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Abstract
Models of learning and experimentation based on two-armed Poisson bandits
addressed several important aspects related to strategic and motivational learning,
but they are not suitable to study effects that accumulate over time. We propose a new
class of models of strategic experimentation which are almost as tractable as expo-
nential models, but incorporate such realistic features as dependence of the expected
rate of news arrival on the time elapsed since the start of an experiment. In these
models, the experiment is stopped before news is realized whenever the rate of arrival
of news reaches a critical level. This leads to longer experimentation times for exper-
iments with possible breakthroughs than for equivalent experiments with failures. We
also show that the game with conclusive failures is supermodular, and the game with
conclusive breakthroughs is submodular.
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1 Introduction

This paper brings together two strands of literature: stopping games in continuous time
with random observations and super(sub)modular games. The theory of supermodular
games has provided a powerful toolbox for analyzing the consequences of comple-
mentarities in economics, including Bayesian, dynamic, and stochastic games (see
Vives (2005) for an extensive review of games with complementarities and references
therein). While the class of games with strategic complementarities allows for fairly
general strategy spaces, including functional spaces, to the best of our knowledge,
stopping games have been out of the scope of the theory of supermodular games.

We believe that using the insights from the theory of supermodular games in stop-
ping games can become a promising new approach to stopping games in cases when
existence of an equilibrium is questionable. In the current paper, we study supermodu-
larity of strategic exit problems in two models of experimentation with random arrival
of observations and unknown rates of arrival.

In many real-life situations, shocks arrive at random and at unknown rates. A
pharmaceutical company engaging in drug development knows neither whether the
research it engages in will be successful in creating a new drug nor when such success
will happen. A bank loan officer does not know whether the borrower will loose her
source of income, defaulting on the loan, and is uncertain about the probability with
which such an event can occur. Moreover, the arrival rate of shocks in such situations
is often increasing in the horizon: the pharmaceutical company can hardly expect the
drug research to have immediate success even if the drug is successful for sure; the loan
officer would not make the loan if he expected the borrower to default immediately
even if the default is imminent. For network goods, such as electronic devices, one
can hardly expect high demand right at the time when a network good is introduced.
However, if the good is successful, demand may jump up when the “critical mass”
of consumers using the same device or application reaches a certain level (see, e.g.,
Amir and Lazzati (2011) for a standard static model, and Laussel and Resende (2014)
for a continuous-time dynamic model, with network externalities).

The main feature of standard models of experimentation based on Poisson (or
exponential) bandits is that the rate of arrival of news is constant if the quality of
the risky arm is known. We propose a new class of experimentation models which
remains nearly as tractable as Poisson bandits models but incorporates both of the
features described earlier: unknown quality of the risky arm and, conditional on the
quality of the risky arm, an arrival rate of news that is increasing over time. In contrast
to exponential bandits models, the models suggested here can be used as a framework
for experimentation related to safety of medications or pollutants that have a potential
for accumulation and long-term storage in a human body; for timing exit decisions
of financial institutions dealing with risky assets whose riskiness may accumulate
over time; for studying network effects; designing grant competitions for long-term
projects; or determining optimal terms of politicians. We call this class of models
humped bandits because the rate of arrival of news is hump-shaped over time: the rate
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of arrival is increasing in time from the start of the experiment until it reaches a certain
maximal level; after that point, the arrival rate decreases and approaches exponential
decay as the experiment “grows older.” Intuitively, the longer the experiment lasts
without any negative shocks realizing, the more optimistic the experimenter is about
the quality of the risky arm. At the same time, since the arrival rate of news conditional
on the quality of the risky arm is increasing in the time since the start of the experiment,
negative shocks are more likely to happen. Thus, it may be optimal to terminate the
experiment before the first negative shock realizes.1 In such situations, the experiment
is terminated while the arrival rate of news is still increasing and, importantly, before
any negative news is realized. In particular, in settings with possible failures (e.g.,
borrower default), the player stops experimenting when the marginal benefit from
staying active (e.g., interest rate payments on the loan) equals the expected marginal
cost (e.g., losses from a non-performing loan). This paper demonstrates that for a
generic set of parameters, there is an equilibrium, where players stop simultaneously
before any bad news arrives. In contrast, in the corresponding Poisson bandits models
with decreasing arrival rates, the experiment is only terminated after a negative shock
occurs.

Experiment termination prior to the realization of negative news is an important
realistic prediction of humped bandit models. Some recent high-profile examples of
agents acting in line with this prediction include Goldman Sachs’ exit from the sub-
prime mortgage market almost a year before the start of the subprime crisis, and Fixed
Income Clearing Corporation’s (FICC) suspension of its interbank clearing service
for general collateral repurchase agreements. In the former case, Goldman Sachs’
Chief Financial Officer urged for a more bearish attitude toward the subprime mort-
gage market as early as December 2006, leading to the structured product division
of their mortgage markets group to bet against the subprime mortgage market well
in advance of any losses on subprime mortgages being realized.2 In the latter case,
on July 15, 2016, FICC suspended the execution of repurchase agreements involving
participants at different clearing banks. In the official filing with the Securities and
Exchange Commission (SEC), FICC argued that because the current market design is
not amenable to minimizing the amount of intraday credit that FICC requires from the
clearing banks to settle interbank transactions, interbank transactions pose an undue
operational risk on FICC.3 Notably, as in the case with Goldman Sachs exiting the
subprime mortgage market before the subprime losses were realized, FICC exited the
interbank transaction market before any losses from such activity were realized.

Optimal termination prior to the realization of negative news may also have impor-
tant policy applications. Indeed, the rate of arrival of news, instead of being an
increasing function of time, can be also modeled as an increasing function of a differ-
ent state variable, for example the amount of a fertilizer accumulated in soil or water.
On the one hand, the fertilizer can provide benefits to farmers, on the other hand, it can
contaminate water and damage ecosystems. The methods provided in the paper would

1 For example, the majority of smokers quit smoking long before being diagnosed with lung cancer. See,
e.g., https://www.medscape.com/viewarticle/725138.
2 See, for example, theWall Street Journal coverage of the trade in December 2007: https://www.wsj.com/
articles/SB119759714037228585.
3 See SEC filling No. SR-FICC-2016-002.
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allow regulators to determine both the optimal rate of application and the optimal
amount of the new fertilizer accumulated in soil when further application should stop
even though no damage was detected earlier.

Nowadays, the majority of population believes in climate change caused by accu-
mulation of greenhouse gas (GHG).Mymodel can bemodified to the case of so-called
inconclusive bad news,when players have to learn about the frequency of adverse envi-
ronmental events whose unknown arrival rate depends on the level of accumulated
GHG and decide when it is optimal to invest in abatement technologies. Exponential
models will give an incorrect recommendation because they do not take into consider-
ation that hurricanes, flooding, heat waves, etc., may happen more frequently as more
GHG emissions are accumulated.

In settings with potential breakthroughs, instead, experimentation does not stop
while the rate of arrival of good news is increasing. Intuitively, the longer the
experiment lastswithout producing a positive outcome, themore pessimistic the exper-
imenter becomes about the quality of the risky arm. At the same time, since the arrival
rate of news conditional on the quality of the risky arm is once again increasing in
the time since the start of the experiment, positive shocks are more likely to happen.
Thus, in settings with potential breakthroughs (e.g., discovery of a new drug), the
experiment will get terminated when the marginal cost of the experiment (e.g., R&D
expenditure) equals the expected marginal benefit (e.g., profit from selling the drug),
and the arrival rate of news is decreasing.4

This paper is related to the extensive literature on experimentation based on the
so-called two-armed bandits. A standard two-armed bandit is an attempt to describe
a hypothetical experiment in which a player faces two slot machines; the quality of
one of the slots is known (safe arm), and the other one (risky arm) may be good or
bad. Models of strategic experimentation extend two-armed bandit experiments to a
setting where several players face copies of the same slot machine. Players then learn
about the quality of the risky arm not only from outcomes of their own experiments,
but also from their colleagues. In models of strategic experimentation, it is common
to assume away payoff externalities and focus on information externalities, the role
of information, and, in more advanced settings, on design of information. See, for
example, Bergemann and Välimäki (1996, 2000, 2006, 2008), Bolton and Harris
(1999), Decamps and Mariotti (2004), Hörner et al. (2014), Keller et al. (2005) and
Keller and Rady (2010, 2015). Recent developments include (but are not limited
to) correlated risky arms as in Klein and Rady (2008) and Rosenberg et al. (2013),
private payoffs as in Heidhues et al. (2015) and Rosenberg et al. (2013), departures
from Markovian strategies as in Hörner et al. (2014), strategic costly observations
as in Marlats and Ménager (2018), and asymmetric players as in Das et al. (2019).
For other developments and an excellent comprehensive review of the literature, see
Hörner and Skrzypacz (2016) and references therein.

Poisson bandits models fall into two broad classes: bad news models and good
news models. Bad news are costly failures, and good news are profitable successes;

4 Khan and Stinchcombe (2015) find similar results in semi-Markovian decision theory. Namely, they
identify two classes of situations in which delay in decision systems is optimal: in the first class delay is
optimal when the hazard rate of further changes is increasing, and in the second class, delay is optimal
when the hazard rate is decreasing.
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the type of news is known before an experiment starts. The present paper focuses on
the case of conclusive failures and successes, so that the first event observed on the
risky arm reveals its quality completely, and the experiment is over. It is most closely
related to Keller et al. (2005), Keller and Rady (2010, 2015) and Rosenberg et al.
(2013). Keller et al. (2005) and Keller and Rady (2010) study good news model, and
Keller and Rady (2015) study bad news model; in either model, news arrive at the
jump times of independent Poisson processes. Also, Keller et al. (2005) and Keller
and Rady (2010, 2015) solve control problems of time allocation between the risky
and riskless arms of Poisson bandits., while the present paper considers stopping time
problems. Rosenberg et al. (2013) consider an irreversible exit problem in amodelwith
breakthroughs with correlated risky arms both in the case when payoffs are public and
private. In contrast, we study a problem of strategic irreversible exit both in good and
bad news models, where news arrive at jump times of time-inhomogeneous Poisson
processes. Processes that generate news for individual experimenters are independent,
but have the same characteristics.

In stopping games, each player chooses a stopping time, and the game ends at the
minimum of these stopping times. We specify players’ strategies as behavior stopping
times as in Laraki et al. (2005). We guess and verify that there is an equilibrium in
the class of threshold strategies: for each player there is a time T ∗ (which depends
on actions of the other player, and can be infinite if a player never stops before the
first observation arrives) such that the player stays in the game with probability one
up to T ∗ and with probability zero after T ∗. In general, threshold-type strategies may
be not rich enough to describe equilibria in all stopping games. In particular, if there
exists a subset of the state space, called preemption (respectively, attrition) region,
where one of the players has the first (respectively, second) mover’s advantage but
stopping (respectively, staying) together is the worst outcome. In the latter cases, it is
necessary to introduce extended mixed strategies, as, for example, in Fudenberg and
Tirole (1985), Thijssen et al. (2006, 2012), Boyarchenko and Levendorksiı̆ (2014), or
Riedel and Steg (2017). However, if the exogenous stochastic process has no jumps in
the direction of the preemption or attrition region, then extended mixed strategies are
usually needed only off the equilibrium path. For example, Pawlina and Kort (2006)
consider only threshold-type strategies, because they do not study subgame perfect
equilibria.

The idea of exploiting supermodularity in dynamic games is not new and goes back
to Amir (1996a), Curtat (1996) and Vives (2009). In stochastic dynamic games with
strategic complementarities, the main focus is on multi-stage games with supemod-
ular stage games (see, e.g., Balbus et al. 2014 and references therein). In this paper,
instantaneous payoffs of the players are affected by the presence of other players only
in terms of rates of information arrival. The threshold-type strategies are formulated
in terms of time needed for the rate of arrival to reach a certain critical level. Both in
the bad and good news models, the critical level is reached faster when two players
are active. At the same time, we show that the stopping game is supermodular in the
bad news model, and submodular in the good news model.

