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Abstract
We investigate how asymmetric information on final demand affects strategic inter-
action between a downstream monopolist and a set of upstream monopolists, who
independently produce complementary inputs. We study an intrinsic private common
agency game in which each supplier i independently proposes a pricing schedule con-
tract to the assembler, specifying the supplier’s payment as a functionof the assembler’s
purchase of input i . We provide a necessary and sufficient equilibrium condition. A
lot of equilibria satisfy this condition but there is a unique Pareto-undominated Nash
equilibrium from the suppliers’ point of view. In this equilibrium, there are unavoid-
able efficiency losses due to excessively low sales of the good. However, suppliers
may be able to limit these distortions by implicitly coordinating on an equilibrium
with a rigid (positive) output in bad demand circumstances.
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1 Introduction

This paper investigates how asymmetric information on final demand affects strategic
interactionwhen a set of upstreammonopoly firms independently provide complemen-
tary inputs to the better informeddownstreammonopolist (complementarymonopolies
setup1). In particular, we identify unavoidable efficiency losses generated by excessive
cumulative input rates 2 and we analyze whether input suppliers are able to mitigate
these problems.

These questions are not new but they are now more crucial than they were at the
time when Cournot (1838) wrote the Chapter IX of his Recherches sur les Principes
Mathématiques de la Théorie des Richesses on the “mutual relations of producers”.
Whereas Cournot considered copper and zinc suppliers selling to competitive produc-
ers of brass, modern examples include a wide range of situations, like for instance:
Microsoft and Intel selling respectively chip and operative system to computer mak-
ers (HP, Lenovo, Dell.); Boeing buying jet engines to General Electric and avionics
to Honeywell. Indeed, as products become more and more sophisticated, input com-
plementarities also become more pervasive. For example, in the biotech industry,
modern vaccines incorporate numerous inputs with corresponding third-party propri-
etary rights attached. In the aviation industry, Laussel (2008) refers that Airbus has no
less than 15.000 suppliers among which 600 suppliers are providing parts of planes
equipment. Lemley and Shapiro (2006) or Gerardin et al. (2008) refer that modern
smartphones incorporate thousands of inputs, whose licenses are held by a fairly large
number of firms.3

Over two centuries, the economics literature has identified two sources of inef-
ficiency arising within complementary monopolies setups: (i) coordination failures
among input suppliers, and (ii) double marginalization. First, as follows from the
seminal work of Cournot (1838), the fact that input suppliers set their prices indepen-
dently (without accounting for the impact of such decisions on other suppliers) leads
to inefficiently low output production. Second, as long as upstream firms exert some
degree of bargaining power, they do not account for the effect of their pricing decisions
on the downstream firms’ profits, leading to the well-known double marginalization
problem (Spengler 1950). The two effects result in price (output) levels which are
greater (smaller) than the ones which would follow from joint profit maximization.

1 In this setup, firms’ interactions are not only horizontal (between suppliers) but also vertical (between
the suppliers and the downstream firm(s)), so that the term “complementary monopolies” has to be taken
in a broad sense.
2 At the European level, there have been a lively debate on the consequences of excessive cumulative input
rates. For example, this issue is at the heart of the debates on “fair, reasonable and non-discriminatory
(FRAND)” terms to remunerate patent holders.
3 For example, according to Gerardin et al. (2008) for the European version of 3G,WCDMA, if we consider
patents from all jurisdictions, there were 7.000 essential patents declared to the European Telecommuni-
cations Standards Institute (in 2004). The authors also refer that these patents were held by many different
firms.
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Complementary Monopolies with asymmetric information 945

While in a complete information setup, the adoption of sophisticated pricing strate-
gies (e.g. nonlinear pricing strategies like two-part tariffs4) is able to eliminate the
two distortions described above5, we conclude this is no longer the case when the
downstream firm is better informed about demand than input suppliers. Intuitively, if
the suppliers used truthful strategies which are optimal in the full information case,
the assembler would misreport (underestimate) the consumers’ willingness to pay for
the good in order to reduce the payments due to the suppliers. Thus, under asymmetric
information, nonlinear pricing strategies are no more able to restore joint profit maxi-
mization of the vertical chain (each supplier ends up setting an excessively high price
for its input, in an attempt to reduce the assembler’s informational rent).

Some first insights on the answers to these questions may be drawn from a general
paper byMartimort and Stole (2009a) on private common agency games.6 The authors
model competition in nonlinear price schedules between two firms (the principals),
each selling one good to a privately informed consumer (the agent) with the two
goods ranging from perfect complements to perfect substitutes. Their model may
be alternatively interpreted as a game between two upstream firms and a informed
downstream monopolist and, in the perfect complements case, this boils down to
our own complementary monopolies model. The authors show that the equilibrium
sales level is smaller than the one which would maximize the suppliers’ joint profits.
However, they only look at the differentiable equilibrium7, whereas we find that, at
least in the perfect complements case, this is only one among a lot of possible equilibria.

More precisely, we consider a game in which each input supplier independently
offers to the assembler a nonlinear pricing schedule which specifies the payment
required for any given quantity of input purchases. Then, the assembler observes
the true demand, deciding whether he accepts or rejects all the suppliers’ proposals.
Formally, the game we analyze here is an intrinsic private common agency game.8

4 Spulber (1989) analyzes nonlinear pricing in the context of monopolistic competition (within the circular
market framework). The discussion by Spulber (1989) might be of interest in thinking about complements
because it discusses the relationship to the local monopoly equilibrium.
5 First, it is well known that the equilibrium “marginal price” of the nonlinear pricing strategy is equal to
the marginal cost, eliminating the double marginalization issues (see, e.g. Tirole 1988). Second, nonlinear
pricing also rules out coordination issues among input suppliers, as shown by the seminal works of Bernheim
and Whinston (1986a and 1986b), who conclude that, at the truthful equilibria of common agency games,
the aggregate profits of the vertical structure are maximized. All these strategies obey the same simple
principle: they make the downstream firm (the “Agent”) the residual claimant with respect to the upstream
firm(s) (the “Principal(s)”)
6 Common agency is a formal setting inwhich, in a first stage, several “Principals” choose transfer schedules
intended to influence the actions of an “Agent” in a second stage. Many standard IO models are in fact
common agency models with restricted sets of transfer schedules (such as linear or two-part tariffs). Two
papers by Bernheim and Whinston have pioneered the formal study of common agency games: Bernheim
andWhinston (1986a) in the case of complete information and Bernheim andWhinston (1986b) in the case
of agent’s private information. Applications to IO include Monteiro and Page (2008, 1998).
7 The only equilibrium they characterize in this context is the differentiable one without any bunching,
except at the zero outputs levels (in their framework, this has to do with partial market coverage rather than
with true bunching).
8 It is intrinsic because the assembler either contracts with all suppliers or with none of them due to the
perfect complementarity of inputs. It is private since each principal (supplier) i ′s contract is conditional
only on the privately observed purchases of input i by the agent (the assembler), thus excluding, under free
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946 D. Laussel, J. Resende

In line with the common agency theory, we look for the Nash equilibrium of the
intrinsic private common agency game described above. We find a necessary and
sufficient condition for the assembler’s equilibrium sales function (which defines
equilibrium sales as a function of the realized value of the demand parameter). This
condition is twofold. First, it implies a ceiling on the sales level, which is below the
level that maximizes the suppliers’ aggregate expected profits (leading to unavoid-
able efficiency losses). Second, it includes a sub-condition, which defines a set of
admissible sales functions. The latter are such that either (i) the equilibrium sales
level increases with the demand unknown parameter or (ii) it is constant over an inter-
val (bunching) of demand realizations. While the second sub-condition is not new
for public common agency screening games (see, in particular, Martimort, Semenov
and Stole, 2018 (hereafter, MSS, 2018) and Martimort and Stole 2015), it is a new
result for private common agency games. Moreover, in our case, we need to impose
an original restriction on the set of equilibrium sales functions (the ceiling on sales
mentioned earlier) so that not all the sales functions satisfying the condition in MSS
(2018) constitute an equilibrium in the present paper.

Nonetheless, this paper shows that a lot of equilibria satisfy our necessary and suf-
ficient condition, including regular (differentiable) equilibria, semi-regular equilibria,
constant equilibria, step-function equilibria, and hybrid equilibria. However, those
equilibria are not all equivalent from the suppliers’ point of view. We show that there
is a unique Pareto-undominated Nash equilibrium. This equilibrium is such that, in the
best demand states, sales are strictly increasing with the demand intercept. In the worst
demand circumstances, two cases may arise: (i) when the domain of possible demand
realizations is large enough, the market is not covered, (ii) when the range of possible
demand realizations is sufficiently narrow, suppliers prefer to have a rigid (and strictly
positive) level of sales, mitigating the underprovision inefficiencies associated with
the assembler’s informational rent. Although in the last case, there is less flexibility
to adjust sales to the demand circumstances, suppliers benefit from selecting the most
favorable equilibrium contract (as if they were implicitly coordinating on a strictly
positive output level).

The possibility of bunching at the bottom arising in our setup also looks like an
extension to an incomplete information framework of the type of equilibrium with
fixed output (in the negotiation phase) proposed by Spulber (2017) to restore allocative
efficiency in an upstream–downstream framework with complementary monopolies.9

Indeed, our equilibrium output level tends in the limit toward a constant one when the
ex ante uncertainty on demand vanishes. However, differently from Spulber (2017), in
our case, the efficiency losses are unavoidable since the constant output level remains
too low to maximize the joint profits of the vertical structure.

The paper is organized as follows. In Sect. 2, we present the baseline model. In
Sect. 3, we analyze the assembler’s decisions and, in Sect. 4, we look at the suppliers’

Footnote 8 continued
disposal, the possibility of contracting payments on both: (i) the level of sales in the downstream market;
and (ii) the level of purchases of other inputs.
9 More precisely, Spulber (2017) finds out that joint profit maximization can be achieved under strategic
interaction among multiple sequential decisions, involving quantities of various inputs (in the first stage)
as well as prices (in the second stage).
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optimization problems. In Sect. 5, we characterize the equilibrium sales functions.
In Sect. 6 we review the possible equilibria, identifying which equilibria are Pareto-
dominated from the supplier’s perspective. Finally, in Sect. 7, we conclude. All the
missing proofs are presented in Appendix.

2 Themodel

Consider a downstream monopoly firm (the “assembler”) that manufactures/ assem-
bles a good from n complementary parts. The latter are supplied by n independent
upstream firms (the “subcontractors” or “suppliers”). We assume perfect complemen-
tarity among components, meaning that one unit of the good requires one unit of
each component part. The set of suppliers is denoted by N . The assembler’s and the
suppliers constant marginal costs are normalized to zero.10

For the sake of simplicity, the good’s final demand is supposed to be linear, with:

D(P) = θ − P ⇔ P = θ − Q, (1)

where θ stands for the consumers’ willingness to pay for the final product, P stands
for the price in the downstream market and Q ∈ [0, qmax] represents the sales in the
downstream market (i.e. the assembler’s output). The value of θ is assumed to be
private information of the assembler.11 Each subcontractor has the same prior on θ,

represented by a cumulative distribution function F(·) and a strictly positive density
function f everywhere on [θ, θ ]. We make the classical assumption that the inverse
hazard rate, h(θ) = 1−F(θ)

f (θ)
, is non-increasing in θ. This assumption is satisfied by all

the usual distributions (e.g. uniform, exponential, normal, binomial, Poisson).

Assumption 1 h′(θ) ≤ 0.

