

(
dg j

da j ′
· Dj, j

)

= sgn(γ ),

sgn

(
∂2π j

∂ai∂a j

)

= sgn

(
dg j

dai
· Dj, j

)

= −sgn(γ ).

Therefore, for − 1
N−m < γ < 1, this game is not a GSH, since for 0 < γ < 1,

players in I ′ share the decreasing SCP for all other i ′ ∈ I ′, but the SCP with each
j ∈ I ′′. Likewise, each player j ∈ I ′′ satisfies the SCP for all other j ′ ∈ I ′′, but
the decreasing SCP with each i ∈ I ′. The opposite is the case for − 1

N−m < γ < 0.
However, notice that by Theorem 1, we can use I ′ and I ′′ as partitioning elements of
I to conclude that the game can always be transformed into a GSH for the case when
products are gross substitutes, as well as for some degree of gross complementarity.

Furthermore, if the four inequalities on the cross-partials hold strictly, then the
Cournot–Bertrand oligopoly is a strict GMHD. Thus, by Theorem 2, any complete
order �∗ which transforms either game into a GSHD must be such that for each i , �∗

i
is either the original order �i , or the reversed order �̃i .

Example 3 (Oligopolies with substitutes and complements) In this example, we con-
sider Cournot or Bertrand markets in which some firms produce goods which are
complement goods with some competitors, and substitute goods with others. First,
consider the following N firm Cournot oligopoly from Amir and Jin (2001), where
players i ∈ I ′ ⊂ I have substituteswith all other players j �= i andplayers i ∈ I ′′ ⊂ I
have complements with all other players j �= i . That is, for i ∈ I ′, ∂Pj

∂qi
< 0 and for

all i ∈ I ′′, ∂Pj
∂qi

> 0, where Pj (·) denotes firm j’s twice differentiable inverse demand
function. Following Singh and Vives (1984) as a concrete example, assume firm i’s
inverse demand function can be written as

Pi = αi − ai − γ
∑

j∈I ′, j �=i

a j + δ
∑

j∈I ′′, j �=i

a j ,

where ai denotes firm i’s quantity, and αi , γ, δ > 0.
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Thus, we have that for all i , Pi = αi − gi , where

gi = ai − γ
∑

j∈I ′, j �=i

a j + δ
∑

j∈I ′′, j �=i

a j .

Thus, profits for each firm i can be written as

πi = Fi (g(a), ai ) = Pi (gi (a))ai − Ci (ai ),

where we assume that each Ci is convex. Following Eq. 3, we have that for each i ,

Di,i = P ′′
i · ∂gi

∂ai
+ P ′

i ≤ 0.

Moreover, for each i, i ′ ∈ I ′ and j, j ′ ∈ I ′′ such that i �= i ′ and j �= j ′, we have that

∂2πi

∂ai ′∂ai
= dgi

dai ′
· Di,i ≥ 0,

∂2πi

∂a j∂ai
= dgi

da j
· Di,i ≤ 0,

∂2π j

∂a j ′∂a j
= dg j

da j ′
· Dj, j ≤ 0,

∂2π j

∂ai∂a j
= dg j

dai
· Dj, j ≥ 0.

Note that this game is not originally a GSH, as each player i ∈ I ′ shares the SCP
for all other i ′ ∈ I ′, but the decreasing SCP with each j ∈ I ′′ and each player j ∈ I ′′
satisfies the decreasing SCP for all other j ′ ∈ I ′′, but the SCP with each i ∈ I ′.
However, as we have shown, we can use I ′ and I ′′ as partitioning elements of I to
conclude that this game can be transformed into a GSH as well. A similar argument
can be made when all firms are price competitors.