The rest of the paper is organized as follows. The primitives of the experimentation
model are described in Sect. 2. The stopping game is described in Sect. 3. The latter
section also demonstrates that players payoff functions are supermodular in the bad
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news model and submodular in the good news model. The detailed analysis of the
stopping game in the bad news model and construction of subgame perfect equilibria
are in Sect. 4. The stopping game in a good news model is analyzed in Sect. 5. We also
study efficiency of equilibria and show that the equilibrium outcome is efficient in the
bad news model and inefficient in the good news model. More general intensities of
the news arrival are considered in Sect. 6. Section 7 concludes. Technical proofs are
relegated to the appendix.

2 Model description

2.1 The setup

Time t ∈ R+ is continuous, and the discount rate is r > 0. Let two symmetric players
experiment with risky projects of unknown quality, such as a nuclear technology, a
defaultable loan, or a new drug. The quality of a project is identified with its ability
to generate news (or observations). We focus on the case of conclusive experiments,
where the first news arrival reveals the quality of the project completely. The quality
depends on the state of nature denoted by θ ∈ {0, 1}. If θ = 0, the project generates
no news; if θ = 1, the project generates news that arrive at jump times of a time-
inhomogeneous Poisson process. News can be good (profitable breakthroughs) or bad
(costly breakdowns). In the real life, the nature of news may not be known in advance,
for instance, a drug developer may not know if the drug will be effective to cure a
targeted decease or cause serious side effects. In this paper, we follow the tradition
in the bulk of experimentation literature and assume that the type of news is known
before the experimentation starts.

Assume that the quality of the projects is the same for both players, so that if one
of the players receives a piece of news, the other player concludes that her/his project
generates the same type of news for sure. Processes for news arrival are independent
of each other, but have the same characteristics. The common prior assigns probability
π0 ∈ [0, 1] to θ = 1.

2.2 Uncertainty

In this section, we specify the model primitive, evolution of beliefs and rates of arrival
of news. We also characterize properties of beliefs and hazard rates that will be used
later in the construction of equilibria. The primitive of the model is the rate of arrival
(hazard rate) of news at time t of a single project when π0 = 1. Denote this haz-
ard rate by �1(1; t). Here and below the subscript indicates the number of active
projects/players, and the first argument specifies the prior belief. Assume that the
hazard rate satisfies the following properties:

(i) �1(1; 0) = 0;
(ii) �1(1; t) is continuous and increasing in t .

The first property simplifies some of the technical proofs, but it will be relaxed in
Sect. 6, where alternative models for the hazard rate will be presented. The second
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property introduces a natural dependence of the rate of arrival on the time which has
elapsed since the start of an experiment. As the leading example, we use �1(1; t) =
λ2t/(1+ λt), where λ > 0. This hazard rate corresponds to the case when the time of
news arrival is an Erlang(2, λ) random variable.5 Note that, in this case, the expected
time until the first observation is 2/λ. As t → +∞, �1(1; t) → λ.

If π0 = 1, the probability of the event that no news is observed before t by a single
experimenter is

p1(1; t) = exp

(
−

∫ t

0
�1(1; s)ds

)
. (2.1)

Clearly, p1(1; 0) = 1, and by property (ii), limt→∞
∫ t
0 �1(1; s)ds = +∞, therefore

limt→∞ p1(1; t) = 0. For the leading example, p1(1; t) = (λt + 1)e−λt .
If π0 < 1, the probability of the event that no news is observed before t by one

experimenter is

p1(π0; t) = 1 − π0 + π0 p1(1; t). (2.2)

Obviously, p1(π0; 0) = 1, and limt→∞ p1(π0; t) = 1 − π0. Furthermore, p1(π0; t)
is decreasing in t , because

∂t p1(π0; t) = π0∂t p1(1; t) = −π0�1(1; t)p1(1; t) < 0 ∀ t > 0; (2.3)

here and below ∂t denotes the partial derivative w.r.t. the second argument.
If two players experiment, the probability of no news arriving before time t is

p2(π0; t) = 1 − π0 + π0 p1(1; t)2. (2.4)

If no news is observed until time t , when n ∈ {1, 2} players experiment, the posterior
probability πn(π0; t) of the event θ = 1 is calculated by Bayes’ rule:

πn(π0; t) = π0 p1(1; t)n

pn(π0; t)
. (2.5)

Straightforward differentiation shows that

∂tπn(π0; t) = −n�1(1; t)πn(π0; t)(1 − πn(π0; t)) < 0 ∀ t > 0, n ∈ {1, 2}.
(2.6)

The posterior belief is decreasing in t—themore time passedwithout any observations,
the lower is the probability that the risky project will generate news.

Lemma 2.1 For any t ′ > 0,

(i) π2(π0; t ′) < π1(π0; t ′);

5 The p.d.f. of Erlang(k, λ) distribution for k ≥ 1 and λ > 0 is given by f (t) = λk tk−1e−λt /(k − 1)!.
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(ii) for any t ′ > 0, there exists a unique π̂ s.t. π2(π0; t ′) = π1(π̂, t ′), and

π̂ = π1(π0; t ′); (2.7)

(iii) π2(π0; t) < π1(π1(π0; t ′), t) ⇔ t > t ′. (2.8)

The first statement indicates that any level of beliefs will be reached faster if more
players experiment, starting with the same prior. The second statement says that if one
of the two players stops experimentation at t ′, the posterior belief of the remaining
player is continuous at t ′ if π0 is replaced by π̂ . The last statement indicates that the
belief of the remaining player decreases slower than beliefs of two players if none of
the players had stopped at t ′. See Sect. 8.1 for the proof.

Next, we calculate the rate of arrival of observations at time t when n ∈ {1, 2} play-
ers experimentwith the projects of unknown quality:�n(π0; t) = n�1(1; t)πn(π0; t).
Since the players are symmetric, each of them is equally likely to receive the first news,
therefore the individual hazard rate is

1

n
�n(π0; t) = �1(1; t)πn(π0; t), n ∈ {1, 2}. (2.9)

Since π2(π0; t) < π1(π0; t) for all t > 0,

1

2
�2(π0; t) < �1(π0; t) ∀ t > 0. (2.10)

The next result describes changes in the hazard rates when the first of two players
stops experimentation.

Lemma 2.2 Let �1(1; t) satisfying the standing assumptions (i)–(ii) be of the class
C1 w.r.t. the second argument, let there exist ∂t�1(1; 0+), and let it be finite. Then

(a) for any t ′ > 0, functions 0.5�2(π0; t) and �1(π1(π0; t ′); t) intersect only at
t = 0 and t = t ′;

(b) 1

n
∂t�n(π0; t) = πn(π0; t)

[
∂t�1(1; t) − n�1(1; t)2(1 − πn(π0; t))

]
, n ∈ {1, 2};

(2.11)

(c) 0.5�2(π0; t) < �1(π1(π0; t ′), t) ⇔ t > t ′. (2.12)

See Sect. 8.2 for the proof.
The following result describes the shape of the hazard rates.

Lemma 2.3 Let �1(1; t) satisfying the standing assumptions (i)–(ii) be of the class
C2 w.r.t. the second argument, and let also the following properties hold:
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(iii) ∂t�1(1; 0+) exists and it is finite;
(iv) 2(∂t�1(1; t))2 > ∂2t �1(1; t) · �1(1; t), ∀ t > 0.

Then as a function of t , �n(π0; t) has a unique maximum at t̂n = t̂n(π0). Moreover,
∂t�n(π0; t) is positive (respectively, negative) on (0, t̂n) (respectively, (t̂n,∞)).

Remark 2.4 Notice that condition (iv) is a very mild restriction on �1(1; t). In partic-
ular, all concave and linear functions satisfy this condition. All increasing power and
exponential functions also satisfy condition (iv).

Proof It suffices to prove that ∂t�n(1; t) is a product of a positive function and a
decreasing function which changes sign. Rewrite (2.11) as

1

n
∂t�n(π0; t) = �1(1; t)2πn(π0; t)

[
∂t�1(1; t)

�1(1; t)2
+ nπn(π0; t) − n

]
, n ∈ {1, 2}.

The function f (t) := ∂t�1(1; t)/�1(1; t)2 + nπn(π0; t) − n is strictly decreasing
because assumption (iv) holds and πn is decreasing in t . By assumptions (i) and (iv),
limt→0+ f (t) = +∞; and limt→∞ f (t) = −n(1 − π0) < 0. 
�

Lemma 2.3 states that the hazard rate �n(π0; t) (n ∈ {1, 2}) is hump-shaped.
In the exponential model, the corresponding hazard rate nλπn(π0; t) is propor-
tional to the beliefs. Since the beliefs are decreasing in time, the hazard rate is also
decreasing.

3 Stopping game

3.1 Strategies

We consider the game of timing, characterized by the following structure. Two players
experiment with projects of unknown quality as described in Sect. 2. All payoffs,
function �1(1; t), and the players’ actions are public information. The game starts
at t = 0. At each point t ≥ 0, player i ∈ {1, 2} may make an irreversible stopping
decision conditioned on the history of the game.

At any t ≥ 0, the history of the game includes observations of news arrivals (includ-
ing the empty set if no observations arrived up to time t) and the actions of the players.
As far as the actions are concerned, only two sorts of histories matter in the stopping
game: (i) both players are still in the game; (ii) at least one player exited the game.

Let Ti ∈ R+ denote the exit time of player i . Define the function

t̃i (t) =
{

Ti , if Ti ≤ t,

∞, otherwise.

Let τ s
i denote a random time, when player i got news for the sth time. The history of

observations at any t ≥ 0 is

123



992 S. Boyarchenko

Ot = {(τ s′
1 )}s′≤t∧T1 ∪ {(τ s′′

2 )}s′′≤t∧T2 .

A typical history h at time t is ht = (Ot , t̃1(t), t̃2(t)). If Ti < Tj , we call player i the
leader, and player j the follower.

For simplicity, we will consider the case when experimentation stops after the first
observation. This supposition can be justified either by assumption that learning the
true quality of the project is the only objective of the players, or by an appropriate
specification of the payoff functions. In particular, in the bad news model, we assume
that an active player gets a flow payoff r R > 0 as long as no failure was observed. This
stream can be viewed, for example, as sponsored research contributions, or revenue
generated by a project net of insurance costs, or mortgage payments. If the project is
bad, then after the first failure, the stream of revenues disappears (e.g., the sponsor
withdraws support from a pharmaceutical company as soon as a side effect of a new
drug is observed; the insurance company increases the premium to the extent that
offsets the revenue stream of a faulty technology; a borrower is not able to make
monthly payments after the default, etc.). Given this assumption, experimentation
after the first failure becomes non-profitable, so the players stop experimenting no
later than they learn that the quality of the project is bad. In the good news model,
we assume that as soon as the first success is observed, the player who achieved the
success wins the prize, the other player gets the value of the outside option, and the
game is over.

Due to the above assumption, if Ot �= ∅, the game is over. Since any player remain-
ing in the game exits at themoment of the first observation,wemay define the strategies
only for the histories of the form ht (∅, t̃1(t), t̃2(t)). Denote by (� j ,F j , {F j

s }s≥0) the
filtered measure space generated by Tj and τ = τ 11 ∧ τ 12 .

Definition 3.1 A strategy for player i ∈ {1, 2} in the game starting at t = 0 is a process
q0

i taking values in [0, 1], adapted to the filtration {F j
s }s≥0, j �= i , with non-increasing,

left-continuous with right limits (LCRL) trajectories; and q0
i (0) = 1.

Note that q0
i (t) is the probability that player i will not stop at time t or earlier, condi-

tional on no observations up to time t .We allow for the caseq0
i (+∞) > 0whichmeans

that player i will not stop ever with the positive probability q0
i (+∞) unless a piece of

news arrives. Thus, the probability that the player will not stop is q0
i (+∞)(1 − π0).

