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Abstract
We reformulate expected utility theory, from the viewpoint of bounded rationality, by
introducing probability grids and a cognitive bound; we restrict permissible probabili-
ties only to decimal (�-ary in general) fractions of finite depths up to a given cognitive
bound. We distinguish between measurements of utilities from pure alternatives and
their extensions to lotteries involving more risks. Our theory is constructive from the
viewpoint of the decision maker. When a cognitive bound is small, the preference
relation involves many incomparabilities, but these diminish as the cognitive bound is
relaxed. Similarly, the EU hypothesis would hold more for a larger bound. The main
part of the paper is a study of preferences including incomparabilities in cases with
finite cognitive bounds; we give representation theorems in terms of a 2-dimensional
vector-valued utility functions. We also exemplify the theory with one experimental
result reported by Kahneman and Tversky.
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724 M. Kaneko

1 Introduction

We reconsider EU theory from the viewpoints of bounded rationality and preference
formation.We restrict permissible probabilities to decimal (�-ary, in general) fractions
up to a given cognitive bound ρ; if ρ is a natural number k, the set of permissible

probabilities is given as Πρ = Πk = { 0
10k

, 1
10k

, . . . , 10k

10k
}. The decision maker makes

preference comparisons step by step using probabilities with small k to those with
larger k′ to obtain accurate comparisons. The derived preference relation is incomplete
in general, but the EU hypothesis holds for some lotteries and it would holdmore when
there is no cognitive bound, i.e., ρ = ∞ and Π∞ = ∪k<∞Πk . However, our main
concern is the case of finite and small ρ. Since the theory involves various entangled
aspects, we first disentangle them.

The concepts of probability grids and cognitive bounds are introduced based on
the idea of “bounded rationality.” The idea can be interpreted in many ways such as
bounded logical inference, bounded perception ability, though Simon’s (1956) original
concept meant a relaxation of utility maximization. The mathematical components
involved in EU theory are classified into two types; object components used by the
decision maker and meta-components used by the outside analyst and possibly by the
decision maker himself. The former are primary targets in EU theory, and the latter
such as highly complex rational aswell as irrational probabilities are added for analytic
convenience. A free use of the latter leads to a critique that the theory presumes “super
rationality” (Simon 1983).

As a significance level for statistical hypothesis testing is typically 5% or 1%,
probability values t

102
(t = 0, . . . , 102) are already quite accurate for ordinary people.

However, the classical EU theory starts with the full real number theory and makes
no separation between the viewpoints of the decision maker and the outside analyst
for available probabilities. This appears to be a problem of degree, but it would be
meaningful if they are separated in some manner. The concepts of probability grids
and a cognitive bound ρ make this separation.

Turing (1937) in his attempt to define computable numbers faced a similar situation:
“…The differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed at one
glace. This is in accordance with experience. We cannot tell at a glance whether
0.9999999999999999 and 0.999999999999999 (the underlined parts by the author)
are the same (1937, p. 250).”1 In contrast, it is easy for us to distinguish between 0.999
and 0.99. Turing’s theory tried to abstract calculation in the human mind, but a built
machine has no such problem since it reads each primitive symbol one by one. This
is, so far, due to the difference in human and machine cognition. A cognitive bound ρ

is a bound on such distinguishability and also on how deep the decision maker cares
about those probabilities.

The set of probability grids up to depth k is given asΠk = { 0
10k

, 1
10k

, . . . , 10k

10k
}. The

decision maker thinks about his preferences with Πk from a small k to a larger k up
to bound ρ; for example, when ρ = 2, Π0, Π1, and Π2 are only allowed. This is a

1 The author thanks Oliver Schulte for mentioning this quotation to me.
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Fig. 1 Step B with the benchmark scale

constructive approach from the viewpoint of the decision maker in the sense that he
finds/forms his own preferences.2,3

We turn our attention to the development of our constructive EU theory. Construc-
tion needs a basis; we take a hint fromVonNeumann andMorgenstern (1944), Section
3.3.2, p.17. Theymentioned a separation of their argument into the following two steps,
though this was not reflected in their mathematical development:

Step B: measurements of utilities from pure alternatives in terms of probabilities;
Step E: extensions of these measurements to lotteries involving more risks.

These steps differ in their natures: Step B is to measure a “satisfaction”, “desire”, etc.
from a pure alternative, while Step E is to extend the measured satisfactions given by
Step B to lotteries including more risks. An important difference is that Step B is to
find the subjective preferences hidden in the mind of the decision maker, while Step
E is to extend logically the preferences found in Step B to lotteries with more risks.

We develop our theory based on the above two steps and also take two approaches
in terms of preferences and numerical utilities; each approach consists of Steps B and
E. In this introduction, we focus mainly on the former theory, and we give a brief
explanation of the latter.4

2 This sounds similar to “constructive decision theory” in Shafer (1986), Shafer (2016) and Blume et al.
(2013). These authors study Savage’s (1954) subjective utility/probability theory so as to introduce certain
constructive features for decision making. Our theory is constructive more explicitly with the introduction
of probability grids and a cognitive bound. The chief difference is that we formulate how a decision maker
finds/forms his own preferences, while they add new constructs like “goals” or “frames” that shape the
choices of the decision maker.
3 Our concept of probability grids may be interpreted as “imprecise probabilities/similarity” (cf. Augustin
et al. 2014; Rubinstein 1988). Imprecision/similarity is defined as an attribute of a probability/a set of
probabilities, allowing all real number probabilities. In our approach, however, probability grids in Πk are
exact; the restriction of probabilities to Πk expresses imprecision in cognitive acts taken by the decision
maker.
4 Our theory may be regarded as dual to that in terms of certainty equivalent of a lottery (cf. Kontek and
Lewandowski 2018 and its references). In our method, the set of benchmark lotteries forms a base scale,
while the set of monetary amounts is the base scale in the latter (see Section 4.2 in Kontek and Lewandowski
2018).
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726 M. Kaneko

We assume two pure alternatives y and y, called the upper and lower benchmarks;
these togetherwith the probability gridsΠk form thebenchmark scale Bk(y; y) in layer
k. In Step B, pure alternatives are measured by this scale. Preferences are constructed
in shallow to deeper layers, where preferences are incomplete in the beginning, except
for benchmark lotteries as measurement units, and in deeper layers, more precise
preferences may be found. In Fig. 1, the benchmark scale for layer k is depicted as the
right broken line with dots; x is measured exactly by the scale, y need a more precise
scale within ρ. However, z is not done within ρ.

Two different roles of probability grids appear for evaluation of a lottery:

(i) probability grids used for measurement of a pure alternative in Step B;
(ii) probability coefficients to pure alternatives.

By these, relevant cognitive depths of lotteries become more complex, especially with
a finite cognitive bound; this leads to incomparabilities in preferences and a violation
of the EU hypothesis. This is central in our development and is closely related to the
issue of “bounded rationality”.

Let us illustrate (i) and (ii) via an example, which is a lottery for choice in the
Allais paradox in Sect. 8. Consider one example with the upper and lower benchmarks
y, y, and the third pure alternative y with strict preferences y � y � y. In Step
B, the decision maker looks for a probability λ so that y is indifferent to a lottery
[y, λ; y] = λy ∗ (1 − λ)y with probability λ for y and 1 − λ for y; this indifference
is denoted by

y ∼ [y, λ; y]. (1)

Suppose that this λ is uniquely determined as λ = λy = 83
102

∈ Π2. Here, exact
measurement of y is successful in layer 2, where Step B is enough here.

We have the other source of cognitive depths as mentioned in (ii). Consider lottery
d = 25

102
y ∗ 75

102
y, which includes the third pure alternative y. The independence con-

dition of the classical EU theory dictates that because of (1), [y, 83
102

; y] is substituted
for y in d, and d is reduced to:

d = 25
102

y ∗ 75
102

y ∼ 25
102

[
y, 83

102
; y

]
∗ 75

102
y = 2075

104
y ∗ 7925

104
y, (2)

where 2075
104

= 25
102

× 75
102

and 7925
104

= 1− 2075
104

. Thus, y is evaluated as being indifferent

to [y, 83
102

; y] in Step B, but y also has a probability coefficient 25
102

in d, which is

taken into account in Step E. These steps lead to probability 2075
104

, which is much more

precise than either of 83
102

and 25
102

.

As indicated in (i) and (ii), lottery d = 25
102

y ∗ 75
102

y has two types of cognitive

depths; one is simply a probability coefficient 25
102

and the other is λy = 83
102

from (1).
Although d itself is expressed as a lottery of depth 2, the total depths including these
two are 4, which is beyond the cognitive bound ρ = 2. One point is that the resulting
probability may become more precise from lotteries of a relatively small bound, and
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Table 1 Measurement and extension

Layers 0 1 … k − 1 k … ρ

B: base relations �0 ⊆ �1 ⊆ · · · ⊆ �k−1 ⊆ �k ⊆ · · · ⊆ �ρ

↓ ↓ ↓ ↓ ↓
E: constructed relations �0 → �1 → · · · → �k−1 → �k → · · · → �ρ

Table 2 Developments of the
preference and utility theories

Preference theory Utility theory

Step B B0 to B3 ⇐⇒
Sec.3

b0 to b3

� extension: Sec.4 �extension: Sec.5

Step E E0 to E3 ⇐⇒
Sec.5

e0 to e3

the other is that this is intimately related to the EU hypothesis. When ρ is small, the
EU hypothesis does not hold typically, while it would hold more as ρ is getting larger.

The preference formation by Steps B and E is formulated as a form of mathematical
induction; StepB is the inductive base and StepE is the inductive step. StepB is spread
out to layers of various depths, i.e., the induction base is spread, too. These steps are
described in Table 1: the relation �k for layer k of row B expresses preferences
measured in Step B . In layer k, �k is derived from �k and �k−1; the former is a
part of the inductive base and the latter is the inductive step. This is a weak form of
“independence condition.”

As stated earlier, we provide another approach in terms of a 2-dimensional
vector-valued utility functions 〈υk〉k<ρ+1 = 〈[υk, υk]〉k<ρ+1 and 〈uk〉k<ρ+1 =
〈[uk, uk]〉k<ρ+1 with Fishburn’s (1970) interval order ≥I . In each of Steps B and E,
this approach is entirely equivalent to the preference approach, as depicted in Table 2.
This may be interpreted as what Von Neumann and Morgenstern (1944), p.29, indi-
cated. The approaches in terms of preferences and utilities enable us to view Steps
B and E in different ways as well as they serve different analytic tools for studies of
incomparabilities/comparabilities involved.

Our theory enjoys a weak form of the expected utility hypothesis. This will be
discussed in Sect. 6. In the case of ρ = ∞, restricting our attention to the set of
measurable pure alternatives, Sect. 7 shows that our theory exhibits a form of the
classical EU theory. We provide a further extension of �∞ to have the full form of the
classical EU theory; this extension involves some unavoidable non-constructive step,
which may be interpreted as the criticism of “super rationality” by Simon (1983).

A remark is on the relationship between k and ρ exhibiting a layer and a cognitive
bound. The former is a variable in our theory, and the latter is a parameter of the
theory. We talk about the sequences 〈�k〉k<ρ+1 and 〈uk〉k<ρ+1 describing the process
of preference/utility formation, layer to layer, up to ρ. Nevertheless, the final target
preferences and utilities are �ρ and uρ . In the context of the quotation from Turing
(1937), within the layers up to ρ, the decision maker can distinguish each probability
as a single symbol, but beyond ρ, he would have a difficulty; here, it is assumed that
he does not think about his decision problem beyond ρ. When ρ = ∞, he can treat
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any grid probability as a single entity. This remark leads to the view that our theory is
a generalization of the classical EU theory, which is discussed in Sect. 7.

In Sect. 8, we apply our theory to the Allais paradox, specifically to an experimen-
tal result from Kahneman and Tversky (1979). We show that the paradoxical results
remains when the cognitive bound ρ ≥ 3. However, when ρ = 2, the resultant prefer-
ence relation�ρ is compatible with their experimental result, where incomparabilities
play crucial roles in explaining them.

Thepaper is organized as follows: Section 2 explains the concept of probability grids
and other basic concepts. Section 3 formulates Step B in terms of preferences and utili-
ties and states their equivalence. Section 4 discusses StepE in terms of preferences, and
Sect. 5 does it in terms of utilities. Section 6 discusses the measurable/non-measurable
lotteries and shows that the expected utility hypothesis holds for the measurable lot-
teries. Section 7 discusses the connection from our theory to the classical EU theory.
In Sect. 8, we exemplify our theory with an experimental result in Kahneman and
Tversky (1979). Section 9 concludes this paper with comments on further possible
studies. Proofs of all the results in each section are given in a separate subsection; only
proof of Lemma 2.1 is given in “Appendix.”

2 Preliminaries

Our theory is about preference formation in the context of EU theory. The classical
EU theory is the reference point, but our theory deviates from it in various manners.
To have clear relations between the classical EU theory and our development, we first
mention the classical theory (cf. Herstein and Minor 1953; Fishburn 1982), and then,
we start our development. In Sect. 2.2, we give various basic concepts for our theory
and one basic lemma. In Sect. 2.3, we give definitions of preferences, indifferences,
incomparabilities, and their counterparts in terms of vector-valued utility functions.

2.1 Classical EU theory

Let X be a given set of pure alternatives with cardinality |X | ≥ 2. A lottery f is
a function over X taking values in [0, 1] such that for some finite subset S of X ,∑

x∈S f (x) = 1, f (x) > 0 if x ∈ S, and f (x) = 0 if x ∈ X − S. This subset
S is called the support of f . We define L [0,1](X) = { f : f : X → [0, 1] is a
lottery}. The set L [0,1](X) is uncountable. We define compound lotteries: for any
f , g ∈ L [0,1](X) and λ ∈ [0, 1], λ f ∗ (1 − λ)g is a lottery in L [0,1](X) defined by
(λ f ∗ (1 − λ)g)(x) = λ f (x) + (1 − λ)g(x) for all x ∈ X .

Let �E be a binary relation over L [0,1](X); we assume NM0 to NM2 on �E . This
system is one among various equivalent systems.

Axiom NM0 (Complete preordering): �E is a complete and transitive relation
on L [0,1](X).
Axiom NM1 (Intermediate value): For any f , g, h ∈ L [0,1](X), if f �E g �E

h, then λ f ∗ (1 − λ)h ∼E g for some λ ∈ [0, 1].
Axiom NM2 (Independence): For any f , g, h ∈ L [0,1](X) and λ ∈ (0, 1],
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ID1: f �E g implies λ f ∗ (1 − λ)h �E λg ∗ (1 − λ)h;
ID2: f ∼E g implies λ f ∗ (1 − λ)h ∼E λg ∗ (1 − λ)h,

where the indifference part and strict preference part of �E are denoted by ∼E and
�E ; that is, f ∼E g means f �E g & g �E f ; and f �E g does f �E g & not
(g �E f ).

The following two are the key theorems in the classical EU theory. For a fruitful
development of our theory, we should be conscious of how they remain in our theory.

Theorem 2.1 (Classical EU theorem). A preference relation�E satisfies Axioms NM0
to NM2 if and only if there is a function u : X → R so that for any f , g ∈ L [0,1](X),

f �E g if and only if E f (u) ≥ Eg(u), (3)

where the expected utility functional E f (u) is defined as:

E f (u) =
∑
x∈S

f (x)u(x) for each f ∈ L [0,1](X) with its support S. (4)

Theorem 2.2 (Uniqueness up to Affine transformations). Suppose that �E satisfies
Axioms NM0 to NM2. If two functions u, v : X → R satisfy (3), then there are two
real numbers α > 0 and β such that u(x) = αv(x) + β for all x ∈ X.

This theory is silent about how a decision maker finds/forms his preferences and
does not separate between object components andmeta-components for decisionmak-
ing. The above two theorems are meta-components, and some structural components
such as lotteries and a preference relation �E in (L [0,1],�E ) are object components,
but some include both such as highly complex probabilities. Another difficulty is the
presumption that a well-formed preference relation �E already exists somewhere in
the mind of decision maker. Here, our theory studies a formation of such a prefer-
ence relation by reflecting upon his mind (with past experiences) from the simplest
case to complex cases. We target to describe this process; Sects. 2.2 and 2.3 prepare
basic concepts for the description of the process. Using these basic concepts, Sect. 3
describes Measurement Step B and Sects. 4 and 5 describe Extension Step E.