We analyze here a two-stage game between the assembler and the suppliers. In the
first stage, each of the n subcontractors independently offers a upper-hemi-continuous
tariff (pricing schedule) Ti : [0, qmax] → R, i.e. each supplier promises to supply
qi ∈ [0, qmax] units of input i to the assembler in exchange for a payment12 Ti (qi ).

Wedenote byT = {T1(·), T2(· · · ), . . . , Tn(·)} the array of (arbitrary) pricing schedules
offered by the set of all suppliers and we denote by T−i the array of (arbitrary) pricing
schedules offered by all suppliers except supplier i, with T = (T−i , Ti (·)).

In equilibrium, the pricing schedule Ti (·) is chosen by each supplier i to maximize
its own expected profit. Then, in the second stage, the assembler learns the realized
value of θ and, given the tariffs Ti (·) proposed by the n suppliers, it accepts or rejects

10 To avoid any loss of generality, we simply suppose that, when indifferent between two supply levels of
input i , a supplier always selects the smallest one. An infinitesimal cost of production is indeed enough to
break a possible indifference.
11 Informational issues of this sort are quite common in decentralized supply chains (e.g. Özer and Wei
2006 or Oh and Özer 2013). In particular, Özer and Wei (2006) argue that “the manufacturer often has
better demand information because of her proximity to consumers”. It is also worth noting that the model
could be easily changed to accomodate asymmetric information about costs instead of demand.
12 Throughout the text we will use the terms tariffs, payments and pricing schedules interchangeably.
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948 D. Laussel, J. Resende

all the subcontractors’ proposals. If it rejects them, it does not produce and it earns
zero profits. If it accepts them, it chooses, after learning the realized value of θ, to
produce the output level Q and to buy the quantities of input qi (i = 1, 2, . . . , n)
which maximize its profits.

From a formal point of view, the IO problem we are looking at here corresponds
to a common agency game in which the suppliers (the principals) simultaneously and
independently attempt to influence the assembler’s (agent’s) second-period choice of
input and output levels. This influence is exerted through the decision on the pricing
schedules which are only restricted here to be upper-hemi-continuous. Actually, the
standard model in which the suppliers first choose the prices of the inputs and the
downstream monopolist then fixes its price or output level is nothing else than a
common agency model in which the pricing schedules are constrained to be linear.

It is worth noting that the common agency game studied in this paper has two key
features. First, it is an intrinsic common agency game because the assembler either
contracts with all suppliers or with none of them. Second, it is private since each
principal contracts on a different observed variable chosen by the downstream firm.
It differs from a public common agency game where each principal would offer a
contract in which the suppliers’ payments would all depend on the same variable,
such as a “royalty contract” in which all payments depend on the downstream firm’s
final sales. We implicitly assume here that the sales level is not publicly observable or
not contractible or both. Hence, as currently observed in practice, the contract between
the downstreamfirm and each supplier i specifies payments which are only conditional
on the quantity of input i which is bought by the assembler to supplier i (not on the
amount of input actually used).13

Let q = {q1, q2, . . . , qn} be the vector of input levels. Assumption 2 states that the
assembler must buy at least the quantities of input required to produce the intended
output level but he is free to buy greater quantities. When doing so, it does not bear
any storage or disposal costs.

Assumption 2 (Free disposal): The set of admissible inputs and output levels is

� = {Q ∈ [0, qmax],q ∈ [0, qmax]n : Q ≤ qi , i = 1, 2, . . . , n}.

Let nowT∗ = {T ∗
1 (·), T ∗

2 (·), . . . , T ∗
n (·)}be the arrayof equilibrium tariffs functions

and T∗−i the array of equilibrium tariff functions of suppliers other than i . In line with
standard common agency theory, we will focus our attention on the pure-strategy
perfect Bayesian equilibrium14, whose formal definition is presented below:

Definition 1 An equilibrium of this game is an array of equilibrium tariff functions
T∗, a function Q∗ and an array of functions q∗ = (

q∗
1 , . . . , q∗

n

)
, such that, for any

i = 1, 2, . . . , n:

13 The latter assumption would be equivalent to a contract based on the sales level.
14 Kushnir and Liu (2019) argue that it is important to understand whether a mechanism designer may
benefit from offering more complex mechanism than Bayes-Nash Equilibria. The authors find that for any
Bayesian incentive-compatible (BIC) mechanism there exists an equivalent dominant strategy incentive-
compatible (DIC) also in environments with “nonlinear utilities satisfying the average single-crossing
property and the convex-valued assumption”.
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(i)

{Q∗(θ,T),q∗(θ,T)} ∈ arg max{Q,q}∈�

⎡

⎣(θ − Q)Q −
n∑

j=1

Tj (q j )

⎤

⎦ ,

(ii)

T ∗
i (·) ∈ argmax

Ti (·)
E[Ti (q

∗
i (θ,T∗−i , Ti ))]

subject to

�
(
θ, Q∗(θ,T∗−i , Ti ),q∗(θ,T∗−i , Ti ),T∗−i , Ti

) ≥ 0,∀θ ∈ [θ, θ
]
,

where �(·) denotes the assembler’s profit.

We denote respectively by Q(θ) and q(θ) an arbitrary output function and an array
of arbitrary input functions.

The functions Q(θ) and q(θ) are implementable in the downstream firm’s problem
iff there exists an array of tariff functions T such that Q(θ) = Q∗(θ, T ) and q(θ) =
q∗(θ, T ) for all θ ∈ [θ, θ ], i.e. iff Q(θ) and q(θ) maximize the assembler’s profit for
some T .

The equilibrium output function Qe(θ) and the input functions qe(θ) corre-
sponding to an equilibrium {T ∗, Q∗, q∗} are such that Qe(θ) = Q∗(θ, T ∗) and
qe(θ) = q∗(θ,T∗), for all θ ∈ [θ, θ ], where Q∗(θ,T∗) and q∗(θ,T∗) are speci-
fied in Definition 1.

As far as concerns the equilibrium properties, it is important to note that part (i)
of Definition 1 states that, given the realized value of θ and the pricing schedules
previously selected by the n suppliers, the assembler chooses, in the second stage of
the game, the sales and the input levels which maximize its profit.

Part (ii) in Definition 1 implies that each supplier i chooses, in the first stage of
the game, the pricing schedule which maximizes its expected profit given the pricing
schedules of the n − 1 other suppliers, subject to the (participation) constraint that the
assembler’s profit should not be negative for any realization of θ . Then, at this stage
of the game, there is a Nash equilibrium in pricing schedules between the n suppliers.

In the standard principal–agent model, one usually uses the Mirrlees (1971) trick15

to have the principal choosing the agent’s action which maximizes its own profit
for each possible value of an unknown parameter (in our case, θ ) and implement
it via a contract T instead of selecting directly the optimal T . Martimort and Stole
(2009a) have shown that, under pricing schedules, the same trick may be used despite
the existence of several suppliers: each individual supplier behaves as would do a
monopolist supplier facing a downstream firm, i.e. each supplier maximizes with
respect to qi an indirect profit function �(qi , θ,T−i ), which depends only on qi , θ

15 The trick is to use in the agent’s problem the Envelope Theorem to eliminate the transfer function (pricing
schedule) from the principal’s expected payoff.
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and the pricing schedules of the other suppliers.16 More precisely, the indirect profit
function �(qi , θ, ,T−i ) is defined as

�(qi , θ,T−i ) = max
Q, q−i

(θ − Q) Q −
n∑

j=1, j 
=i

Tj (q j ), (2a)

s.t . Q ≤ q j , ∀ j = 1, 2, . . . , n, (2b)

where q−i ∈ [0, qmax]n−1 is the vector of input quantities of all the other suppli-
ers besides supplier i . It is important to note that the influence of qi on the agent’s
(assembler’s) indirect profit comes here from the constraint on the sales level.

Indeed, we can define

{Q(qi , θ,T−i ),q−i (qi , θ,T−i ))} = argmax
Q,q−i

⎧
⎨

⎩
(θ − Q) Q −

n∑

j=1, j 
=i

Tj (q j )

⎫
⎬

⎭
,

(3a)

s.t . Q ≤ q j , j = 1, 2, ., i, . . . , n, (3b)

so that the functions Q(qi , θ,T−i ) and q−i (qi , θ,T−i ) show respectively how the
sales level and the quantities of inputs bought to other suppliers j 
= i actually depend
on the quantity of input qi . This is a necessary step in order to analyze supplier i’s
optimization problem since these functions show the influence of i’s choice of qi on
the output level as well as on the other suppliers’ input levels.

We may equivalently write the indirect utility function as

�(qi , θ,T−i ) = (
θ − Q(qi , θ,T−i )

)
Q(qi , θ,T−i ) −

n∑

j=1, j 
=i

Tj (q j (qi , θ,T−i )).

This will be useful when we shall come to supplier i ′s optimization problem. After
making use of Mirrlees (1971) trick, this problem will indeed amount to determine
the equilibrium input function q̃i which maximizes supplier i ′s expected profit.

3 Assembler’s decisions

In the second stage of the game, as also follows from Definition 1, upon accepting the
suppliers’ offers, the assembler chooses the quantity Q of output and the quantities of
inputs q j ( j = 1, 2, . . . , n), which, given the n suppliers’ contracts T, maximize its
profits for the realized value θ of the demand shock.

16 FromLemma 2 in Sect. 4, the regularity condition defined byMartimort and Stole [(2009a), Definition 1,
pp. 85–86] holds here in equilibrium.
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Hence, we can define as follows the assembler’s optimal output and input choices:

{Q∗(θ,T),q∗(θ,T))} = argmax
Q,q

⎧
⎨

⎩
(θ − Q) Q −

n∑

j=1

Tj (q j )

⎫
⎬

⎭
, (4a)

s.t. Q ≤ q j , j = 1, 2, ., i, . . . , n. (4b)

Remark that the equilibrium sales level can never be greater than the level θ
2 which

would maximize the assembler’s profit if it could buy the n inputs at zero marginal
prices. Otherwise, deviating toward sales equal to θ

2 would be feasible, allowing the
assembler to obtain greater gross profits, while paying (at most) the same global price
for the inputs.17

Let �A(θ,T) denote the maximum of the assembler’s profit with respect to Q and
q, given the n suppliers’ contracts (as specified in equation (5) below). In order to
prepare the way for the analysis of the supplier i’s optimization problem, let

q̂i (θ,T) = argmax
qi

�(qi , θ,T−i ) − Ti (qi ),

so that, straightforwardly,

q∗
i (θ,T) = q̂i (θ,T)

and
�A(θ,T) = max

qi
�(qi , θ,T−i ) − Ti (qi ) (5)

Moreover we can check that Q(qi (θ,T), θ,T−i ) = Q∗(θ,T) and
q−i (qi (θ,T), θ,T−i )) = q∗−i (θ,T).

The lemma below is standard but important since it shows that the Envelope Theo-
rem applies to the assembler’s profit function, which constitutes an essential step for
using afterwards the Mirrlees trick to solve the suppliers’ problems.

In Lemma 1, we derive the conditions which an output function and an array of
input functions{Q(θ),q(θ)} must satisfy in order to be implementable. For the sake
of simplicity, let us denote �A(θ, T ) simply by �A (θ).

Lemma 1 (a) Q is non-decreasing and thus almost everywhere differentiable in θ,

(b) �A is continuous in θ and ∂�A(θ)
∂θ

= Q(θ) ≥ 0.