Denote by Ht the set of histories up to time t , s.t. Ot = ∅. Following Laraki et al.
(2005), and Dutta and Rustichini (1993), for any time t > 0, define a proper subgame
as the timing game that starts at the end of the history ht ∈ Ht .

Definition 3.2 A strategy for player i ∈ {1, 2} in a subgame starting at t > 0, after
a history ht ∈ Ht , is a process qt,h

i taking values in [0, 1], adapted to the filtration

{F j
s }s≥t , j �= i , with non-increasing, left-continuous with right limits (LCRL) trajec-

tories; and qt,h
i (t) = 1.

Here qt,h
i (s) is the probability that player i will not exit during [t, s], conditional

on being active at t and no observations up to time s, given the history h ∈ Ht . As
before, qt,h

i (+∞) > 0 is allowed with the interpretation that player i who was still
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active at time t after the history ht will never stop with probability qt,h
i (+∞) unless a

piece of news arrives. Thus, the probability that the player who is active at time t will
not stop is qt,h

i (+∞)(1 − π0).

Definition 3.3 A strategy of player i is called consistent, if for any 0 ≤ t ≤ t ′ ≤ s,
and h ∈ Ht and h′ ∈ Ht ′ such that h′|[0,t] = h,

qt,h
i (s) = qt,h

i (t ′)qt ′,h′
i (s). (3.1)

The consistency condition above admits interpretation similar to the one in Laraki
et al. (2005).6 The consistency condition asserts that as long as player i is active at t
with probability one, later strategies can be calculated by the Bayes rule. With slight
abuse of notation, we write qt

i instead of qt,h
i .

3.2 Value functions and equilibrium

Let G(t) denote the instantaneous expected payoff flow of player i if none of the
players stopped until time t > 0. Let F(t) denote the expected (time t) payoff of
player i if player j stopped at time t , and player i did not. Finally, let S ≥ 0 denote
the value of the outside option.

For any time t ≥ 0 consider the subgame (game itself if t = 0) after the history ht ∈
Ht such that no news arrived and both players are still active. In all the considerations
below, we suppress dependence on parameters of the model and keep dependence on
the priors only where necessary.

Given the strategy profile (qt
i , qt

j ), the value of player i in the subgame game that
starts at t ≥ 0 is

Vi (t; qt
i , qt

j ) =
∫ ∞

t
e−r t(′−t) p2(π0; t ′)

p2(π0; t)
G(t ′)qt

i (t
′)qt

j (t)dt ′

+
∫

{t ′≥t | 	qi (t ′)=0}
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)
P(t ′)qt

i (t
′)(−dqt

j (t
′))

+
∫ ∞

t
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)
Sq j (t

′)(−dqt
i (t

′)), (3.2)

where the integrals above are theRiemann–Stieltjes integrals as defined inKolmogorov
and Fomin (1975, Section 36.4) . Here the first integral is the expected present value
of the flow payoffs G(t ′) conditioned on both players being active and on no news
arrival before time t ′. The second integral is the expected present value of the pay-
off that player i gets at time t ′, provided this player is still active at t ′, player j
stopped at t ′, and nothing else happened before t ′. Finally, the last integral is the
expected present value of the outside option if player i exits at time t ′, provided no
observations arrived before t ′. Later we will show that G(t ′) and P(t ′) are continu-
ous and have finite limits as t ′ → ∞, hence, Vi (t; qt

i , qt
j ) is well defined and finite.

6 In the aforementioned paper, strategies of players in a subgame that starts at t ≥ 0 are probabilities of
exit in the interval [t, s).
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Note that the second integral in (3.2) takes into account jumps in qt
j only, and the

last integral takes into account jumps in qt
i only as well as simultaneous jumps in

qt
i and qt

j .

Definition 3.4 A strategy profile q̂0 = (q̂0
i , q̂0

j ) is a Nash equilibrium for the game
starting at t = 0, if for every (i, j) ∈ {(1, 2), (2, 1)}

Vi (0; q̂0
j ) = sup

q0
i

Vi (0; q0
i , q̂0

j ).

A profile of consistent strategies q̂ t = (q̂ t
i , q̂ t

j ) is a subgame perfect Nash equilibrium
(SPE) if for every t ≥ 0, q̂ t is a Nash equilibrium in the subgame that starts at t > 0
(when payoffs are discounted to time t).

3.3 Reformulation

Boyarchenko (2018) shows that if the stopping time game described in the previous
section is symmetric (i.e., exchangeable against permutations of the players), then the
equilibrium strategies (on the equilibrium path) are of the following type

qt
i (t

′) =
{
1 if t ≤ t ′ ≤ Ti ,

0 if t ≤ Ti < t ′.
(3.3)

If Ti = ∞, then player i never exits. In Sects. 4.3 and 5.3, we also define off the
equilibrium path strategies, i.e., strategies in subgames that start at t > Ti , provided
Ti is finite.

In the present paper, we look for an equilibrium in the class of threshold strategies
(3.3).7 Thus, with slight abuse of notation, from now on, we will consider value
functions Vi (t; Ti , Tj ) instead of Vi (t; qt

i , qt
j ). Then, instead of (3.2), we can write

Vi (t; Ti , Tj ) =
∫ Ti ∧Tj

t
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)
G(t ′)dt ′

+1Tj <Ti e
−r(Tj −t) p2(π0; Tj )

p2(π0; t)
F(Ti , Tj )

+1Ti ≤Tj e
−r(Ti −t) p2(π0; Ti )

p2(π0; t)
S, (3.4)

7 It is straightforward to show that a mixed strategies equilibrium does not exist in either good or bad news
model. Indeed, it follows from the Bellman equation that in the region, where Vi (t; 1) = S (that is the
region, where player i is indifferent between stopping and continuation, provided player j is still active),
	qt

j /	t ≥ 0, but this contradicts Definition 3.2.
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where F(Ti , Tj ) is the value player i gets at the moment Tj , when player j stops, but
player i plans to stay until Ti ≥ Tj

3.4 Conclusive failures—bad newsmodel

An active player gets a flow payoff r R > 0 as long as no failure was observed, and
zero after the first failure. In case of a failure, the player has to pay a lump-sum cost
C > 0—for example, a new drug developer has to pay patients if they developed
serious side effects while trying the new drug. Since the rate of arrival of news is zero
at t = 0 , and remains small in a right neighborhood of zero, it is always optimal to
start experimentation in the bad newsmodel; and none of the players has yet stopped at
the start of the game. As the rate of arrival�2(π0; t) increases, it may become optimal
for one or both players to quit. We will prove that, depending on parameters of the
model, either the players do not stop until the first failure happens, or the stopping rules
in pure strategies are of the threshold type—the players quit when the corresponding
rates of arrival reach a certain threshold from below. The latter outcome is possible
only if the ratio

A = r(R − S)

C
(3.5)

is sufficiently small.
Once one of the players has quit experimentation, the other player faces a non-

strategic stopping problem, which can be easily solved. Consider a subgame that
starts after the history such that no news arrived, and only player j has stopped at time
Tj . If player i plans to stop at time Ti ≥ Tj , her payoff function (at time Tj ) is

F(Ti , Tj ) =
∫ Ti

Tj

e−r(t ′−Tj )
p1(π1(π0; Tj ); t ′)
p1(π1(π0; Tj ); Tj )

(
r R+�1(π1(π0; Tj ); t ′)(S−C)

)
dt ′

+ Se−r(Ti −Tj )
p1(π1(π0; Tj ), Ti )

p1(π1(π0; Tj ); Tj )
. (3.6)

Let A be given by (3.5) and T ≥ t . Define


(A, t; T )=C
∫ T

t
e−r(t ′−t) p1(π1(π0; t); t ′)

p1(π1(π0; t); t)

(
A−�1(π1(π0; t); t ′)

)
dt ′. (3.7)

Lemma 3.5 The payoff function (3.6) can be written as

F(Ti , Tj ) = S + 
(A, Tj ; Ti ). (3.8)

The first term in representation (3.8) is the value of immediate exit; the second term
is the value of waiting. See Sect. 8.3 for the proof.
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Substituting (3.8) into (3.4), we get

Vi (t; Ti , Tj ) =
∫ Ti ∧Tj

t
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)
G(t ′)dt ′

+1Tj <Ti e
−r(Tj −t) p2(π0; Tj )

p2(π0; t)

(A; Tj ; Ti )

+e−r(Ti ∧Tj −t) p2(π0; Ti ∧ Tj )

p2(π0; t)
S. (3.9)

Assuming that, if the project is bad, the players are equally likely to incur a costly
failure, we can write G(t ′) = r R + �2(π0; t ′)(S − 0.5C).

For T ≥ t , define

�(A, t; T ) = C
∫ T

t
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)

(
A − 0.5�2(π0; t ′)

)
dt ′. (3.10)

Lemma 3.6 The payoff function (3.9) can be written as

Vi (t; Ti , Tj ) = S + �(A, t; Ti ∧ Tj ) + 1Tj <Ti e
−r(Tj −t) p2(π0; Tj )

p2(π0; t)

(A, Tj ; Ti ).

(3.11)

See Sect. 8.4 for the proof.

3.5 Conclusive breakthroughs: good newsmodel

The stylized model presented here is suitable to describe a grant competition or inno-
vation contest, where the winner (if any) takes the prize, and the other player gets the
outside option. We will indicate later how the results may change if the winner takes
the major prize, but the other player is also rewarded with the reward being higher
than the value of the outside option. Assume that two symmetric players experiment
with technologies of unknown quality. Experimentation is costly, and the stream of
experimentation costs is rC for each player, independently of the quality of the project.
For simplicity, assume that if the project if good, active players stop experimentation
after the first success has been observed. Further assume that, if the project is good, the
player who is first to succeed gets R > 0, and the other player gets S ∈ [0, R). Thus,
there is an advantage to generating the success first (though, in this stylized model,
this advantage is independent of the players’ actions), which can be interpreted as an
opportunity to file a patent. If a player exits before the first observation of a success,
then the player also gets S. We use the same primitives as described in Sect. 2 and
same strategies as in Sect. 3.1.

Consider the game that starts at t = 0. Unlike in the bad news model, starting
experimentation at t = 0 may not be optimal, because the rate of arrival of good news
(profitable payoff) is close to zero in a right neighborhood of zero. We leave for future
study strategic entry decisions of the players in this experimentation game, where we
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expect free riding and encouragement effects to be present. In this paper, we study
only strategic exit decisions of active players, who start experimentation at the same
time, for example, due to the deadline specified by designers of the grant competition.
To this end, we assume that

sup
T >0

(∫ T

0
e−r t p2(π0; t) ((R + S)0.5�2(π0; t) − rC) dt + e−rT p2(π0; T )S

)
> S.

(3.12)

Then it is optimal for two players to experiment until the time t̂2(π0) when the rate of
arrival reaches its maximal value and for some time after that. As the rate of arrival
�2(π0; t) starts decreasing, it may become optimal for one or more players to quit.
We will show that if the stopping rules in pure strategies are of the threshold type—the
players quit when the corresponding rates of arrival reach a certain threshold from
above.