Since we target a process of preference formation, a preference relation contains
almost necessarily some or many incomparabilities at least in the beginning. In the
literature, we find some studies on expected utility theory without the completeness
axiom. Aumann (1962) and Fishburn (1971) considered one-way representation the-
orem [i.e., the only-if of (3)], dropping completeness. See Fishburn (1972) for further
studies. Dubra and Ok (2002) and Dubra et al. (2004) developed representation theo-
rems in terms of utility comparisons based on all possible expected utility functions
for the relation without completeness. In this literature, incomparabilities are given in
the preference relation. In contrast, in our approach, incomparabilities are changing
with a cognitive bound and may disappear when there are no cognitive bounds.
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2.2 Probability grids, lotteries, and decompositions

Let � be an integer with � ≥ 2. This � is the base for describing probability grids; we
take � = 10 in the examples in the paper. The set of probability grids Πk is defined as

Πk =
{

ν
�k

: ν = 0, 1, . . . , �k
}
for any finite k ≥ 0. (5)

Here, Π1 = { ν
�

: ν = 0, . . . , �} is the base set of probability grids for measurement,
whereas Π0 = {0, 1} is needed for completeness of our discourse; Table 1 starts with
layer 0 and continues up to layer ρ. Each Πk is a finite set, and Π∞ := ∪k<∞Πk is
countably infinite. We use the standard arithmetic rules overΠ∞; sum and multiplica-
tion are needed.5 We allow reduction by eliminating common factors; for example, 20

102

is the same as 2
10 . Hence,Πk ⊆ Πk+1 for k = 0, 1, . . .The parameter k is the precision

of probabilities that the decision maker uses. We define the depth of each λ ∈ Π∞
by: δ(λ) = k iff λ ∈ Πk − Πk−1. For example, δ( 25

102
) = 2 but δ( 20

102
) = δ( 2

10 ) = 1.
The concept of a layer of probability grids up to a given depth k is well defined. The
decision maker thinks about his preferences along probability grids from a shallow
layer to a deeper one.

We use the standard equality = and strict inequality > over Πk . Then, trichotomy
holds: for any λ, λ′ ∈ Πk ,

either λ > λ′, λ = λ′, or λ < λ′. (6)

Each element inΠk is obtained by taking the weighted sums of elements inΠk−1 with
the equal weights:

Πk =
{

�∑
t=1

1

�
λt : λ1, . . . , λ� ∈ Πk−1

}
for any k (1 ≤ k < ∞). (7)

This is basic for the connection between layer k − 1 to the next. A proof of (7) is not
given here, but an extension will be given in Lemma 2.1 with a proof in “Appendix.”

The union Π∞ = ∪k<∞Πk is a proper and dense subset of [0, 1] ∩ Q, where Q is
the set of rational numbers. For example, when � = 10,Π∞ has no recurring decimals,
but they are rationals. We also note that Π∞ depends upon the base �; for example,
Π1 with � = 3 has 1

3 , but Π∞ with � = 10 has no element corresponding to 1
3 .

For any k < ∞, we define Lk(X) by

Lk(X) =
{
f : f is a function from X to Πk with

∑
x∈X

f (x) = 1

}
. (8)

We identify each pure alternative x with the lottery having x as its support; so X is
regarded as a subset of Lk(X). Specifically, L0(X) = X . SinceΠk is a finite set, every

5 See Mendelson (1973) for related basic mathematics.
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f ∈ Lk(X) has a finite support. Since Πk ⊆ Πk+1, it holds that Lk(X) ⊆ Lk+1(X).
We denote L∞(X) = ∪k<∞Lk(X). As long as X is finite, Lk(X) is also a finite set,
but L∞(X) is a countable set and is dense in L [0,1](X).

We define the depth of a lottery f in L∞(X) by δ( f ) = k iff f ∈ Lk(X)−Lk−1(X).
We use the same symbol δ for the depth of a lottery and the depth of a probability. It
holds that δ( f ) = k if and only if maxx∈X δ( f (x)) = k. This is relevant in Sect. 6.
Lottery d = 25

102
y ∗ 75

102
y of (2) is in L2(X)− L1(X) and its depth δ(d) = 2, but since

d ′ = 20
102

y ∗ 80
102

y = 2
10 y ∗ 8

10 y ∈ L1(X), we have δ(d ′) = 1.
The decision maker thinks about and/or forms his own preferences from shallow

layers to deeper ones. This stops at a cognitive bound ρ, which is a natural number or
infinity ∞. If ρ = k < ∞, he eventually reaches the set of lotteries Lρ(X) = Lk(X),
and if ρ = ∞, he has no cognitive limit; we define Lρ(X) = L∞(X) = ∪k<∞Lk(X).

We formulate a connection from Lk−1(X) to Lk(X); we say that f̂ = ( f1, . . . , f�)
in Lk−1(X)� = Lk−1(X) × · · · × Lk−1(X) is a decomposition of f ∈ Lk(X) iff for
all x ∈ X ,

f (x) =
�∑

t=1

1

�
× ft (x) and δ( ft (x)) ≤ δ( f (x)) for all t ≤ �. (9)

We denote this by
∑�

t=1
1
�

∗ ft , and letting ê = ( 1
�
, . . . , 1

�
), it is written as ê∗ f̂ . We

can regard ê∗ f̂ as a compound lottery connecting Lk−1(X) to Lk(X) by reducing ê∗ f̂
to f in (9). Our theory allows only this form of compound lotteries and reduction with
the depth constraint. The next lemma states that Lk(X) is generated from Lk−1(X) by
taking all compound lotteries of this kind. It facilitates our inductionmethod described
in Table 1 reducing an assertion in layer k to layer k − 1. A proof of Lemma 2.1 is
given in “Appendix.”6

Lemma 2.1 (Decomposition of lotteries). Let 1 ≤ k < ∞. Then,

Lk(X) = { f ∈ Lk(X) : f has a decomposition f̂ }. (10)

Furthermore, for any f ∈ Lk(X) with δ( f ) > 0, there is a decomposition of f̂ of f
so that

δ( ft (x)) < δ( f (x)) for any x ∈ X with f (x) > 0. (11)

The right-hand side of (10) is the set of composed lotteries from Lk−1(X) with
the equal weights. The inclusion ⊇ states that the composed lotteries from Lk−1(X)

belong to Lk(X). The converse inclusion ⊆ is essential and means that each lottery in
Lk(X) is decomposed to an equally weighted sum of some ( f1, . . . , f�) in Lk−1(X)�

with the depth constraint in (9). In the trivial case that f = x ∈ L0(X) is decomposed
to f̂ = (x, . . . , x). This will be used in Lemma 4.2. The latter with (11) asserts the
choice of a strictly shallower decomposition for f with δ( f ) > 0.

6 When � > 2, binary decompositions are not enough for Lemma 2.1 . For example, lottery f = 3
10 y ∗

3
10 y ∗ 4

10 y is not expressed by a binary combination of elements in L0(X) = X with weights in Π1.
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Here, we give three remarks. One is that when f is a benchmark lottery in Bk(y; y),
for its decomposition f̂ = ( f1, . . . , f�), each ft is a benchmark lottery in Bk−1(y; y).
This fact will be used without referring. The second is that when f ∈ Lk−1(X),
f̂ = ( f , . . . , f ) is a decomposition of f . To allow this triviality, we require only the
weak inequality in the depth constraint in (9). The third is that for any subset X ′ of
X , we define Lk(X ′) = { f ∈ Lk(X) : f (x) > 0 implies x ∈ X ′}. Hence, Lk(X ′) is a
subset of Lk(X). Lemma 2.1 holds for Lk(X ′) and Lk−1(X ′).

The lottery d = [y, 25
102

; y] has three types of decompositions:

d = t
10 ∗ y + 5−2t

10 ∗ [y, 5
10 ; y] + 5+t

10 ∗ y for t = 0, 1, 2. (12)

Here, a decomposition f̂ = ( f1, . . . , f10) is given as f1 = · · · = ft = y, ft+1 =
· · · = f5−t = [y, 5

10 ; y], and f5−t+1 = · · · = f10 = y. We use this short-hand

expressions rather than a full specification of f̂ = ( f1, . . . , f10). We should be careful
about this multiplicity.

The reason for explicit considerations of layers for Lk(X) and also preference
relation�k is to avoid collapse from a layer to a shallower one. Without them, we may
have a difficulty in identifying the sources for preferences. For example, the weighted
sum 5

10 [ 25
102

y ∗ 75
102

y] ∗ 5
10 [ 75

102
y ∗ 25

102
y] is reduced to 5

10 y ∗ 5
10 y; preferences about

5
10 y ∗ 5

10 y may possibly come from layer 2 or from layer 0. To prohibit such collapse,
we take depths of layers explicitly into account in (9).

2.3 Incomplete preference relations and vector-valued utility functions

Weconsider twomethods to express the decisionmaker’s desires: a preference relation
and a utility function. We starts with an incomplete preference relation and then works
on a vector-valued utility function with the interval order. These are the first departures
from the classical EU theory.

Let� be a preference relation over a given set, say A. For f , g ∈ A, the expression
f � g means that f is strictly preferred to g or is indifferent to g. We define the strict
(preference) relation �, indifference relation ∼, and incomparability relation �� by

f � g if and only if f � g and not g � f ;
f ∼ gif and only if f � g and g � f ;
f ��g if and only if neither f � g nor g � f . (13)

All the axioms are given on the relations �, �, ∼, and the relation �� is defined as the
residual part of �. Although ∼ and �� are sometimes regarded as closely related (cf.
Shafer 1986, p. 469), they are well separated in Theorem 6.2 in our theory.

In the classical theory in Sect. 2.1, the preference relation �E is assumed to be
complete. Since, however, we consider a formation of preferences, our theory should
avoid this completeness assumption. Nevertheless, it appears as a result when a domain
of lotteries is restricted.
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Another method of measurement of desires is by a vector-valued function u with
the interval order introduced by Fishburn (1970). Let u( f ) = [u( f ), u( f )] be a 2
-dimensional vector-valued function from its domain A to the set Q

2 = Q × Q with
u( f ) ≥ u( f ) for each f ∈ A. The components u( f ) and u( f ) are interpreted as the
least upper and greatest lower bounds of possible utilities from f . We say that u( f ) is
effectively single-valued iff u( f ) = u( f ); in this case,wewrite u( f ) = u( f ) = u( f ),
dropping the upper and lower bars. We use the interval order ≥I over the values of u;
for f , g ∈ A,

u( f ) ≥I u(g)if and only if u( f ) ≥ u(g). (14)

That is, f and g are ordered if and only if the greatest lower bound u( f ) from f is larger
than or equal to the least upper bound u(g) from g. This ≥I allows incomparabilities,
for example, if u( f ) = [ 9

10 ,
7
10 ] and u(g) = [ 83

102
, 83
102

], then f and g are incomparable
by ≥I . The relation ≥I is transitive, but is not reflexive; u( f ) ≥I u(g) and u(g) ≥I

u( f ) are equivalent to u( f ) = u( f ) = u(g) = u(g), i.e., this is the case only when
the values u( f ) and u(g) are effectively single-valued and identical.

3 Measurement Step B

We formulate Step B of measurement of pure alternatives up to cognitive bound ρ.
This has two sides: in terms of preference relations 〈�k〉k<ρ+1 and in terms of vector-
valued utility functions 〈υk〉k<ρ+1.We show the representation theoremon 〈�k〉k<ρ+1
by 〈υk〉k<ρ+1, and the uniqueness theorem on 〈υk〉k<ρ+1 up to positive linear trans-
formations. Finally, we mention that these are well interpreted in terms of Simon’s
(1956) satisficing/aspiration argument.

3.1 Base preference streams

The set of pure alternatives X is assumed to contain two distinguished elements y and
y, which we call the upper and lower benchmarks. Let k < ∞. We call an f ∈ Lk(X)

a benchmark lottery of depth (at most) k iff f (y) = λ and f (y) = 1 − λ for some
λ ∈ Πk , which we denote by [y, λ; y]. The benchmark scale of depth k is the set
Bk(y; y) = {[y, λ; y] : λ ∈ Πk}. In particular, B0(y; y) = {y, y}. The grids (dots) in
Fig. 1 express the benchmark lotteries. We define B∞(y; y) = ∪k<∞Bk(y; y). The
depth of a benchmark lottery [y, λ; y] is the same as the depth of λ, i.e., δ([y, λ; y]) =
δ(λ).

We denote a cognitive bound by ρ, which is a natural number or ρ = ∞. We use
k as a variable expressing a natural number of a layer, but ρ as a constant parameter
of the theory. Stipulating ∞ + 1 = ∞, “k < ρ + 1” expresses the two statements
“k ≤ ρ if ρ < ∞” and “k < ρ if ρ = ∞”. This constant ρ plays an active role as
a small constraint such as ρ = 2 or 3 in Example 5.1 and Sect. 8, and as ρ = ∞ in
Sect. 7 for consideration of the expected utility hypothesis.
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Let �k be a subset of

Dk = Bk(y; y)2 ∪ {(x, g), (g, x) : x ∈ X and g ∈ Bk(y; y)}. (15)

Thus,�k consists of the scale part of the benchmarks and themeasurement part of pure
alternatives. The scale part allows the decision maker to make comparisons between
any grids of depth k. For a pure alternative x ∈ X , he thinks about where x is located
in the benchmark scale Bk(y; y); it may or may not correspond to a grid, which is
seen in Fig. 1. For example, if (x, g) ∈�k but (g, x) /∈�k , then x is strictly better than
the grid g, and if (x, g) /∈�k and (g, x) /∈�k , then x and g are incomparable for him.

A stream of basic preference relations is expressed as 〈�k〉k<ρ+1; when ρ < ∞, it
is expressed as 〈�0,�1, . . . ,�ρ〉, and when ρ = ∞, it is as 〈�0,�1, . . .〉. We make
four axioms on 〈�k〉k<ρ+1; the first requires a property on measurement on layer 0,
the second and third require properties on measurement on each layer k, and the fourth
connects measurements in layers k and k + 1.

Specifically, AxiomB0 requires pure alternatives to be between the upper and lower
benchmarks y, y.

Axiom B0 (Benchmarks): y �0 x and x �0 y for all x ∈ X .
The next states that preferences over Bk(y; y) are the same as the natural order on

Πk .

Axiom B1 (Benchmark scale): For λ, λ′ ∈ Πk , [y, λ; y] �k [y, λ′; y] if and only
if λ ≥ λ′.

It follows from Axiom B1 that for λ, λ′ ∈ Πk ,

[y, λ; y] �k [y, λ′; y] if and only if λ > λ′. (16)

Also, λ = λ′ if and only if [y, λ; y] and [y, λ′; y] are indifferent. Thus, �k is a
complete relation over Bk(y; y) by (6). This is the scale part of �k and is precise up
to Πk . Since y = [y, 1; y] and y = [y, 0; y], it follows from (16) that y �0 y.

Measurement is required to be coherent with the scale part given by Axiom B1.

Axiom B2 (Monotonicity): For all x ∈ X and λ, λ′ ∈ Πk , if [y, λ; y] �k x and
λ′ > λ, then [y, λ′; y] �k x, and if x �k [y, λ; y] and λ > λ′, then x �k [y, λ′; y].

This implies no reversals with Axiom B1; if [y, λ; y] �k x and x �k [y, λ′; y],
then λ ≥ λ′. Indeed, if λ < λ′, then [y, λ′; y] �k x by B2, which implies not
x �k [y, λ′; y]. If we assume transitivity for �k over Dk , B2 could be derived from
B1, but we adopt B2 instead of transitivity, since B2 gives a more specific property to
the measurement step.

The last requires the preferences in layer k to be preserved in the next layer k + 1.
This is expressed by the set-theoretical inclusion ⊆ in Table 1.

Axiom B3 (Preservation): For all f , g ∈ Dk , f �k g implies f �k+1 g.
The above axioms still allowgreat freedom for base preference relations 〈�k〉k<ρ+1.

To see this fact and how themeasurement stepB of utilities from pure alternatives goes
on, we consider vector-valued utility functions with the interval order ≥I in Sect. 3.2.

123



Expected utility theory with probability grids and… 735

3.2 Base utility streams

Let 〈υk〉k<ρ+1 = 〈[υk, υk]〉k<ρ+1 be a sequence of vector-valued functions, where
〈υk〉k<ρ+1 = 〈υ0,υ1, . . . ,υρ〉 if ρ < ∞ and 〈υk〉k<ρ+1 = 〈υ0,υ1, . . .〉 if ρ = ∞.
For each k < ρ + 1, υk = [υk, υk] is a function from Bk(y; y) ∪ X to Q

2 such that
υk( f ) ≥ υk( f ) for all f ∈ Bk(y; y)∪X ,which are intended to be the least upper utility
and greatest lower utility from lottery f . Recall that when υk( f ) is effectively single-
valued, we write υk( f ) = υk( f ) = υk( f ). The following conditions on 〈υk〉k<ρ+1
are not exactly parallel to Axioms B0 to B3, but these two systems are equivalent,
which is stated in Theorem 3.1 :

b0: υ0(y) > υ0(y);
b1: for k < ρ+1, υk([y, λ; y]) = λυk(y)+(1−λ)υk(y) for all [y, λ; y] ∈ Bk(y; y);
b2: for k < ρ + 1 and x ∈ X , υk(x) = υk([y, λx ; y]) and υk(x) = υk([y, λx ; y]) for

some λx and λx in Πk;
b3: for k < ρ and x ∈ X , υk(x) ≥ υk+1(x) ≥ υk+1(x) ≥ υk(x).