Example 4 (Resource conservation) Consider a situation where each player i in some
group of players I ′ ⊂ I chooses to extract some amount ai of a natural resource to
use as an input in order to compete in quantity competition among the other members
of I ′, while each player j in a separate group I ′′ ⊂ I purchases an amount a j of
the natural resource in order to preserve it. For example, players in group I ′ may
be loggers who wish to purchase trees to process, while players in group I ′′ may be
conservationists. We assume that each player i ∈ I derives a positive benefit which is
increasing in the amount of natural resource present. To this end, define g1 : A → R

by g1(a) = ∑
j∈I ′′ a j −∑

j∈I ′ a j . and let Pi (g1(a)) be the benefit of player i derived
from the amount of natural resource present,where it is assumed that each Pi is positive,

increasing, and ∂2Pi
∂g21

≤ 0, where equality holds only when g1 = 0. For each player

i ∈ I ′′, we write Ci (ai ) as the cost of purchasing natural resources. Furthermore,
define g2 : A → R by g2(a) = ∑

i∈I ′ a j . Then, for each player i ∈ I ′, we write
πi (g2(a), ai ) as player i’s profit from extracting resource amount ai and competing
in quantity competition among opponents in I ′. Hence, defining g : A → R

2 as
g(a) = (g1(a), g2(a)), utility for each player i ∈ I ′′ is defined as

ui (a) = Fi (g(a), vi (ai )) = Pi (g1(a)) − Ci (ai ),
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whereas utility for each player i ∈ I ′ can be expressed as

ui (a) = Fi (g(a), vi (ai )) = Pi (g1(a)) + πi (g2(a), ai ).

Notice that the appearance of Pi (g1) in the utility of each player prevents this game

from being a GSH: For each player i ∈ I ′′, we have that as long as g1 > 0, ∂2πi
∂a j ∂ai

> 0

for each j ′ ∈ I ′′, but ∂2πi
∂a j ∂ai

< 0 for each j ′ ∈ I ′. More specifically, let j, j ′ ∈ I ′ and
i, i ′ ∈ I ′′ be such that i �= i ′, and j �= j ′. Then, as defined in Eq. (3), we have that

Dj,1 = ∂2Pl
∂g21

· ∂g1
∂a j

≥ 0, Dj,2 = ∂2πl

∂g22
· ∂g2

∂al
+ ∂2πl

∂v∂g2
· ∂v

∂al
≤ 0,

Di,1 = ∂2Pc
∂g21

· ∂g1
∂ac

≤ 0, Di,2 = 0.

Hence, because dg1
dai

= dg2
da j

> 0, dg1
da j

< 0, and dg2
dai

= 0, we have by Eq. 3 that

∂2ui
∂ai ′∂ai

= dg1
dai

· Di,1 ≤ 0,
∂2ui

∂a j∂ai
= dg1

da1
· Di,1 ≥ 0,

∂2u j

∂a j ′∂a j
= dg1

da j ′
· Dj,1 + dg2

da j ′
· Dj,2 ≤ 0,

∂2ui
∂ai∂a j

= dg1
da1

· Dj,1 ≥ 0.

Therefore, we see that if we partition I into I ′ and I ′′, each member in each groups
exhibits the pairwise deceasing SCP with other members of their own group and the
pairwise SCP with members of the opposite group. Thus, by Proposition 2, this game
can be transformed into a GSS.

Example 5 (Crime and social networks) Consider themodel of Bramoullé et al. (2014),
which consists of N criminals, where each criminal i = 1, . . . , N chooses their crime
level ai from some closed interval Ai ⊂ R. Crime is assumed to have a constant
marginal cost of c > 0. Also, returns from crime are decreasing in the overall crime
level, as criminals compete among themselves for territory, resources, etc. Moreover,
if criminal i and j are partners, criminal i’s cost of committing a crime decreases as
criminal j engages inmore crime,whichmodels potential peer effects. Let gi, j ∈ {0, 1}
be such that gi, j = 1 if player i and j are partners, and 0 otherwise. Criminal i’s payoff
is given by

πi (ai , a−i ) = ai

⎛

⎝1 − α
∑

j∈N
a j

⎞

⎠ − cai

⎛

⎝1 − φ
∑

j∈N
gi j a j

⎞

⎠ ,

where α > 0 denotes the impact of crime and φ > 0 accounts for the impact of each
partner’s level of crime. Note that
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∂2πi

∂ai∂a j
=

{
−α if gi, j = 0

−α + cφ if gi, j = 1.