Let G̃i (t) = 0.5�2(π0; t)(R + S) − rC denote the instantaneous expected payoff
flow of player i if none of the players stopped until time t > 0. Let F̃(Ti , Tj ) denote
the value that player i gets if player j stopped at time Tj < Ti and no news arrived
before Tj . Consider a subgame that starts after the history such that no observations
arrived, and only player j has stopped at time Tj . If player i plans to stop at time
Ti ≥ Tj , her payoff function (at time Tj ) is

F̃(Ti , Tj ) =
∫ Ti

Tj

e−r(t ′−Tj )qt
f (t

′)
p1(π1(π0; Tj ); t ′)
p1(π1(π0; Tj ); Tj )

(
R�1(π1(π0; Tj ); t ′) − C)

)
dt ′

+Se−r(Ti −Tj )
p1(π1(π0; Tj ), Ti )

p1(π1(π0; Tj ); Tj )
. (3.13)

Set Ã = r(C + S)/(R − S) and, for T ≥ t , define


̃( Ã, t; T ) = (R − S)

∫ T

t
e−r(t ′−t) p1(π1(π0; t); t ′)

p1(π1(π0; t); t)

(
�1(π1(π0; t); t ′) − Ã

)
dt ′;
(3.14)

�̃( Ã, t; T ) = (R − S)

∫ T

t
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)

(
0.5�2(π0; t ′) − Ã

)
dt ′. (3.15)

Following the proof of Lemma 3.5 word by word, one can show that

F̃(Ti , Tj ) = S + 
̃( Ã, Tj ; Ti ). (3.16)

Next, following exactly the same reasoning as in the proof of Lemma 3.6, it is straight-
forward to show that the value of player i , given by Eq. (3.4), can be equivalently
written as
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Ṽi (t; Ti , Tj ) = S + �̃( Ã, t; Ti ∧ Tj ) + 1Tj <Ti e
−r(Tj −t) p2(π0; Tj )

p2(π0; t)

̃( Ã, Tj ; Ti ).

(3.17)

3.6 Super(sub)modularity of the stopping time games with random observations

We start with the following result. Introduce T = T(A) given by

A = �1(1,T), (3.18)

and

φ(A; T , t) = p2(π0; T ) · p1(π1(π0; T ); t)

p1(π1(π0; T ); T )
(A − �1(π1(π0; T ); t)) .

(3.19)

Lemma 3.7 Function φ is increasing in T on {t ≥ T ∨ T }.
See Sect. 8.5 for the proof.

Theorem 3.8 Restrictions of the payoff functions Vi (t; ·, ·) on [t ∨T,+∞)2 are super-
modular.

Proof We need to check that for all T ′
i ≥ Ti and T ′

j ≥ Tj ,

Vi (t; T ′
i , T ′

j ) − Vi (t; Ti , T ′
j ) ≥ Vi (t; T ′

i , Tj ) − Vi (t; Ti , Tj ). (3.20)

See, e.g., Amir (1996b) or Vives (1999) for definition of supermodularity.
To prove that (3.20) holds, we notice that for any fixed Tj , the partial derivative

∂Vi (t; Ti , Tj )/∂Ti is continuous and non-decreasing in Tj . Moreover,
∂2Vi (t; Ti , Tj )/∂Ti∂Tj exists on {Ti �= Tj }. Indeed, if Ti < Tj ,

∂Vi (t; Ti , Tj )

∂Ti
= Ce−r(Ti −t) p2(π0; Ti )

p2(π0; t)
(A − 0.5�2(π0; Ti )) , (3.21)

which is independent of Tj , hence ∂2Vi (t; Ti , Tj )/∂Ti∂Tj = 0 if Ti < Tj . Consider
the case Tj < Ti and rewrite Eq. (3.11) as

Vi (t; Ti , Tj ) = S + C
∫ Tj

t
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)

(
A − 0.5�2(π0; t ′)

)
dt ′

+ C

p2(π0; t)

∫ Ti

Tj

e−r(t ′−t)φ(A; Tj , t ′)dt ′,

where φ(A; Tj , t ′) is given by (3.19). Calculate

∂Vi (t; Ti , Tj )

∂Ti
= C

p2(π0; t)
e−r(Ti −t)φ(A; Tj , Ti ). (3.22)
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By Lemma 2.2, φ(A; Ti , Ti ) = p2(π0; Ti ) (A − 0.5�2(π0; Ti )) , hence
∂Vi (t; Ti , Tj )/∂Ti is continuous at Ti = Tj . By Lemma 3.7, function φ(A; T , t) is
increasing in T on {t ≥ T ∨ T }. Hence, ∂2Vi (t; Ti , Tj )/∂Ti∂Tj ≥ 0 if T < Tj < Ti .

The increasing differences condition (3.20) is equivalent to

∫ T ′
i

Ti

(
∂Vi (t; τ, T ′

j )

∂τ
− ∂Vi (t; τ, Tj )

∂τ

)
dτ ≥ 0. (3.23)

In the regions τ > T ′
j ≥ Tj > T and T < τ < Tj ≤ T ′

j , ∂
2Vi (t; τ, Tj )∂τ∂Tj ≥ 0.

Applying the mean value theorem, we conclude that

∂Vi (t; τ, T ′
j )

∂τ
− ∂Vi (t; τ, Tj )

∂τ
≥ 0 (3.24)

if either τ ≥ T ′
j ≥ Tj ≥ T or T ≤ τ ≤ Tj ≤ T ′

j . If T ≤ Tj < τ < T ′
j , we write (3.24)

as

∂Vi (t; τ, T ′
j )

∂τ
− ∂Vi (t; τ, τ )

∂τ
+ ∂Vi (t; τ, τ )

∂τ
− ∂Vi (t; τ, Tj )

∂τ
≥ 0 + 0 = 0.

Hence, (3.24) for all τ ∈ [Ti , T ′
i ]. Integrating (3.24), we obtain (3.23). 
�

Let T̃ = T̃ ( Ã) be given by Ã = �1(1, T̃ ).

Corollary 3.9 Restrictions of the payoff functions Ṽi (t; ·, ·) on [t ∨ T̃ ,+∞)2 are sub-
modular.

Proof We need to show that the functions Ṽi (t; ·, ·) satisfy the decreasing differences
condition (i.e., inequality in (3.20) holds with the opposite sign if Vi is replaced by
Ṽi ). To this end, in the proof of Theorem (3.8), we replace A, Vi ,T with Ã, Ṽi , T̃ ,
respectively, and change the signs in the flow payoffs, inequalities for the partial
derivatives and integrals. 
�

4 Equilibria in the gamewith conclusive failures

4.1 Value of the leader

Suppose player j pre-commits to stop no earlier than player i . Then, at any t ≥ 0,
player i is the leader and solves the following problem:

sup
Ti ≥t

�(A, t; Ti ),

and the leader’s value function is

VL(t) = S + sup
Ti ≥t

�(A, t; Ti ). (4.1)
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Let

Â2 = Â2(π0) = 1

2
max
t≥0

�2(π0; t) = 1

2
�2(π0; t̂2(π0)). (4.2)

If A ≥ Â2, then the integrand in (3.10) is nonnegative (positive for some t ′), hence
�(A, t; Ti ) is strictly increasing in Ti , therefore player i never exits before the first
failure happens, and so does player j , hence a unique Nash equilibrium is T ∗

i (t) =
T ∗

j (t) = ∞ for all t ≥ 0.

Lemma 4.1 Let A < Â2(π0), then

(a) the equation

A − 0.5�2(π0; t) = 0 (4.3)

has two solutions t∗2 (A, π0) < t∗2(A, π0);
(b) t∗2 (A, π0) is the local maximum, and t∗2(A, π0) is the local minimum of �(A, 0; ·).

Proof (a) By Lemma 2.3, �2(π0; t) is hump-shaped. Therefore, if A < Â2(π0) equa-
tion (4.3) has exactly two solutions:

0 < t∗2 (A, π0) < t̂2(π0) < t∗2(A, π0).

(b) If 0 < t∗2 (A, π0) < t∗2(A, π0) are solutions to (4.3), then it is easy to see that
the LHS in (4.3) is positive if t < t∗2 or t > t∗2; and it is negative if t∗2 < t < t∗2.
Since�(A, 0; ·) is increasing (respectively, decreasing) iff the LHS in (4.3) is positive
(respectively, negative), (b) follows. 
�
Notice that in the correspondent exponential model with parameter λ, the FOC anal-
ogous to (4.3) is A − λπ2(π0; t) = 0; and the leader’s value function is increasing
(respectively, decreasing) if A − λπ2(π0; t) > 0 (respectively, A − λπ2(π0; t) < 0).
If λπ2(π0; 0)) < A it is not optimal to start experimentation, because the leader’s
value function is negative. If λπ2(π0; 0)) > A, there exists a unique solution to the
FOC, but it is the point of minimum of the leader’s value function. That is why in the
exponential model, players never stop before the first breakdown happens. See Fig. 1a
for illustration.

The next result indicates that if A is sufficiently small, the local maximum t∗2 (A, π0)

of �(A, 0, ·) becomes the global maximum.

Lemma 4.2 There exists a unique A∗
2 = A∗

2(π0) ∈ (0, Â2(π0)) s.t.

�(A∗
2, t∗2 ;+∞) = 0, (4.4)

and �(A, t∗2 ;+∞) > 0(= 0,< 0) if A > A∗
2(= A∗

2,< A∗
2).
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(a) Bad news model. (b)Good news model.

Fig. 1 Hazard rates: Erlang-2 versus exponential model

Proof Fix π0, and suppress the dependence on π0 in the notation Â2, t∗2 (A), A∗
2. For

A < Â2, consider

�(A, t∗2 (A);+∞) = Cer t∗2

p2(π0; t∗2 (A))

∫ ∞

t∗2 (A)

e−r t p2(π0; t) (A − 0.5�2(π0; t)) dt .

(4.5)

The integrand in (4.5) increases in A. Furthermore, while A remains below Â2, the
integrand is negative in a right neighborhood of t∗2 (A), and t∗2 (A) moves to the right
as A increases. Hence, the integral in (4.5) is increasing in A. As a function of A, the
integral is positive at Â2; by continuity, it is also positive in a left neighborhood of Â2.
In the limit A → 0+, the integral becomes negative. Hence, there exists A∗

2 ∈ (0, Â2)

s.t. the integral in (4.5) is negative for any A < A∗
2, and positive for any A ∈ (A∗

2, Â2).
By monotonicity of �(A, t∗2 (A);+∞) w.r.t. t∗2 (A), this A∗

2 is unique. 
�
It follows from Lemma 4.2, that for all A > A∗

2(π0) , the leader never stops before
the first failure, hence the follower also does not stop before the first failure, hence
the unique equilibrium is q̂ t

i (t
′) = q̂ t

j (t
′) = 1 for all t ′ > t ≥ 0. This equilibrium is a

SPE, because in every subgame that starts after the history ht ∈ Ht s.t. both players are
active and no failures were observed, argmaxT ≥t �(A, t; T ) = +∞. In a non-generic
case A = A∗

2(π0), the leader is indifferent between stopping at t∗2 (A∗
2, π0) and never

stopping before the first failure.
If A < A∗

2, then t∗2 (A, π0) is the global maximum of �(A, 0; ·), because
�(A, t∗2 ;∞) < 0. Moreover, since �(A, t∗2;∞) > 0 and �(A, ·;∞) increases on
(t∗2 (A, π0), t∗2(A, π0)) there exists a unique solution to �(A, t;+∞) = 0. Denote
this solution T̄ = T̄ (A, π0). Clearly, T̄ ∈ (t∗2 (A, π0), t∗2(A, π0)), and for t < T̄ ,
�(A, t;+∞) < 0 , and for t > T̄ , �(A, t;+∞) > 0.

It follows from the above analysis that the leader’s optimal strategy in any subgame
that starts at time t ≥ 0 is
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T ∗
i (t) =

⎧⎪⎨
⎪⎩

t∗2 (A, π0), if 0 ≤ t ≤ t∗2 (A, π0),

t, if t∗2 (A, π0) < t ≤ T̄ ,

∞, if t > T̄ .

4.2 Value of the follower

Suppose player i pre-commits to stop no earlier than player j . Then player i is the
follower who solves the following problem:

sup
Ti ≥Tj


(A, Tj ; Ti ),

and the follower’s value function after the history ht (∅,∞,∞) is

VF (t; Tj ) = S + �(A, t; Tj ) + e−r(Tj −t) p2(π0; Tj )

p2(π0; t)
sup

Ti ≥Tj


(A, Tj ; Ti ). (4.6)

From the previous section, we know that if A > A∗
2, both the leader and the follower

do not stop before the first failure is observed, therefore from now on, we focus on the
case A < A∗

2.