From Lemma 1 we know that the assembler earns its lowest profit in the worst
market conditions (i.e. when the realized value of the market size parameter equals θ ).
Moreover, in the second stage, the assembler’s minimum possible profit from contract-
ing with the subcontractors should not be negative, otherwise it would prefer not to
produce. Consequently, condition (iii) in Definition 1 corresponds to the assembler’s

17 Free disposal allows the downstream firm to buy greater quantities of inputs than strictly needed for
production when that allows it to pay a smaller global price.
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952 D. Laussel, J. Resende

participation constraint (i.e. the individual rationality condition for the downstream
firm) amounts to

�A(θ) ≥ 0. (6)

Note also that the absolute continuity of �A implies that we can now write �A(θ)

as18

�A(θ) = �A(θ) +
∫ θ

θ

Q(s)ds, (7)

where the term �A(θ) represents the equilibrium profit in the worst market circum-
stances (θ = θ). The second term results from the assembler’s incentive compatibility
constraints, which guarantee the assembler’s incentives to reveal the true value of θ.

Hence, the term
∫ θ

θ
Q(s)ds corresponds to an informational rent.

From (7) follows that, for a realized value of θ, the assembler’s rent is an increasing
function of Q(s), s < θ. In other words, when the assembler produces more in the bad
circumstances there is a larger benefit to the assembler in good circumstances. This is
because the assembler’s incentive to misreport a small demand realization is stronger
the greater is Q(s) for some s < θ : in order to ensure truthful reporting this has to be
counterbalanced by a smaller aggregate input price.

In light of the definition of �A(θ), we find that expression (7) is equivalent to the
following necessary condition: in order for some {Q(θ), q(θ)} to maximize the assem-
bler’s profit, i.e. to be implementable, there must exist an array T of tariff functions
such that, for all θ ∈ [θ, θ

]
:

n∑

j=1

Tj (q j (θ)) = [θ − Q(θ)] Q(θ) − �A(θ) −
∫ θ

θ

Q(s)ds. (8)

This condition follows from the Envelope Theorem and it will allow us to eliminate
the supplier i’s price schedule from i ′s expected profit. Hence, we can now move to
the study of the suppliers’ optimization problems.

4 Suppliers’ optimization problems

In the first stage, supplier i ’s equilibrium tariff should maximize its expected profit
(corresponding to the expected payments received from the assembler in exchange of
the purchase of quantities qi (θ) of input i):

∫ θ

θ

Ti (qi (θ)) f (θ)dθ, ∀i ∈ N ,

subject to the assembler’s incentive compatibility and participation constraints.
Regarding the latter, recall that, in equilibrium, in the worst demand circumstances
(θ = θ), we must have �A(θ) = 0, since otherwise any supplier could reach a larger

18 In what follows Q(·) refers to an implentable output function.
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expected profit by demanding a larger payment from the assembler, without violating
its participation constraint. This follows from the fact that we are considering a model
with complementary upstream monopolies and therefore the assembler either accepts
all the contracts or rejects them all (choosing not to produce in the last case).

Using now the famous Mirrlees (1971) trick, i.e. substituting for Ti (qi (θ)) its value
from equation (8), the equilibrium input function q̃i must maximize the expected profit
of each supplier, given the tariff functions T−i of the other suppliers19, i.e.:

q̃∗
i ∈ argmax

q̃i

∫ θ

θ

[ (
θ − Q(q̃i (θ), θ,T−i )

)
Q(q̃i (θ), θ,T−i )

−∑n
j=1,i 
= j Tj (q j (q̃i (θ), θ,T−i ))) − �A (θ)

]
f (θ)dθ, (9)

subject to the assembler’s incentive compatibility constraint (7) and the participation
constraint (6).20

Expression (9) implies that, for each θ, supplier i’s profit equals the aggregate profit
of the vertical structure minus the assembler’s payments to the other suppliers and the
assembler’s informational rent.

Notice that, contrary to what happens in the one principal–one agent model, the
expected profit of principal i still depends on the tariffs of the other principals. It is
also important to remark that a supplier i cannot directly influence the sales level (nor
the quantities purchased of the other inputs) since, under the free disposal assumption,
the tariff Ti does not depend on them but only on its supply of input i . This makes
a substantial difference with the public common agency game in which contracts
(“royalty” ones) depend directly on the level of sales of the downstream firm. The
indirect influence of qi on Q and q−i is described by (3a) in Sect. 2.

Integrating by parts supplier i’s maximand and accounting for (7), we obtain the
equivalent condition that q̃∗

i (θ,T−i ) should maximize πi (qi , θ,T−i ), corresponding
to supplier i ′s adjusted profit. Formally:

q̃∗
i (θ,T−i ) ∈ argmax

qi

πi (qi , θ,T−i ), (10)

where

πi (qi , θ,T−i ) = (
θ − h(θ) − Q(qi , θ,T−i )

)
Q(qi , θ,T−i ) −

n∑

j=1,i 
= j

Tj (q j (qi , θ,T−i ))).

(11)
Notice that q̃∗

i (θ, T−i ) does not depend on Ti . This follows from the usual result
allowing for the elimination of Ti from the supplier i’s optimization problem, i.e. the
Mirrlees’ Trick. If there exist a tariff Ti which implements q̃∗

i (θ,T−i ), then for this
tariff, we must have q̃∗

i (θ,T−i ) = q∗
i (θ,T−i , Ti ).

19 Notice simply that supplier i is searching for an implementable {Q(θ), q(θ)} so that equation (8) has to
be satisfied.
20 The quantity of input purchased is decided by the assembler.However, each supplier (i) chooses a contract
which induces (if implementable) the assembler to select for each θ the quantity qi which is optimal from
its point of view, allowing us to make use of the Mirrlees trick.
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Equation (11) points out that in order to estimate the benefits from a given out-
put level Q conditional on θ, the supplier must subtract from its direct profit the
term h(θ)Q, since h(θ) is the marginal increase in the assembler’s informational rent
for realizations of the demand parameter greater than θ , resulting, from a marginal
increase of Q at θ. For any θ ′ > θ , the assembler’s incentives to misreport consumers’
willingness to pay for the final good (the unknown demand parameter θ ) are larger the
larger is Q (θ). Accordingly, maintaining a truthful reporting of θ by the assembler
requires supplier i to reduce its financial demands.

Given our characterization of πi (qi , θ,T−i ), we can now define �S
i (θ,T−i ), cor-

responding to the maximum of supplier’s i indirect adjusted profit as follows:

�S
i (θ,T−i ) = max

qi
πi (qi , θ,T−i ) (12)

and we shall check later that the unconstrained solution of this problem satisfies the
assembler’s incentive compatibility constraint derived in Lemma 1, i.e. ∂ Q(θ)

∂θ
≥ 0.

In the following, for the sake of notational simplicity, we shall write �S
i (θ,T−i ) as

�S
i (θ).
We are now in position to prove a very useful result: at equilibrium, the assembler

is induced to buy only the quantities of inputs which are necessary to manufacture the
equilibrium output level corresponding to the amount of its final sales. The intuition is
that supplier i’ s preferred sales level is never greater than the sales level which would
maximize the assembler’s profit absent any constraint on the quantity of input i21: by
selecting a supply of input i equal to its preferred sales level, supplier i induces the
assembler to select the latter.

Lemma 2 The equilibrium sales and input functions must be such that qe
i (θ) = Qe(θ),

∀i = 1, 2, . . . , n.

Remark 1 The equilibrium sales Qe(θ) is never greater than θ−h(θ)
2 , ∀θ ∈ [θ, θ

]
such

that θ−h(θ)
2 ≥ 0.

The above remark points toward an important difference with the public common
agency gamewhere the payments are conditional on the sales level. In the latter model,
contrary to the present one, equilibrium sales levels above θ−h(θ)

2 may constitute an
equilibrium due to decreasing tariffs: smaller levels of sales may be “punished” by
requiring greater payments to suppliers j 
= i22, dissuading a joint deviation toward
them by supplier i and the assembler. Under free disposal, it is no more possible to
“punish” small out-of-equilibrium sales levels by requiring greater payments since
the assembler always buys greater input quantities than required for production if this
allows it to pay a smaller price to suppliers23, so that a joint deviation by a supplier i
and the assembler is profitable.

21 Or equivalently if the input i was supplied for free.
22 We do not mean that such a “punishment” is intentional but that there exist extensions of the other
principals tariff schedules outside the equilibrium range of output which may sustain (i.e. implement) high
output levels.
23 Notice that the same argument was used to show that the assembler never chooses a sales level greater
than θ

2 . However the restriction imposed by suppliers’ behavior is stricter.
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Corollary 1 At equilibrium,

(i)

Qe(θ) = argmax
Q

(θ − h(θ) − Q) Q −
n∑

j=1,i 
= j

Tj (Q),

�S
i (θ) = max

Q
πi (Q, θ,T−i ) = (θ − h(θ) − Q) Q −

n∑

j=1,i 
= j

Tj (Q).

(ii) Condition (8) becomes

n∑

j=1

Tj (Qe(θ)) = [
θ − Qe(θ)

]
Qe(θ) − �A(θ) −

∫ θ

θ

Qe(s))ds. (13)

Lemma 3 shows that the Envelope Theorem applies both to (i) each supplier’s
adjusted profit function and to (ii) the assembler’s profit function.

Lemma 3 �S
i (θ) is absolutely continuous in θ, a.e. differentiable and

∂�S
i (θ)

∂θ
=[

1 − h′(θ)
]

Qe(θ), ∀i ∈ N .

Given the absolute continuity of �S
i (θ), we now obtain

�S
i (θ) = �S

i

(
θ
)+

∫ θ

θ

([
1 − h′(s)

]
Qe(s)

)
ds, (14)

and hence it follows that, if Qe(θ) is an equilibrium sales function which maximizes
supplier i’s expected profits, then the tariff functions of all principals j 
= i must
satisfy condition (15):

n∑

i=1, j 
=i

Ti (Qe(θ)) = [
θ − h(θ) − Qe(θ)

]
Qe(θ)

−
∫ θ

θ

(1 − h′(s))Qe(s)ds − �S
i

(
θ
)
. (15)

Put otherwise, this defines the condition that an array T of tariff functions must
satisfy for, all θ ∈ [

θ, θ
]
, so that Qe(θ) constitutes a solution of supplier i’s opti-

mization problem, i.e. it defines the condition on T for Qe(θ) to be implementable in
this problem.

In order to obtain this condition, we have applied nothing else than Mirrlees trick
to the principal i’s problem (12): We use the Envelope Theorem to obtain a condition
which the aggregate transfer function of all other principals j 
= i must satisfy if
principal i is to (indirectly) select a sales function Qe(θ).24

24 The Mirrlees trick was initially applied to the agent’s problem.
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There are n such conditions (one for each supplier i). Now, summing up over these
n conditions, we obtain the following necessary condition on the aggregate transfer
function of all principals:

(n − 1)
n∑

i=1

Ti (Qe(θ))

= n

[
[
θ − h(θ) − Qe(θ)

]
Qe(θ) −

∫ θ

θ

((1 − h′(s))Qe(s))ds

]

−
n∑

i=1

[
�S

i

(
θ
)]

.

(16)

In light of this result, we are now able to study the properties of equilibrium sales
functions.

5 Equilibrium sales functions

When applying the Envelope Theorem to the assembler and to the suppliers payoff
functions, we obtained respectively conditions (15) and (16) Taken together, these
conditions allow us to eliminate the pricing schedules and to derive a condition which
an equilibrium sales function (defining equilibrium sales for different realizations of
the demand parameter) must necessarily satisfy. This condition is based on the concept
of virtual aggregate profit25 of the vertical structure, which can be formally defined as
follows:

Definition 2 The virtual aggregate profit of the vertical structure, V (Q, s), is defined
as:

V (Q, s) = [s − nh(s) − Q] Q, (17)

with the partial derivative Vs(Q, s) = (1 − nh′(s))Q.

