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Abstract
The class of rank-additive social welfare orders (RA SWOs) includes rank-weighted
utilitarian, generalized utilitarian, and rank-discounted generalized utilitarian rules; it
is a flexible framework for population ethics. This paper axiomatically characterizes
RA SWOs and studies their properties in two frameworks: the actualist framework
(which only tracks the utilities of people who actually exist) and the possibilist frame-
work (which also assigns zero utilities to people who don’t exist). The axiomatizations
and properties are quite different in the two frameworks. For example, actualist RA
SWOs can simultaneously evade the Repugnant Conclusion and promote equality,
whereas in the possibilist framework, there is a trade-off between these two desiderata.
On the other hand, possibilist RA SWOs satisfy the Positive expansion and Negative
expansion axioms, whereas the actualist ones don’t.

Keywords Population ethics · Repugnant Conclusion · Additively separable ·
Rank-dependent · Utilitarian

JEL Classification D63 · D71

1 Introduction

Present-day social and economic policies will not only affect the quality of life of
future generations but also affect the number of people who exist in these generations.
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Thus, policy makers face a trade-off between the sheer number of future people and
their quality of life.Population ethics is the analysis of such trade-offs using tools from
social choice theory and moral philosophy. It arose as a response to the Repugnant
Conclusion, an ethical paradox first identified by Parfit (1984). Parfit noted that, under
seemingly plausible normative hypotheses, we should prefer a future where a hundred
trillion people lead wretched lives that are barely worth living, over a world where
a much smaller number (say, ten billion) lead lives of much higher quality. This
disturbing observation is not only a reductio ad absurdum of classical utilitarianism:
it also afflicts a wide variety of other moral systems, particularly versions of welfarist
consequentialism. A variety of solutions have been proposed, but none are entirely
satisfactory. Recent surveys of this literature are Arrhenius et al. (2019) and Greaves
(2017). For book-length treatments, see Ryberg and Tännsjö (2004), Blackorby et al.
(2005), Arrhenius (2018), and Arrhenius and Bykvist (2019).

Cowen (2004) observed that the Repugnant Conclusion has a similar structure to
the Saint Petersburg Paradox: in both cases, the paradox arises when a valuable thing is
allowed to become minuscule in one “dimension”, as long as it simultaneously grows
huge along some other dimensions. Cowen proposed that such paradoxes could be
avoided by insisting that the value of any single dimension be bounded. But he did
not formalize this idea. Earlier and independently, Sider (1991) had proposed a rule
of population ethics he called “geometrism”, which avoids the Repugnant Conclusion
through precisely the boundedness strategy suggested by Cowen. But Sider was well
aware of geometrism’s shortcomings (in particular, its anti-egalitarianism), and he
introduced it only as a counterexample to a conjectured impossibility result, not as a
serious alternative. More recently, Asheim and Zuber (2014, 2017) have studied and
axiomatically characterized rank-discounted generalized utilitarianism; like Sider’s
geometrism, it avoids the Repugnant Conclusion via Cowen’s boundedness strategy,
but unlike geometrism, it is also inequality-averse.

In this paper, I will introduce and axiomatically characterize a family of population
ethical theories which generalize both Sider (1991) and Asheim and Zuber (2014,
2017). To define this family, I need some terminology. A social outcome specifies both
what people exist and what the lifetime utility of each person is. A social welfare order
(SWO) is an ordering over social outcomes; it embodies not only ethical judgements
about the trade-offs we must make between the lifetime utilities of different people,
but also ethical judgements about trade-offs we must make between these lifetime
utilities and overall population size. For example, a SWO might judge that it is better
to have a relatively small population of relatively happy people, than to have a much
larger population of less happy people.1

I will assume that lifetime utilities are measured on an absolute, interpersonally
comparable scale, where a lifetime utility of zero is the lower limit for a life which is
“worth living”. If someone’s lifetime utility is positive, then this means that, for her,
it is better to exist than not to exist. But if her lifetime utility is negative, then this
means that, for her, it would have been better to not exist at all. Note that the fact that
a person’s life is worth living for her does not necessarily imply that it is ethically

1 The term “SWO” is somewhat misleading, because this ordering may encode ethical judgements over
population size in addition to ethical judgements over welfare. But I use it because it is standard. In the
literature on population ethics, such orderings are also called population principles or population axiologies.
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better that she exist; it may be that adding a particularly unhappy life to an already
populous world is not an ethical improvement, even if the person who lives that life
still regards it as worth living, on the balance.2

Iwill consider two kinds of SWO in this paper. They differ in the precise information
encoded in the social outcome. In apossibilistSWO, a social outcomeassigns a lifetime
utility to all people who could possibly exist. If someone does not actually exist, then
she is simply assigned a lifetime utility of zero in this representation. Thus, possibilist
SWOs do not distinguish between an outcome where Alice exists but has a lifetime
utility of zero (i.e. a life so wretched that she is indifferent to not existing), and an
otherwise identical outcome where Alice simply doesn’t exist at all. In contrast, in an
actualist SWO, each social outcome specifies precisely which people exist. Thus, a
clear distinction is made between an outcome where Alice exists but has a lifetime
utility of zero, and an outcome where she doesn’t exist.