Consider t∗2 (A, π0) ≤ Tj ≤ T̄ . (If Tj > T̄ , then we know from the previous
section that the players do not stop before the first observation arrives.) On the strength
of inequality (8.5) �(A, t∗2 (A, π0);+∞) < 0 implies 
(A, Tj ;+∞) < 0 for any
t∗2 (A, π0) ≤ Tj ≤ T̄ . Therefore, the best response of the follower is T ∗

i (Tj ) = Tj for
any t∗2 (A, π0) ≤ Tj ≤ T̄ , i.e., the follower stops together with the leader.

It remains to consider the case 0 ≤ Tj < t∗2 (A, π0).

Theorem 4.3 Let �(A, t∗2 (A, π0);+∞) < 0. Then, in any subgame that starts at
0 ≤ Tj < t∗2 (A, π0) after the history hTj (∅,∞, Tj ), the follower’s best response
is T ∗

i (Tj ) = t∗1 (A, π1(π0; Tj )), where t∗1 (A, π1(π0; Tj )) ∈ (Tj , t∗2 (A, π0)) is the
smallest solution to

A − �1(π1(π0; Tj ); t) = 0. (4.7)

Moreover t∗1 (A, π1(π0; Tj )) is increasing in Tj .

See Sect. 8.6 for the proof. To summarize, the follower’s best response function in
any subgame that starts after the history hTj (∅,∞, Tj ) is

T ∗
i (Tj ) =

{
t∗1 (A, π1(π0; Tj )), if Tj < t∗2 (A, π0),

Tj if Tj ≥ t∗2 (A, π0).
(4.8)

The follower’s value after the history ht (∅,∞,∞) is
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(a) Best response function of player 1. (b)Best response function of player 2.

Fig. 2 Players’ best response functions in the bad news model

VF (t; Tj ) = S + �(A, t; Tj ) + 1Tj <t∗2 (A,π0)e
−r(Tj −t) p2(π0; Tj )

p2(π0; t)

(A, Tj ; t∗1 (A, π1(π0; Tj ))).

Thus, for any Tj ≥ t∗2 (A, π0), VF (t; Tj ) = S + �(A, t; Tj ), i.e., the follower’s
value equals the leader’s value. For any Tj < t∗2 (A, π0), the follower’s value is greater
than the value of the player who exits at Tj , because
(A, Tj ; t∗1 (A, π1(π0; Tj ))) > 0.
Hence, the interval [0, t∗2 (A, π0)) plays the role of an attrition zone.

It follows from the above analysis that if player j stops at Tj < t∗2 (A, π0), then
player i becomes the follower, who stops at t∗1 (A, π1(π0; Tj )). If player j stops at
Tj ≥ t∗2 (A, π0), then stopping at t∗2 (A, π0) is the dominant strategy for player i . Hence,
in the game without precommitment, the best response functions of the players are

T ∗
i (Tj ) =

{
t∗1 (A, π1(π0; Tj )), if Tj < t∗2 (A, π0),

t∗2 (A, π0) if Tj ≥ t∗2 (A, π0).
(4.9)

See Fig. 2 for illustration. Notice that

t∗1 (A, π1(π0; t∗2 (A, π0))) = t∗2 (A, π0),

because the RHS is the smallest solution to (4.3), the LHS is the smallest solution
to (4.7); functions �1(π1(π0, t∗2 (π0, A)); t) and 0.5�2(π0; t) have only one posi-
tive point of intersection at t = t∗2 (π0, A). Thus, (i) T ∗

i (Tj ) = t∗1 (A, π1(π0; Tj )) is
increasing in the second argument and T ∗

i (Tj ) > Tj for all Tj ∈ [0, t∗2 (A, π0)) (ii)
T ∗

i (Tj ) = t∗2 (A, π0) for all Tj ≥ t∗2 (A, π0). Therefore, the point

T ∗
i (Tj ) = t∗1 (A, π1(π0; Tj )) = t∗2 (A, π0) = Tj

is unique. Hence, the unique equilibrium outcome is that the leader and the follower
stop together at Ti = Tj = t∗2 (A, π0).

4.3 Equilibrium

Theorem 4.4 Let A < A∗(π0). Then the stopping time game with the payoff functions
defined by (3.11) has a unique SPE given by the following pair of consistent strategies:
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q̂ t
i (t

′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if 0 ≤ t ≤ t ′ ≤ t∗2 (A, π0),

0, if 0 ≤ t ≤ t∗2 (A, π0) < t ′,
or t∗2 (A, π0) < t ≤ min{t ′, T̄ },

1, if T̄ ≤ t ≤ t ′.

i ∈ {1, 2} (4.10)

The equilibrium payoffs are

Vi (t; q̂ t
i , q̂ t

j ) =

⎧⎪⎨
⎪⎩

S + �(A, t; t∗2 (A, π0)), if t ∈ [0, t∗2 (A, π0)),

S, if t ∈ [t∗2 (A, π0), T̄ ),

S + �(A, t;∞), if t ≥ T̄ .

i ∈ {1, 2}

Proof Recall that we look for a NE in the class of strategies of the threshold type
specified by (3.3). Therefore, there is one-to-one correspondence between qt

i and the
point Ti ≥ t s.t. qt (t ′) = 0 for all t ′ > Ti . The equilibrium exists and it is unique,
because the best response functions T ∗

1 (T2) and T ∗
2 (T1) intersect, and they intersect

only once. See Fig. 4a for illustration. The strategies (4.10) are consistent, hence the
proposed strategy profile is SPE. 
�

Remark 4.5 Notice that on the equilibrium path, both players stop at t∗2 . Off the equi-
librium pass, they may be still active in a subgame that starts at t > t∗2 . If t < T̄ , the
players will stop immediately and get the safe payoff S. If t > T̄ , the players will
remain active until the first piece of bad news arrives, therefore, their expected payoffs
in a subgame that starts at t > T̄ are bigger than the safe payoff S. If t = T̄ , the
players are indifferent between stopping immediately and staying until the first failure
happens.

4.4 Efficiency of the equilibrium outcome

First of all, notice that the equilibrium outcome is the same as a cooperative solution,
where the two players agree on how long they will stay in the game together, because
the cooperative solution maximizes 2(S +�(A, 0; T )), and the maximum is achieved
either at T = +∞ (if A > A∗

2) or at T = t∗2 = t∗2 (A, π0) (if A < A∗
2). In a non-generic

case A = A∗
2, the players will be indifferent between stopping at t∗2 and never unless

the first failure happens.
Now consider the social planner, who chooses the leader’s stopping time T so

as to maximize the sum of the values of both players, i.e., 2S + 2�(A, 0; T ) +
e−rT p2(π0; T )
(A, T ; T f (T )), where T f (T ) is the follower’s best response to T .
Equivalently, the social planner chooses T to maximize the payoff function

S P(A; T ) = 2S + 2C
∫ T

0
e−r t p2(π0; t) (A − 0.5�2(π0; t)) dt

+C
∫ T f (T )

T
e−r tφ(A; T , t)dt, (4.11)
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where φ(A; T , t) is defined by (3.19). Recall that if T ≥ t∗2 (A, π0), then T f (T ) = T ,
therefore the second integral in (4.11) disappears, and

∂S P(A; T )

∂T
= 2e−rT p2(π0; T ) (A − 0.5�2(π0; T )) , if T > t∗2 .

The above partial derivative is negative if T ∈ (t∗2 , t∗2) and positive if T > t∗2,
therefore if a maximum of the social planner’s function is attained on (t∗2 ,∞], the
maximum is at T = ∞. In Sect. 4.1, we showed that the maximum of �(A; 0, T ) is
attained at T = ∞ if A > A∗

2. Hence the equilibrium outcome where both players
stay until the first piece of bad news arrives is efficient if A > A∗

2. The non-generic
case A = A∗

2 produces efficient outcome by the same argument.
Let A < A∗

2. Then the maximum of �(A; 0, T ) is attained at T = t∗2 , and
T f (t∗2 ) = t∗2 . Hence S P(A; t∗2 ) > S P(A;∞). To find the maxima of S P(A; ·) on
[0, t∗2 ], calculate the derivative on (0, t∗2 )

∂S P(A; T )

∂T
= 2e−rT p2(π0; T ) (A − 0.5�2(π0; T )) +

∫ T f (T )

T
e−r t ∂φ(A; T , t)

∂T
dt

− e−rT φ(A; T , T ) + e−rT f (T )φ(A; T , T f (T ))
∂T f (T )

∂T
. (4.12)

Recall that if T ≤ t∗2 (A, π0), then A−�1(π1(π0; T ); T f ) = 0; in this case [see (3.19)],
the last term in (4.12) is zero. Using the property 0.5�2(π0; T ) = �1(π1(π0; T ); T )

and the definition of φ(A; T , t) (3.19), we simplify (4.12):

∂S P(A; T )

∂T
= e−rT p2(π0; T ) (A − 0.5�2(π0; T )) +

∫ T f (T )

T
e−r t ∂φ(A; T , t)

∂T
dt .

(4.13)

The first term is positive if T ∈ (0, t∗2 ). By Lemma 3.7, ∂φ(A; T , t)/∂T ≥ 0 if T ≥ T.
Since t∗2 > T, ∂S P(A; T )/∂T > 0 if T ∈ [T, t∗2 ). Evidently, ∂S P(A; t∗2−)/∂T = 0,
hence T = t∗2 is a local maximum of S P(A; ·) on [T,∞). Recall that if T < T,
then experimentation is optimal even if the project is bad for sure, therefore the social
planner will not find it optimal to stop one of the players at T ∈ [0,T). Hence, T = t∗2
is the social planner’s solution, i.e., the equilibrium outcome is efficient.

5 Equilibria in the gamewith conclusive successes

5.1 Value of the leader

Suppose player j pre-commits to stop no earlier than player i . Then, at any t ≥ 0,
player i is the leader who solves the following problem:

sup
Ti ≥t

�̃( Ã, t; Ti ),
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and the leader’s value function is

ṼL(t) = S + sup
Ti ≥t

�̃( Ã, t; Ti ). (5.1)

Lemma 5.1 Set t = 0. Condition (3.12) is equivalent to

sup
T

�̃( Ã, 0; T ) > 0. (5.2)

See Sect. 8.7 for the proof. If Ã ≥ Â2(π0) = 0.5maxt �2(π0, t), then condition (5.2)
cannot hold, because the integrand is negative almost everywhere. Hence, if (5.2)
holds, Ã < Â2(π0) and we can repeat the proof of Lemma 4.1 word by word to prove
the following result.

Lemma 5.2 Let Ã < Â2(π0), then

(a) the equation

0.5�2(π0; t) − Ã = 0 (5.3)

has two solutions t∗2 ( Ã, π0) < t∗2( Ã, π0);
(b) t∗2 ( Ã, π0) is the local minimum, and t∗2( Ã, π0) is the local maximum of �̃( Ã, 0; ·).

Wecan also state that t∗2( Ã, π0) is the globalmaximumof �̃( Ã, 0; ·)due to assump-
tion (5.2). The leader’s optimal strategy in any subgame that starts at time t ≥ 0 is

T ∗
i (t) =

{
t∗2(A, π0), if 0 ≤ t ≤ t∗2(A, π0),

t, if t∗2(A, π0) < t .

Notice that in any subgame that starts at t > t∗2( Ã, π0), the optimal strategy is to
stop immediately because �̃( Ã, t; T ) is decreasing in the last argument on {T >

t∗2( Ã, π0)}.
Notice that in the correspondent exponential model with parameter λ, the FOC

analogous to (5.3) is Ã −λπ2(π0; t) = 0; and the leader’s value function is increasing
(respectively, decreasing) if λπ2(π0; t) − Ã > 0 (respectively, λπ2(π0; t) − Ã < 0).
If λπ2(π0; 0)) < Ã it is not optimal to start experimentation, because the leader’s
value function is negative. If λπ2(π0; 0)) > Ã, there exists a unique solution to the
FOC, and this is the point of maximum of the leader’s value function. See Fig. 1b for
illustration.