Proposition 1 A non-decreasing function Qe(θ), is an equilibrium sales function if
and only if, for ∀θ ∈ [θ, θ

]
,

(i)

Qe(θ) ≤ θ − h(θ)

2
, ∀θ ∈ [θ, θ

]
such that

θ − h(θ)

2
≥ 0; (18)

(ii) ∫ θ

θ

Vs(Qe(s), s)ds = V (Qe(θ), θ) − V (Qe(θ), θ). (19)

Proposition 1 above fully characterizes the set of equilibrium sales functions and,
given Lemma 2, it also characterizes the set of equilibrium input functions of our
model. Any such function Qe(θ), the array of input functions qe(θ) where qe

i (θ) =
25 Martimort et al. (2018) speak instead of “surrogate surplus” since in their framework an output function is
an equilibrium one iff it is a pointwise maximizer of the surplus of the “surrogate principal”. This condition
remains necessary but it is no more sufficient here.
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Qe(θ), i = 1, 2, . . . , n, and any n−tuple of tariffs which implements them in the
assembler’s and the n suppliers’ optimization problems26 constitute an equilibrium of
the game following Definition 1.

Condition (19) is close to the general characterization obtained by MSS (2018) for
public intrinsic common agency games, which amounts mutatis mutandis to state that
the equilibrium allocation (here the sales function) is a pointwise maximizer of the
virtual surplus27.

More precisely, a sales function is an equilibrium one only if a fictitious agent, with
payoff function V (Qe(θ̂), θ) would truthfully report the value of θ. An equilibrium
sales function is necessarily an incentive-compatible one for this fictitious problem.
Formally:

θ = argmax
θ̂

V (Qe(θ̂), θ). (20)

This incidentally answers the question: what does the vertical structure maximize?
This is of course a reminiscent of Slade (1994) who found in the oligopoly case
“necessary and sufficient conditions for Nash equilibria of static and state-space
games to be observationally equivalent to single optimization problems”.

While in the public intrinsic common agency game studied by MSS (2018), con-
dition (19) is necessary and sufficient, in the case of our (specific) private intrinsic
common agency game, it is only necessary.28 Indeed, the private nature of our com-
mon agency game together with our free disposal assumption leads to the additional
condition (18), absent in MSS, that, for each θ, equilibrium sales are bounded above
by the critical value θ−h(θ)

2 .
The necessity of (18) is shown in Remark 1. The necessity of (19) is established

from (13) and (16) in an original way, i.e. by generalizing the Mirrlees’ Trick to a
common agency framework. We apply it first, as usual, to the agent’s problem. Then,
we use again the Envelope Theorem to each of the principals problems in order to
finally eliminate the transfer functions. To prove the sufficiency of (18) and (19),
we show that if these two conditions hold, there must exist price schedules which
implement the equilibrium sales and input functions both in the assembler’s and in
each supplier’s problems.

Corollary 2 shows that Qe(θ) is non-decreasing as assumed before: Over any given
interval where it is differentiable, either it is constant (bunching) or equal to a flexible
sales level Q D (θ) , which is specified as follows

Q D(θ) = 1

2
(θ − nh(θ)).

26 We show in the proof of Proposition 1 that such tariffs always exist under conditions (18) and (19). They
are not unique since they have to define payments also for quantities outside the equilibrium range.
27 Basically that means that an equilibrium sales function must satisfy V (Qe(θ), θ) ≥ V (Qe(θ ′), θ), for
all θ and θ ′ ∈ [θ, θ

]
.

28 Moreover, our proof of the common part of the equilibrium conditions is different and may have an
interest in itself, outside the context in which it is obtained. What we do is basically to generalize Mirrlees’
Trick to a common agency framework by applying it first as usual to the agent’s problem but then as well,
by using again the Envelope Theorem, to each of the principals problems in order to finally eliminate
the transfer functions and then obtain an equilibrium condition. This methodology was already applied in
Laussel and Palfrey (2003) to characterize the equilibria of a Bayesian common agency game.
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Note that Q D (θ) is weakly increasing in θ , since h′(θ) ≤ 0, by Assumption 1.
The “maximal output level”29 which maximizes for a given θ the virtual aggre-

gate profit of the vertical structure subject to the only constraint Q ∈ [0, qmax], is
Qmax(θ) = max{0, Q D(θ)}.
Corollary 2 For θ ∈ [θ, θ ] an equilibrium output function Qe(θ) is, at any point θ

of differentiability (almost everywhere), either such that Qe′(θ) = 0 or such that
the output level is equal to Q D (θ), specified above. Given Assumption 1, Qe(θ) is
non-decreasing in θ .

We are now able to prove an intermediate result30 which will be very useful in the
subsequent analysis.

Lemma 4 The virtual aggregate profit function V (Qe(θ), θ) is continuous w.r.t. θ over[
θ, θ

]
.

The previous results show that, at equilibrium, the virtual aggregate profit is a con-
tinuous non-decreasing function of the private information parameter θ (monotonicity
follows from the Envelope Theorem). More importantly, for any value of this param-
eter, equilibrium output either is increasing (and it maximizes the virtual aggregate
profit) or it is constant over an interval (bunching). Moreover, there may be bunching
both at the right and at the left of any point of discontinuity of the equilibrium sales
function.

A lot of equilibria do satisfy the conditions in Proposition 1. In the following section,
we present a systematic characterization of the possible equilibrium configurations.
We start with continuous equilibria, in which the equilibrium sales are a continuous
function of θ. Later on, we address discontinuous equilibria.

Even before looking at the equilibria configurations, it is worth noting that a close
examination of the virtual surplus function (17)—of which the equilibrium output
function is a pointwise maximizer according to (20)—and of the “maximal out-
put function”—which maximizes the virtual surplus function over the whole range
[0, qmax]— already suggests that inefficiencies are going to exist at equilibrium.More-
over, these inefficiencies tend to be the more severe the greater is the number of
suppliers.

Each supplier, when designing its pricing schedule knows from the assembler’s
incentive compatibility constraints that larger output levels for “bad” realized values
of the demand parameter result in larger profits left to the assembler for better demand
realizations. Accounting for this effect, the equilibrium pricing schedules are not truth-
ful, inducing the choice of output levels below the optimal ones (except for the “best”
realized value of the demand parameter). Moreover this inefficiency is all the more
severe as the number of suppliers is itself greater. Each supplier (when trying to reduce
the informational rents left to the assembler) designs pricing schedules which over-
value its marginal cost. At the same time, each supplier signals to the other suppliers
that it would ask more money for any output increase, reducing even more the other
suppliers’ desired sales level. Thus, uncoordinated attempts to reduce the assembler’s
rents result in cumulative inefficiencies.

29 It corresponds to the “maximal equilibrium” in MSS (2018).
30 SeeMSS (2018), Proposition 2, for the same result in the case of a general public common agency game.
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6 Equilibria characterization

6.1 Continuous Equilibria

The simplest continuous equilibrium is the constant equilibrium sales one. This is an
equilibrium such that the equilibrium sales are constant over

[
θ, θ

]
, i.e. Qe (θ) = Q0,

∀θ ∈ [
θ, θ

]
. The equilibrium sales function in a constant equilibrium is (trivially)

continuous. Any positive output Q0 ≤ θ−h(θ)

2 obviously satisfies the conditions (18)
and (19) of Proposition 1.

These equilibria are like bootstrap ones: each supplier selects the constant output
level because the other ones do it as well. They are implementable via simple pricing
schedules such that T (Q) = Q0(θ − Q0), ∀Q ≤ Q0 and T (Q) very large for all
Q > Q0.31

When the n suppliers select this type of pricing schedule, the assembler has no
better choice that Q(θ) = Q0 for all θ . Similarly, a supplier i cannot do better than
choosing Q(θ) = Q0 when the n − 1 other ones select this type of pricing schedule.

From (7), it is easy to compute the assembler’s profit conditional on θ

�A(θ) = Q0(θ − θ),

and its expected profit is Eθ [�A(θ)] = (Eθ [θ ] − θ)Q0.

The expected true aggregate profit of the vertical structure equals

Eθ [(θ − Q0)Q0] = Eθ [θ ]Q0 − Q2
0.

Hence, the ex ante expected aggregate profit of suppliers,
∑n

i=1 E
[
�S

i

]
, is

n∑

i=1

E
[
�S

i

]
= Eθ [θ ]Q0 − Q2

0 − (
Eθ [θ ] − θ

)
Q0

= (
θ − Q0

)
Q0.

Since Q0 ≤ θ−h(θ)

2 , the ex ante aggregate profit of suppliers are positive. Max-
imizing

∑n
i=1 E

[
�S

i

]
with respect to Q0, it is easy to see that the best constant

equilibrium sales level from the suppliers’ point of view is such that Q0 = θ−h(θ)

2 and
∑n

i=1 E
[
�S

i

] = θ2−h(θ)2

4 .A greater sales level (for instance equal to θ

2 ), which would
potentially yield greater aggregate profits to suppliers, cannot be implemented under
free disposal. An individual supplier would indeed benefit from deviating to a smaller
sales level (for instance θ−h(θ)

2 ) unless the other suppliers impose a punishment on the

assembler for buying quantities of input smaller than θ

2 . Such a punishment is impossi-
ble under free disposal since the assembler would optimally choose to purchase input
quantities θ

2 while using smaller ones θ−h(θ)

2 .

31 Remember that, at equilibrium, Q = qi , ∀i = 1, 2, . . . , n.
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Fig. 1 Regular equilibrium

The next continuous equilibrium we analyze is the continuously differentiable
(or regular) equilibrium. In this case, the corresponding sales function is given by
Q D(θ) and equilibrium sales are strictly increasing in θ, meaning that output is larger
in better states of demand, as represented in Fig. 1:

Notice that Q D(θ) = θ−nh(θ)
2 ≤ θ−h(θ)

2 , ∀θ ∈ [θ, θ
]
.

An obvious necessary condition for the existence of a regular equilibrium is that
the equilibrium flexible output Q D(θ) must be nonnegative for all θ ∈ [θ, θ

]
, i.e. that

the market is covered. Given that, by Assumption 1, θ −nh(θ) is non-decreasing in θ,

this amounts to the condition θ − nh(θ) ≥ 0. As the number of independent suppliers
increases, this condition becomes more difficult to satisfy. For instance, in the case of
an uniform distribution, it requires that θ ≥ n

n+1θ. So it’s natural to consider as well
semi-regular equilibria (Figs. 2, 3 and 4).

Semi-regular equilibria are continuous equilibria in which the equilibrium sales
are: (i) constant over some interval and (ii) given by Q D(θ) over some other intervals,
as in Figs. 2, 3 and 4.

The continuity of the semi-regular equilibrium functions wrt θ together with the
results inCorollary 2 imply that only three types of semi-regular equilibria are possible.
The first type is such that Qe(θ) = Q1 ≤ θ−h(θ)

2 , ∀θ ∈ [
θ, x

]
and Qe(θ) = Q D(θ),

∀θ ∈ [x, θ
]
. The second one is such that Qe(θ) = Q D(θ), ∀θ ∈ [θ, x

]
, and Qe(θ) =

Q1, ∀θ ∈ [
x, θ

]
. The third one is such that Qe(θ) = Q1 ≤ θ−h(θ)

2 , ∀θ ∈ [
θ, x1

]
,

Qe(θ) = Q D(θ), ∀θ ∈ [x1, x2] and Qe(θ) = Q2, ∀θ ∈ [
x2, θ

]
. Among semi-

regular equilibrium, the maximal equilibrium has attracted much attention. We now
present below a natural example of the maximal equilibrium when there is a uniform
distribution of θ between 0 and 1.