Because α > 0, we have that each πi satisfies the pairwise decreasing SCP in (ai , a j )

for all criminals j �= i who are not partners with i . Hence, we have the following three
cases:

1. If α > cφ, then each πi also satisfies the pairwise decreasing SCP in (ai , a j ) for
all criminals j �= i who are partners with i . Hence, by Lemma 1, the game is a
GSS.

2. If α < cφ and for each i and j , gi, j = g j,i , then πi satisfies the pairwise SCP in
(ai , a j ) for all criminals j �= i who are partners with i . Hence, by the discussion
above, this game is a GMH, but not a GSH. However, notice that we can partition
I into I ′ and I ′′, where all criminals in a partitioning element are partners with
one another. Hence, for each player i , πi exhibits the pairwise SCP (ai , a j ) for
all criminals j �= i who are in the same partitioning element as i , and the pair-
wise decreasing SCP in (ai , a j ) for all criminals j �= i who are in the opposite
partitioning element. By Proposition 2, this game can then be transformed into a
GSC.

3. Suppose α < cφ and that we have two types of criminals such that for all j �= i ,
gi, j = 1 for each i ∈ I ′ and for all j �= i , gi, j = 0 for each i ∈ I ′′.14 Then πi

satisfies the pairwise SCP in (ai , a j ) for all j �= i for all i ∈ I ′ and πi satisfies
the pairwise decreasing SCP in (ai , a j ) for all j �= i for all i ∈ I ′′. Intuitively, we
have one type of criminal who is partners with everybody else and hence affects
everybody’s optimal crime levels positively and another type of criminal who
is not partners with anybody else and hence affects everybody’s optimal crime
levels negatively. Similarly to the Cournot–Bertrand oligopoly example above,
this game is a GMH, but not a GSH. However, with the given partition of I ′ and
I ′′, by Theorem 1, this game can be transformed into a GSH.

Hence, by Proposition 1, we know that there exist upper and lower serially undomi-
nated strategies, and they are dominance solvable if and only if there exists a unique
equilibrium that is globally stable. Furthermore, in the case of when α < cφ, these
upper and lower strategies can be guaranteed to be Nash equilibria.

Moreover, notice that this game a strict GMHD as stated. Thus, by Theorem 2, any
complete order �∗ which transforms either game into a GSHD must be such that for
each i , �∗

i is either the original order �i , or the reversed order �̃i .

Example 6 It is a very natural question to ask whether the results of Theorem 2 can be
extended to ordinal games that satisfy the (decreasing) SCP instead of (decreasing)
increasing differences. To that end, consider the following example below:

P2

L M H

P1
L 1, 2 1, 0 1, 0

H 0, 1 0, 0 1, 1

14 Notice that this means that we no longer have gi, j = g j ,i for all i and j .
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Player 1’s action space is given by A1 = {L, H} with H �1 L , while A2 =
{L, M, H}with H �2 M �2 L . It is straightforward to verify that payoffs for Players
1 and 2 satisfy the strict SCP and hence this game is a strict (ordinal) GSC. Now
consider the order�∗, where�∗

1=�1 and�∗
2= �̃2, which reverses Player 2’s strategy

space. Hence, we now have H �∗
1 L and L �∗

2 M �∗
2 H . Under this new ordering,

both players’ payoffs now satisfy the decreasing SCP, and hence, this game is now a
(ordinal) GSS. However, reversing one player’s strategy space is not the only order
that allows us to transform the original GSC to a GSS. To see this, consider the
order �̂ = (�̂1, �̂2) such that H�̂1L and M�̂2H�̂2L . We can now verify that both
players’ payoff functions satisfy the decreasing SCP, but not decreasing differences.
This example illustrates that if we weaken the assumptions in Theorem 2 to their
ordinal counterparts, there may exist other orders besides the reversal of some players’
strategy spaces that can transform a GSC into a GSS. The exact nature of these other
orders that allow us to transform ordinal games remains an open question for further
research.