5.2 Value of the follower

Suppose player i pre-commits to stop no earlier than player j . Then player i is the
follower who solves the following problem:

sup
Ti ≥Tj


̃( Ã, Tj ; Ti ),
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and the follower’s value function after the history ht (∅,∞,∞) is

ṼF (t; Tj ) = S + �̃( Ã, t; Tj ) + e−r(Tj −t) p2(π0; Tj )

p2(π0; t)
sup

Ti ≥Tj


̃( Ã, Tj ; Ti ). (5.4)

Consider Tj ≥ t∗2( Ã, π0). Then 0.5�2(π0, Tj ) ≤ Ã, and by Lemma 2.2,

�1(π1(π0; Tj ); Tj ) = 0.5�2(π0; Tj ) ≤ Ã.

Furthermore, since t∗2 = t∗2( Ã, π0) is the largest solution to (5.3), t∗2( Ã, π0) >

t̂2(π0), hence Tj > t̂2(π0). It is possible to show that for all Tj ≥ t∗2( Ã, π0),
Tj > t̂1(π1(π0, Tj )). Therefore, for all t > Tj ≥ t∗2, �1(π1(π0; Tj ); t) < Ã,
i.e., experimentation is not optimal for the follower if the leader stops at any
Tj ≥ t2∗( Ã, π0). We conclude that the best response of the follower is T ∗

i (Tj ) = Tj

for any t ′ ≥ Tj ≥ t∗2( Ã, π0). It remains to consider the case 0 ≤ Tj < t∗2( Ã, π0).

Theorem 5.3 Let condition (5.2) hold. Then, in any subgame that starts at 0 ≤ Tj <

t∗2( Ã, π0) after the history hTj (∅,∞, Tj ), the follower’s best response is T ∗
i (Tj ) =

t∗1( Ã, π1(π0; Tj )), where t∗1( Ã, π1(π0; Tj )) is the largest solution to

�1(π1(π0; Tj ); t) − Ã = 0. (5.5)

Moreover t∗1( Ã, π1(π0; Tj )) is decreasing in Tj .

See Sect. 8.8 for the proof. To summarize, the follower’s best response function in
any subgame that starts after the history hTj (∅,∞, Tj ) is

T ∗
i (Tj ) =

{
t∗1( Ã, π1(π0; Tj )), if Tj < t∗2( Ã, π0),

Tj if Tj ≥ t∗2( Ã, π0).
(5.6)

The follower’s value after the history ht (∅,∞,∞) is

ṼF (t; Tj ) = S + �̃( Ã, t; Tj )

+1Tj <t∗2( Ã,π0)
e−r(Tj −t) p2(π0; Tj )

p2(π0; t)

̃( Ã, Tj ; t∗1( Ã, π1(π0; Tj ))).

Thus, for any Tj ≥ t∗2( Ã, π0), ṼF (t; Tj ) = S + �̃( Ã, t; Tj ), i.e., the follower’s
value equals the leader’s value. For any Tj < t∗2( Ã, π0), the follower’s value is greater
than the value of the playerwho exits at Tj , because 
̃( Ã, Tj ; t∗1( Ã, π1(π0; Tj ))) > 0.
Hence, the interval [0, t∗2( Ã, π0)) plays the role of an attrition zone.

It follows form the above analysis that if player j stops at Tj < t∗2( Ã, π0), then
player i becomes the follower, who stops at t∗1( Ã, π1(π0; Tj )). If player j stops
at Tj ≥ t∗2( Ã, π0), then stopping at t∗2( Ã, π0) is the dominant strategy for player i .
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(a) Best response function of player 1. (b) Best response function of player 2.

Fig. 3 Players’ best response functions in the good news model

Hence, in the game without precommitment, the best response functions of the players
are

T ∗
i (Tj ) =

{
t∗1( Ã, π1(π0; Tj )), if Tj < t∗2( Ã, π0),

t∗2( Ã, π0) if Tj ≥ t∗2( Ã, π0).
(5.7)

See Fig. 3 for illustration. Notice that

t∗1( Ã, π1(π0; t∗2( Ã, π0))) = t∗2( Ã, π0),

because the RHS is the largest solution to (5.3), the LHS is the largest solution to
(5.5); functions �1(π1(π0, t∗2(π0, Ã)); t) and 0.5�2(π0; t) have only one positive
point of intersection at t = t∗2(π0, Ã). Thus, (i) T ∗

i (Tj ) = t∗1( Ã, π1(π0; Tj )) is
decreasing in the second argument and T ∗

i (Tj ) > Tj for all Tj ∈ [0, t∗2( Ã, π0)) (ii)
T ∗

i (Tj ) = t∗2( Ã, π0) for all Tj ≥ t∗2( Ã, π0). Therefore, the point

T ∗
i (Tj ) = t∗1( Ã, π1(π0; Tj )) = t∗2( Ã, π0) = Tj

is unique. Hence, the unique equilibrium outcome is that the leader and the follower
stop together at Ti = Tj = t∗2( Ã, π0).

5.3 Equilibrium

Theorem 5.4 Let condition (5.2) hold. Then the stopping time game with the value
functions defined by (3.17) has a unique SPE given by the following pair of consistent
strategies:

q̂t
i (t

′) =

⎧⎪⎨
⎪⎩
1, if 0 ≤ t ≤ t ′ ≤ t∗2( Ã, π0)),

0, if 0 ≤ t ≤ t∗2( Ã, π0) < t ′,
or t∗2( Ã, π0) < t ≤ t ′.

i ∈ {1, 2} (5.8)
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(a) (b)

Fig. 4 a Equilibrium in the bad news model, b equilibrium in the good news model

The equilibrium payoffs are

Vi (t; q̂ t
i , q̂ t

j ) =
{

S + �( Ã, t; t∗2( Ã, π0)), if t ∈ [0, t∗2( Ã, π0)),

S, if t ≥ t∗2( Ã, π0).
i ∈ {1, 2}

Proof Recall that we look for a NE in the class of strategies of the threshold type
specified by (3.3). Therefore, there is one-to-one correspondence between qt

i and the
point Ti ≥ t s.t. qt (t ′) = 0 for all t ′ > Ti . The equilibrium exists and it is unique,
because the best response functions T ∗

1 (T2) and T ∗
2 (T1) intersect, and they intersect

only once. See Fig. 4b for illustration. The strategies (5.8) are consistent, hence the
proposed strategy profile is SPE. 
�

The analysis presented in this section indicates that the critical value of the hazard
rates at exit is independent of the number of players. In order that the critical values of
hazard rates depended on n, one can depart from the winner takes all prize scheme. For
example, suppose, that the player, who gets the first breakthrough gets the prize R > S,
and the second player gets the payoff S < P < R. Then each player’s expected payoff
in case of arrival of good news is (R + P)/2. Let, as before, A = r(C + S)/(R − S),
and let κ = 1+ (P − S)/(R − S). Then the exit threshold for two players is the largest
solution t∗2 = t∗2( Ã, π0, κ) to

0.5�2(π0; t) − Ã

κ
= 0, (5.9)

provided

∫ t∗2

0
p2(π0; t)

(
0.5�2(π0; t) − Ã

κ

)
dt > 0. (5.10)

The last inequality is similar to (3.12) (see the proof of Lemma 5.1 in Sect. 8.7 to
understand why). If inequality (5.10) is satisfied, then players exit simultaneously at
t∗2, because t∗1(t∗2) < t∗2, where t∗1(t∗2) is the largest solution to
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�1(π1(π0; t∗2); t) − Ã = 0.

We see from (5.9) that the critical value of the hazard rates at exit depends on the
number of players. Since κ > 1, the largest solution to (5.9) is larger than the largest
solution to (5.3), so the players will experiment longer.

Thus, if a designer of a grant competition has in mind her own optimal length of
experimentation, longer experimentation can be achieved by a proper reward scheme
design. This conclusion holds provided that costs spent on experimentation by every
player are observable. If costs are private information, then it is necessary to study
incentives to free ride on other players’ experimentation as, e.g., in Halac et al. (2017).

5.4 Inefficiency of the equilibrium outcome

Let condition (5.2) hold. If the two players decide to cooperate and stay in the game
together, then they will maximize 2(S + �̃( Ã, 0; T )), hence the will stop together at
T = t∗2 unless the first success happens earlier. Thus, the equilibrium outcome is the
same as a cooperative solution.

Now consider the social planner (or sponsor), who pays for the costs of experimen-
tation of each of the active players and who is the claimant to the payoff R in case of a
success. The social planner chooses the leader’s stopping time T so as tomaximize sum
of the values of both players, i.e., 2S+2�̃( Ã, 0; T )+e−rT p2(π0; T )
̃( Ã, T ; T f (T )),
where T f (T ) is the follower’s best response to T . Equivalently, the social planner
chooses T to maximize the payoff function

S P( Ã; T ) = 2S + 2(R − S)

∫ T

0
e−r t p2(π0; t)

(
0.5�2(π0; t) − Ã

)
dt

−(R − S)

∫ T f (T )

T
e−r tφ( Ã; T , t)dt, (5.11)

where φ( Ã; T , t) is defined by (3.19). Recall that if T ≥ t∗2( Ã, π0), then by (5.6),
T f (T ) = T , hence the last integral in (5.11) is zero, and

∂S P( Ã; T )

∂T
= 2e−rT p2(π0; T )

(
0.5�2(π0; T ) − Ã

)
, if T > t∗2.

The above partial derivative is negative if T > t∗2, therefore, the social planner’s
function decreases on (t∗2,+∞). To prove that the maxima of S P( Ã; ·) are on the
open interval [0, t∗2), calculate the derivative using the same reasoning as in Sect. 4.4

∂S P( Ã; T )

∂T
= e−rT p2(π0; T )

(
0.5�2(π0; T ) − Ã

)
−

∫ T f (T )

T
e−r t ∂φ( Ã; T , t)

∂T
dt .

(5.12)
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Tedious straightforward calculations show that

∂2S P

∂T 2 ( Ã; t∗2−) = e−r t∗2 p2(π0; t∗2)0.5∂t�2(π0; t∗2)π2(π0; t∗2)∂t�1(1; t∗2)
∂t�1(π1(π0; t∗2); t∗2)

.

(5.13)

Since t∗2 = T f (t∗2) is the largest solution to (5.5), t∗2 is greater than the globalmax-
imum of �1(π1(π1; t∗2); t). Hence by Lemma 2.3, ∂t�1(π1(π0; t∗2); t∗2) < 0. The
numerator in (5.13) is also negative, because ∂t�1(1, t∗2) > 0 and ∂t�2(π0; t∗2) < 0
since t∗2 is the largest solution of (5.3). Hence ∂2T T S P( Ã; t∗2−) > 0, therefore
t∗2( Ã, π0) is not a point of maximum of S P( Ã; T ).

Thus the equilibrium outcome is not efficient. It follows from the above consid-
erations that the global maximum of the social planner’s payoff function is attained
either at T = 0 or at some T ∗ ∈ (0, t∗2). The former outcome can happen if parameter
Ã = r(C + S)/(R − S) is sufficiently large, i.e., if the opportunity cost of experimen-
tation is relatively high compared to the net benefit from experimentation. In this case,
the sponsor will find it optimal to finance a single participant of the research team. If
Ã is sufficiently small, then it is optimal to finance two competitors for a while, stop
financing one of the players earlier than in equilibrium and the other one later than in
equilibrium.

6 Extensions and generalization

6.1 Hump-shaped distributions

We derived results in the paper under a standing assumption that �1(1; 0) = 0. This
assumption is convenient to study bad newsmodel, because it is always optimal to start
experimentation since the rate of arrival of news is close to zero in a right neighborhood
of zero. At the same time, such standing assumption may be rather restrictive. Results
concerning super(sub)modularity of the stopping games were independent of the latter
assumption. In this section,wegeneralize ourmodel further andprovide a classification
of one-humpedbandits.As inSect. 2, the primitive is the rate of arrival of newswhen the
risky project can generate news for sure. Let n ≥ 1 players experiment with a project
of unknown quality, and π0 ∈ (0, 1) is the common prior which is the probability of
the event that the project generates news.