Example 1 When θ is uniformly distributed over [0, 1], any maximal equilibrium is
the following semi-regular equilibrium (type I) which satisfies:
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Fig. 2 Semi-regular equilibrium (I)

Fig. 3 Semi-regular equilibrium (II)

(i) Qe(θ) = 0 for all θ ∈ [0, n
n+1 ],

(ii) Qe(θ) = (n+1)θ−n
2 for all θ ∈

[
n

n+1 , 1
]
,

(iii)
∑n

i=1 Ti (Q) = n(Q−Q2)
n+1 , ∀Q ∈ [0, 1

2

]
.

Such an equilibrium is supported by many extensions of the contracts outside the

equilibrium sales range (i.e. for Q > 1
2 ), for instance Ti (Q) = Q−Q2

n+1 or the constant

Ti (Q) = 1
4(n+1) .

The second result in Example 1 shows that the equilibrium level of final sales is
a decreasing function of n for θ ∈ [0, 1] . The coordination failure is, as usual, all
the more severe as the number of suppliers increases. The third result is specially
interesting. First it shows that the marginal input price is larger than the marginal cost.
Second, it shows that, for any positive sales level, the input price paid by the assembler
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Fig. 4 Semi-regular equilibrium (III)

Fig. 5 One-step-function equilibrium

to each supplier is decreasing with the number of subcontractors. This is of course a
reminiscent of the similar result obtained in a model where subcontractors compete
in linear prices, following from the strategic complementary in the suppliers’ prices
(see Laussel 2008).

Remark 2 In the context of Example 1, we obtain that the ex ante expected profit of
the assembler, E

[
�A

]
, is equal to

E
[
�A

]
= 1

12(n + 1)2
, (21)
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Fig. 6 Hybrid equilibrium

Fig. 7 QC (θ) (in dash) vs Q H (θ) (solid line)

whereas, the expected profit of subcontractor i, denoted E
[
�S

i

]
, is

E
[
�S

i

]
= 1

6(n + 1)2
. (22)

Interestingly, the values given by equations (21) and (22) are exactly identical to
those obtained in a model with no uncertainty (θ = 1 with probability 1), independent
upstream firms only and linear prices (see Laussel 2008).

6.2 Discontinuous equilibria

A n−step-function equilibrium is an equilibrium in which
[
θ, θ

]
is divided in n + 1

intervals [x j , x j+1) such that Qe(θ) = Q j , ∀θ ∈ [x j , x j+1], with Q j+1 > Q j ,
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x0 = θ and xn+1 = θ. From Proposition 1, Q j+1 ≤ x j −h(x j )

2 , ∀ j . In an n-step-
function equilibrium, with n > 0, the equilibrium sales function is discontinuous.
More precisely, in an n-step equilibrium, the equilibrium sales function shows a num-
ber n of upward jumps as the parameter θ increases from θ to θ and the level of sales
is constant over each interval. Figure 5 illustrates the equilibrium output function in
the case of a one-step-function equilibrium.

Corollary 3 From Lemma 4, an n−step equilibrium is such that at each point xi ,
i ≥ 1, i ≤ n, the condition V (Qi−1, xi ) = V (Qi , xi ) must hold or, equivalently,
xi −nh(xi ) = Qi−1 + Qi . Since the function θ −nh(θ) is increasing in θ and it takes
its maximum θ at θ = θ, it follows that all successive output pairs must satisfy the
sufficient condition Qi−1 + Qi ≤ θ.

A hybrid equilibrium is a discontinuous equilibrium such that
[
θ, θ

]
is divided

in n + 1 (a finite number) intervals [x j , x j+1), so that (i) there is at least one interval
over which Qe(θ) takes a constant value, (ii) there is at least one interval over which
Qe(θ) = Q D(θ) (iii) there is at least one x j such that lim

θ↑x j
Qe(θ) < lim

θ↓x j
Qe(θ).

Put otherwise, a hybrid equilibrium is a mix of a step-function and a regular (or
semi-regular) equilibrium. Given the continuity results in Lemma 4, there cannot be
a discontinuity between a strictly increasing segment and a constant segment of the
equilibrium output function. Figure 6 illustrates one possible case of a hybrid output

equilibrium (the conditions Q j+1 ≤ x j −h(x j )

2 , ∀ j, need to hold):

6.3 Equilibria selection

The previous analysis shows that there are a large number of equilibria as long as there
aremore than one supplier.When n > 1, aswe argued in the constant equilibrium sales
case, the suppliersmay implicitly coordinate on a lot of different equilibria by choosing
the corresponding pricing schedules. Hence, we investigate here the equilibria which
are Pareto-dominated from the suppliers’ point of view. The first steps will be to show
that semi-regular equilibria of type (II) and type (III) and discontinuous equilibria are
indeed Pareto-dominated (see Lemmas 5 and 6, respectively) allowing us to restrict
our attention to regular equilibria and semi-regular equilibria of type (I).

At this point, it isworthwhile to derive simple expressions for the expected aggregate
suppliers’ profits E[�S].
Remark 3 The equilibrium expected aggregate suppliers’ profits is

E[�S] = E
[
(θ − h(θ) − Qe(θ))Qe(θ)

]
, (23)

or, equivalently,

E[�S] = V (Qe(θ), θ) +
∫ θ

θ

Qe(θ)
[
(n − 1) − n(1 − h′(θ))F(θ)

]
dθ. (24)
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From (23), the expected aggregate suppliers’ profit equals the expected virtual
surplus in the case n = 1, i.e. when there is only one supplier. The intuition is that,
would all suppliers act cooperatively, they would maximize joint expected profits,
which are equal to the expected virtual surplus for n = 1, as a result of Eq. (9).

Lemma 5 shows that from the suppliers’ point of view, a constant level of sales
Q D (x) over (x, θ ] is inefficiently low. The optimal output level from the suppliers’
point of view is indeed given by the value of Q D(θ) when n = 1, i.e. 1

2 (θ − h(θ)).
Replacing Q D (x) for each θ ∈ (x, θ ] by the greater, though still sub-optimal, flexible
sales level Q D (θ) unambiguously raises suppliers’ aggregate profits.32

Lemma 5 Let us consider x ∈ [θ, θ
]
. For any arbitrary sales function ξ (θ), an equi-

librium such that the sales function is given by ξ (θ), ∀θ ∈ [θ, x], and Q D (x),
∀θ ∈ (x, θ ], is Pareto-dominated by an equilibrium such that the sales function is
given by ξ (θ), ∀θ ∈ [θ, x], and Q D (θ), ∀θ ∈ (x, θ ].

It is also possible to show that hybrid equilibria are Pareto-dominated because, over
the discontinuity range [x0, x1], it is always better to switch to a flexible sales level
Q D(θ) rather than to stick to the two constant output levels Q D (x0) and Q D (x1).
To this end, for any arbitrary sales function ξ (θ), let us consider an equilibrium sales
function Q H (θ) such that

Q H (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

ξ (θ) i f θ ≤ θ < x0,
Q D (x0) i f x0 ≤ θ < x,

Q D (x1) i f x ≤ θ < x1,
ξ (θ) i f x1 ≤ θ < θ,

(25)

with θ < x0 < x < x1 < θ.

Lemma6 shows that such step-wise function is Pareto-dominated by a sales function
QC (θ) which is identical to Q H (θ) except for the fact that it is continuous between
x0 and x1

QC (θ) =
⎧
⎨

⎩

ξ (θ) i f θ ≤ θ < x0,
Q D (θ) i f x0 ≤ θ < x1,
ξ (θ) i f x1 ≤ θ < θ.

(26)

Figure 7 illustrates the behavior of Q H (θ) in the solid line and QC (θ), in the
dashed line (note that the two coincide when θ ≤ θ < x0 or x1 ≤ θ < θ ).

In order to prove that all hybrid equilibria are Pareto-dominated by equilibria reg-
ularized in the way described by (26), we now introduce a new condition on the
distribution of types.33

Assumption 3 For almost all θ ∈ [θ, θ
]
,

(1 − nh′(θ))(1 − h′(θ)) ≥ (n − 1)h(θ)h”(θ). (27)

32 Note that such equilibria are also Pareto-dominated from the assembler’s point of view since they lead
to lower expected profit than the one associated with the production of Q D (θ).
33 In the first version of this paper (Laussel and Resende 2016), the result was proved assuming an uniform
distribution of types.
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Assumption 3, which means that the hazard rate should not be too convex, is iden-
tical, mutatis mutandis,34 to Assumption 1 (p. 1174) in MSS (2018).35

To derive it, they use Amador and Bagwell (2013) results on optimal delegation. In
their framework, it is a sufficient condition for the existence of a floor equilibrium in
a public common agency game. We use it in Lemma 6 to rule out any discontinuous
equilibrium.36 The proof is much simpler than the one from Amador and Bagwell
(2013). The purpose of Assumption 3 is also more intuitive in the present framework.

Lemma 6 Under Assumptions 1 and 3, an equilibrium such that the sales function is
given by Q H (θ) defined in (25) is Pareto-dominated by an equilibrium such that the
sales function is given by QC (θ) in (26).

Lemma 6 implies that all discontinuous equilibria are Pareto-dominated. Given
Lemmas 5 and 6, a flexible sales function Q D (θ) Pareto-dominates all other equi-
librium sales functions except possibly for bad realizations of the demand parameter.
Accordingly, in what follows, we shall only consider either (i) regular equilibria, with

Q R (θ) = Q D (θ) , ∀θ ∈ [θ, θ
]
, (28)

or (ii) semi-regular equilibria in which the equilibrium sales function is increasing for
the highest values of θ (being constant for low θ − values),

QS R (θ) =
{

Q D
(
θ S R

)
if θ ≤ θ ≤ θ S R,

Q D (θ) if θ S R < θ ≤ θ.
(29)

We now need to study how these equilibria are Pareto-ranked from the point of
view of the suppliers. To do so, notice that, from a formal point of view, a regular
equilibrium is simply a semi-regular equilibrium, with θ S R = θ . Hence, ranking the
equilibria in (28) and (29) amounts to determine the value of θ S R , or equivalently, the
corresponding level of sales Q D

(
θ S R

)
, which constitutes the minimum equilibrium

sales level that maximizes the suppliers’ expected aggregate profit.

Given Assumption 1, the function Q D(θ) is invertible. Let then � = (
Q D

)−1
.

Proposition 2 (i) Sufficiency:
If Assumptions 1 and 3 hold, the best, Pareto-undominated, Nash equilibrium sales
function is defined by (29) and

Q D(θ S R) = max

{
θ − h(θ)

2
, 0

}
, (30)

34 In MSS (2016) the private information parameter is a cost parameter so that there is no distortion at the
bottom (it exists at the top). Accordingly the relevant inverse hazard rate is F(θ)/ f (θ).

35 They claim that it is satisfied by the uniform, exponential, Laplace, Pareto, Weibull and Chi-square
distributions.
36 It can be shown that this rules out discontinous equilibria in our private common agency game as well
as in a public common agency game (evolving royalty contracts).
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or, equivalently,

θ S R = max

{
�

(
θ − h(θ)

2

)
,�(0)

}
. (31)

(ii) Necessity:
The best, Pareto-undominated, Nash equilibrium sales function is defined by (29)
and (30) only if (27) holds for almost all θ ∈ [max{�(

θ−h(θ)

2 ),�(0)}, θ ].
The necessity part of Proposition 2 is completely original. The intuition is the

following: if there exists some sub-interval in the range of values of θ where the
sales level is given by Q D(θ) (the regular part of the equilibrium sales function) and
over which (27) does not hold, it is clear from the proof of Lemma 6 that one could
always construct a (discontinuous) deviation over this sub-intervalwhichwould satisfy
Proposition 1 and Pareto-dominate the equilibrium considered in Proposition 2.