Condition b0 fixes the utility values from the upper and lower benchmarks y and y,
which corresponds to the implication of B0. Then, b1 means that for each benchmark
lottery [y, λ; y] ∈ Bk(y; y), υk([y, λ; y]) is effectively single-valued and takes the
expected utility value of y and y, which corresponds to B1. b2 states that for each pure
alternative x ∈ X , the least upper and greatest lower utilities from x are measured by
the benchmark scale Bk(y; y); this does not exactly correspond to B2, but it does an
implication of B2 with the help of transitivity of the interval order ≥I . Corresponding
to B3, b3 states that υk(x) and υk(x) are getting more accurate as k increases.

We observe that by b3, υk(x) = υk(x) implies υk(x) = υk+1(x) = υk+1(x) =
υk(x), i.e., if υk(x) = [υk(x), υk(x)] is effectively single-valued, then υk′(x) is
constant and effectively single-valued for any k′ > k. In particular,

υ0(y) = υk(y) and υ0(y) = υk(y) for all k < ρ + 1. (17)

This and b1 imply that a benchmark lottery takes the same utility value as long as
it belongs Bk(y; y). Also, the values λy and λy given by b2 are 1 and 0, since y =
[y, 1; y] and y = [y, 0; y]. Hence,

δ(λy) = δ(λy) = 0. (18)

These observations will be used later.
Now, we have Theorem 3.1. As stated, all proofs are given in separate subsections.

Theorem 3.1 (Representation inStepB). A base preference stream 〈�k〉k<ρ+1 satisfies
Axioms B0 to B3 if and only if there is a base utility stream 〈υk〉k<ρ+1 satisfying b0
to b3 such that for any k < ρ + 1 and ( f , g) ∈ Dk,

f �k g if and only if υk( f ) ≥I υk(g). (19)
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Without difficulty, we can construct a sequence 〈υk〉k<ρ+1 satisfying b0 to b3.
Thus, by Theorem 3.1, there is a sequence 〈�k〉k<ρ+1 satisfying B0 to B3, which
implies the consistency of Axioms B0 to B3.

We have the uniqueness theorem.

Theorem 3.2 (Uniqueness up to affine transformations). Let 〈�k〉k<ρ+1 satisfy Axioms
B0 to B3. If 〈υk〉k<ρ+1 and 〈υ ′

k〉k<ρ+1 satisfying b0 to b3 represent 〈�k〉k<ρ+1 in the
sense of (19), there are rational numbersα > 0 andβ such thatυ ′

k(x) = αυk(x)+β =
[αυk(x) + β, αυk(x) + β] for all x ∈ X and k < ρ + 1.

Conditions b0 to b3 require υk(x) = [υk(x), υk(x)] to be represented essentially
by two values λx and λx in Πk with υ0(y) and υ0(y). However, υ0(y) and υ0(y) are
allowed to take any values in Q only with υ0(y) > υ0(y). Hence, for two streams
〈υk〉k<ρ+1 and 〈υ ′

k〉k<ρ+1 representing the same 〈�k〉k<ρ+1, one is expressed as a
positive linear transformation of the other, which is the above uniqueness result.

The uniqueness up to a positive linear transformation plays a crucial role in the
literature on bargaining such as Nash (1950) and also the Nash welfare function theory
by Kaneko and Nakamura (1979). The rational number scalars are enough for the 2-
person case (cf. Kaneko 1992) and the real-algebraic numbers are enough for the
general n-person case . It is easy to generalize Theorem 3.2 for the real numbers
scalars, but the problem is how much we can restrict the scalars. Theorem 3.2 is
suggestive of how bounded rationality is incorporated to these theories.

The processes described in terms of 〈�k〉k<ρ+1 and/or 〈υk〉k<ρ+1 are regarded
as thought experiments by the decision maker to search preferences/ utilities in his
mind. These preference and utility comparisons are object components for the deci-
sion maker, but the above theorems belong to the level of meta-components. From
the viewpoint of “bounded rationality”, he may stop his search when he is satisfied
and/or tired. This is the same as Simon’s (1956) argument of satisficing/aspiration.
We consider one example and exemplify the satisficing/aspiration argument.

Example 3.1 Let X = {y, y, y}, υ0(y) = [1, 1], υ0(y) = [0, 0], and υ0(y) = [1, 0].
Also, letυ1(y) = [ 9

10 ,
7
10 ]. For f = [y, 8

10 ; y],υ1( f ) = [ 8
10 ,

8
10 ] by (17) and b1. Then

υ1(y) �I υ1( f ) and υ1( f ) �I υ1(y); so y and f are incomparable with respect to
�1 by (19). In Fig. 2, 〈υk(y)〉k<ρ+1 = 〈[υk(y), υk(y)]〉k<ρ+1 is described as solid
lines in cases A, B, and C. Since υ0(y) = [1, 0], we have y �0 y �0 y by (19). For

k = 2, in A, υ2(y) = [ 77
102

, 77
102

] and the decision maker prefers f = [y, 8
10 ; y] to y;

and in B, υ2(y) = [ 83
102

, 83
102

]; he prefers y to f . In C, υk(y) = [ 9
10 ,

7
10 ] is constant for

k ≥ 2; he gives up comparisons between y and f after k = 1.
This example is interpreted in terms of Simon’s satisficing/aspiration. The decision

maker starts evaluating the pure alternative y the benchmark scale B0(y; y). Suppose
that he finds υ0(y) = [1, 0], i.e., he attaches the upper value 1 and lower value 0
to y. When ρ = 0, he immediately concludes that y is between y and y . When
ρ ≥ 1, he goes to layer 1 and uses the more precise scale B1(y; y) to measure y. Since

υ1(y) = [ 9
10 ,

7
10 ], y is better than [y, 7

10 ; y] but worse than [y, 9
10 ; y]. Still, he has

not reached an exact measurement. If ρ = 1, he stops introspection and is satisfied
with these evaluations of y. If ρ ≥ 2, he goes to layer k = 2; in A of Fig. 2, he

123



Expected utility theory with probability grids and… 737

Fig. 2 Upper and lower bounds of utilities

reaches the exact utility value υ2(y) = [ 77
102

, 77
102

],7 but in C, he has still imprecise

values υ2(y) = [ 9
10 ,

7
10 ] and does not improve them any more even for k > 2.

3.3 Proofs

Proof of Theorem 3.1 (If): Suppose that 〈υk〉k<ρ+1 satisfies b0 to b3 and that (19) holds
for 〈�k〉k<ρ+1 and 〈υk〉k<ρ+1

B0:We have, by b0, b1, and b2, υ0(y) ≥ υ0(x) and υ0(x) ≥ υ0(y), i.e., y �0 x �0 y.
Thus, B0.

B1: By (19), b1, and b2, we have [y, λ; y] �k [y, λ′; y] if and only if υk([y, λ; y]) ≥I

υk([y, λ′; y]) if and only if λυ0(y) + (1 − λ)υ0(y) ≥ λ′υ0(y) + (1 − λ′)υ0(y). By
b0, this is equivalent to λ ≥ λ′. That is, B1.

B2: Let [y, λ; y] �k x and λ′ > λ. By b2, (19), (17 ), and b0, we have λ′υ0(y)+ (1−
λ′)υ0(y) > λυ0(y) + (1 − λ)υ0(y) ≥ υk(x). Thus, υk([y, λ′; y]) = λ′υk(y) + (1 −
λ′)υk(y) > υk(x). By (19), we have [y, λ′; y] �k x . The other case is symmetric.

B3: Let f �k g. By (19), we haveυk( f ) ≥ υk(g). Let f = x ∈ X and g = [y, λ; y] ∈
Bk(y; y). Then, by b3, we have υk+1( f ) ≥ υk( f ) ≥ υk(g) = υk+1(g). By ( 19),
f �k+1 g. The case f ∈ Bk(y; y), g = x ∈ X is parallel. The case f = [y, λ; y],
g = [y, λ′; y] ∈ Bk(y; y) is similar.

(Only-if): Suppose that 〈�k〉k<ρ+1 satisfying Axioms B0 to B3 is given. We construct
a base utility stream 〈υk〉k<ρ+1 = [υk, υk] satisfying (19 ), as follows: for any f ∈

7 This may be interpreted as including some imprecision: for example, the lower and upper values may be
77
102

and 78
102

, but according his aspiration level, the difference 78
102

− 77
102

= 1
102

is tiny and he does not

care about the choice between 77
102

and 78
102

. By chance, he chooses υ2(y) =
[
77
102

, 77
102

]
.
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Bk(y; y) ∪ X ,

υk( f ) = min{λ ∈ Πk : [y, λ; y] �k f };
υk( f ) = max{λ ∈ Πk : f �k [y, λ; y]}. (20)

Note that when f = [y, λ f ; y] ∈ Bk(y; y), we have υk( f ) = υk( f ) = λ f for f ∈
Bk(y; y) by (20). Consider f = [y, λ f ; y], g = [y, λg; y] ∈ Bk(y; y). Then, f �k g
if and only if [y, λ f ; y] �k [y, λg; y] if and only if λ f ≥ λg , i.e., υk( f ) ≥I υk(g)

by B1. Let f ∈ Bk(y; y) and g = x ∈ X . Denote υk( f ) = λ f and υk(x) = λx .

Suppose f �k x . By (20 ), [y, λ f ; y] = f �k [y, λx ; y]. By B1, λ f ≥ λx , i.e.,
υk( f ) ≥I υk(x). The converse is obtained by tracing this back. Thus, f �k x if and
only if υk( f ) ≥I υk(x). The case f = x ∈ X , g ∈ Bk(y; y) is parallel.

By (16) andB0,we have b0.Consider b1. Sinceυk(y) = 1 andυk(y) = 0, it follows
from the note immediately after (20) that υk( f ) = λ = λυk(y)+ (1−λ)υk(y), which
is b1. By (20), we have b2 and b3. ��

Proof of Theorem 3.2 Letα = (υ ′
0(y)−υ ′

0(y))/(υ0(y)−υ0(y)) andβ = (υ0(y)υ ′
0(y)−

υ ′
0(y)υ0(y))/(υ0(y) − υ0(y)). By b1 and (17), we have υ ′

k(y) = αυk(y) + β

and υ ′
k(y) = αυk(y) + β . For [y, λ; y] ∈ Bk(y; y), we have υ ′

k([y, λ; y]) =
λυ ′

k(y) + (1 − λ)υ ′
k(y) = αυk([y, λ; y]) + β by b1.

For x ∈ X , we have λx and λx in Πk by b2 for υk such that υk(x) =
[υk([y, λx ; y]), υk([y, λx ; y])]. Letλ′

x andλ′
x be given by b2 forυ

′
k . Supposeλx �= λ

′
x ,

say, λx > λ
′
x . Then, υk([y, λx ; y]) ≥I υk(x), but υk(x) = υk([y, λx ; y]) >

υk([y, λ′
x ; y]). Hence, υk([y, λ′

x ; y]) �I υk(x). However, by definition of λ
′
x , we

have υ ′
k([y, λ′

x ; y]) ≥I υ ′
k(x). This is impossible since υk and υ ′

k represent the same

�k . The case λx < λ
′
x is parallel. Thus, λ

′
x = λx , and similarly, λ′

x = λx . It was shown
in the above paragraph that υk( f ) = αυ ′

k( f )+β for any f ∈ Bk(y; y). This together
with λ

′
x = λx and λ′

x = λx implies υ ′
k(x) = [υ ′

k([y, λx ; y]), υ ′
k([y, λx ; y])] =

α[υk([y, λx ; y]), υk([y, λx ; y])] + β = α[υk(x), υk(x)] + β = υk(x) + β. ��

4 Extension Step E: preferences

StepB is an introspection process to find preferences hidden in themind of the decision
maker.On the other hand, StepE is a logical process to extendbase preferences found in
Step B; it involves a possible difficulty generated by a new type of probability depths,
δ( f (x)), interacting with a finite cognitive bound ρ. This requires our axiomatic
system, Axiom E1 in particular, to take a certain specific form. Keeping this remark
in mind, we present our axiomatic system for Step E. Throughout this section, let
〈�k〉k<ρ+1 be a given base preference stream satisfying Axioms B0 to B3.
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4.1 Extended preference streams

We consider how�k is extended to Lk(X) for k < ρ +1.We formulate this derivation
by a kind of mathematical induction from the base preferences �k and the previously
derived relation �k−1; this process starts at layer 0 to the last layer ρ (or goes to any
layer if ρ = ∞ ). These are formulated by three axioms; the first axiomE0 corresponds
to the start, and the other two, E1 and E2, describe the extension process. It is shown
by Theorem 4.1 that our formalism involves no logical difficulty. Then, we give one
additional axiom to capture the central part determined by E0 to E2.

First, Axiom E0 is to convert base preferences �k to �k for each k < ρ + 1,
depicted as the vertical arrows in Table 1.

Axiom E0 (Extension)(i): For any ( f , g) ∈ D0, f �0 g if and only if f �0 g.
(ii): For any k(1 ≤ k < ρ + 1) and ( f , g) ∈ Dk , if f �k g, then f �k g.

This states that 〈�k〉k<ρ+1 is the ultimate source for 〈�k〉k<ρ+1 in Step E. For
k = 0, the base preferences are only the direct source for �0; thus, (i) has both
directions. For k ≥ 1, in addition to the base preferences, there is another source from
the previous �k−1; (ii) requires only one direction. We will show that as long as the
domain Dk is concerned, the converse of (ii) holds for our intended preference stream
〈�k〉k<ρ+1.

Now, we consider the connection between layers k−1 and k. For f̂ = ( f1, . . . , f�)
and ĝ = (g1, . . . , g�), we write f̂ �k ĝ iff ft �k gt for all t = 1, . . . , �. Recall that a
decomposition of f ∈ Lk(X) is defined by (9). We formulate a derivation of �k from
�k−1 as follows: let 1 ≤ k < ρ + 1.

Axiom E1 (Derivation from the previous layer): Let f ∈ Lk(X), g ∈ Bk(y; y),
and f̂ , ĝ their decompositions. If f̂ �k−1 ĝ or ĝ �k−1 f̂ , then f �k g or g �k f ,
respectively.

In layer k − 1, each ft of f̂ = ( f1, . . . , f�) is compared with the corresponding
benchmark lottery gt of ĝ = (g1, . . . , g�). These preferences are extended to layer
k. In Table 1, the horizontal arrows indicate this derivation. A lottery f ∈ Lk(X)

may involve the depth δ( f (x)) of the probability value f (x) and the depths of δ(λx ),
δ(λx ) of λx , λx given in b2, for each pure alternative x ∈ X with f (x) > 0. In the
lottery d = 25

102
y ∗ 75

102
y in Example 3.1, the former is δ( 25

102
) = 2 and the latter is

δ(λx ) = δ(λx ) = δ( 77
102

) = 2 in caseA.On the other hand, benchmark lotteries involve
only the former depths since δ(λy) = δ(λy) = 0 by (18). In Axiom E1, extension
is always made based on the benchmark scale. In fact, Lemma 4.1 does not take this
constraint into account, but Theorem 4.1 does.

Preferences extended through the benchmark scale Bk(y; y) in E1 are further
extended by transitivity, which is the next axiom. Let 0 ≤ k < ρ + 1.

Axiom E2 (Transitivity): For any f , g, h ∈ Lk(X), if f �k g and g �k h, then
f �k h.
We interpret Axioms E1 and E2 as inference rules with Axiom E0 as the bases for

�k . This means that the decision maker constructs �0,�1, . . ., step by step, using
these axioms. This may involve some subtlety; Axioms E0 to E2 may lead to new
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unintended preferences. We will show Theorem 4.1, implying that this is not the case
for the constructed preference relations.

The following are strengthened versions of E0 and E1:

E0∗ : for all k < ρ + 1 and ( f , g) ∈ Dk , f �k g if and only if f �k g;
E1∗ : E1 holds and if the premise of E1 includes strict preferences, so does the
conclusion.