Lemma 6.1 Let the following conditions hold:

(i) �1(1; t) is twice differentiable on (0,+∞) and increasing;

(ii) 2(∂t�1(1; t))2 > ∂2t �1(1; t) · �1(1; t), ∀ t > 0; (6.1)

(iii)
lim
t↓0 ∂t

( −1

�1(1; t)

)
> n(1 − π0); (6.2)
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Then

(a) as a function of t , �n(π0; t) = n�1(1; t)πn(π0; t) has the global maximum t̂n =
t̂n(π0);

(b) If (6.1) holds but (6.2) fails, then �n(π0; t) is a decreasing function on R+.

The proof is the same as the proof of Lemma 2.3. However, since we no longer
assume that �1(1; 0) = 0, additional condition (6.2) is needed to show that the
derivative ∂t�n(π0; t) changes sign.

Notice that if, for some 1 < n̂ ≤ n,

1 − π0 < lim
t↓0 ∂t

( −1

�1(1; t)

)
< n̂,

then the qualitative behavior of the arrival rate �n(π0; t) depends on n. Namely, for
n ≥ n̂,, the arrival rate�n(π0; t) is a decreasing function, and themodel is qualitatively
the same as the exponential bandits model.

6.2 Classification of one-humped bandits

Next, we characterize different possible types of one-humped bandits. We start with
the following preliminary remarks.

– If limt↓0 ∂t

( −1
�1(1;t)

)
= +∞, then (6.2) holds for any n.

– If 0 < limt↓0 ∂t

( −1
�1(1;t)

)
< +∞, then 1/�1(1; t) is bounded as t → 0, and

�1(1; 0) > 0.

– It is possible that �1(1; 0) > 0, (6.1) holds but limt↓0 ∂t

( −1
�1(1;t)

)
= +∞.

– If ∂t�1(1; 0) exists and (6.1) holds, then �1(1; 0+) > 0 iff

0 < lim
t↓0 ∂t

( −1

�1(1; t)

)
< +∞.

Definition 6.2 Let (6.1) hold.
We call the bandit model defined by �1(1; t) a one-humped model of Type I, II

and III if the corresponding condition below holds

I. �1(1; 0) = 0, and ∂t�1(1; 0) exists, and it is finite;
II. �1(1; 0) > 0 and ∂t�1(1; 0) exists, and it is finite;

III. �1(1; 0) > 0 and limt↓0 ∂t

( −1
�1(1;t)

)
= +∞.

6.3 One-humped bandits of Types II and III

Properties specified for Type I bandits in the previous sections hold, and equilibria of
the same types are possible.

Depending on the parameters, the usual encouragement effect can be observed (as
in exponential bandit models).
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An additional effect and type of equilibria (if r is sufficiently large): discouragement
(crowding out) effect: ∃m ≥ 1 s.t.

(1) if n < m players are in the game at time 0, they will find it optimal to start
experimenting with the bad news technology;

(2) n ≥ m players will not start experimenting unless n − m of them exit instantly.

6.4 Multi-humped bandits

We call the model a multi-humped model, if �n(π0; t) has more than one point of
local maximum. Examples include

(a) the environment with some seasonality;
(b) if business cycle effects are taken into account;
(c) endogenous multi-humped bandits.

6.5 Endogenousmulti-humped bandits

Assume that the players plan to enter the game with breakdowns at times 0 ≤ t1 ≤
t2 ≤ · · · ≤ tn < tn+1 := +∞; this can be an equilibrium outcome if, for example,
players are asymmetric.

Then the rate of arrival �k(π0; t), which the k players that are in the game face, is
defined as follows. For k = 1, 2, . . . , n and t ∈ [tk, tk+1),

�k(π0; t) =
k∑

j=1

� j (π0; t − t j ).

Clearly, more than one hump is possible, and if the underlying one-humped bandit is
of Type II or III, then �k exhibits jumps.

7 Conclusion

This paper contributes to the literature on both supermodular games and stopping
gameswith random observations.We demonstrated that games of strategic experimen-
tation with irreversible stopping decisions can be either supermodular or submodular
depending on the type of news players may receive.

We suggested a new model for strategic experimentation, where good or bad news
arrive at random times which are modeled as jump times of a time-inhomogeneous
Poisson process. These models are almost as tractable as exponential bandit models
and can incorporate such realistic features as dependence of the expected rate of news
arrival on the time elapsed since the start of the experiment.We characterized SPE both
in the model with conclusive failures and with conclusive breakthroughs. In particular,
we showed that in the bad news model, for a generic set of parameters, there exists a
SPE, where the players stop simultaneously before the first piece of bad news arrives.
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In the future, we plan to study systematically instances of super(sub)modularity in
stopping time games.We also plan to investigate the possibility of generalization of our
approach to the case of more than two players. Finally, we plan to extend the current
model to inconclusive experiments, correlated arms, private payoffs, and other types
of humped bandits. We believe that humped-shaped hazard rates are quite promising
and can be used not only as a framework in learning and experimentation models, but
in other areas of economics and finance. Uncertainty about rates and times of arrival
of observations can also be combined with other sources of uncertainty. For example,
credit risk models with hump-shaped hazard rate and evolution of assets modeled as
a jump-diffusion process are more realistic than oversimplified reduced form models
of defaultable debt with the exponential hazard rate, and the former models are still
tractable.

8 Appendix

8.1 Proof of Lemma 2.1

(i) For n ∈ {1, 2}, rewrite (2.5) as πn(π0; t) = 1 − (1 − π0)/pn(π0; t), and notice
that pn(π0; t) = 1− π0 + π0 p1(1, t)n is decreasing in n because p1(1; t) < 1 for all
t > 0.
(ii) Fix any t ′ > 0. Let π̂ be a solution to πn(π0, t ′) = πn−1

(
π̂ , t ′

)
, equivalently

π0 p1(1; t ′)n

1 − π0 + π0 p1(1; t ′)n
= π̂ p1(1; t ′)n−1

1 − π̂ + π̂ p1(1; t ′)n−1 .

Hence π̂(1 − π0)p1(1; t ′) = (1 − π̂)π0, and

π̂ = π0 p1(1; t ′)
1 − π0 + π0 p1(1; t ′)

= π1(π0; t ′).

This proves (2.7).
(iii) Consider the difference

D(t) := π2(π0, t) − π1(π1(π0; t ′), t).

Since π2(π0, 0) = π0, and π1(π1(π0; t ′), 0) = π1(π0; t ′) < π0, D(0) > 0. It follows
from (ii) that t = t ′ is the only zero of D(t). Hence, to prove (2.8), it suffices to show
that D′(t ′) < 0. To this end, calculate (using (2.6) and results from (ii))

D′(t ′) = ∂tπ2(π0, t ′) − ∂tπ1(π1(π0; t ′), t ′)
= −2�1(1; t ′)π2(π0; t ′)(1 − π2(π0; t ′))

+�1(1; t ′)π1(π1(π0; t ′), t ′)(1 − π1(π1(π0; t ′), t ′))
= −�1(1; t ′)π2(π0; t ′)(1 − π2(π0; t ′)) < 0.
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8.2 Proof of Lemma 2.2

(a) Intersection at t = 0 follows from (2.9) and property (i) �1(1; 0) = 0. By
Lemma 2.1 and Eq. (2.9), the only positive point of intersection is t ′.
(b) Equation (2.11) follows from (2.9) and the equality in (2.6).
(c) Using (2.11), we derive

1

n
∂t�n(π0; 0+) = π0∂t�1(1; 0+) > π1(π0; t ′)∂t�1(1; 0+)

= 1

n − 1
∂t�n−1(π1(π0; t ′), 0).

By continuity, in a right neighborhood of zero,

1

n
∂t�n(π0; t) >

1

n − 1
∂t�n−1(π1(π0; t ′), t),

1

n
�n(π0; t) >

1

n − 1
�n−1(π1(π0; t ′), t).

Since there is only one positive intersection of the hazard rates, (2.12) follows.

8.3 Proof of Lemma 3.5

Notice that

∫ T

t
d

[
e−r(t ′−t) p1(π1(π0; t); t ′)

p1(π1(π0; t); t)

]
= e−r(T −t) p1(π1(π0; t); T )

p1(π1(π0; t); t)
− 1.

At the same time,

∫ T

t
d

[
e−r(t ′−t) p1(π1(π0; t); t ′)

p1(π1(π0; t); t)

]

=
∫ T

t
e−r(t ′−t) p1(π1(π0; t); t ′)

p1(π1(π0; t); t)

(−r − �1(π1(π0; t); t ′)
)
dt ′.

Hence

Se−r(Ti −Tj )
p1(π1(π0; Tj ), Ti )

p1(π1(π0; Tj ); Tj )

= S + S
∫ T

t
e−r(t ′−t) p1(π1(π0; t); t ′)

p1(π1(π0; t); t)

(−r − �1(π1(π0; t); t ′)
)
dt ′.

Substituting the last expression into (3.6), we arrive at (3.8) .
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8.4 Proof of Lemma 3.6

Notice that

∫ T

t
d

(
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)

)
= e−r(T −t) p2(π0; T )

p2(π0; t)
− 1.

At the same time,

∫ T

t
d

(
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)

)
=

∫ T

t
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)

(−r − �2(π0; t ′)
)
dt ′.

Hence,

e−r(Ti ∧Tj −t) p2(π0; Ti ∧ Tj )

p2(π0; t)
S = S + S

∫ Ti ∧Tj

t
e−r(t ′−t) p2(π0; t ′)

p2(π0; t)

(−r − �2(π0; t ′)
)
dt ′.

Substituting the last expression into (3.9), we obtain (3.11).

8.5 Proof of Lemma 3.7

Proof Use (2.4) and (2.5) to write

p1(π1(π0; T ); t) = 1 − π1(π0; T ) + π1(π0; T )p1(1; t)

= 1 − π0 p1(1; T )

p1(π0; T )
+ π0 p1(1; T )p1(1; t)

p1(π0; T )

= 1 − π0 + π0 p1(1; T )p1(1; t)

p1(π0; T )
;

p1(π1(π0; T ); T ) = 1 − π0 + π0 p1(1; T )p1(1; T )

p1(π0; T )
= p2(π0; T )

p1(π0; T )
.

Hence

φ(A; T , t) = (1 − π0 + π0 p1(1; T )p1(1; t)) (A − �1(π1(π0; T ); t)) . (8.1)

Use (2.5) and (2.9) to write

�1(π1(π0; T ); t) = �1(1; t)π1(π1(π0; T ); t)

= �1(1; t)
π1(π0; T )p1(1; t)

1 − π1(π0; T ) + π1(π0; T )p1(1; t)

= �1(1; t)
π0 p1(1; T )p1(1; t)

1 − π0 + π0 p1(1; T )p1(1; t)
.

Therefore
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φ(A; T , t) = (1 − π0)A + π0 p1(1; T )p1(1; t) (A − �1(1; t)) , (8.2)

and

∂φ(A; T , t)

∂T
= −π0 p1(1; T )p1(1; t)�1(1; T ) (A − �1(1; t)) . (8.3)

The derivative in (8.3) is positive if A − �1(1; t) < 0, i.e., if t > T. 
�

8.6 Proof of Theorem 4.3

Since �(A, t∗2 (A, π0);+∞) < 0,

A < A∗
2(π0) < Â2(π0) = 0.5max

t≥0
�2(π0; t).

By Lemma 2.2,

�1(π1(π0; Tj ); t) > 0.5�2(π0, t),∀ t > Tj .