According to Proposition 2, bunching optimally occurs in bad circumstances. The
best equilibrium from the suppliers’ point of view is (i) either the maximal equilibrium
in which the market is not served when the consumers’ willingness to pay for the good
is small (bunching at the zero output level) or (ii) an output floor equilibrium in which
the sales level is a positive constant for bad realizations of the demand parameter
(bunching at a floor output level). The former (resp. latter) case obtains when θ is small
(resp. great) enough so that θ − h(θ) < 0 (resp. θ − h(θ) > 0). Put otherwise, the
maximal equilibrium is Pareto-optimal iff the range of realized values of the demand
parameter is large enough.

Example 2 In the uniform distribution case:

(i) Q D(θ S R) = 0 and θ S R = nθ
n+1 when θ ≥ 2θ,

(ii) Q D(θ S R) = 2θ−θ

2 and θ S R = 2θ+(n−1)θ
n+1 when θ ≤ 2θ .

The sales level at which bunching occurs is a result of a trade-off between two
opposite forces.37 On one hand, a regular sales function allows a flexible adjustment
of the level of sales to the circumstances. On the other one, it implies an inefficiently
low level of sales, especially in bad circumstances. The flexibility argument has little
bearing when the ex ante uncertainty on θ is small and bunching (at a positive level)
always occurs (the interval over which it occurs being an increasing function of the
number of suppliers). Moreover, when the number of suppliers tends to infinity, the
floor equilibrium implies a constant equilibrium output in all circumstances.

37 Notice that the condition defining the floor equilibrium output level in the public common agency game
is

∫ θ̂

θ
(θ − h(θ) − 2Q D(θ̂ )) f (θ)dθ = 0. (32)

Of course a positivity constraint has to be checked in addition, i.e. Q D(θ̂ ) ≥ 0. Consider the case where

it holds true. It is easy to check (see for instance the Proof of Proposition 2) that θ̂ > �(
θ−h(θ)

2 ) or,

equivalently, Q D(θ̂) >
θ−h(θ)

2 . Clearly the floor equilibrium defined by (32) does not satisfy the condition
(i) in Proposition 1. The intuitive reason is that the implementation of such a floor output level would require
payments decreasing with the sales level over some interval.
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When ex ante uncertainty is large, bunching at a positive level never occurs though
it would be all the more profitable as the number of suppliers increases. The key of
this apparent paradox is again free disposal: suppliers would collectively benefit from
a floor sales level, but under free disposal, there is no way to dissuade each of them to
individually deviate toward a smaller level of input sales.38

7 Conclusion

This paper investigates how asymmetric information on final demand affects strategic
interaction between the assembler and a set of upstream monopoly firms, who inde-
pendently provide complementary inputs to the better informed assembler. To this end,
we propose an intrinsic private common agency game. In the first stage, each of the
suppliers maximizes its own expected profit by independently proposing a payment
contract (price schedule) to the assembler. In the second stage, the assembler learns
the realized value of the uncertain demand parameter, choosing whether to accept or
reject all the subcontractors’ proposals.

We are able to derive a condition which a sales function satisfies if and only if it is
an equilibrium one. We find that this necessary and sufficient equilibrium condition
depends on the virtual aggregate profit of the vertical structure (which is always smaller
than the true aggregate profit for any number of suppliers larger than one) and it also
implies a ceiling on the sales level in each circumstance. This allows us to make the
point that, in a setupwith asymmetric information, coordination failures always lead to
some efficiency losses, even when upstream firms rely on nonlinear pricing schemes.

We also find that a lot of equilibria satisfy the necessary and sufficient equilibrium
condition, including regular (differentiable), semi-regular, constant, step-function and
hybrid equilibria. However these equilibria are not all equivalent from the point of view
of suppliers. In this respect, we find that there is a unique Pareto-undominated Nash
equilibrium. In this equilibrium, for the best demand states, sales are increasing with
the unknown demand parameter. However, for the worst demand circumstances, two
situations are possible, depending on the extent of ex ante demand asymmetry. When
the latter is important, we find that the market is not covered in the worst demand
states. In other words, a severe form of inefficiency arises in these circumstances.
Differently, when the domain of admissible values of the demand parameter is small
enough, suppliers can mitigate (without eliminating) the underprovision problem.
More precisely, they can implicitly coordinate on an equilibrium with a rigid (and
strictly positive) output in bad circumstances (above the regular one). In other words,
inefficiency does not preclude full market coverage in this case. However, it remains
a problem in the sense that the level of the final sales remains excessively low.

Our results on pricing schedules can be comparedwithMartimort andStole (2009a),
who also deal with pricing schedules in private common agency games, not neces-
sarily restricted to perfectly complementary inputs. In particular, when the domain of
admissible values of the demand parameter is not too wide, we find that suppliers have

38 Other suppliers would have to punish smaller sales levels but no such punishments are available when
it is possible to pay for a given input quantity and to use a smaller one.
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incentives to implicitly coordinate on a semi-regular equilibrium with bunching at the
bottom. This possibility was not analyzed by Martimort and Stole (2009a) since they
exclusively studied differentiable equilibria. We show that, by coordinating on this
equilibrium, suppliers mitigate (without completing eliminating, though) some inef-
ficiency losses resulting from the interplay of asymmetric information and suppliers’
non-cooperative behavior. While this is not new for public common agency games
(see MSS, 2018), this is a new result for a private common agency game.

At a more substantial level, our paper confirms and extends Spulber’s (2017) results
on complementary monopolies to a context with private information. In our model
bunching at the bottom arises when ex ante uncertainty is small enough, allowing
suppliers to partially restore efficiency. In the limit, when uncertainty vanishes, we
obtain exactly Spulber’s result: the equilibrium output level tends toward the constant
output level that maximizes aggregate suppliers’ profits.

In the future, it would also be interesting to develop an extended version of this
model to analyze how asymmetric information on demandmay affect suppliers’ incen-
tives to make investments to improve the quality of their inputs (with uncertain impact
on final demand).39 It would also be interesting to investigate whether non-regular
equilibria, such as the ones derived in this paper, can be obtained as limits of equi-
libria arising when inputs are imperfect complements. This remains an open question
since, in the present state of knowledge, the perfect complementarity case is the only
one in which one has been able to characterize all the possible equilibria of the game.
Under imperfect complementarity of inputs, only the regular, differentiable, equilib-
ria have been characterized so far (see Martimort and Stole 2009a). Indeed, when the
inputs are imperfect complements, the problem becomes more complex: when trying
to characterize the equilibria of the game, it becomes impossible to fully eliminate
from each supplier’s problem its own pricing schedules. Accordingly, when charac-
terizing the equilibria of the underlying common agency game, one needs to develop
new methods that allow us to account for the degree of inputs complementarity, as
well as for the relationship between the final downstream sales and each input levels
(for each supplier and its rivals as well).40 These new sources of strategic interaction
(both among suppliers and between them and the assembler) may significantly affect
the properties of the equilibria, constituting an interesting question for future research.

APPENDIX

Proof of Lemma 1

(a) suppose that θ ′ > θ; from revealed preference it must be that

39 Zambrano (2019) studies a principal–agent model, in which a risk-neutral principal delegates to a risk-
neutral agent the ability to choose between a risky project or a safe one (with information acquisition of
information being unobservable to the principal). The author concludes that the principal should only reward
the agent for outcomes that are significantly better than the safe return.
40 When the inputs are imperfect complements, how close they are, the relationships between the sales
level Q and the rivals input levels q j , j 
= i, on one hand, and the supply qi of input i, on the other,
necessarily involve the derivatives of the rivals’ pricing schedules.
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(θ − Q(θ))Q(θ) −
n∑

i=1

Ti (qi (θ)) ≥ (θ − Q(θ ′))Q(θ ′) −
n∑

i=1

Ti (qi (θ
′))

and

(θ ′ − Q(θ ′))Q(θ ′) −
n∑

i=1

Ti (qi (θ
′)) ≥ (θ ′ − Q(θ))Q(θ) −

n∑

i=1

Ti (qi (θ)),

implying
(
θ − θ ′) (Q (θ)) − Q

(
θ ′)) ≥ 0.

(b) �A is convex as a supremumof convex (linear here) functions. It is also continuous
at the endpoints of the domain

[
θ, θ

]
. It is hence absolutely continuous41 in

θ. Suppose that θ ′ > θ; from the above “revealed preference” inequalities we
obtain

(
θ ′ − θ

)
Q
(
θ ′) ≥ �A(θ ′) − �A(θ) ≥ (

θ ′ − θ
)

Q (θ)), so that, dividing

throughout by
(
θ ′ − θ

)
and letting θ ′ tend toward θ , we obtain ∂�A(θ)

∂θ
= Q(θ) ≥

0. 
�

Proof of Lemma 2

Suppose on the contrary that Q(q̃∗
i (θ,T−i ), θ,T−i ) < q̃∗

i (θ,T−i ), where q̃∗
i (θ,T−i )

is defined by (10), i.e. maximizes supplier i’s adjusted profit.
Let {Q A(θ),qA−i (θ)} be solution of the assembler’s problem (3a) in which the

constraint Q ≤ qi has been deleted.42 Since, at the solution of (3a), this constraint does
not bind, Q(q̃∗

i (θ,T−i ), θ,T−i ) = Q A(θ) and q−i (q̃
∗
i (θ,T−i ), θ,T−i ) = qA−i (θ) do

not depend on qi and the corresponding supplier’s adjusted profit equals

(
θ − Q A(θ) − h(θ)

)
Q A(θ) −

n∑

j=1, j 
=i

Tj (q
A
j (θ)). (33)

Let us on the other hand consider the solution to the problemofmaximizing supplier
i’s adjusted profit when i is able to select directly Q(θ) and q−i (θ):43

{QS(θ),qS
−i (θ)} = argmax

Q,q−i

(θ − Q − h(θ)) Q −
n∑

j=1, j 
=i

Tj (q j ),

s.t . Q ≤ q j , ∀ j 
= i . (34)

41 Continuity is implied by convexity only at the interior points of the domain: see Roberts and Varberg
(1973), pp. 9–10. We thank one referee for indicating us this reference.
42 For the sake of notational simplicity, we omit the argument T of these functions.
43 Here again, for the sake of notational simplicity, we omit the argument T−i in the functions QS and
qS−i .
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From revealed preferences,

(
θ − Q A(θ)

)
Q A(θ) −

n∑

j=1, j 
=i

Tj (q
A
j (θ))

≥
(
θ − QS(θ)

)
QS(θ) −

n∑

j=1, j 
=i

Tj (q
S
j (θ)),

and
(
θ − h(θ) − QS(θ)

)
QS(θ) −

n∑

j=1, j 
=i

Tj (q
S
j (θ))

≥
(
θ − h(θ) − Q A(θ)

)
Q A(θ) −

n∑

j=1, j 
=i

Tj (q
A
j (θ)).

This implies

h(θ)(Q A(θ) − QS(θ)) ≥ 0 ⇔ QS(θ) ≤ Q A(θ) = Q(q̃∗
i (θ,T−i ), θ,T−i )

< q̃∗
i (θ,T−i ).