In both the actualist and possibilist frameworks, I will investigate a family of SWOs
that I call rank-additive. These are SWOs which admit an additively separable rep-
resentation, like the classical utilitarian or prioritarian SWOs. Each lifetime utility is
transformed by a continuous increasing function before summation. However, people
are ranked in order from lowest to highest lifetime utility, and different transformations
can be applied to different entries in this ranking. Thus, the person with the highest
lifetime utility may have her utility transformed in a different way than a person with
a lower lifetime utility, before summation. This generalizes rank-weighted utilitarian
(or generalized Gini) social welfare orders (Donaldson andWeymark 1980; Weymark
1981; Yaari 1988; Bossert 1990). But like Ebert (1988) and Zank (2007), it allows dif-
ferent utility transformation functions (as opposed to merely different multiplicative
weights) to be applied at different positions in the ranking.3

In defining rank-additive SWOs, there is a key difference between the actualist
and possibilist frameworks. In an actualist SWO, we only rank, transform, and sum
the lifetime utilities of the (finite) set of people who actually exist. By contrast, in a
possibilist SWO, we rank, transform, and sum the lifetime utilities of everyone who
could possibly exist—this includes a finite collection of nonzero utilities (amongst
those who actually exist) and also an infinite collection of zero utilities (of those who
do not exist). These zero utilities contribute nothing to the sum itself, but they have
implications for how we rank the utilities of the people who do exist. Because of this,
rank-additive axiologists have different functional forms in the actualist and possibilist
frameworks, and admit different axiomatic characterizations. In particular, possibilist
rank-additive SWOs always satisfy the axioms of Positive expansion and Negative
expansion, which say that it is always good to add another person whose lifetime
utility is above zero, and never good to add another person whose lifetime utility is

2 In these assessments, it is important that we work with lifetime utilities, not momentary utilities. Thus,
a judgement that “It would be ethically better if Alice did not exist” does not imply that Alice should
die—rather, it means it would have been better if Alice had never been born. Now that Alice does exist,
the axiological ordering will be increasing with respect to her lifetime utility, which in turn is typically an
increasing function of her lifespan.
3 Donaldson and Weymark (1980), Ebert (1988), and Bossert (1990) allow population size to vary, and
impose consistency conditions between evaluations for different populations sizes. But they do not discuss
population ethics; all comparisons in these papers involve two social outcomes with the same population,
rather than two social outcomes with different populations.
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below zero. This means they evade the Sadistic Conclusion, a paradox which afflicts
critical-level utilitarianism, average utilitarianism, and many other proposed solutions
to the Repugnant Conclusion (Arrhenius 2000). By contrast, actualist rank-additive
SWOs almost never satisfy Positive expansion and Negative expansion, and hence
frequently lead to the Sadistic Conclusion. On the other hand, actualist rank-additive
SWOs easily reconcile inequality aversion with avoidance of the Repugnant Conclu-
sion, whereas possibilist rank-additive SWOs do not. Sider’s (1991) geometrism is
a possibilist rank-additive SWO. Asheim and Zuber’s (2014, 2017) rank-discounted
utilitarianism is an actualist rank-additive SWO.

Most of the literature in population ethics adopts the actualist framework (e.g.
Blackorby et al. 2005). Perhaps this is because of the suspicion that there is something
nonsensical about imputing a utility to someone in a scenario where she does not
even exist, or making welfare comparisons between scenarios where she exists and
scenarios where she doesn’t. But several authors have argued convincingly that one
canmake such welfare comparisons, once they are construed in the right way (Holtug
2001; Roberts 2003, §4; Adler 2008, §III.A; Adler 2019, §II.A; Arrhenius and Rabi-
nowicz 2010, 2015; Fleurbaey andVoorhoeve 2015, §3). So possibilism cannot simply
be rejected as logically incoherent. The choice between the possibilist and actualist
frameworks thus turns on which of them offers more attractive solutions to the central
problems of population ethics. As we shall see, each framework has advantages and
disadvantages.

The remainder of the paper is organized as follows. Section 2 concerns possibilist
SWOs. Section 2.1 introduces the formal framework and key examples. Section 2.2
contains the first main result of the paper: an axiomatic characterization of possibilist
rank-additive SWOs. Section 2.3 contains further results, such as necessary and suffi-
cient conditions for these SWOs to be inequality-averse and to evade the Repugnant
Conclusion. Section 3 concerns actualist SWOs and has a similar structure: Sect. 3.1
introduces the framework and key examples, while Sect. 3.2 contains the second main
result of the paper: an axiomatic characterization of actualist rank-additive SWOs.
Section 3.3 contains further results. Section 4 discusses a major problem confronting
all rank-additive SWOs—their violation of the axiom of Existence independence—
and proposes some ways of mitigating this problem. Finally, Sect. 5 discusses some
undesirable properties of rank-additive SWOs.