Appendix

Proof of Lemma 1

Proof It suffices to show that these hold when �̂i = �̃i , as the result is immediate if
�̂i =�i . For part 1, let i ∈ I. Let S ⊂ Ai . Let z ∈ Ai be such that for all s ∈ S,
z �̃i s. Then for all s ∈ S, s �i z. Hence, inf�i (S) �i z, so that z �̃i inf�i (S). Since
inf�i (S) �̃i s for all s ∈ S, this shows that a supremum of S exists under �̃i , is in
the set Ai , and is equal to inf�i (S). We can likewise show that inf�̃i

(S) exists and is
equal to sup�i

(S).
We now show that πi still satisfies quasisupermodularity under �̃i . We will

suppress the a−i notion in πi for simplicity. Suppose that x, y ∈ Ai are such
that πi (x) ≥ πi (inf�̃i

(x, y)). Suppose by way of contradiction that πi (y) >

πi (sup�̃i
(x, y)). Then, by the above observation, since inf�i (x, y) = sup�̃i

(x, y), we
have that πi (y) > πi (inf�i (x, y)). By quasisupermodularity under �i , this implies
that πi (sup�i

(x, y)) > π(x). Once again, since sup�i
(x, y) = inf�̃i

(x, y), this
implies πi (inf�̃i

(x, y)) > πi (x), a contradiction. Hence, πi (x) ≥ πi (inf�̃i
(x, y)) ⇒

πi (sup�̃i
(x, y)) ≥ πi (y).

Lastly, suppose that x, y ∈ Ai are such that πi (x) > πi (inf�̃i
(x, y)). Suppose

by way of contradiction that πi (y) ≥ πi (sup�̃i
(x, y)). Then, by the above obser-

vation, since inf�i (x, y) = sup�̃i
(x, y), we have that πi (y) ≥ πi (inf�i (x, y)). By

quasisupermodularity under �i , this implies that
πi (sup�i

(x, y)) ≥ πi (x). Once again, since sup�i
(x, y) = inf�̃i

(x, y), this
implies πi (inf�̃i

(x, y)) ≥ πi (x), a contradiction. We therefore have that πi (x) >

πi (inf�̃i
(x, y)) ⇒ πi (sup�̃i

(x, y)) > πi (y). This establishes quasisupermodularity
under �̃i .

To prove part 2, note that the interval topology on A is the topology whose closed
sets are generated by the sub-basis of order intervals [a, b]. After reversing the orders
of any collection of players, the set [a, b] under � will equal the order interval [a′, b′]
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under �̂, where a′
i = ai and b′

i = bi if �̂i =�i , and a′
i = bi and b′

i = ai if �̂i = �̃i .
Thus, both topologies will have the same closed and hence open sets, so that both
topologies coincide.

To prove part 3, suppose that i ∈ I is such that for all i �= j , πi satisfies the
pairwise SCP in (ai , a j ). Endow A−i with the product order �−i , and suppose that
for a′

i , ai ∈ Ai and a′−i , a−i ∈ A−i such that a′
i �i ai and a′−i �−i a−i ,

πi (a
′
i , a−i ) ≥ πi (ai , a−i ).

By the definition of the product order, a′−i �−i a−i implies that for each j �= i ,
a′
j � j a j . Thus, because πi satisfies the pairwise SCP in each (ai , a j ), we have that

πi (a
′
i , a

′
j , a−i, j ) ≥ πi (ai , a

′
j , a−i, j ).

This process can be repeated successively, so that we may conclude

πi (a
′
i , a

′−i ) ≥ πi (ai , a
′−i ).

Showing that πi (a′
i , a−i ) > πi (ai , a−i ) ⇒ πi (a′

i , a
′−i ) > πi (ai , a′−i ) follows simi-

larly, as do the cases for when πi satisfies the pairwise decreasing SCP. 
�

Proof of Proposition 1

Proof We apply Theorem 2 in Barthel and Hoffmann (2019) (BH) with one modifi-
cation. First, for each player i , we must find a monotonic homeomorphism

fi : (Ai ,�i ) → (Âi , �̂i ).

In the context of Proposition 1, notice that if for each player i , fi (ai ) = ai and
Âi = Ai , then fi is a monotone increasing or decreasing homeomorphism if we
define �̂i to be either �i or the flipped order �̃i of �i , respectively.