Condition E0∗ states that 〈�k〉k<ρ+1 is a faithful extension of 〈�k〉k<ρ+1 as long
as the pairs of lotteries in Dk are concerned. The other, E1∗, is a strengthening of
E1, too. Without these, some preferences would be added in the derivation process of
�0,�1, . . . Note that E2 (transitivity) preserves strict preferences in the same way as
E1∗.

To prove that our extended stream 〈�k〉k<ρ+1 enjoys E0∗, E1∗, and E2, we first
show the following lemma using the EU hypothesis, which is an auxiliary step to
Theorem 4.1. A by-product is the consistency of E0∗, E1∗, and E2. For the lemma, a
base utility stream 〈υk〉k<ρ+1 satisfying (19) in Theorem 3.1 is given.

Lemma 4.1 (Direct application of the EU hypothesis). Let 〈�∗
k〉k<ρ+1 be defined as

follows: for all k < ρ + 1,

f �∗
k g if and only if E f (υk) ≥I Eg(υk). (21)

Then, 〈�∗
k〉k<ρ+1 satisfying Axioms E0∗, E1∗, and E2.

The right-hand side is given by comparisons of the expected values of the vector-
valued utility function υk . The point of the lemma is not the representation of expected
utility values; instead, it is the consistency of E0∗, E1∗, and E2, which will be used in
Theorem 4.1. The consistency of Axioms E0, E1, and E2 is straightforward since E0
takes only preferences given by B0 to B3, and E1 and E2 introduce new preferences
from them. On the other hand, E0∗ and E1∗ may generate strict preferences, including
negations. Hence, the consistency implied byLemma 4.1 is a basis of our development.

It will be argued in Sect. 7 that when ρ = ∞, the limit preference relation
�∗∞ is determined E0, E1, and E2 under some additional condition on L∞(X) =
∪k<∞Lk(X).

Now, we prepare a few concepts for Theorem 4.1. Let 〈�k〉k<ρ+1 be a stream
satisfyingE0 toE2.We say that 〈�k〉k<ρ+1 is the smallest stream iff for any 〈�′

k〉k<ρ+1
satisfying E0 to E2, and f , g ∈ Lk(X), k < ρ + 1,

f �k g implies f �′
k g. (22)

Also, the set of preferences over Lk(X) derived from �k−1 by E1 is denoted by
(�k−1)

E1, and the set of transitive closure of F ⊆ Lk(X)2 is denoted by Ftr , i.e.,
( f , g) ∈ Ftr if and only if there is a finite sequence f = h0, h1, . . . , hm = g such
that (ht , ht+1) ∈ F for t = 0, . . . ,m − 1.

Using these concepts, we construct the smallest stream 〈�k〉k<ρ+1, each of which
is a binary relation on Lk(X), and show, using Lemma 4.1, that it satisfies E0∗ and
E1∗ as well as E2.
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Theorem 4.1 (Smallest extended stream). The stream 〈�k〉k<ρ+1 of the sets generated
by the following induction:

�0 = (�0)
tr ; and

�k = [(�k−1)
E1 ∪ (�k)]tr for each k (1 ≤ k < ρ + 1) (23)

is the smallest stream satisfying E0 to E2. This 〈�k〉k<ρ+1 satisfies E0∗ and E1∗.

The construction of 〈�k〉k<ρ+1 starts with�0= (�0)
tr , which is well defined since

�0 is a binary relation in D0. Then, provided that �k−1 and �k are already given, �k

is defined to be [(�k−1)
E1 ∪ (�k)]tr . This is a subset of Lk(X)2; thus, it is a binary

relation. Thus, the stream 〈�k〉k<ρ+1 is unique and is the smallest among the streams
satisfying E0 to E2. Furthermore, it satisfies E0∗ and E1∗, where Lemma 4.1 is used.
This assertion guarantees that the constructed stream 〈�k〉k<ρ+1 is a faithful extension
of 〈�k〉k<ρ+1.8

The stream 〈�k〉k<ρ+1 constructed in Theorem 4.1 differs from the stream 〈�∗
k

〉k<ρ+1 given in Lemma 4.1 in that the two types of depths, δ(λx ), δ(λx ) , and δ( f (x))
are taken into account in the former, but for the latter, (21) defines the expected utility,
ignoring them. These depths are interactive with cognitive bound ρ. When ρ = ∞,
�∞= ∪k<ρ+1 �k and �∗∞= ∪k<ρ+1 �∗

k coincide under some additional restriction
on L∞(X), whichwill be discussed in Sect. 7.1. In general, 〈�k〉k<ρ+1 and 〈�∗

k〉k<ρ+1
differ and coincide only in partial domains, which will be discussed in Sect. 6.

In the constructing process of 〈�k〉k<ρ+1, E0 to E2 are all extension axioms, and the
resulting stream of (23) is uniquely constructed, while there are multiple preference
streams satisfying E0 to E2. It would be easier for various purposes to extract the
essence of (23) by formulating one axiom. It is formulated as Axiom E3, which
requires that a preference f �k g be based on comparisons with the benchmark scale
Bk(y; y) with either �k or �k−1, that is, it eliminates preferences from other possible
sources. Note that h in E3 may be the same as f or g.

Axiom E3.Let k < ρ + 1 and f , g ∈ Lk(X) with f �k g. Then f �k h �k g
for some h ∈ Bk(y; y). When k ≥ 1, for the pair ( f , h), f �k h holds or f , h have

decompositions f̂ , ĥ with f̂ �k−1 ĥ; the same holds for the pair (h, g).
The stream 〈�k〉k<ρ+1 given by (23) is characterized by adding E3 to E0 to E2.

Theorem 4.2 (Unique determination by E0 to E3). Any extended stream satisfying E0
to E3 is the same as the preference stream 〈�k〉k<ρ+1 given by Theorem 4.1.

Throughout the following, the stream given by (23) is denoted by 〈�k〉k<ρ+1. Other
streams may have some additional superscripts such as ′, ∗.

Lemma 4.2 will be used in the subsequent analyses; (1) is the horizontal arrows in
Table 1; and (2)means that�k is bounded in Lk(X) by the upper and lower benchmarks
y and y.

8 We extend an already built preference relation �k−1 and a given base relation �k to �k by Axioms
E1 and E2 , which is the weakest relation. This extension is somewhat similar to Dubra and Ok’s (2002)
argument: they extend a preference relation on a finite set of lotteries to the smallest relation satisfying
Axiom NM2-ID1, and they show the extended relation is represented by a set of expected utilities.
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Lemma 4.2 Let 〈�k〉k<ρ+1 satisfies E0 to E3, and 1 ≤ k < ρ + 1.

(1) (Preservation of preferences): For any f , g ∈ Lk−1(X), f �k−1 g implies
f �k g.

(2) y �k f �k y for any f ∈ Lk(X).

The EU hypothesis is included in AxiomB1 and condition b1 along the benchmark
scale Bk(y; y), and E1 is a weak form of Axiom NM2 (independence). It follows
from Lemma 4.1 and Theorem 4.1 that there are possibly multiple preference streams
satisfying E0 to E2, among which some satisfy the EU representation in (21) but not
in general. This is caused by two types of depths included in a lottery. For example,
lottery d = 25

102
y ∗ 75

102
y involves the depths of coefficient 25

102
and of evaluation λy .

This is the reason for the EU hypothesis to hold only for some partial domain, which
will be explicitly studied in Sect. 6.

4.2 Proofs

Proof of Lemma 4.1 We show that 〈�∗
k〉k<ρ+1 given by (21) satisfies E0∗, E1∗, and E2.

By Theorem 3.2, we can assume that υk(y) = 1 and υk(y) = 0.
Since E f (υk) = λ if f = [y, λ; y] ∈ Bk(y; y) and Ex (υk) = υk(x) if f = x ∈ X .

Hence, by (19) and b2, f �k x if and only if λ ≥ υk(x) if and only if E f (υk) ≥
Ex (υk). The other cases are symmetric. Thus, E0∗ holds for any ( f , g) ∈ Dk .

It remains to show that 〈�∗
k〉k<ρ+1 satisfies E1∗ and E2. Since (21) gives the inter-

val order over the set {[E f (υk), E f (υk)] : f ∈ Lk(X)}, E2 holds. We show E1∗.
Let f ∈ Lk(X), g ∈ Bk[y; y] and their decompositions f̂ and ĝ with f̂ �∗

k−1 ĝ.
By (21), E ft (υk) ≥ Egt (υk) for all t = 1, . . . , �. Then, E f (υk) = Eê∗ f̂ (υk) =∑�

t=1
1
�
E ft (υk) ≥ ∑�

t=1
1
�
Egt (υk) = Eê∗ĝ(υk) = Eg(υk). If strict preferences are

included in the decompositions, the conclusion is strict; thus, we have E1∗. ��
Proof of Theorem 4.1 This has the three assertions: ( a) 〈�k〉k<ρ+1 is a sequence of
a binary relations satisfying Axioms E0 to E2; (b) it is the smallest in the sense of
(22) among the streams 〈�′

k〉k<ρ+1 satisfying E0 to E2; and (c) E0∗, E1∗ hold for
〈�k〉k<ρ+1.

(a): E2 follows directly from (23). Consider E0. (ii) follows from (23). We show
that �0= (�0)

tr satisfies that for any ( f , g) ∈ D0, f �0 g implies f �0 g. Since
�0= (�0)

tr , there is a sequence f = h0 �0 . . . �0 hm = g. If ht ∈ X − B0(y; y),
then ht−1 ∈ B0(y; y) and ht+1 ∈ B0(y; y). By B2, λt−1 ≥ λt+1, where ht−1 =
[y; λt−1, y] and ht+1 = [y; λt+1, y]. If ht , ht+1 ∈ B0(y; y), then λt ≥ λt+1. Hence,
we can shorten the sequence to f = h0 �0 hm = g. Thus, f �0 g.

Consider E1. Suppose that f ∈ Lk(X) and g ∈ Bk[y; y] have decompositions f̂ , ĝ

with f̂ �k−1 ĝ. By (23), we have f = e ∗ f̂ �k e ∗ ĝ = g. This causes no difficulty,
even if f ∈ Bk(X) and g ∈ Bk[y; y]. The symmetric case ĝ �k−1 f̂ is similar.

(b): We prove by induction on k that 〈�k〉k<ρ+1 satisfies (22) for any 〈�′
k〉k<ρ+1

satisfying E0 to E2. When k = 0, we have �0= (�0)
tr by (23). Let f �0 g, i.e.,

f (�0)
tr g, which implies that there is a sequence f = h0 �0 h1 �0 . . . �0 hm = g.

By E0.(i), we have f = h0 �′
0 h1 �′

0 . . . �′
0 hm = g. By E2 for�′

0, we have f �′
0 g.
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Now, we assume that (22) holds for k−1. Let f �k g. By (23), there is a sequence
f = h0 �k . . . �k hm = g such that each ht �k ht+1 is a consequence of E1
or ht �k ht+1 is ht �k ht+1. In the first case, there are decompositions ĥt , ĥt+1 of
ht , ht+1 such that ĥt �k−1 ĥt+1. By the induction hypothesis, we have ĥt �′

k−1 ĥt+1.
Thus, ht �′

k ht+1 by E1 for �′
k . In the second case, ht �k ht+1 implies ht �′

k ht+1
by E0.(ii) for �′

k . Hence, f �′
k g by E2 for �′

k .
(c): Take 〈�∗

k〉k<ρ+1 given by Lemma 4.1. Since 〈�∗
k〉k<ρ+1 satisfies E0 to E2, it

holds by (b) that for all k < ρ + 1 and f , g ∈ Lk(X),

f �k g implies f �∗
k g. (24)

E0∗: Since E0∗ holds for �∗
k by Lemma 4.1, for any ( f , g) ∈ Dk , f �∗

k g implies
f �k g. Thus, if f �k g, then f �∗

k g by (24), which implies f �k g. For the
converse, f �k g implies f �k g by (23).

E1∗: First, we prove by induction on k that for all k < ρ + 1 and f , g ∈ Lk(X),

f �k g implies f �∗
k g. (25)

Wemake the induction hypothesis that (25) holds for k−1.Now, let f , g ∈ Lk(X)with
f �k g. By (23), there are h0 = f , h1, . . . , hm = g in Lk(X) such that (hl , hl+1) ∈
(�k−1)

E1 or (hl , hl+1) ∈ (�k) for each l = 0, . . . ,m − 1.
Consider case (i) : (hl , hl+1) ∈ (�k). Then by E0∗ for 〈�∗

k〉k<ρ+1, it holds that
hl �∗

k hl+1, and also, if the premise is strict, it follows from E0∗ for 〈�∗
k〉k<ρ+1

that hl �∗
k hl+1. Now, consider case (i i) : (hl , hl+1) ∈ (�k−1)

E1. Let ĥl , ĥk+1 be
decompositions of hl , hl+1 so that ĥl �k−1 ĥl+1 with/without strict preferences for
some components. Hence, by (24) and (25) (the induction hypothesis), the same holds
for �∗

k−1. By E1∗ for 〈�∗
k〉k<ρ+1, we have hl �∗

k hl+1 and hl �∗
k hl+1 if strict

preferences hold for some components. At least one of l = 0, . . . ,m − 1, we have
strict preferences for (hl , hl+1) ∈ (�k) or ĥl �k−1 ĥl+1, because of f �k g. This
and the above assertions in (i) and (i i) imply f �∗

k g.
Finally, we verify E1∗ for 〈�k〉k<ρ+1. Let f ∈ Lk(X) and g ∈ Bk(y; y), and let

their decompositions be f̂ , ĝ with f̂ �k−1 ĝ. Suppose that one of these preferences
is strict. By E1, we have f �k g. It suffices to show not g �k f . However, f̂ �k−1 ĝ
implies f̂ �∗

k−1 ĝ by (24), and some components of the latter hold strictly by (25).
By E1∗ for 〈�∗

k〉k<ρ+1, we have f �∗
k g, implying not g �∗

k f . By the contrapositive
of (24), we have not g �k f . ��
Proof of Theorem 4.2 Let 〈�∗

k〉k<ρ+1 be any extended stream satisfying E0 to E3. We
prove by induction on k < ρ + 1 that for any f , g ∈ Lk(X),

f �∗
k g if and only if f �k g. (26)

Since 〈�k〉k<ρ+1 is the smallest stream satisfying E0 to E2 by Theorem 4.1, the if
part holds for any k < ρ + 1.

Consider the only-if part. Let k = 0. Let f , g ∈ L0(X) with f �∗
0 g. Then, by

E3 for �∗
0, we have an h ∈ B0(y; y) with f �∗

0 h �∗
0 g. Thus, f �0 h �0 g
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by E0 for �∗
0. Hence, f (�0)

tr g, i.e., f �0 g by (23). Now, we make the induction
hypothesis that the only-if part holds for k − 1. Let f �∗

k g. Then, by E3, we have
h0 := f �∗

k h1 �∗
k h2 := g for some h1 ∈ Bk(y; y). Let h0 = x ∈ X . If h0 �k h1,

then h0 �k h1 by E0∗ for �k . Suppose ĥ0 �∗
k−1 ĥ1 for some decompositions ĥ0, ĥ1

of h0, h1. By the induction hypothesis, we have ĥ0 �k−1 ĥ1. Thus, by E1 for �k , we
have h0 �k h1. In the above two cases, we have h0 �k h1. By the same argument, we
have h1 �k h2. Thus, by E2 for �k , we have f = h0 �k h2 = g, i.e., f �k g. ��

Proof of Lemma 4.2 (1): Let f ∈ Lk−1(X) and g ∈ Bk−1(y; y). Suppose f �k−1 g.
Then, f , g ∈ Lk−1(X) ⊆ Lk(X). Let f1 = · · · = f� = f and g1 = · · · = g� = g.
Then, f = ∑�

t=1
1
�

∗ ft and g = ∑�
t=1

1
�

∗ gt . By E1, we have f �k g. The case
g �k−1 f is similar.

Let f , g ∈ Lk−1(X) with f �k−1 g. Then, by E3 for k, f �k−1 h �k−1 g for
some h ∈ Bk−1(y; y). It follows from the conclusion of the above paragraph that
f �k h �k g. By E2, we have f �k g.

(2): Let f ∈ L0(X) = X . By B0 and �0=�0, we have the assertion for k = 0.
Suppose the induction hypothesis that y �k−1 f �k−1 y for any f ∈ Lk−1(X).