Let us show that the supplier i may reach a greater profit than (33) simply by
choosing to sell a quantity of input i equal to QS(θ) instead of the quantity q̃∗

i (θ,T−i ).

This is obviously the case when the solution Q(QS(θ), θ) of the assembler’s prob-
lem (3a) under the constraint Q ≤ QS(θ) is such that Q(QS(θ), θ,T−i ) = QS(θ).44

Let us show that it must indeed be the case that Q(QS(θ), θ,T−i) = QS(θ). Suppose
on the contrary that the solution of the assembler’s problem (3a) under the constraint
Q ≤ QS(θ) implies a sales level Q′(θ) < QS(θ). It must then be that

(
θ − Q′(θ)

)
Q′(θ) −

n∑

j=1, j 
=i

Tj (q j (Q′(θ), θ))

>
(
θ − QS(θ)

)
QS(θ) −

n∑

j=1, j 
=i

Tj (q j (QS(θ), θ)).

But, since h(θ) ≥ 0 and Q′(θ) < QS(θ), were this true, it should be that

(
θ − h(θ) − Q′(θ)

)
Q′(θ) −

n∑

j=1, j 
=i

Tj (q j (Q′(θ), θ))

>
(
θ − h(θ) − QS(θ)

)
QS(θ) −

n∑

j=1, j 
=i

Tj (q j (QS(θ), θ)).

44 In the case when QS(θ) = Q A(θ), equal profits obtain at qi (θ) = QS(θ) = Q A(θ) and at any
qi (θ) > QS(θ) = Q A(θ). As indicated in Section 2, we suppose that in that case supplier i chooses the
smallest supply level (this is equivalent to assume an infinitesimal cost of producing input i).
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This contradicts (34).
To conclude, supplier i is always able to induce the assembler to select the output

and input levels {QS(θ),qS
−i (θ)} by choosing to supply a quantity QS(θ) of input

i . Then, either QS(θ) < Q A(θ), in which case supplier i clearly obtains greater
(adjusted) profits than at {Q A(θ),qA−i (θ)}, or QS(θ) = Q A(θ), in which case an
infinitesimal cost of producing input i is enough to ensure that supplier i is better off
when supplying a quantity of input i equal to QS(θ). 
�

Proof of Remark 1

Suppose that Q(θ) >
θ−h(θ)

2 > 0. Obviously q j (θ) ≥ Q(θ). Suppose now instead

that the supplier i chooses a supply level qi (θ) = θ−h(θ)
2 and show that it is better

off. Indeed, under the constraint Q ≤ θ−h(θ)
2 , the solution Q(

θ−h(θ)
2 , θ,T−i ) of the

assembler’s problem (3a) is either = θ−h(θ)
2 or <

θ−h(θ)
2 so that either

1. Q(
θ−h(θ)

2 , θ,T−i ) = θ−h(θ)
2 , and then the supplier i’s adjusted profit is greater than

the profit obtained at Q(θ) >
θ−h(θ)

2 since (i) for ∀Q(θ) 
= θ−h(θ)
2 , ( θ−h(θ)

2 )2 >

(θ − h(θ) − Q(θ)) Q(θ) and (ii) in order to produce a quantity of output θ−h(θ)
2 <

Q(θ), the assembler does not need greater quantities of inputs other than i and pays
accordingly at most the same aggregate transfer

∑n
j=1, j 
=i Tj (q j (θ)) to suppliers

j 
= i .
2. or Q(

θ−h(θ)
2 , θ,T−i ) <

θ−h(θ)
2 , in which case, by the same argument as in

Lemma 2, the supplier i’s adjusted profit must be greater at Q(
θ−h(θ)

2 , θ,T−i )

than at θ−h(θ)
2 and thus strictly greater than at any Q(θ) >

θ−h(θ)
2 . 
�

Proof of Lemma 3

Let τ = θ − h(θ). Define now

π̂i (τ, q) = (τ − Q) Q −
n∑

j=1,i 
= j

Tj (Q).

and

�̂S
i (τ ) = max

q
π̂i (τ, q).

Since π̂i is linear in τ , �̂S
i (τ ) is convex in τ as a supremum of convex (linear) func-

tions, hence absolutely continuous45 (AC). By assumption 1, τ(θ) is invertible so that
�S

i (θ) = �̂S
i (τ (θ)) is AC and a.e. differentiable. 
�

45 Notice that it is continuous at the endpoints of the interval, a necessary condition for absolute continuity
(see again Roberts and Varberg 1973).
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Proof of Proposition 1

(a) Necessity

From Lemma 2, Qe(θ) = qe
i (θ), ∀i = 1, 2, . . . , n. Moreover from Remark 1,

it must be that Qe(θ) ≤ θ−h(θ)
2 . On the other hand, we already know that a non-

decreasing output function Qe(θ)(and the input functions qe
i (θ) = Qe(θ)) solve

respectively the Assembler’s Problem (4a) and the Suppliers’ Problems (9) only if the
payment schedules, Ti , are defined by equations (13) and (15).

Substituting in (16)
∑

Ti (Qe (θ)) for its value from (8) and rearranging we obtain:

0 =
[

V (θ, Q (θ)) −
∫ θ

θ

(
1 − nh′ (s)

)
Q (s) ds

]

−
n∑

i=1

�s
i

(
θ
)
.

Evaluating the previous condition at θ = θ, we obtain:

V
(
θ, Q

(
θ
)) =

n∑

i=1

�s
i

(
θ
)
.

Given that Vs(Q(s), s) = (1 − nh′(s))Q(s), the result in Proposition 1 must hold.

(b) Sufficiency

Let us consider the implementation of a non-decreasing sales function Qe(θ) ≤
θ−h(θ)

2 ≤ θ
2 when the assembler solves the associate problem max

Q

(θ, Q) = (θ −

Q)Q − T (Q). Since ∂2
(θ,Q)
∂ Q∂θ

= 1 > 0, 
(θ, Q) has increasing differences or is
supermodular (see Topkis 1998 or Amir 2005). Therefore, the version of the single-
crossing property called CS+ in (Fudenberg and Tirole 1991, ch. 7.3.1, p. 259) is here
satisfied. Then, there exists T (·) such that

(
Qe(·), T (·)) is incentive-compatible for

this associate problem. Notice that condition (13) where
∑n

i=1 Ti (Qe(θ)) is replaced
by T (Qe(θ)) is necessary in the associate problem as well as in the original one. From
condition (13) for any θ ′ > θ, we have:

T (Q(θ ′)) − T (Qe(θ)) =
∫ θ ′

θ

(s − 2Q(s))Q′(s)ds,

from what we deduce that Qe(θ) ≤ θ−h(θ)
2 ≤ θ

2 implies that any transfer function T

which implements a non-decreasing sales function Qe(θ) ≤ θ−h(θ)
2 in the associate

problem must be non-decreasing in Q.
Consider now in the original problem the tariff functions Ti (qi ) = 1

n T (qi ), i =
1, 2, . . . , n. Let us now show that they implement the non-decreasing sales and input
functions qe

i (θ) = Qe(θ) ≤ θ−h(θ)
2 ≤ θ

2 , i = 1, 2, . . . , n. Suppose on the contrary

that there exist qi (θ
′) = q(θ ′) ≤ θ ′−h(θ ′)

2 , i = 1, 2, . . . , n, which gives a strictly
greater profit to the assembler, i.e.

(θ − q̃)q̃ − T (q(θ ′)) > (θ − Qe(θ))Qe(θ) − T (Qe(θ)),
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where q̃ ∈ [0, q(θ ′)].46 Since T is non-decreasing, it follows that

(θ − q̃)q̃ − T (q̃) > (θ − Qe(θ))Qe(θ) − T (Qe(θ)),

contradicting the fact that T implements Qe(θ) in the associate problem.
Using now condition (13), where

∑n
i=1 Ti (Qe(θ)) is replaced by T (Qe(θ)),

together with condition (19), we obtain

n − 1

n
T (Qe(θ)) = [

θ − h(θ) − Qe(θ)
]

Qe(θ)

−
∫ θ

θ

(1 − h′(s))Qe(s)ds − 1

n
V (Qe(θ), θ). (35)

Notice that the definition of the virtual profits implies that
∑n

i=1 �s
i

(
θ
) =

V (Qe(θ), θ).Given that the tariff functions are identical for all, the�s
i

(
θ
)
are identical

as well ∀i = 1, 2, . . . , n. It follows that (35) implies

n − 1

n
T (Qe(θ)) = [

θ − h(θ) − Qe(θ)
]

Qe(θ)

−
∫ θ

θ

(1 − h′(s))Qe(s)ds − �s
i

(
θ
)
, i = 1, 2, . . . , n, (36)

which is the necessary (first-order) condition(15) for each principal i . It remains to
verify the global second order conditions for each principal i’s problem. We can
apply the same proof strategy as in the agent’s case. Consider the associate problem
for principal i : max

Q
�i (Q, θ) = (θ − Q − h(θ)) Q − n−1

n T (Q). Since the single-

crossing property (CS+) is here obviously satisfied (i.e. ∂2�i (θ,Q)
∂ Q∂θ

= 1 − h′(θ) > 0),
not only the local second order conditions (35) are satisfied for the associate problem
but also the global ones.

Consider now in the original problem the tariff functions Tj (q j ) = 1
n T (q j ), j 
=

i . We now show that
∑

j 
=i
1
n T (q j ) implements the non-decreasing sales and input

functions qe
i (θ) = Qe(θ) ≤ θ−h(θ)

2 ≤ θ
2 . Suppose on the contrary that there exists

qi (θ
′) ≤ θ ′−h(θ ′)

2 , which gives a strictly greater profit to supplier i and remembering
that the function T is increasing, we must have

(θ − h(θ) − q̂)q̂ − n − 1

n
T (q̂) > (θ − h(θ) − Qe(θ))Qe(θ) − n − 1

n
T (Qe(θ)),

where q̂ ∈ [0, qi (θ
′)].47 But this contradicts the optimality of Qe(θ) for supplier i

in the corresponding associate problem. 
�
46 Remember that free disposal allows the assembler not to consume all the quantities of inputs he buys.
47 Given that the tariff functions are non-decreasing, buying quantities q j > q̂, i.e. greater than the output
(sales) level, cannot entail lower payments.
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Proof of Corollary 2

The proof is straightforward. Indeed differentiating (19) with respect to θ, one obtains
Vs(·) = VQ Qe′(θ) + Vs(·), implying VQ Qe′(θ) = 0. Given that VQ = θ − nh(θ) −
2Qe(θ), and given Q D (θ), then VQ Qe′(θ) = 0 implies

2
[

Q D(θ) − Qe(θ)
]

Qe′(θ) = 0,

yielding the results in the preceding Corollary. 
�

Proof of Lemma 4

Given (17), V (Qe(θ), θ) is obviously continuous at any θ where Qe(θ) is continu-
ous. So we only have to consider the values of θ at which Qe (θ) is discontinuous.
Let θ̃ be such a point. Since from Lemma 1, the equilibrium sales function is a.e.
differentiable, points of discontinuity are isolated and it is right and left continuous
with lim

θ↓θ̃
Qe(θ) = Q+(θ̃) > lim

θ↑θ̃
Qe(θ) = Q−(θ̃). From (19), lim

θ↓θ̃
V (Qe(θ), θ) −

V (Qe(θ), θ) = V (Q+(θ̃), θ̃ ) − V (Qe(θ), θ) = lim
θ↑θ̃

V (Qe(θ), θ) − V (Qe(θ), θ) =
V (Q−(θ̃), θ̃ ) − V (Qe(θ), θ). It follows that V (Q+(θ̃), θ̃ ) = V (Q−(θ̃), θ̃ ). Notice
in addition that, since Q D(θ̃) = argmax

Q
V (Q, θ̃ ), it must be that Q−(θ̃) < Q D(θ̃) <

Q+(θ̃). 
�

Proof of Example 1

An equilibrium output function maximizing the virtual aggregate surplus function
has already been shown to be given by Q D(θ), where here Q D(θ) = (n+1)θ−n

2 . The
assembler’s and subcontractor j’s first-order conditions are respectively over ( n

n+1 , 1] :
(θ − 2Q (θ)) = ∑n

i=1 T ′
i (Qe(θ)) and 2θ − 1 − 2Q (θ) = ∑n

i=1,i 
= j T ′
i (Qe(θ)).