Notice that in Theorem 2 in BH, it is assumed that the Ai are linearly ordered,
which is used in two instances. We show that this assumption is not necessary in our
setting. First, BH show that if yi and zi define upper and lower serially undominated
strategies for player i , they continue to do so after the game is transformed into a GSH
through the fi . But notice that this holds automatically in our setting: If �̃i = �i ,
the result is immediate. Now suppose that �̂i = �̃i , and for all serially undominated
strategies ai ∈ Ai , zi �i ai �i yi . Then, by the definition of �̃i , it is immediate that
yi �i ai �i zi . Hence, linearity is not required in our setting.

Second, BH use linearity to show that the fi preserve lattice operations.15 However,
this is straightforward to check by the definition of �̃i . Once again, the assumption of
linearity is not necessary.

15 That is, if fi is monotone increasing, then z = sup(S) if and only if f (z) = sup( f (S)) and y = inf(S)

if and only if f (y) = inf( f (S)), and if fi is monotone decreasing, then z = sup(S) if and only if
f (z) = inf( f (S)) and y = inf(S) if and only if f (y) = sup( f (S)).
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The last statement of Proposition 1 follows from Corollary 1 in BH. 
�

Proof of Lemma 2

Proof Let S ⊂ I be given.We show one case; the rest can be shown similarly. Suppose
that i ∈ S, and j /∈ S, and that m j,i = −1, so that πi satisfies the pairwise decreasing
SCP in (ai , a j ) under �. We claim that under �̂, πi satisfies the pairwise SCP in
(ai , a j ). To that end, let a′

i �̃i ai , a′
j �̃ j a j , and a−i, j ∈ A−i, j be given, and suppose

that

πi (a
′
i , a j , a−i, j ) ≥ πi (ai , a j , a−i, j ),

and suppose by way of contradiction that

πi (ai , a
′
j , a−i, j ) > πi (a

′
i , a

′
j , a−i, j ).

Because a′
i �̃i ai , a′

j �̃ j a j , then by definition, ai �i a′
i and a′

j � j a j . Thus, by the
contrapositive statement of πi satisfying the pairwise decreasing SCP under �, we
have that

πi (ai , a
′
j , a−i, j ) > πi (a

′
i , a

′
j , a−i, j ) ⇒ πi (ai , a j , a−i, j ) > πi (a

′
i , a j , a−i, j ),

a contradiction.
Now suppose that

πi (a
′
i , a j , a−i, j ) > πi (ai , a j , a−i, j ),

and by way of contradiction, suppose that

πi (ai , a
′
j , a−i, j ) ≥ πi (a

′
i , a

′
j , a−i, j ).

Once again, because ai �i a′
i and a′

j � j a j , a direct application of the pairwise
decreasing SCP yields

πi (ai , a j , a−i, j ) ≥ πi (a
′
i , a j , a−i, j ),

a contradiction. Thus, πi satisfies the pairwise SCP in (ai , a j ) under �̂, so that ifMĜ
has common element m̂ j,i , then m̂ j,i = 1 = −m j,i = TS(MG) j,i . The other cases
follow similarly, completing the proof. 
�

Proof of Theorem 1

Proof First, suppose thatG can be transformed into aGSH, so that for some non-empty
S ⊂ I, we have that

TS(MG) = J ,
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where J is such that J j,i = 0 for all i = j , and for all j �= i , J j,i = Ji , where Ji is
either equal to 1 or −1. It is straightforward to check that for any matrix A ∈ R

N×N ,
and any S ⊂ I, TS(TS(A)) = A. Thus, one more application of TS to the equation
above yields

MG = TS(J ).

Define I ′ = S, and I ′′ = I/S. By the definition of TS , we have that the diagonal
elements of MG are zero, and that every off-diagonal element m j,i can be described
as

m j,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ji i ∈ I ′, j ∈ I ′

Ji i ∈ I ′′, j ∈ I ′′

−Ji i ∈ I ′, j ∈ I ′′

−Ji i ∈ I ′′, j ∈ I ′.