Consider f ∈ Lk(X). Then, by Lemma 2.1, there is a vector f̂ ∈ Lk−1(X)� such that
f = ê ∗ f̂ . By the induction hypothesis, y �k−1 ft �k−1 y for any t ≤ �. By E1,

y = ê ∗ y �k f = ê ∗ f̂ �k ê ∗ y = y. ��

5 Extension Step E: utilities

We extend a base utility stream 〈υk〉k<ρ+1 to 〈uk〉k<ρ+1 so that each uk is a function
over Lk(X) to Q

2. We show that this approach is equivalent to that given in Sect. 4. It
provides clear-cut interpretations and mathematical tractability of the entire theory.

5.1 Extended utility streams

Let a base utility stream 〈υk〉k<ρ+1 satisfying b0 to b3 be given. Consider a stream of
functions 〈uk〉k<ρ+1 so that each uk = [uk, uk] is a function from Lk(X) to Q

2 with
uk( f ) ≥ uk( f ) for all f ∈ Lk(X). As for a base utility stream, the values uk( f ) and
uk( f ) are interpreted as the least upper and greatest lower bounds of possible utilities
from f . Recall that when uk = [uk, uk] is effectively single-valued for f , we drop
the upper and lower bars from uk( f ) = uk( f ) as uk( f ). For f̂ = ( f1, . . . , f�), we
write uk( f̂ ) = (uk( f1), . . . , uk( f�)) and uk( f̂ ) = (uk( f1), . . . , uk( f�)). For f̂ , ĝ, we
write uk( f̂ ) ≥ uk(ĝ) to mean “uk( ft ) ≥ uk(gt ) for t ≤ � ”.

We assume the following four conditions on 〈uk〉k<ρ+1 : for each k < ρ + 1,

e0: The restriction of uk to Bk(y; y) ∪ X coincides with υk .

e1: Let f ∈ Lk(X) − Bk(y; y) ∪ X , g ∈ Bk(y; y), and f̂ , ĝ their decompositions.

If uk−1(ĝ) ≥ uk−1( f̂ ) or uk−1( f̂ ) ≥ uk−1(ĝ), then uk(g) ≥ uk( f ) or uk( f ) ≥
uk(g), respectively.
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e2: For any f ∈ Lk(X) − Bk(y; y) ∪ X , there are decompositions f̂ , f̂ ′ of f such

that uk( f ) = ê ∗ uk−1( f̂ ) and uk( f ) = ê ∗ uk−1( f̂
′).

e3: For any f ∈ Lk(X)− Bk(y; y)∪ X , there are g, h in Bk(y; y) such that uk( f ) =
uk(g) and uk( f ) = uk(h).

Conditions e0 and e1 correspond to E0 and E1. By b1 and e0, uk is effectively
single-valued for g ∈ Bk(y; y), i.e., uk(g) = υk(g). Since the interval order ≥I satis-
fies transitivity, no condition corresponding to E2 is assumed. Instead, e2 requires that
the least upper and greatest lower utilities uk( f ) and uk( f ) come from those of some
decompositions. Condition e3 requires uk( f ) and uk( f ) be measured by the bench-
mark scale Bk(y; y) of the same depth k, which is a depth constraint corresponding
to Axiom E3. Under e0, b1, and b2, this is equivalent to

e3∗: For any f ∈ Lk(X), there are g, h in Bk(y; y) such that uk( f ) = uk(g) and
uk( f ) = uk(h).

We may use either e3 or e3∗ whichever is more convenient.
Also, it holds that

If g ∈ Bk(y; y) and g = ê ∗ ĝ for some ĝ ∈ Bk−1(y; y)�,
then uk(g) = ê ∗ uk−1(ĝ). (27)

That is, if a benchmark lottery g is decomposed into ĝ, then the utility value uk(g) is
obtained from the weighted sum of uk−1(ĝ). This will be proved in Sect. 5.2.

First, we present the unique determination of a possible utility stream 〈uk〉k<ρ+1
extended from a given base utility stream 〈υk〉k<ρ+1.

Theorem 5.1 (Unique extension). Let 〈uk〉k<ρ+1 be an extended utility stream satis-
fying e0 to e3. Then, it holds that for any f ∈ Lk(X) with k ≥ 0,

uk( f ) =
{

υk( f ) if f ∈ Bk(y; y) ∪ X
min{̂e ∗ uk−1( f̂ ) : f̂ is a decomposition of f } otherwise (28)

uk( f ) =
{

υk( f ) if f ∈ Bk(y; y) ∪ X
max{̂e ∗ uk−1( f̂ ) : f̂ is a decomposition of f } otherwise. (29)

Conversely, when a base utility stream 〈υk〉k<ρ+1 is given, an extended utility stream
〈uk〉k<ρ+1 is uniquely determined from 〈υk〉k<ρ+1 by (28) and (29), and it satisfies
e0 to e3.

Since 〈υk〉k<ρ+1 representing 〈�k〉k<ρ+1 is uniquely determined up to positive
linear transformations, stated in Theorem 3.2, and since the extended utility stream
〈uk〉k<ρ+1 is uniquely determined by 〈υk〉k<ρ+1, the stream of pair 〈υk, uk〉k<ρ+1 is
unique determined up to positive linear transformations.

The existence of 〈uk〉k<ρ+1 representing 〈�k〉k<ρ+1 is guaranteed by the next
theorem. Recall that 〈�k〉k<ρ+1 with B0 to B3 is assumed behind 〈�k〉k<ρ+1 by
E0 and that 〈υk〉k<ρ+1 with b0 to b3 is assumed behind 〈uk〉k<ρ+1 by e0. These
〈�k〉k<ρ+1 and 〈υk〉k<ρ+1 are connected by (19) in Theorem 3.1. Axiom E3 and
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condition e3 are separately treated in Theorem 5.2, because this separation will be
needed for Theorem 7.1.

Theorem 5.2 (Representation of 〈�k〉k<ρ+1 by 〈uk〉k<ρ+1). A preference stream 〈�k

〉k<ρ+1 satisfies E0 to E2 (and E3, respectively) if and only if there is a utility stream
〈uk〉k<ρ+1 satisfying e0 to e2 (and e3) such that for any k < ρ+1 and f , g ∈ Lk(X),

f �k g if and only if uk( f ) ≥I uk(g). (30)

Table 2 summarizes the results in Sects. 3 to 5; here E3 and e3 are included 5.2.
Section 3 is started with the theory of a base preference stream 〈�k〉k<ρ+1 and of a
base utility stream 〈υk〉k<ρ+1. In Sect. 4, 〈�k〉k<ρ+1 is extended to 〈�k〉k<ρ+1; Theo-
rems 4.1 and 4.2 show the unique existence of 〈�k〉k<ρ+1 satisfying E0 to E3, relative
to 〈�k〉k<ρ+1. Correspondingly, Theorem5.1 implies that 〈uk〉k<ρ+1 is uniquely deter-
mined relative to 〈υk〉k<ρ+1. Theorem 5.2 states the existence of an extended utility
stream 〈uk〉k<ρ+1 when 〈�k〉k<ρ+1 satisfies E0 to E3.

The above theorems can be regarded as a substantiation of the indication, by
Von Neumann and Morgenstern (1944), p. 29, of a possibility of a representation
of a preference relation involving incomparabilities in terms of a higher-dimensional
vector-valued function.

The utility stream 〈uk〉k<ρ+1 given by Theorem 5.2 with E3 and e3 differs from the
EU representation in Lemma 4.1. This causes some difficulty in practical calculation
of 〈uk〉k<ρ+1 for the case ρ < ∞, but Theorem 5.1 is useful for practical purpose.
We show how to calculate uk and uk in Example 3.1, which will be used in Sect. 8.

Example 5.1 Consider A and B of Example 3.1 with X = {y, y, y}. Recall υ0(y) =
υ1(y) = [1, 1], υ0(y) = υ1(y) = [0, 0], υ0(y) = [1, 0], υ1(y) = [ 9

10 ,
7
10 ]. These

values are the same as u0, u1 by e0. Also, we have:

A : υ2(y) = u2(y) =
[

77
102

, 77
102

]
and B : υ ′

2(y) = u′
2(y) =

[
83
102

, 83
102

]
. (31)

Consider how to calculate u2(d) and u3(d) for d = 25
102

y ∗ 75
102

y. We mainly consider
case A and will adjust the calculation for case B.

The lottery d has the three types of decompositions t
10 ∗y+ 5−2t

10 ∗[y, 5
10 ; y]+ 5+t

10 ∗y
for t = 0, 1, 2 in (12). Among these, the one with t = 2 gives u2 and u3 ; since y is
evaluated in a shallower layer through 5−2t

10 ∗ [y, 5
10 ; y] than t

10 ∗ y, it is more accurate

to use t
10 ∗ y than 5−2t

10 ∗ [y, 5
10 ; y]. Thus, we take the largest weight t = 2 to t

10 ∗ y
for the min and max operators in (28) and (29).

The second term [y, 5
10 ; y] = 5

10 y∗ 5
10 y itself is regarded as a uniquedecomposition;

we have, by (28) and (29),

u1
(

5
10 y ∗ 5

10 y
)

= 5
10υ0(y) + 5

10υ0(y) =
[

5
10 , 0

]
. (32)
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Plugging these to the decomposition 2
10 y ∗ 1

10 (
5
10 y ∗ 5

10 y) ∗ 7
10 y, we have, by e1,

u2(d) = u2
(

2
10 y ∗ 1

10

(
5
10 y ∗ 5

10 y
)

∗ 7
10 y

)

= 2
10u1(y) + 1

10u1
(

5
10 y ∗ 5

10 y
)

+ 7
10u1

(
y
)

= 2
10

[ 9
10 ,

7
10

] + 1
10

[
5
10 , 0

]
+ 1

10 [0, 0] =
[

23
102

, 14
102

]
. (33)

This is compared with u2(c) = u2( 2
10 y ∗ 8

10 y) = [ 2
10 ,

2
10 ], and thus, by Theorem 5.2,

c and d are incomparable with respect to �2.
In the same as (32), we have u2( 5

10 y ∗ 5
10 y) = 5

10υ1(y) + 5
10υ1(y) = [ 45

102
, 35
102

].
Then, we calculate u3(d) for case ρ = 3 :

u3(d) = u3
(

2
10 y ∗ 1

10

(
5
10 y ∗ 5

10 y
)

∗ 7
10 y

)

= 2
10u2(y) + 1

10u2
(

5
10 y ∗ 5

10 y
)

+ 7
10u2(y)

= 2
10

[
77
102

, 77
102

]
+ 1

10

[
45
102

, 35
102

]
+ 7

10 [0, 0] =
[
199
103

, 189
103

]
. (34)

Here, c is strictly preferred to d, since u3(c) = u3( 2
10 y ∗ 8

10 y) = [ 2
10 ,

2
10 ]. For k ≥ 4,

since uk(d) = [ 1925
104

, 1925
104

], c is strictly preferred to d.
Consider case B : u′

2(y) = [ 83
102

, 83
102

] for ρ = 2. Then, the above calculation (33)

for u2(d) remains the same for u′
2(d) with u′

2(d) = [ 23
102

, 14
102

], but for ρ = 3, u′
3(d)

is calculated as follows:

u′
3(d) = u′

3

(
2
10 y ∗ 1

10

(
5
10 y ∗ 5

10 y
)

∗ 7
10 y

)

= 2
10u2(y) + 1

10u2
(

5
10 y ∗ 5

10 y
)

+ 7
10u2(y)

= 2
10

[
83
102

, 83
102

]
+ 1

10

[
45
102

, 35
102

]
+ 7

10 [0, 0] =
[
211
103

, 201
103

]
(35)

Here, d is strictly preferred to c. This holds for k ≥ 4 since u′
k(d) is calculated as

[ 2075
104

, 2075
104

].

5.2 Proofs

Proof of (27) Suppose g = [y, λ; y] ∈ Bk(y; y). Let gt = [y, λt ; y] for t ≤ �. Since

g = ê ∗ ĝ, we have λ = ∑
t≤�

1
�
λt . Since λt ∈ Πk−1 ⊆ Πk for t ≤ �, we have

υk−1(gt ) = λtυ0(y)+ (1−λt )υ0(y) = υk(gt ) by (17). Since υk(g) = λυ0(y)+ (1−
λ)υ0(y) = (

∑
t≤�

1
�
λt )υ0(y) + (1 − (

∑
t≤�

1
�
λt )υ0(y) = ∑

t≤�
1
�
(λtυ0(y) + (1 −

λt )υ0(y)) = ∑
t≤�

1
�
uk−1(gt ) = ê ∗ uk−1(ĝ). ��

Proof of Theorem 5.1 Since (28) and (29 ) are dual, we consider only (28). Let f ∈
Bk(y; y) ∪ X . Then, by e0, uk( f ) = υk( f ). Consider the case where f ∈ Lk(X) −
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Bk(y; y) ∪ X . We prove uk( f ) = min{̂e ∗ uk−1( f̂ ) : f̂ is a decomposition of f }.
By e2, there is a decomposition f̂ of f such that uk( f ) = ê ∗ uk−1( f̂ ). Let f̂ ′ be
any decomposition of f . We show ê ∗ uk−1( f̂ ′) ≥ ê ∗ uk−1( f̂ ). By e3, for each
t ≤ �, there is a benchmark lottery g′

t ∈ Bk−1(y; y) such that uk−1( f ′
t ) = uk−1(g′

t ).

Let ĝ′ = (g′
1, . . . , g

′
�), which is a decomposition of g′ := ê ∗ ĝ′. By applying e1 to

uk−1(ĝ′) = uk−1( f̂ ′), we obtain uk(g′) ≥ uk( f ). Since ê ∗ uk−1(ĝ′) = uk(g′) by
(27), we have ê ∗ uk−1( f̂ ′) = ê ∗ uk−1(ĝ′) = uk(g′) ≥ uk( f ) = ê ∗ uk−1( f̂ ).

For the latter assertion, we construct inductively 〈uk〉k<ρ+1 from k = 0 by (28)
and (29). It is easy to see that 〈uk〉k<ρ+1 satisfies e0 to e2. We need an inductive proof
for e3. ��
Proof of Theorem 5.2 (If ): Let 〈uk〉k<ρ+1 be the extended utility stream satisfying e0
to e2 (and/or e3). Let �k be the binary relation over Lk(X) defined by (30) and let
its restriction to Dk be �k . Since υk the restriction of uk to Bk(y; y) ∪ X for each
k < ρ + 1, 〈υk〉k<ρ+1 satisfies b0 to b3 by Theorem 3.1 . Thus, we have E0. It
remains to show that 〈�k〉k<ρ+1 satisfies E1 to E2 (and/or E3). Since the relation
≥I over {uk( f ) : f ∈ Lk(X)} is transitive, E2 is satisfied.

Consider E1. Let f̂ ∈ Lk−1(X)� and ĝ ∈ Bk−1(y; y)� be decompositions of f ∈
Lk(X) and g ∈ Bk(y; y). Suppose that f̂ �k−1 ĝ, which implies uk−1( f̂ ) ≥I uk−1(ĝ)
by (30).

Suppose f ∈ Bk(y; y)∪X . Let f = x ∈ X . Then f̂ = (x, . . . x). Then,υk−1(x) ≥
uk−1(gt ) for all t ≤ �, which, b3, implies υk(x) ≥ υk−1(x) ≥ uk−1(gt ) for all t ≤ �.
Thus, υk(x) ≥ ∑

t≤�
1
�
uk−1(gt ) = ê∗uk−1(ĝ). By (27), ê∗uk−1(ĝ) = uk(g). Hence,

by b0, uk(x) = υk(x) ≥ uk(g). Thus, f �k g by (30).
Suppose f ∈ Bk(y; y). By (27), uk( f ) = ê ∗ uk−1( f̂ ), and again, by (27), ê ∗

uk−1( f̂ ) = uk(g). Since uk−1(gt ) ≥ uk−1(gt ) for t ≤ �, we have uk( f ) ≥ uk(g).
Thus, f �k g by (30).

Finally, consider the case f ∈ Lk(X) − Bk(y; y) ∪ X . Thus, ê ∗ uk−1( f̂ ) ≥
ê ∗ uk−1(ĝ) = uk−1(̂e ∗ ĝ) = uk(g) by (27). By e1, we have uk( f ) ≥ ê ∗ uk−1( f̂ ) ≥
uk(g). Hence, uk( f ) ≥I uk(g); thus, f �k g by (30). The other case of ĝ �k−1 f̂ is
symmetric.

To prove Axiom E3, we prove the following assertion. Then, we obtain Axiom E3
from E3(〈uk〉k<ρ+1) by translating it in terms of the preference stream 〈�k〉k<ρ+1.

E3 (〈uk〉k<ρ+1): Let k < ρ + 1 and f , g ∈ Lk(X) with uk( f ) ≥I uk(g). There is an
h ∈ Bk(y; y) such that uk( f ) ≥I uk(h) ≥I uk(g). When k ≥ 1, υk( f ) ≥I υk(h)

or f , h have decompositions f̂ , ĥ with uk−1( f̂ ) ≥I uk−1(̂h) , and the same holds
for h, g.