Subtracting the second from the first we obtain 1− θ = T ′
j (Qe(θ)). Using (ii) we can

express θ as a function of Q, with

θ = 2Q + n

n + 1
,

and substitute this value for θ. We obtain T ′
j (Q) = 1−2Q

n+1 and then integrating with

respect to Q, we obtain Tj (Q) = K j + Q−Q2

n+1 , ∀Q ∈ [0, 1
2

]
, where K j is a constant.

From the assembler’s participation constraint and suppliers optimization behavior,∑n
j=1 K j = 0. It is easy to see that choosing Q = 0 maximizes the assembler’s profit

for θ ∈
[
0, n

n+1

]
. It follows that

∑n
j=1 Tj (Q) = n(Q−Q2)

n+1 . 
�
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Proof of Remark 2

From equation (7) we obtain

�A(θ) =
∫ θ

n
n+1

Qe(θ)dθ = [θ − n(1 − θ)]2

4(1 + n)

for all θ ∈
[

n

n + 1
, 1

]
and �A(θ) = 0 otherwise, (37)

so that the ex ante expected profit of the assembler, E
[
�A

]
, is equal to

E
[
�A

]
=
∫ 1

n
n+1

[θ − n(1 − θ)]2

4(1 + n)
dθ = 1

12(n + 1)2
. (38)

The profit of subcontractor i, for all θ ∈
[

n
n+1 , 1

]
, is easily obtained from Ti (Q) =

Q−Q2

n+1 , by setting Q = (n+1)θ−n
2 , implying:

�S
i (θ) = [2 − θ + n(1 − θ)] [θ − n(1 − θ)]

4(n + 1)
,

for all θ ∈
[

n
n+1 , 1

]
and �S

i (θ) = 0 otherwise. The expected profit of subcontractor

i, denoted E
[
�S

i

]
, is

E
[
�S

i

]
=
∫ 1

n
n+1

(2 − θ + n(1 − θ))(θ − n(1 − θ))

4(n + 1)
dθ = 1

6(n + 1)2
, (39)

yielding the results in Remark 2. 
�

Proof of Corollary 3

Let us write the condition (19) respectively at some θ ∈ (xi , xi+1] and at xi :
∫ θ

θ

V ′
s (Q(s), s)ds = V (Qi , θ) − V (Q(θ), θ), (40)

and ∫ xi

θ

V ′
s (Q(s), s)ds = V (Qi−1, xi ) − V (Q(θ), θ). (41)

In the equation above, we consider that
[
θ, θ

]
is divided in n + 1 intervals [x j , x j+1)

such that Q(θ) = Q j , ∀θ ∈ (x j , x j+1], with Q j+1 > Q j , x0 = θ and xn+1 = θ.
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Subtracting (41) from (40) we obtain

∫ θ

xi

V ′
s (Qi , s)ds = V (Qi , θ) − V (Qi−1, xi ).

The LHS equals V (Qi , θ) − V (Qi , xi ) so that we conclude that V (Qi−1, xi ) =
V (Qi , xi ). 
�

Proof of Remark 3

(i) Let us first derive (23). Notice first that substituting in (15)
∑

Ti (Q (θ)) for
its value from (8), accounting for �A(θ) = 0, and rearranging we obtain an
expression which, evaluated at θ = θ , yields

i=n∑

i=1

�S
i (θ) = �S(θ) = V (Qe(θ), θ).

Let us now consider the expected aggregate suppliers’ profit E[�S]. From equa-
tion (14) in the paper, and the above result, we obtain

E[�S] = V (Qe(θ), θ) + nE

[∫ θ

θ

(1 − h′(s))Qe(s)ds

]

= V (Qe(θ), θ) + (n − 1)E

[∫ θ

θ

Qe(s)ds

]

+ E

[∫ θ

θ

(1 − nh′(s))Qe(s)ds

]

.

Using now equation (7) and condition (19 ), it turns out that

E[�S] = E
[
V (Qe(θ), θ

]+ (n − 1)E
[
�A(θ)

]
. (42)

Moreover, introducing in (42) E
[
�A

] = E[(θ − Qe(θ))Qe(θ)] − E[�S] and using
the definition of V (Q(θ), θ), we obtain:

E[�S] = E
[
(θ − h(θ) − Qe(θ))Qe(θ)

]
. (43)
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(ii) Let us now derive (24).

From the condition (19), we can write

[
(θ − h(θ) − Qe(θ))Qe(θ)

] = V (Qe(θ), θ))

−
∫ θ

θ

(1 − nh′(s))Qe(s)ds + (n − 1)h(θ)Qe(θ).

Integrating both sides between θ and θ, and then integrating the RHS by parts, we
obtain (24). 
�

Proof of Lemma 5

Let us denote by Q1 (θ) the first equilibrium output function and by Q2 (θ) the second
equilibrium output function described in Lemma 5.

Given (43), the difference E
[
�S(Q2(θ), θ)

] − E
[
�S(Q1(θ), θ)

]
between the

expected aggregate suppliers’ profits under equilibrium output functions Q2(θ) and
Q1(θ) equals

∫ θ

x

(
θ − h(θ) − Q D (θ)

)
Q D (θ) f (θ)dθ −

∫ θ

x

(
θ − h(θ) − Q D (x)

)
Q D (x) f (θ)dθ.

(44)
Since θ−h(θ)

2 = argmax
Q

�S(Q, θ) > Q D(θ) = θ−nh(θ)
2 > Q D (x), ∀θ ∈

(x, θ ], the concavity of �S(Q, θ) with respect to Q implies that �S(Q D(θ), θ) >

�S(Q D(x), θ), ∀θ ∈ (x, θ ], so that (44) is > 0. 
�

Proof of Lemma 6

Let us consider the difference between the expected aggregate suppliers’ profit under
the equilibrium output functions QC (θ) and Q H (θ), which, given (24), is

E
[
�S(QC (θ), θ)

]
− E

[
�S(Q H (θ), θ)

]

=
∫ x1

x0
Q D (θ) g(θ)dθ −

[∫ x1

x
Q D(x1)g(θ)dθ +

∫ x

x0
Q D(x0)g(θ)dθ

]

=
∫ x1

x0
Q D (θ) g(θ)dθ − [Q D(x1)(G(x1) − G(x)) + Q D(x0)(G(x) − G(x0))],

where g(θ) = (n − 1) − n(1 − h′(θ))F(θ) and G(θ) = ∫ θ

θ
g(s)ds.

Now, integrating by parts,
∫ x1

x0
Q D (θ) g(θ)dθ = Q D(x1)G(x1)− Q D(x0)G(x0)−∫ x1

x0
Q D′(θ)G(θ)dθ, so that
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E
[
�S(QC (θ), θ)

]
− E

[
�S(Q H (θ), θ)

]

= (Q D(x1) − Q D(x0))G(x) −
∫ x1

x0
Q D′(θ)G(θ)dθ

=
∫ x1

x0
Q D′(θ)(G(x) − G(θ))dθ.

Let now z = θ−nh(θ)
2 . From Assumption 1, this is a monotone increasing func-

tion so that there is an inverse function �(z). On the other hand, dθ = 2
1−nh′(θ)

dz.

Remembering that Q D′(θ) = 1
2 (1 − nh′(θ)) a simple change of variables leads to

E
[
�S(QC (θ), θ)

]
− E

[
�S(Q H (θ), θ)

]
=
∫ z1

z0

(
G

(
�

(
z0 + z1

2

))
− G(�(z))

)
dz,

(45)
where zi = xi −nh(xi )

2 , i = 0, 1 and �( z0+z1
2 ) = x48.

Now, the next step is to prove the concavity of G(�(z)) with respect to z. It turns
out that:

d2G(�(z))

dz2

= 2n

(1 − nh′(θ))

[−(1 − nh′(θ))(1 − h′(θ)) f (θ) + h”(θ)(n − 1)(1 − F(θ))
]

= 2n f (θ)

(1 − nh′(θ))

[−(1 − nh′(θ))(1 − h′(θ)) + h”(θ)(n − 1)h(θ)
]
.

From Assumptions 1 and 3, this is negative and accordingly G(�(z)) is concave
with respect to z.

This is enough to show that the RHS of (45) is positive. From the concavity of
G(�(z)) with respect to z,

∫ z0+z1
2

z0

(
G

(
�

(
z0 + z1

2

))
− G(�(z))

)
dz ≥ dG

(
�
( z0+z1

2

))

dz

1

8
(z1 − z0)

2,

and

∫ z1

z0+z1
2

(
G

(
�

(
z0 + z1

2

))
− G(�(z))

)
dz ≥ −dG

(
�
( z0+z1

2

))

dz

1

8
(z1 − z0)

2,

so that
∫ z1

z0
(G(�( z0+z1

2 )) − G(�(z)))dz ≥ 0. 
�

48 From the continuity of V (Q(θ), θ)wrt θ at a discontinuity point, z = x−nh(x)
2 = 1

2
∑i=1

i=0
xi −nh(xi )

2 =
z0+z1

2 .
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Proof of Proposition 2

Given (23) and (29), the suppliers’ aggregate expected profits may be written along a
semi-regular equilibrium as

∫ θ S R

θ

(θ − h(θ) − Q D(θ S R))Q D(θ S R) f (θ)dθ

+
∫ θ

θ S R
(θ − h(θ) − Q D(θ))Q D(θ) f (θ)dθ.

Their derivative with respect to θ S R is easily obtained as:

1 − nh′(θ S R)

2

∫ θ S R

θ

(θ − h(θ) − 2Q D(θ S R)) f (θ)dθ.

Remember the constraint Q(θ) ≤ θ−h(θ)
2 , ∀θ ∈ [θ, θ

]
.

For any θ S R such that the previous constraint is satisfied, i.e. Q D(θ S R) =
θ S R−nh(θ S R)

2 ≤ θ−h(θ)

2 , the above derivative is strictly positive. Letting now θc be

such that θc−nh(θc)
2 = θ−h(θ)

2
49, the solution of our problem is θ S R = θc whenever

the nonnegativity of sales constraint is satisfied, i.e. θc−nh(θc)
2 > 0. Otherwise it has

to be such that θ S R = �(0), where �(0) − nh(�(0)) = 0 : the optimal sales level is
zero for all θ ∈ [θ,�(0)

]
.

The necessity part of the Proposition is straightforward. Suppose that (27) does
not hold over some interval [θ0, θ1] . Then the equilibrium sales function which is
identical to the semi-regular (or regular) one defined in Proposition 2 except that
Q(θ) = Q D(θ0), θ ∈ [θ0, x] , and Q(θ) = Q D(θ1), θ ∈ [x, θ1] , where x − nh(x) =
θ0−nh(θ0)+θ1−nh(θ1)

2 , strongly Pareto-dominates the original one.50 
�
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