(4)

Suppose i ∈ I ′. Then, by Eq. (4), for all other j ∈ I ′/{i},m j,i = Ji . Hence, regardless
of whether Ji is equal either to 1 or−1, we see that for all j ∈ I ′/{i}, πi satisfies either
the pairwise SCP (ai , a j ) for each j ∈ I ′/{i} or the pairwise decreasing SCP (ai , a j )

for each j ∈ I ′/{i}. Also, for the same i ∈ I ′, by Eq. (4) we have that m j,i = −Ji
for all j ∈ I ′′. Hence, regardless of whether Ji is equal to 1 or −1, we see that for all
j ∈ I ′′, πi satisfies either the pairwise SCP (ai , a j ) for each j ∈ I ′′ or the pairwise
decreasing SCP (ai , a j ) for each j ∈ I ′′. Lastly, we see that for all j ∈ I ′/{i} and all
j ′ ∈ I ′′, m j,i = −m j ′,i . Because the same arguments can be made for i ∈ I ′′, we
have proved the first implication.

Conversely, suppose thatI can be partitioned intoI ′ andI ′′ in themanner described
in the statement of the hypothesis, so that a typical off-diagonal element m j,i of
MG can be described by Eq. (4), where all diagonal elements are zero. Then, by
the definition of TI ′ , a typical off-diagonal element TI ′(MG) j,i of TI ′(MG) can be
written as

TI ′(MG) j,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ji i ∈ I ′, j ∈ I ′

Ji i /∈ I ′, j /∈ I ′

Ji i ∈ I ′, j /∈ I ′

Ji i /∈ I ′, j ∈ I ′.

That is, for all i ∈ I, and all j ∈ I ′/{i}, TI ′(MG) j,i = Ji , so that πi satisfies the
pairwise SCP (ai , a j ) for each j ∈ I/{i}, or the pairwise decreasing SCP (ai , a j )

for each j ∈ I/{i}. Because I ′ is non-empty and not equal to I by assumption, this
completes the proof. 
�
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Proof of Proposition 2

Proof For part 1, first suppose that G can be transformed into a GSC, so that for some
S ⊂ I, we have that

TS(MG) = J ,

where J is such that J j,i = 1 for all j �= i , and J j,i = 0 for all j = i . As previously
mentioned, for any matrix A ∈ R

N×N , and any S ⊂ I, we have that TS(TS(A)) = A.
Thus, one more application of TS to the equation above yields

MG = TS(J ).

Define I ′ = S, and I ′′ = I/S. By the definition of TS , we have that the diagonal
elements of MG are zero, and that every off-diagonal element m j,i can be described
as

m j,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 i ∈ I ′, j ∈ I ′

1 i ∈ I ′′, j ∈ I ′′

−1 i ∈ I ′, j ∈ I ′′

−1 i ∈ I ′′, j ∈ I ′,

(5)

proving the first direction.
Conversely, suppose thatI can be partitioned intoI ′ andI ′′ in themanner described

in the statement of the proposition, so that a typical off-diagonal element m j,i of
MG can be described by Eq. (5), where all diagonal elements are zero. Then, by
the definition of TI ′ , a typical off-diagonal element TI ′(MG) j,i of TI ′(MG) can be
written as

TI ′(MG) j,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 i ∈ I ′, j ∈ I ′

1 i /∈ I ′, j /∈ I ′

1 i ∈ I ′, j /∈ I ′

1 i /∈ I ′, j ∈ I ′.

Because I ′ is non-empty and not equal to I, this gives the result. A similar argument
proves part 2. 
�

Proof of Corollary 1

Proof We prove the first statement, where the other follows by similar arguments.
First, suppose that N = 2, and that G can be transformed into a GSC. If, for some
player i , πi satisfies the SCP in (ai , a j ) for j �= i , then no non-trivial partitioning
of I satisfying the requirements of Proposition 2 can be established, a contradiction.
Hence, each πi satisfies the decreasing SCP in (ai , a j ), for j �= i . The converse holds
immediately by flipping the order on the strategy space of one of the two players.
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Now suppose that N > 2 and that G can be transformed into a GSC. First observe
that since G is a GSH, I can be partitioned into two sets IC and IS such that for each
i ∈ IC , πi satisfies the pairwise SCP in (ai , a j ), for j �= i , and for each i ∈ IS , πi

satisfies the pairwise decreasing SCP in (ai , a j ), for j �= i . If IC = I, the fact that
G is not a GSC to begin with is contradicted. If IS = I, then it is immediate that
no partitioning of I satisfying the requirements of Proposition 2 can be established.
Thus, both IC and IS are non-empty and not equal to I. Consider any two i ∈ IC
and j ∈ IS . Notice that in any non-trivial partitioning {I ′, I ′′} of I, the requirements
of Proposition 2 are contradicted whether i and j are put in the same partitioning
elements, or separate partitioning elements, establishing the result. 
�

Proof of Theorem 2

Proof Because for each j , � j and �∗
j are partial orders, it follows from A�∗

j = A�
j

that any two distinct elements in A j are either unordered under both � j and �∗
j , or

strictly ordered under both � j and �∗
j . Therefore, we must only concentrate on pairs

of elements which are strictly ordered.
To that end, notice that the result holds trivially if for each player j , A j has only

one ordered pair. Suppose that for some player j ,A j has more than one ordered pair,
and consider any other opponent i �= j . In order to prove part 1, first consider the case
where in the game G, πi exhibits pairwise increasing differences in (ai , a j ) under �,
and strict pairwise decreasing differences in (ai , a j ) under �∗. Let a−i, j ∈ A−i, j be
given, and consider a′

i �∗
i ai and a′

j �∗
j a j such that a′

i �= ai , a′
j �= a j . Then, by the

definition of strict pairwise decreasing differences, we have that

πi (ai , a
′
j , a−i, j ) − πi (a

′
i , a

′
j , a−i, j ) > πi (ai , a j , a−i, j ) − πi (a

′
i , a j , a−i, j ). (6)

Because a′
i �∗

i ai , we have that (ai , a′
i ) ∈ A�∗

i = A�
i , so that a′

i �i ai or ai �i a′
i .

Suppose a′
i �i ai without loss of generality. Likewise, a′

j � j a j or a j � j a′
j . Suppose

that a′
j � j a j . Notice that Eq. (6) can be re-arranged to give

πi (a
′
i , a j , a−i, j ) − πi (ai , a j , a−i, j ) > πi (a

′
i , a

′
j , a−i, j ) − πi (ai , a

′
j , a−i, j ).

However, this contradicts the fact that πi exhibits pairwise increasing differences in
(ai , a j ) under �, which would require

πi (a
′
i , a

′
j , a−i, j ) − πi (ai , a

′
j , a−i, j ) ≥ πi (a

′
i , a j , a−i, j ) − πi (ai , a j , a−i, j ).

Therefore, we must have that a j � j a′
j . Hence, we can conclude that for all a′

j , a j ∈
A j such that a′

j �= a j , a′
j �∗

j a j ⇒ a j � j a′
j .
16

We now show that for all a′
j , a j ∈ A j such that a′

j �= a j , a′
j � j a j ⇒ a j �∗

j a
′
j .

Suppose that a′
j �= a j and a′

j � j a j , but it is not the case that a j �∗
j a′

j . Because

16 Likewise, if it were the case that ai �i a′
i , we would conclude that a′

j �∗
j a j ⇒ a′

j � j a j for all

a′
j , a j ∈ A j .
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(a j , a′
j ) ∈ A�

j = A�∗
j , then if a j �∗

j a
′
j is not true, we must have a′

j �∗
j a j . However,

by the above result, this implies a j � j a′
j . But since a′

j �= a j , this contradicts
a′
j � j a j , giving the result. Because this argument can be done for any player j to

conclude that either �∗
j= �̃ j or �∗

j=� j , we have that �∗∈ R�.
The case of when πi exhibits either pairwise increasing or decreasing differences

in (ai , a j ) under �, and strict increasing or decreasing differences in (ai , a j ) under
�∗, can be done similarly. This proves part (1). The case of when G is a strict GMHD
and G∗ is a GSHD can be done similarly, proving part (2). 
�
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