Since uk( f ) ≥ uk(g), by e3∗, there is an h ∈ Bk(y; y) such that uk( f ) = uk(h).
Hence, uk( f ) = uk(h) ≥ uk(g), i.e., uk( f ) ≥I uk(h) ≥I uk(g).

Let k ≥ 1. Let f ∈ Bk(y; y) ∪ X . By e0, uk( f ) = υk( f ) and uk(h) = υk(h)

since h ∈ Bk(y; y). Hence, uk( f ) ≥I uk(h) implies υk( f ) ≥I υk(h). Now, sup-

pose f , g /∈ Bk(y; y) ∪ X . We show that f , h have decompositions f̂ , ĥ such

that uk−1( f̂ ) ≥I uk−1(̂h). By e2, there is a decomposition of f̂ of f such that
ê∗uk−1( f̂ ) = uk( f ). By e3, there are λ f1 , . . . , λ f� inΠk such that uk−1( ft ) = λ ft for
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t ≤ �. Let ht = [y, λ ft ; y] for t ≤ � and let ĥ = (h1, . . . , h�). Since f̂ ∈ Lk−1(X)�−1,

ĥ = (h1, . . . , h�) belongs to Lk−1(X)�−1. Since λ f = uk( f ) = ê ∗ uk−1( f̂ ) =∑ 1
�

· λ ft , we have h = [y, λ f ; y] = ∑
t
1
�

∗ ht . Hence, ĥ is a decomposition of h

with uk−1( f̂ ) = uk−1(̂h). This implies uk−1( f̂ ) ≥I uk−1(̂h).

(Only-if ): Suppose that 〈�k〉k<ρ+1 satisfies Axioms E0 to E2 (and/or E3) with
its base preference stream 〈�k〉k<ρ+1. Then, 〈�k〉k<ρ+1 satisfies B0 to B3 by E0.
Although this part can be proved using Theorem 5.1, the following direct proof is
clearer.

We define 〈uk〉k<ρ+1 = 〈[uk, uk]〉k<ρ+1 as follows: for each f ∈ Lk(X),

uk( f ) = min{λ ∈ Πk : [y, λ; y] �k f };
uk( f ) = max{λ ∈ Πk : f �k [y, λ; y]}. (36)

By Lemma 4.1.(2), these are well defined. Let f , g ∈ Lk(X), uk( f ) := λ f , and

uk(g) := λg . Then, uk( f ) ≥I uk(g) if and only if λ f ≥ λg . It holds that uk( f ) ≥I

uk(g) if and only if f �k g; indeed, if uk( f ) ≥I uk(g), then f �k [y, λ f ; y] �k

[y, λg; y] �k g, i.e., f �k g by E2, and conversely, if f �k g, then uk( f ) ≥ uk(g)
by (36).

When f ∈ Bk(y; y), we have uk( f ) = λ f = υk( f ). Thus, e0 holds. Consider e1
to e2(and e3).

e1 : Let f̂ ∈ Lk−1(X)�. By (36) for k − 1, uk−1( ft ) is written as λt ∈ Πk−1
for all t = 1, . . . , �. Let λ̂ = (λ1, . . . , λ�). Then, ê ∗ uk−1( f̂ ) = ê ∗ λ̂ ∈ Πk . By
(36 ) for k, it holds that ê ∗ uk−1( f̂ ) = ê ∗ λ̂ ≥ uk (̂e ∗ f̂ ). The other assertion that
uk (̂e ∗ f̂ ) ≥ ê ∗ uk−1( f̂ ) is similarly proved.

e2 : Let f ∈ Lk(X) − Bk(y; y) ∪ X . We prove that ê ∗ uk−1( f̂ ) = uk( f ) for some

decomposition f̂ of f . The other half can be proved in the dual manner. By (36), we
have uk( f ) = λ f ∈ Πk . Let g := [y, λ f ; y]. By (36) and B1, g is the least preferred
among g′ ∈ Bk(y; y) with g′ �k f , that is,

g′ �k g for any g′ ∈ Bk(y; y) with g′ �k f . (37)

Consider the preference g �k f . By (23), there are lotteries g = h0, h1, . . . , hm =
f such that each (hl , hl+1) either belongs to �k or is derived by E1. Since hm =
f ∈ Lk(X) − Bk(y; y) ∪ X , the preference hm−1 �k hm = f is derived by E1,
which implies hm−1 ∈ Bk(y; y). Since g = h0 �k hm−1 and g ∈ Bk(y; y), we
have λ f = λ0 ≥ λm−1. However, since λ f is given by the minimization (36), it is
impossible that λ f = λ0 > λm−1. Thus, λ0 = λ f = λm−1, i.e., h0 = g = hm−1.

Since h0 = g = hm−1 �k f is derived byE1, there are decompositions ĝ, f̂ of g, f
such that ĝ �k−1 f̂ and g = ê∗ĝ �k ê∗ f̂ = f . Then, by (36), each component ft of f̂
has g′

t ∈ Bk−1(y; y) such that ut−1( ft ) = ut−1(g′
t ) = λg′

t
. Since gt �k−1 ft , we have

gt �k−1 g′
t by (36), which implies uk−1(gt ) = λgt ≥ λg′

t
= ut−1(g′

t ) = ut−1( ft ).
Since this holds for all t ≤ �, we have

uk(g) = ê ∗ uk−1(ĝ) ≥ ê ∗ uk−1(ĝ′) = ê ∗ uk−1( f̂ ). (38)
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On the other hand, each g′
t satisfies g′

t �k−1 ft for all t ≤ � by definition. By
E1, ê ∗ ĝ′ �k ê ∗ f̂ = f . By (37), ê ∗ ĝ′ �k g. This implies ê ∗ uk−1(ĝ′) =
uk (̂e ∗ ĝ′) ≥ uk(g), which implies that all the terms in ( 38) are identical. Thus,
uk( f ) = uk(g) = ê ∗ uk−1( f̂ ).

e3 : By (36), uk(x) = λ ∈ Πk and uk(x) = λ′ ∈ Πk for some λ and λ′ in Πk .
Hence, uk(x) = uk([y, λ; y]) and uk(x) = uk([y, λ′; y]). This is the conclusion of
e3. ��

6 Measurability, comparability, and the EU hypothesis

Here, we study the concepts of measurable and non-measurable lotteries. Compara-
bility and the EU hypothesis hold for measurable lotteries, while incomparability is
intimately related to non-measurable lotteries. We assume that 〈�k〉k<ρ+1 satisfies E0
to E3, relative to a base preference stream 〈�k〉k<ρ+1 satisfying B0 to B3.

6.1 Measurable and non-measurable lotteries

We define the set Mk for k < ρ + 1 by

Mk = { f ∈ Lk(X) : f ∼k g for some g ∈ Bk(y; y)}. (39)

Each f ∈ Mk is precisely measured by the benchmark scale Bk(y; y), while mea-
surement of f ∈ Lk(X) − Mk contains some indeterminacy. We call f ∈ Mk

measurable and f ∈ Lk(X) − Mk non-measurable. Here, we study measurability
and non-measurability. We use the fact that f ∈ Mk is equivalent to that f ∼k g for
some g ∈ Mk .

Under our axioms, it holds that

for each f ∈ Mk, the probability weight λ with f ∼k [y, λ; y] is unique, (40)

which we denote by λ f . In Mk , no incomparabilities are observed; that is, if f , g ∈
Mk with λ f ≥ λg , then f ∼k [y, λ f ; y] �k [y, λg; y] ∼k g. It also holds by
Lemma 4.2.(1) that

Mk ⊆ Mk+1 for all k < ρ + 1. (41)

To analyze the structure of Mk , we define Yk = Mk ∩ X for all k < ρ + 1. Then,
Yk ⊆ Yk+1 for all k < ρ + 1. It follows from E0∗ that y ∈ Yk if and only if y
and [y, λy; y] are indifferent with respect to �k; pure alternative y ∈ Yk is precisely
measured by the benchmark scale Bk(y; y). Measurability for a pure alternative is a
property of the base preference relation �k . In Example 3.1, Y0 = Y1 = {y, y} and
Y2 = X = {y, y, y} in A and B of Fig. 2, but in C, Yk = {y, y} even when ρ = ∞,
i.e., y becomes never measurable.

Let Y = ∪k<∞Yk . Each lottery f ∈ L∞(Y ) = ∪k<∞Lk(Y ) = ∪k<∞Lk(Yk)
involves two types of depths, i.e., the measurement depth δ(λy) of y ∈ Yk with
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f (y) > 0 and the depth δ( f (y)) of the probability value f (y). The sum of these two
types gives a criterion for measurability, which is given in Theorem 6.1. Before it, we
need Lemma 6.1. The first implies that any lottery f ∈ Mk has a support in Yk , which
is the second.

Lemma 6.1 (1):If f ∈ Mk, then f (y) = 0 or 1 for all y ∈ Yk −Yk−1, where Y−1 = ∅,
and f (y) = 0 for all y ∈ X − Yk.

(2): Mk ⊆ Lk(Yk) for all k < ρ + 1.

For any f ∈ L∞(X), we define k f by

k f =
{
max{δ(λy) + δ( f (y)) : f (y) > 0} if f ∈ L∞(Y )

∞ if f /∈ L∞(Y ).
(42)

That is, if f ∈ L∞(Y ), then k f is the maximum of the sum of δ(λy) and δ( f (y))
over the support of f , and if f ∈ L∞(X) − L∞(Y ), then λy is undefined and k f is
assumed to take the value ∞.

Theorem 6.1 (Measurability criterion). Let k < ρ + 1 and f ∈ L∞(X). Then,

f ∈ Mk if and only if k f ≤ k. (43)

A lottery f ∈ L∞(X) − L∞(Y ) is neither measurable because of Lemma 6.1.(2),
nor the right-hand side of (43) holds. When f ∈ L∞(Y ), (43) can be read in two
ways. One is to fix a lottery f ∈ L∞(Y ) but to change (increase) k. Lottery f
becomes measurable when k is large enough. For example, when f = 25

102
y ∗ 75

102
y

and y ∼2 [y, 83
102

; y], we have k f = δ( 83
102

) + δ( 25
102

) = 4; by (43), f ∈ Mk if and
only if 4 ≤ k. The other reading is to fix a k and to change f . If δ(λy) > 0 for some
y ∈ Yk , there is an f ∈ Lk(Yk) such that δ(λy) + δ( f (y)) > k; so f /∈ Mk by (43).
Thus, non-measurable lotteries exist as long as {y, y} � Yk .

Incomparability��k and indifference∼k may appear similar: indeed, Shafer (1986),
p. 469, discussed whether ��k and ∼k could be defined together and pointed out a
difficulty from the constructive point of view. Theorem 6.2 gives a clear distinction
between ∼k and ��k . By E2, ∼k is transitive, but ��k is not; indeed, we have distinct
f , h ∈ Mk with f ∼k h, but by Theorem 6.2, for any g /∈ Mk , f ��kg and g��kh.
Also, reflexivity holds for the measurable domain Mk but not at all for Lk(X) − Mk .

Theorem 6.2 Let f , g ∈ Lk(X).

(1) (No indifferences outside Mk): If f /∈ Mk, then f �k g.

(2) (Reflexivity): f ∼k f if and only if f ∈ Mk.

6.2 EU hypothesis for measurable lotteries

Our theory is closely related to the expected utility hypothesis. It is explicitly assumed
for the benchmark scale, i.e., B1 and b1. For the other part, it is only partially observed
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by looking at conditions e1, e2 for 〈uk〉k<ρ+1 as well as Axiom E1 for preference
relations 〈�k〉k<ρ+1. In fact, the EU hypothesis holds for the measurable domain Mk ,
which is now shown.

Let 〈uk〉k<ρ+1 be the extended utility stream satisfying e0 to e3, given Theorem 5.2,
relative to a base utility stream 〈υk〉k<ρ+1. It follows from Theorem 6.2.(2) and (30)
that for any f ∈ Lk(X),

uk( f ) = uk( f ) if and only if f ∈ Mk . (44)

Following our convention, we drop the upper and lower bars and write uk( f ) for
f ∈ Mk . In fact, uk( f ) is expressed as the expected utility value of the base utility
function υk; recall υk = υk = υk over Yk because Yk = Mk ∩ X .

Theorem 6.3 (EUhypothesis in themeasurable domain). For each k < ρ+1, uk( f ) =
E f (υk) for all f ∈ Mk.

Thus, the EU hypothesis holds for measurable lotteries, which gives a simple
method of calculation of uk( f ). On the other hand, by Theorem 6.2.(2) and (30),
it holds that

uk( f ) > uk( f ) if and only if f ∈ Lk(X) − Mk . (45)

Thus, the EU hypothesis does not hold for non-measurable lotteries.

6.3 Proofs

Proof of Lemma 6.1 As mentioned, the latter assertion of (1) implies that any f ∈ Mk

has a support in Yk , which is (2). We show (1) by induction on k ≥ 0. Let k = 0. Since
Y0 = M0, we have f ∈ M0 = Y0 = L0(Y0), which implies (1) for k = 0. Suppose
the induction hypothesis that (1) hold for k. Now, we take any f ∈ Mk+1.

Suppose, on the contrary, that 0 < f (yo) < 1 for some yo ∈ Yk+1 − Yk or
0 < f (yo) ≤ 1 for some yo ∈ X − Yk+1. If f (yo) = 1 and yo ∈ X − Yk+1,
there is no g ∈ Bk+1(y; y) with f ∼k+1 g, a contradiction to f ∈ Mk+1. Hence,
0 < f (yo) < 1. By f ∈ Mk+1, we have a g ∈ Bk+1(y; y) with f ∼k+1 g. Since
0 < f (yo) < 1, it holds that f ∈ Lk+1(X) − X . Hence, E3 is applied to f ∼k+1 g
with the middle h = g ∈ Bk+1(y; y); we have decompositions f̂ , ĝ of f , g with

f̂ �k ĝ. If one preference was strict, then f �k+1 g by E1∗, which is impossible;
hence, f̂ ∼k ĝ, which implies ft ∈ Mk for each t . Applying the induction hypothesis
to ft , we have f̂ ∈ Lk(Yk)�, and by E1, f = ê ∗ f̂ ∈ Lk+1(Yk). This is impossible
since 0 < f (yo) < 1 and (yo ∈ Yk+1 − Yk or yo ∈ X − Yk+1). Hence, f (y) = 0 or 1
if y ∈ Yk+1 − Yk and f (y) = 0 if y ∈ X − Yk+1. Now, we have (1) for k + 1. ��
Proof of Theorem 6.1 By (42) and Lemma 6.1.(2), it suffices to prove (43) for any f ∈
L∞(Y ). We prove (43) by induction on k ≥ 0. Let k = 0. Since Y0 = L0(Y0) = M0,
it holds that δ(λ f ) = δ( f (y)) = 0 for all f ∈ L0(Y0) = M0. Thus, (43) holds for
k = 0. Now, suppose the induction hypothesis that (43) holds for k. We prove (43) for
k + 1. In the following, let f ∈ Lk+1(Y ) with δ( f ) > 0.
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Suppose k f ≤ k+1.By the latter assertionofLemma2.1, there is a decomposition f̂
of f so that δ( ft (x)) < δ( f (x)) for all x with δ( f (x)) > 0.Hence, k ft = max{δ(λx )+
δ( ft (x)) : δ( ft (x)) > 0} < max{δ(λx ) + δ( f (x)) : δ( f (x)) > 0} ≤ k f for all t;
so, k ft < k f ≤ k + 1, which implies k ft ≤ k for all t . By the induction hypothesis,
it holds that ft ∈ Mk for all t . Thus, for each t , we have gt ∈ Bk(y, y) such that

ft ∼k gt . By E1, f = ê ∗ f̂ ∼k+1 ê ∗ ĝ ∈ Bk+1(y; y), which implies f ∈ Mk+1.
Consider the converse. Let f ∈ Mk+1. If f ∈ Mk , we have k f ≤ k < k + 1 by the

induction hypothesis. Consider the case f ∈ Mk+1 − Mk . Then, f ∼k+1 g for some
g ∈ Bk+1(y; y). By E3, there are decompositions f̂ , ĝ of f , g such that f̂ ∼k ĝ.