Therefore, for Tj < t∗2 (A, π0) < t̂2(π0),

A < Â1(π1(π0; Tj )) = max
t≥Tj

�1(π1(π0; Tj ); t),

hence equation (4.7) has exactly two solutions 0 < t∗1 (A, π1(π0; Tj )) < t∗1
(A, π1(π0; Tj )).Moreover, t∗1 (A, π1(π0; Tj )) is the localmaximumof
(A, π0, Tj ; ·);
t∗1(A, π1(π0; Tj )) is the local minimum of 
(A, π0, Tj ; ·) because 
(A, π0, Tj , ·)
is increasing (respectively, decreasing) iff the LHS in (4.7) is positive (respectively,
negative).

It remains to prove that t∗1 (A, π1(π0; Tj )) is the globalmaximumof
(A, π0, Tj ; ·),
equivalently,

∫ ∞

t∗1
e−r(t−t∗1 ) p1(π1(π0; Tj ); t)

p1(π1(π0; Tj ); Tj )

(
A − �1(π1(π0; Tj ); t)

)
dt < 0. (8.4)

Notice that

�1(π1(π0; Tj ); Tj ) = 0.5�2(π0; Tj ) < A = 0.5�2(π0; t∗2 ) < �1(π1(π0; Tj ); t∗2 ),

therefore t∗1 (A, π1(π0; Tj )) < t∗2 (A, π0). Write the LHS in (8.4) as

∫ t∗2

t∗1
e−r(t−t∗1 ) p1(π1(π0; Tj ); t)

p1(π1(π0; Tj ); Tj )

(
A − �1(π1(π0; Tj ); t)

)
dt

+ e−r(t∗2−t∗1 )

p2(π0; Tj )

∫ ∞
t∗2

e−r(t−t∗2 ) p2(π0; Tj )
p1(π1(π0; Tj ); t)

p1(π1(π0; Tj ); Tj )

(
A − �1(π1(π0; Tj ); t)

)
dt .
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The first integral in the sum above is negative, because A < �1(π1(π0; Tj ); t) for
t∗1 < t ≤ t∗2 . The integrand in the second integral is e−r(t−t∗2 )φ(A; Tj , t). It follows
immediately from (3.21), (3.22) and (3.24) with T ′

j > Ti = t and T = Tj < t that,
for t ∈ (T ∨ T ,+∞),

φ(T , t) ≤ p2(π0; t) (A − 0.5�2(π0; t)) . (8.5)

On the strength of (8.5), the second integral is smaller than

e−r(t∗2−t∗1 )

p2(π0; Tj )

∫ ∞

t∗2
e−r(t−t∗2 ) p2(π0; t) (A − 0.5�2(π0; t)) dt

= e−r(t∗2−t∗1 ) p2(π0; t∗2 )

p2(π0; Tj )
�(A, t∗2 (A, π0);+∞) < 0.

This proves (8.4). For any T ′
j > Tj , π1(π0; T ′

j ) < π1(π0; Tj ), hence, on the
strength of (2.9), �1(π1(π0; T ′

j ); t) < �1(π1(π0; Tj ); t) for all t > 0. Therefore,
t∗1 (A, π1(π0; T ′

j )) > t∗1 (A, π1(π0; Tj )). This concludes the proof of Theorem 4.3.

8.7 Proof of Lemma 5.1

Rewrite inequality (3.12) using the following steps.

(i) Use integration by parts to calculate the integral

∫ T

0
re−r t p2(π0; t)dt = 1 − e−rT p2(π0; T ) +

∫ T

0
e−r t∂t p2(π0; t)dt

= 1 − e−rT p2(π0; T ) −
∫ T

0
e−r t p2(π0; t)�2(π0; t)dt .

The second equality follows from the fact that

∂t p2(π0; t) = π0∂t p21(1, t) = −2�1(1, t)π0 p21(1, t)

= −2�1(1; t)π2(π0; t)p2(π0; t) = �2(π0; t)p2(π0; t).

Hence, we can write

Se−rT p2(π0; T ) − S = −S
∫ T

0
e−r t p2(π0; t) (r + �2(π0; t)) dt,

therefore (3.12) is equivalent to

sup
T >0

(∫ T

0
e−r t p2(π0; t) ((R − S)0.5�2(π0; t) − r(C + S)) dt

)
> 0. (8.6)
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(ii) Recall the notation Ã = r(C + S)/(R − S), then rewrite (8.6) as

sup
T >0

(∫ T

0
e−r t p2(π0; t)

(
0.5�2(π0; t) − Ã

)
dt

)
> 0. (8.7)

By definition (3.15) of �̃( Ã, 0; T ), (8.7) is equivalent to (5.2).

8.8 Proof of Theorem 5.3

Since (8.6) holds, Ã < Â2(π0). By Lemma 2.2, 0.5�2(π0; t) and �1(π1(π0; Tj ); t)
intersect only at t = 0 and t = Tj , therefore Â1(π1(π0, Tj )) = maxt≥Tj �1

(π1(π0; Tj ); t) > Ã. Indeed, if Tj < t̂2(π0), then, by Lemma 2.2, Â1(π1(π0, Tj )) >

Â2(π0), and if t̂2(π0) ≤ Tj < t∗2( Ã, π0), then

Â1(π1(π0, Tj )) ≥ �1(π1(π0; Tj ); Tj ) = 0.5�2(π0; Tj ) > Ã.

Hence equation (5.5) has two solutions

0 < t∗1 ( Ã, π1(π0; Tj )) < t̂1(π1(π0; Tj ) < t∗1( Ã, π1(π0; Tj )).

Moreover, t∗1 ( Ã, π1(π0; Tj )) is the local minimum of 
̃( Ã, Tj ; ·);
and t∗1( Ã, π1(π0; Tj )) is the local maximum of 
̃( Ã, Tj ; ·), because 
̃( Ã, Tj ; ·) is
increasing (respectively, decreasing) if the LHS in (5.5) is negative (respectively, pos-
itive).

Since Tj < t∗2( Ã, π0), Ã < 0.5�2(π0; Tj ) = �1(π1(π0; Tj ); Tj ). Therefore
t∗1( Ã, π1(π0; Tj )) > Tj . Moreover, t∗1 = t∗1( Ã, π1(π0; Tj )) > t∗2 = t∗2( Ã, π0),
because by Lemma 2.2, �1(π1(π0; Tj ); t∗2) > 0.5�2(π0, t∗2) = Ã. By inequality
(8.5), which holds with the opposite sign in the model with conclusive breakthroughs,
�̃( Ã; Tj , t∗2) ≤ 
̃( Ã, Tj ; t∗2). Since (8.6) holds, we also have

0 < �̃( Ã; 0, t∗2) ≤ �̃( Ã; Tj , t∗2) ≤ 
̃( Ã, Tj ; t∗2).

By definition of a maximum, 
̃( Ã, Tj ; t∗1) ≥ 
̃( Ã, Tj ; t∗2) > 0, hence t∗1 =
t∗1( Ã, π1(π0; Tj )) is the global maximum of 
̃( Ã, Tj ; ·). For any T ′

j > Tj ,
π1(π0; T ′

j ) < π1(π0; Tj ), hence, on the strength of (2.9), �1(π1(π0; T ′
j ); t) <

�1(π1(π0; Tj ); t) for all t > 0. Therefore, t∗1( Ã, π1(π0; T ′
j )) < t∗1( Ã, π1(π0; Tj )).

8.9 Proof that t∗2(Ã,�0) is not a point of maximum the social planner’s function
in the good newsmodel

It suffices to show that the second-order derivative ∂2T T S( Ã; t∗2−) > 0. To this end,
will show that ∂2T T S( Ã; t∗2−) is given by (5.13). Using (8.3) for the partial derivative
under the integral in (5.12), we rewrite (5.12) as
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∂S P( Ã; T )

∂T
= e−rT p2(π0; T )

(
0.5�2(π0; T ) − Ã

)

+π0 p1(1; T )�1(1, T )

∫ T f (T )

T
e−r t p1(1; t)(A − �1(1; t))dt .

(8.8)

Consider T = t∗2 − 	t . Then the first term in (8.8) is

e−r(t∗2−	t) p2(π0; (t∗2 − 	t))
(
0.5�2(π0; (t∗2 − 	t)) − Ã

)

= −e−r t∗2 p2(π0; t∗2)0.5∂t�2(π0; t∗2)	t + o(	t). (8.9)

The second term in (8.8) is

π0 p1(1; t∗2 − 	t)�1(1, t∗2 − 	t)
∫ T f (t∗2−	t)

t∗2−	t
e−r t p1(1; t)(A − �1(1; t))dt

= e−r t∗2π0 p1(1; t∗2)2�1(1, t∗2)(A − �1(1, t∗2))
(
1 − ∂T f (t∗2−)

∂T

)
	t + o(	t).

By (2.9),π0 p1(1; t∗2)2�1(1, t∗2) = 0.5�2(π0, t∗2)p2(π0, t∗2), hence the second term
in (8.8) is equal to

e−r t∗2 p2(π0, t∗2)0.5�2(π0, t∗2)(A − �1(1, t∗2))
(
1 − ∂T f (t∗2−)

∂T

)
	t + o(	t).

(8.10)

To find ∂T f (t∗2 − 0)/∂T , we use (5.5) and the implicit function theorem to derive

∂T f (T )

∂T
= −∂�1(π1(π1; T ); T f )/∂T

∂t�1(π1(π1; T ); T f )
. (8.11)

On the strength of (2.9) and (2.6), the numerator in the last fraction is

∂�1(π1(π1; T ); T f )

∂T
= −�1(1; T )�1(1; T f )π1(π1(π0; T ); T f )

(1 − π1(π1(π0; T ); T f )) < 0.

As T ↑ t∗2, the above expression tends to −�1(1; t∗2)2π2(π0; t∗2)(1 − π2(π0; t∗2)).
By (2.11), the denominator in (8.11) is

∂t�1(π1(π1; T ); T f ) = π1(π1(π0; T ); T f )[
∂t�1(1; T f ) − �1(1; T f )

2(1 − π1(π1(π0; T ); T f ))
]
.
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As T ↑ t∗2, the last expression tends to

π2(π0; t∗2)
[
∂t�1(1; t∗2) − �1(1; t∗2)2(1 − π2(π0; t∗2)

]
.

Hence

1 − ∂T f (t∗2−)

∂T
= 1 − �1(1; t∗2)π2(π0; t∗2)(1 − π2(π0; t∗2))

π2(π0; t∗2)
[
∂t�1(1; t∗2) − �1(1; t∗2)2(1 − π2(π0; t∗2)

]

= π2(π0; t∗2)
[
∂t�1(1; t∗2) − 2�1(1; t∗2)2(1 − π2(π0; t∗2)

]
π2(π0; t∗2)

[
∂t�1(1; t∗2) − �1(1; t∗2)2(1 − π2(π0; t∗2)

]
= 0.5∂t�2(π0; t∗2)

π2(π0; t∗2)
[
∂t�1(1; t∗2) − �1(1; t∗2)2(1 − π2(π0; t∗2)

] .

(8.12)

The last equality holds on the strength of (2.11).
Using (8.8), (8.9), (8.10), and (8.12), we derive

∂S P( Ã; t∗2 − 	t)

∂T
= 	te−r t∗2 p2(π0; t∗2)0.5∂t�2(π0; t∗2)

×
(

−1 + 0.5�2(π0, t∗2)(A − �1(1, t∗2))
π2(π0; t∗2)

[
∂t�1(1; t∗2) − �1(1; t∗2)2(1 − π2(π0; t∗2)

]
)

+o(	t).

It remains to replace A with 0.5�2(π0, t∗2) and use (2.9) for 0.5�2(π0, t∗2) in the
term in parenthesis in order to obtain

∂S P( Ã; t∗2 − 	t)

∂T
= 	t

−e−r t∗2 p2(π0; t∗2)0.5∂t�2(π0; t∗2)π2(π0; t∗2)∂t�1(1; t∗2)
∂t�1(π1(π0; t∗2); t∗2)

+o(	t).

Dividing both sides of the last equation by −	t and passing to the limit 	t → 0, we
obtain (5.13).
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