Thus, f̂ ∈ (Mk)
� ⊆ Lk(Yk)� by Lemma 6.1.(2). By the induction hypothesis, we

have δ(λy) + δ( ft (y)) ≤ k ft ≤ k for all y ∈ Yk with ft (y) > 0 and t ≤ �. Since
f = ê∗ f̂ , it holds that δ( f (y)) ≤ maxt≤� δ( ft (y)) + 1 for all y ∈ Yk with f (y) > 0.
Thus, for y ∈ Yk with f (y) > 0, δ(λy) + δ( f (y)) ≤ δ(λy) +maxt≤� δ( ft (y)) + 1 ≤
maxt≤� k ft + 1 ≤ k + 1. Since δ( f (y)) = 0 for y ∈ Yk+1 − Yk by Lemma 6.1.(1), we
have k f = max{δ(λy) + δ( f (y)) : f (y) > 0} ≤ k + 1. This means k f ≤ k + 1. ��
Proof of Theorem 6.2 (1): Let f /∈ Mk . Suppose f ∼k g. By E3, f �k h �k g for
some h ∈ Bk(y; y). By E2 (transitivity), f ∼k h ∼k g. This is impossible since
f /∈ Mk . Hence, f �k g.

(2): The if part is by (39) and E2. The only-if part (contrapositive) follows from
(1). ��
Proof of Theorem 6.3 Let f ∈ Mk . When f ∈ Bk(y; y)∪ X , we have, by e0, uk( f ) =
uk( f ) = υk( f ); if f = [y, λ; y] ∈ Bk(y; y), then, by b1, υk( f ) = λυk(y) + (1 −
λ)υk(y) = E f (υk); and if f = x ∈ X , then υk( f ) = 1 × υk(x) = E f (υk). Now, let
f /∈ Bk(y; y) ∪ X . We show the assertion by induction on k < ρ + 1. The case k = 0
is included in the case f ∈ Bk(y; y) ∪ X , k < ρ + 1. Suppose that the assertion holds
for k − 1. Let f ∈ Mk . Then, δ( f ) > 0, and by Lemma 6.1, x ∈ Yk−1; so, υk(x) =
υk−1(x). Since f ∈ Mk , we have f ∼k h for some h ∈ Bk(y; y). By (23), this f ∼k h

is derived by E1 from the decompositions f̂ , ĥ of f , h. By E1∗, it holds that f̂ ∼k−1 ĥ.
Hence, f̂ ∈ (Mk−1)

�. By the induction hypothesis, we have uk−1( ft ) = uk−1( ft ) =
E ft (υk−1) for t ≤ �. By e1, ê∗uk−1( f̂ ) ≥ uk( f ) ≥ uk( f ) ≥ ê∗uk−1( f̂ ); thus, these
are all equal. Now, we have uk( f ) = ê ∗ uk−1( f̂ ) = ∑

t
1
�
E ft (υk−1) = E f (υk). ��

7 Toward the classical EU theory

We have focused on our theory from the constructive point of view. In particular,
Theorem 4.1 reflects this constructiveness, which is extracted by Axiom E3 as well
as condition b3. These are constraints on depths and interact with a finite cognitive
bound. When we delete this bound, we go toward the classical EU theory. We have
still two steps. The first step is to go to the case ρ = ∞, where the EU hypothesis
holds in the exact form when the set of pure alternatives is restricted to Y = ∪k<∞Yk ,
where Yk = Mk ∩ X for k < ∞. The second is to allow all real number probabilities
for lotteries, i.e., we take lotteries in L [0,1](Y ). There, the classical EU theory is a
unique extension of our theory, while it contains highly non-constructive components.
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7.1 Two steps to the classical EU theory

Throughout this section, we assume ρ = ∞. Let 〈�k〉k<∞ be a preference stream
satisfying E0 to E2, relative to a base preference stream 〈�k〉k<∞ satisfying B0 to
B3. Also, let 〈υk〉k<∞ be a base utility stream satisfying (19) of Theorem 3.1, where
〈υk〉k<∞ satisfies conditions b0 to b3. In this section, Axiom E3 and condition e3 are
unnecessary.

We assume that for any x ∈ X , there is a k such that for any k′ ≥ k,

υk(x) = υk′(x) and υk(x) = υk′(x). (46)

That is, the upper and lower evaluations of x become constant after some k.9

Now, the limit preference relation of 〈�k〉k<∞ is defined to be �∞= ∪k<∞ �k;
that is, the decision maker can go to any layer k for his preference comparisons. In
parallel, the limit utility function of 〈υk〉k<∞ is defined by, for each x ∈ X ,

υ∞(x) = lim
k→∞ υk(x) and υ∞(x) = lim

k→∞ υk(x). (47)

By (46), for each x ∈ X , there is a kx such that υk(x) and υk(x) are constant for
k ≥ kx . Also, we define u∞( f ) = limk→∞ uk( f ) = limk→∞[uk( f ), uk( f )] for any
f ∈ L∞(X).
We have the following theorem.

Theorem 7.1 (EU hypothesis without cognitive bounds).

(1): For all f ∈ L∞(X), u∞( f ) = E f (υ∞).

(2): For all f , g ∈ L∞(X), f �∞ g if and only if E f (υ∞) ≥I Eg(υ∞).

This theorem corresponds to Lemma 4.1 for ρ < ∞. Under (46), the limit prefer-
ence relation �∞ is represented by the expectation of the vector-valued utility υ∞.
Thus, without the cognitive restriction, the EU hypothesis holds for the limit relation
�∞ even without completeness. Here, focusing on the limit utility function υ∞ with
(46), condition e3 becomes unnecessary and so does E3.

Let us restrict the set of pure alternatives X to Y = ∪k<ρ+1Yk . For each x ∈ Y , we
can write υ∞(x) = υ∞(x) = υ∞(x) for x ∈ Y . Theorem 7.1.(2) is written as: for all
f , g ∈ L∞(Y ),

f �∞ g if and only if E f (υ∞) ≥ Eg(υ∞). (48)

This is exactly the EU hypothesis in the classical sense.
The final step is to jump to L [0,1](Y ) and to extend the relation�∞ to L [0,1](Y ). The

extension is uniquely determined and it is a relation in the classical theory. However,
this extension involves non-constructive components; L [0,1](Y ) is uncountable but
L∞(Y ) is countable. First, we have the following lemma.

9 Note that this can be expressed in terms of 〈�k 〉k<∞.
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Lemma 7.1 L∞(Y ) is a dense subset of L [0,1](Y ).
Now, we define a binary relation �E over L [0,1](Y ) by: for any f , g ∈ L [0,1](Y ),

f �E g if and only if E f (υ∞) ≥ Eg(υ∞). (49)

We have the following theorem.

Theorem 7.2 (Unique extension). The relation �E defined by (49) is a unique exten-
sion of �∞ to L [0,1](Y ) with NM0 to NM2; that is,
(1): for any f , g ∈ L∞(Y ), f �∞ g if and only if f �E g.
(2): �E satisfies NM0 to NM2.

This theorem is proved by the denseness of L∞(Y ) in L [0,1](Y ) and the continuity
of E f (υ∞) with respect to f relative to point-wise convergence, where E f (υ∞) is
continuous iff for any sequence { f ν} in L [0,1](Y ) and f ∈ L [0,1](Y ), if f ν(y) → f (y)
for each y ∈ Y , then limν→∞ E f ν (υ∞) = E f (υ∞). The proof of the theorem may
appear to be constructive, but the last extension step to �E is non-constructive, since
probabilities newly involved in f ∈ L [0,1](Y ) − L∞(Y ) may be given only in a
non-constructive manner.10

7.2 Proofs

Proof of Theorem 7.1 (1):We show only u∞( f ) = E f (υ∞) and the other is parallel.
Take an f ∈ L∞(X), i.e., f ∈ Lk′(X) for some k′. Let S be the support of f , which
is a finite set. We choose a k ≥ k′ by (46) such that for all x ∈ S, υk′′(x) = υk(x) for
all k′′ ≥ k. It holds that for l = 0, . . .,

uk+l(h) = Eh(υk+l) for any h ∈ Ll(S). (50)

Once this is proved, this implies u∞( f ) = E f (υ∞); indeed, both sides become
constant for large l; so, we can choose one large k′′ such that uk′′(h) = Eh(υk′′) for
any h ∈ Lk′′(S). The above chosen f belongs to Lk′′(S). Hence, u∞( f ) = E f (υ∞).

Now, we show (50) by induction on l = 0, . . . Let l = 0. Then, any h ∈ L0(S) is
expressed as h = x for some x ∈ S. By e0, uk(h) = υk(x) = Eh(υk); so, (50) holds
for l = 0. Suppose that (50 ) holds for l. Consider it for l + 1. Take h ∈ Ll+1(S). By
e2, there is a decomposition ĥ of h such that uk+l+1(h) = ê ∗ uk+l (̂h). Since each ht
belongs to Ll(X), we have, by the induction hypothesis, uk+l(ht ) = Eht (υl). Thus,
uk+l+1(h) = ê ∗ uk+l (̂h) = ∑�

t=1
1
�

∗ Eht (υl) = Eh(υl). Since υl+1(x) = υl(x) for
all x ∈ S. Thus, we have uk+l+1(̂h) = Eh(υl+1).

(2): By Theorem 5.2, for each k, we have some uk representing �k . Let f , g ∈
L∞(X). By definitions, f �∞ g if and only if f �k g for large k. Thus, uk( f ) ≥I

uk(g), which implies u∞( f ) ≥I u∞(g). Tracing this argument back, we have the

10 We avoid the use of a topology for Axiom NM1. This does not change the content of classical EU theory
as long as the set of lotteries is given as L[0,1](Y ). However, NM1 allows to restrict it to L[0,1]∩Q(Y ).
In this case, the extension result given in Theorem 7.2 is regarded as approximately constructive in the
theoretical sense.
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converse that u∞( f ) ≥I u∞(g) implies f �∞ g. By (1) of this theorem, E f (υ∞) =
u∞( f ) ≥I u∞(g) = Eg(υ∞). Hence, f �∞ g if and only if E f (υ∞) ≥I Eg(υ∞).
��
Proof of Lemma 7.1 Take any f ∈ L [0,1](Y ). This f has a support S = {y0, y1, . . . , ym}
in Y with f (yt ) > 0 for t ≤ m. We construct a sequence {gν}∞ν=νo

so that gν ∈ L∞(Y )

for ν ≥ ν0, and for each y ∈ Y , gν(y) → f (y) as ν → ∞. When m = 0, let gν = f
for all ν ≥ 0. Now, we assume m ≥ 1.

For any natural number ν, let zν,t = max{πt ∈ Πν : πt ≤ f (yt )} for all t ≤ m.
There is a νo such that for all ν ≥ νo, 1

�ν ≤ zν,t ≤ 1− 1
�ν for all t = 0, . . . ,m − 1 and

1
�ν ≤ 1 − ∑

t ′<m zν,t ′ ≤ 1 − m
�ν . Also, we define uν,0, . . . , uν,m by

uν,t =
{

zν,t if t < m
1 − ∑

t ′<m zν,t ′ if t = m.

Then,
∑

t≤m uν,t = 1 and uν,t ∈ Πν for all t ≤ m − 1. Since 1
�ν ≤ 1− ∑

t ′<m zν,t ′ =
uν,m ≤ 1 − m

�ν , we have uν,m ∈ Πν .
We define {gν}∞ν=νo

by

gν(y) =
{

0 if y ∈ Y − S
uν,t if y = yt ∈ S.

Each gν belongs to Lν(Y ). For t ≤ m−1, since gν(yt ) = uν,t ≤ f (yt ) < uν,t + 1
�ν =

gν(yt ) + 1
�ν for all ν ≥ νo, we have limν→∞ gν(yt ) = f (yt ). Since gν(ym) − m

�ν =
1−∑

t ′<m gν(yt ′)− m
�ν ≤ 1−∑

t ′<m f (yt ′) = f (ym) ≤ 1−∑
t ′<m gν(yt ′) = gν(ym)

for all ν ≥ νo. Thus, limν→∞ gν(ym) = f (ym). ��
Proof of Theorem 7.2 (1): Let f , g ∈ L∞(Y ). Then, if k is large enough, then f , g ∈
Lk(Yk) and υk(x) = υ∞(x) for all x ∈ Yk . Now, suppose f �∞ g. Then f �k g,
equivalently, E f (υ∞) ≥ Eg(υ∞), which implies f �E g. Conversely, if f �E g,
then E f (υ∞) ≥ Eg(υ∞), equivalently, f �k g for a large enough k. Thus, f �∞ g.

(2): The relation �E is a complete preordering, i.e., it satisfies NM0. Let us see
NM1; let f �E h �E g. Then, E f (υ∞) ≥ Eh(υ∞) ≥ Eg(υ∞). Choose a λ ∈
[0, 1] so that Eh(υ∞) = λE f (υ∞) + (1 − λ)Eg(υ∞). Then, Eλ f +(1−λ)g(υ∞) =
λEh(υ∞) + (1 − λ)Eg(υ∞) = Eh(υ∞). Finally, we can see NM2-ID1: let f �E g,
i.e., E f (υ∞) ≥ Eg(υ∞). Hence, for any λ ∈ [0, 1] and h ∈ L [0,1](Y ), we have
Eλ f +(1−λ)h(υ∞) = λE f (υ∞) + (1 − λ)Eh(υ∞) ≥ λEg(υ∞) + (1 − λ)Eh(υ∞) =
Eλg+(1−λ)h(υ∞), i.e., λ f + (1 − λ)h �E λg + (1 − λ)h. Similarly, we can verify
NM2-ID2.

Finally, we show that �E is uniquely determined. Suppose that �′
E is an extension

of �∞ in the sense of (1) and satisfies NM0 to NM2. Then, for any f , g ∈ L∞(Y ),
f �E g if and only if f �∞ g, and by the supposition, f �′∞ g if and only
if E f (υ∞) ≥ Eg(υ∞). Hence, for any f , g ∈ L∞(Y ), f �′

E g if and only if
E f (υ∞) ≥ Eg(υ∞).

Now, let f , g ∈ L [0,1](Y ) with f �′
E g. By Lemma 7.1, there are sequences { f ν}

and {gν} in L∞(Y ) such that they point-wise converge to f and g. As stated above,
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Eh(υ∞) is continuous with respect to h. Then, E f (υ∞) = limν→∞ E f ν (υ∞) ≥
limν→∞ Egν (υ∞) = Eg(υ∞). We have shown that that for any f , g ∈ L [0,1](Y ),
E f (υ∞) ≥ Eg(υ∞) if and only if f �′

E g. Thus, f �E g if and only if f �′
E g. ��

8 An application to a Kahneman–Tversky Example

We apply our theory to an experimental result reported in Kahneman and Tversky
(1979). The experimental instance is formulated as Examples 3.1 and 5.1 , and the
relevant lotteries are c = [y, 2

10 ; y] and d = 25
100 y ∗ 75

100 y, which are incomparable
for people with ρ = 2. It is the key how the observed behaviors are connected to the
incomparabilities predicted in our theory. First, we look at the Kahneman–Tversky
example, and then we make a certain postulate to have such a connection.

In the Kahneman–Tversky example, 95 subjects were asked to choose one from
lotteries a and b, and one from c and d. In the first problem, 20% chose a, and 80%
chose b. In the second, 65% chose c; the remaining chose d.

a =
[
4000, 80

102
; 0

]
(20%) vs. b = 3000 with probability 1 (80%)

c =
[
4000, 20

102
; 0

]
(65%) vs. d = [3000, 25

102
; 0] (35%).

The case of modal choices, denoted by b ∧ c, contradicts the classical EU theory.
Indeed, these choices are expressed in terms of expected utilities as:

0.80u(4000) + 0.20u(0) < u(3000)

0.20u(4000) + 0.80u(0) > 0.25u(3000) + 0.75u(0). (51)

Normalizing u(·) with u(0) = 0, and multiplying 4 to the second inequality, we
have the opposite inequality of the first, a contradiction. The other case violating the
classical EU theory is a ∧ d. It predicts the outcomes a ∧ c and b ∧ d, depending
upon the value u(3000). This is a variant of “common ratio effect” discussed in the
literature, which is briefly discussed in Remark 8.1.

In Kahneman and Tversky (1979), no more information is mentioned other than
the above percentages. Consider three possible distributions of the answers in terms
of percentages over the four cases. In Table 3, the first, second, or third entry in each
cell is the percentage derived by assuming 65%, 52%, or 45% for b ∧ c. The first
65% is the maximum possibility for b ∧ c, which leads to 0% for a ∧ c, and these
determine the 20% for a ∧ d and 15% for b ∧ d. The second entries are based on the
assumption that the choices of b and c are stochastically independent, for example,
52 = (0.80×0.65)×100 for b∧c. In the third entries, 45% is theminimum possibility
for b∧c. We interpret this table as meaning that each cell was observed at a significant
level.

Let y = 4000, y = 0, y = b = 3000, and ρ ≥ 2. Consider two cases A:

υ2(y) = u2(y) = [ 77
102

, 77
102

] and B: υ2(y) = u2(y) = [ 83
102

, 83
102

] in Example 3.1, and

recall that u2(a) = u2([y, 80
102

; y]) = [ 80
102

, 80
102

]. Our theory predicts the choice a (or
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Table 3 Three possible distributions

c : 65% d : 35%
a : 20% a ∧ c : EU: 0//13//20 a ∧ d : paradox: 20//7//0

b : 80% b ∧ c : paradox: 65//52//45 b ∧ d : EU: 15//28//35

b) in case A (B), independent of ρ. We assume that the distribution of subjects over
A and B is the same as that given in Table 3, i.e.,

A : B = 20% : 80%. (52)

We calculate the distribution of choices c and d based upon (52) and the distribution
of ρ.

Comparisons between c and d depend upon ρ. In case ρ ≥ 4, it follows from the
calculation results in Example 5.1 that in case A, c = [y, 2

10 ; y] �4 [y, 1925
104

; y] ∼4

[y, 25
102

; y] = d; so c is chosen, and in case B, d = [y, 25
10 ; y] ∼4 [y, 2075

104
; y] �4

[y, 20
102

; y] = c; so d is chosen. In sum, our theory predicts only the diagonal cells
a∧c and b∧d for cases A and B, which are the same as the predictions of the classical
EU theory. Thus, if all subjects have their cognitive bounds ρ ≥ 4, our theory is
inconsistent with the experimental result.

Let ρ = 3. In case A, (34) states u3(c) = [ 2
10 ,

2
10 ] ≥I u3(d) = [ 199

103
, 189
103

], and
in case B, (35) states u3(d) = [ 211

103
, 201
103

] ≥I u3(c) = [ 2
10 ,

2
10 ]. Hence, people with

ρ = 3 behave in the same manner as those with ρ ≥ 4, though d is non-measurable.
In case ρ = 2. (33) states that people in cases A and B show the same base util-

ity evaluation of d, i.e., u2(d) = [ 23
102

, 14
102

]. Since u2(c) = [ 2
10 ,

2
10 ], c and d are

incomparable for these people.
Here, we find a conflict between our theory and the reported experimental result in

that every subject chose one lottery in each of the above choice problems, while our
theory states that c and d are incomparable for people with ρ = 2. The issue is how a
subject behaves for the choice problem when the lotteries are incomparable for him.
In such a situation, a person would typically be forced (e.g., following social customs)
to make a choice.11 Here, we assume the following postulate for choice behavior for
a subject having incomparabilities:

Postulate BH: each subject makes a random choice between c and d, following
the probabilities proportional to the distances from u2(c) to u2(d) and from u2(d) to
u2(c).

Since u2(d) = [ 23
102

, 14
102

] and u2(c) = [ 2
10 ,

2
10 ], the probabilities for the choices c

and d are 2
10 − 14

102
: 23
102

− 2
10 = 2 : 1.

11 It may be difficult for people to show incapability of answering a question if it appears linguistically and
logically clear. The present author knows only one person in our profession to refuse consciously to answer
such a question.Davis andMaschler (1965), Sec.6 reported thatwhen anumber of game theorists/economists
were asked about their predictions of choices in a specific example in a cooperative game theory, Martin
Shubik refused to answer a questionnaire. He mentioned the reason that the specification in terms of
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Table 4 Ratios of choices c
and d

A B

ρ = 2 c : d = 2 : 1 c : d = 2 : 1
ρ ≥ 3 c : d = 1 : 0 c : d = 0 : 1

Table 5 r2 : r+3 = 9 : 1 c : 62% d : 38%
a : 20% a ∧ c : 14 a ∧ d : 6
b : 80% b ∧ c : 48 b ∧ d : 32

Table 6 r2 : r+3 = 8 : 2 c : 55% d : 45%
a : 20% a ∧ c : 12 a ∧ d : 8
b : 80% b ∧ c : 43 b ∧ d : 37

Table 4 summarizes the above calculated results. To see the relationship between
Tables 3 and 4, we specify the distribution of people over ρ = 2, 3, . . . We consider
two distributions of ρ

r2 : r+3 = 9 : 1 and r2 : r+3 = 8 : 2,

where r3+ is the ratio of subjects with ρ ≥ 3. These are adopted based on the idea that
ρ = 3 is already quite precise, and the portion of people with ρ ≥ 3 is already small.

In the case r2 : r+3 = 9 : 1, the percentage of the choices a ∧ c is calculated as
100× 2

10×( 9
10× 2

3+ 1
10×1) = 14%. The corresponding percentages b∧ c is calculated

as 100× 8
10×( 9

10× 2
3+ 2

10×0) = 48%. Thus, we obtain Table 5. Table 6 is based on
r2 : r+3 = 8 : 2.

The results in Tables 5 and 6 are quite compatible with Table 4. Perhaps, we should
admit that this is based upon our specifications of parameter values as well as Postulate
BH. To make stronger assertions, we need to think about more cases of parameter
values and different forms of BH. Nevertheless, this study may lead to observations
on new aspects on bounded rationality that ρ seems quite small.

Remark 8.1 (Common ratio effect). The anomaly mentioned in (51) is often called
the “common ratio effect” (cf. Prelec 1998; van de Kuilen andWakker 2006, and their
references). It refers to the observation such as the fact that the opposite of the second
inequality in (51) is obtained from the first with multiplication of 1/4 = 25/102. In
our theory for case B with ρ = 2, b is strictly preferred to a, but c and d, which
are obtained by the multiplication, are incomparable, and the independence condition,
NM2, is violated. We made the additional postulate BH to connect incomparability
to the observed behavior in the experiment. The postulate shows a bigger tendency to

cooperative game is not enough to have a precise prediction for the question. Usually, people answer such
a question, often unconsciously by filling up gaps.
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choose c. In this sense, our result shows the “common ratio effect”. However, Postulate
BH does not directly take depths for the choice behavior of agents. Perhaps, there are
different postulates taking depths of lotteries to explain the “common ratio effect”
more directly. This is an open problem (see also Sect. 9, [c]).

9 Conclusions

We have developed the EU theory with probability grids and preference formation.
The permissible probabilities are restricted to the form of �-ary fractions up to a given
cognitive bound ρ. We divide the argument into the measurement step of preferences
and utilities on pure alternatives in terms of the benchmark scale and the extension
step to lotteries with more risks. We take the constructive view point of the decision
maker for our theory. The development includes the approach in terms of vector-valued
utilities with the interval order due to Fishburn (1970). The connections between the
preference approach and the utility approach are shown to be equivalent in Sects. 3
to 5. These approaches are complementary; each may give better interpretations as
well as some technical merits over the other.

To study the resultant preference relation �ρ over Lρ(X), we divide Lρ(X) into
the set Mρ of measurable lotteries and its complement Lρ(X)−Mρ . The resultant�ρ

is complete over Mρ , while it involves incomparabilities in Lρ(X) − Mρ . In Sect. 6,
we studied the relationship between non-measurability and incomparability. When
there is no cognitive bound, our theory gives a complete preference relation over
L∞(Y ), enjoying the expected utility hypothesis. However, our main concern is still
the bounded case ρ < ∞.

In Sect. 8, we applied the incomparability results to the Allais paradox, specifically
to an experimental example in Kahneman and Tversky (1979). Our theory is compat-
ible with their experimental result; incomparabilities involved for ρ = 2 are crucial
in interpreting their result.

We considered a few aspects of bounded rationality in terms of probability grids
and cognitive bounds for EU theory; bounded rationality is more salient with shallow
ρ. When, however, we consider a specific decision problem, other aspects of bounded
rationality may manifest themselves. We should have more researches on the aspects
of bounded rationality in various directions. Here, we give a few possible research
agenda.

The first three are related to bounded rationality.

[a] Constructive method of particular preferences: We presented our theory
following Table 1 to derive all the preferences in a layer from the previous layer.
However, the decision maker may think about his preferences more locally focusing
only on the target lotteries and involved pure alternatives and relevant probabilities.
This question could enable us to think about complexities of preference formation. It
may give a better understanding of howmuch bounded rationalities are involved when
only target lotteries are concerned.

[b] Preference formation in inductive game theory (IGT): This theory studies
experimental sources for individual knowledge/belief about the structure of the society
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(cf. Kaneko and Matsui 1999). Our approach has some parallelism to the constructive
approach to IGT, due to Kline et al. (2019). In particular, Kaneko and Kline (2015)
study the other person’s preferences from experiences of the other’s position through
role-switching. However, since it is assumed that experiences include numerical utility
values, their treatment does not capture the partial understanding/non-understanding
of the other’s preferences/desires. Perhaps, lack of full experiences is closely related
to incomparability in our theory.

This is also related to the case-based decision theory by Gilboa (2001) as well as to
the frequentist interpretation of probability in the context of the classical EU theory
(cf., Hu 2013). The former concerns evaluations of probabilities for causality (course-
effect) from experiences, and the latter is about probability as frequency of an event.
Boundedmemory capacity of a person is relevant for both. Our theory with probability
grids and cognitive bounds may give a suggestion to analyze such problems.

[c]: Behavior under incomparability: When two lotteries are incomparable, our
theory is silent about a choice by the decisionmaker. In Section 8,we adopted postulate
BH for choices by subjects for incomparable lotteries c and d. These lotteries have
different depths, i.e., δ(c) = 1 and δ(d) = 2. BH did not directly take depths into
account. A different postulate should take depths into account. Then, we may discuss
“common ratio effect” (Remark 8.1) in a more direct manner and possibly Ellesberg’s
paradox, too. This remains an open problem.

The other three comments are on possible generalizations of our theory.

[d]: Extensions of choices of benchmarks: In this paper, the benchmarks y and
y are fixed. The choice of the lower y could be natural, for example, the status quo.
The choice of y may be more temporary in nature. In general, there could be different
benchmarks than the given ones.We could consider two possible extensions of choices
of the benchmarks.

One is a vertical extension: we take another pair of benchmarks y and y such as

y �0 y �0 y �0 y. The relation between the original system and the new system is not

simple. In the case of measurement of temperatures, the grids for the Celsius system
do not exactly correspond to those in the Fahrenheit system. We need multiple bases �

for probability grids and may have multiple preference systems even for similar target
problems.

The other extension is horizontal: For example, y is the present status quo for a
student facing a choice problem between the alternative y of going to work for a large
company and the alternative y of going to graduate school. Hemay not be able to make
a comparison between y and y, while he can make a comparison between detailed
choices after the choice of y or y. This involves incomparabilities different from those
considered in this paper. These possible extensions are open problems of importance.

[e]: Extensions of the probability grids Πρ : The above extensions may require

more subtle treatments of probability grids. A possibility is to extend Πρ to ∪�
�=2Π�;

that is, probability grids having the denominators � ≤ � are permissible. Then, the
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Celsius and Fahrenheit systems of measuring temperatures are converted from each
to the other. A question is how large � is required for such classes of problems.

[f]: Subjective probability: Our theory is almost directly applied to Anscombe
and Aumann’s (1963) theory of subjective probability and subjective utility. An event
E such as tomorrow’s weather is evaluated asking an essentially the same question
as (1) in Sect. 1. We could have an extension of our theory including the subjective
probability theory. It could be difficult to have an extension corresponding to Savage
(1954), since no benchmark scale is assumed; perhaps, Savage’s theory is not in our
scope.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

We prepare the extension δ∗ of the depth measure δ to Π∗
k = {π : π = ν/�k and ν is

a nonnegative integer}, where ν may be larger than �k . This Π∗
k is closed with respect

to +. For π ∈ Π∗
k , we define δ∗(π) = k iff k ∈ Π∗

k − Π∗
k−1. Then, δ

∗(π) = δ(π) if
π ∈ Πk . The following facts will be used in the proof of Lemma 2.1:

if π = s + ν′/�k for an integer s and ν′ < �k, then δ∗(π) = δ∗(ν′/�k); (53)

if δ∗(π), δ∗(π ′) ≤ k, then δ∗(π + π ′) ≤ k. (54)

Proof of Lemma 2.1 12 Let k ≥ 1. We show that if f ∈ Lk(X), then f = ê∗ f̂ for
some f̂ ∈ Lk−1(X)� with the depth constraint δ( f (x)) > δ( ft (x)) for all t ≤ � and
x ∈ X with δ( f (x)) > 0. We assume δ( f ) = k. Let {x1, . . . , xm} be the support of f
with f (xt ) > 0 for t = 1, . . . ,m. Since δ( f ) = k ≥ 1, we have m ≥ 2.

Notice that f is regarded as the list (x1, ν1/�k, . . . , xm, νm/�k) with 0 ≤ νt < �k

for all t ≤ m and
∑m

t=1 νt = �k . This is expressed as:

f = (

ν1 times︷ ︸︸ ︷
x1, 1/�

k, . . . , x1, 1/�
k, . . . ,

νm times︷ ︸︸ ︷
xm, 1/�k, . . . , xm, 1/�k), (55)

i.e., each xt occurs νt times with the same weight 1/�k . Since �k = � × �k−1, the list
[x1, . . . , x1, . . ., xm, . . . , xm] of the length �k can be rewritten as the concatenation of
� sublists of length �k−1 :

[[y11 , . . . , y1�k−1 ], . . . , [y�
1, . . . , y

�
�k−1 ]]. (56)

12 The author is indebted to a referee for improving this proof significantly.
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Associating weight 1/�k−1 to each component, we regard these as lotteries f1, . . . , f�
in Lk−1(X) :

f1 = [y11 , 1/�k−1, . . . , y1
�k−1 , 1/�

k−1],
...

f� = [y�
1, 1/�

k−1, . . . , y�
�k−1 , 1/�

k−1]. (57)

Then, it holds that ê ∗ ( f1, . . . , f�) = f ; thus, f ∈ Lk(X) is decomposed into
( f1, . . . , f�) ∈ Lk−1(X)�.

To show the depth constraint (11), we need a few concepts; first, we denote the list
[x1, . . . , x1, x2, . . . , x2, . . ., xm, . . . , xm] as z = [zξ : 1 ≤ ξ ≤ �k] and νt = ∑

s≤t νs
for t = 1, . . . ,m. Then, f (xt ) is regarded as a segment of z, given as

[zξ : νt−1 < ξ ≤ νt ] with weight 1/�k . (58)

This corresponds to the fragment with xt in (55). Thus, z is partitioned in two ways:
[[y11 , . . . , y1�k−1 ], . . . , [y�

1, . . . , y
�
�k−1 ]] of (56) and [[zξ : νt−1 < ξ ≤ νt ] : t =

1, . . . ,m] of (58); we call [yt ′1 , . . . , yt
′

�k−1 ] and [zξ : νt−1 < ξ ≤ νt ] fragments. The
fragments of these partitions may have three types of non-empty intersections:

(a): [yt ′1 , . . . , yt
′

�k−1 ] is a subfragment of [zξ : νt−1 < ξ ≤ νt ];
(b): [yt ′1 , . . . , yt

′
�k−1 ] is a superfragment of [zξ : νt−1 < ξ ≤ νt ];

(c): one of them starts inside the other but does not stop in it.

In (a), ft ′(xt ) = 1, since yt
′
1 = · · · = yt

′
�k−1 = xt . Hence, δ( ft ′(xt )) = 0 <

δ( f (xt )). In (b), since the length of [zξ : νt−1 < ξ ≤ νt ] is νt , we have ft ′(xt ) =
νt/�

k−1 and f (xt ) = νt/�
k . Since δ(νt/�

k−1) < δ(νt/�
k), we have δ( ft ′(xt )) <

δ( f (xt )).
Consider (c), which is neither (a) nor (b). Suppose that [zξ : νt−1 < ξ ≤ νt ] ends

inside [yt ′1 , . . . , yt
′

�k−1 ] but it starts in a previous fragment. Then, ft ′(xt ) = ν′
t/�

k−1 for

some ν′
t with 0 < ν′

t < �k−1. In fact,
∑

s≤t νs = (t ′ − 1)�k−1 + ν′
t . By (53) and (54),

δ∗(νt/�k−1) ≥ δ∗(
∑

s≤t
νs/�

k−1) = δ∗((t ′ − 1) + ν′
t/�

k−1) = δ∗(ν′
t/�

k−1).

Hence, δ( ft ′(xt )) = δ(ν′
t/�

k−1) ≤ δ(νt/�
k−1) < δ(νt/�

k) = δ( f (xt )). The other
case of (c) where [zξ : νt−1 < ξ ≤ νt ] starts in [yt ′1 , . . . , yt

′
�k−1 ] but ends in a later

fragment is similar. ��
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