2 Possibilist social welfare orders

2.1 Definitions and examples

Let I be an infinite set, whose elements represent all the people who could ever exist.
Let R

I be the set of all infinite I-indexed profiles r = (ri )i∈I of real numbers. For
all i ∈ I, interpret ri as the lifetime utility of individual i . If ri > 0, then overall, i
has a life worth living. If ri < 0, then overall, i has a life not worth living—it would
have been better if she had never existed at all. If ri = 0, then i’s life is indifferent to
non-existence. This is usually referred to as the neutral level of lifetime utility.Wewill
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Rank-additive population ethics 865

also set ri = 0 in any scenario where i does not exist; the possibilist framework does
not distinguish between non-existence and existence with a neutral lifetime utility.

Let X be the set of all elements of R
I with only finitely many nonzero entries. An

element of X represents a complete specification of all the lifetime utilities of all the
people who will ever exist. (I assume this number to be finite.) I will refer to elements
of X as social outcomes. A possibilist social welfare order is a preference order (i.e.
complete, transitive, reflexive binary relation) � on X . Let ≈ denote the symmetric
part of �, and let � denote its asymmetric part.

If π : I−→I is any bijection, then define π∗ : R
I−→R

I by setting π∗(r) :=
(rπ(i))i∈I for all r = (ri )i∈I in R

I . Clearly, π(X ) = X , and π restricted toX defines
a bijection from X to itself. We will be interested in SWOs satisfying the following
axiom:

Anonymity. If π : I−→I is any bijection, and x ∈ X , then x ≈ π∗(x).

This is a standard axiom, which says that the SWO must treat all people the same.
Let R+ := {r ∈ R; r � 0} and let R− := {r ∈ R; r � 0}. Let R

∞+ be the
set of all infinite sequences r = (rn)∞n=1 of nonnegative numbers. Let R

∝+ be the
set of all elements of R

∞+ with only finitely many nonzero entries, and let R
∝↓
+ be

the set of all nonincreasing sequences in R
∝+. Likewise define R

∞− and R
∝−, and let

R
∝↑
− be the set of all nondecreasing sequences in R

∝−. For any x ∈ X , let x+1 �
x+2 � x+3 � · · · � x+N > 0 be all the positive entries of x, listed in decreasing
order with each value appearing as many times in this list as it appears in x, and
define x+ := (x+1 , x+2 , x+3 , . . . , x+N , 0, 0, . . .), an element of R

∝↓
+ . Likewise, let x−1 �

x−2 � x−3 � · · · � x−N < 0 be all the negative entries of x, listed in increasing order
with each value appearing as many times in this list as it appears in x, and define
x− := (x−1 , x−2 , x−3 , . . . , x−M , 0, 0, . . .), an element of R

∝↑
− . Now define the function

φ : X−→R
∝↓
+ × R

∝↑
− by setting φ(x) := (x+, x−), for any x ∈ X . Clearly, φ is a

surjection. If �∗ is any preference order on R
∝↓
+ × R

∝↑
− , then we can define an SWO

� on X by the formula:

for all x, y ∈ X (
x � y

) ⇐⇒ (
φ(x) �∗ φ(y)

)
. (2A)

It is easy to see that � satisfies Anonymity: if π : I−→I is any bijection, and
x′ = π∗(x), then φ(x′) = φ(x), so that x ≈ x′. Conversely, if � is an SWO on
X satisfying Anonymity, then there is a unique preference order �∗ on R

∝↓
+ × R

∝↑
−

satisfying formula (2A). In other words, there is a natural bijective correspondence
between preference orders on R

∝↓
+ × R

∝↑
− and SWOs on X satisfying Anonymity.

A preference order on R
∝↓
+ × R

∝↑
− enables us to treat a person’s lifetime utility

differently depending on how it is ranked relative to the lifetime utilities of other
people. There are at least two reasons why this is useful. The first is aversion to
inequality, which suggests that a small increase in the utility of a less happy person
is more valuable than a similar increase in the utility of a more happy person, ceteris
paribus. The second reason is specific to population ethics: the introduction of a new
person with a relatively good life is generally regarded as desirable, whereas the
introduction of a new person with a relatively mediocre life might be regarded as
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866 M. Pivato

undesirable in some situations, even if that life is on the balance worth living. Both of
these intuitions can be formalized using orderings on R

∝↓
+ × R

∝↑
− .

A social welfare function4 (SWF) is a function W : X−→R. It is rank-
additive (RA) if there are continuous, increasing functions φ+

n : R+−→R+ and
φ−
n : R−−→R− with φ+

n (0) = 0 = φ−
n (0) for all n ∈ N, such that for any x ∈ X , we

have

W (x) =
∞∑

n=1

φ+
n (x+n ) +

∞∑

n=1

φ−
n (x−n ). (2B)

(There are only finitely many nonzero summands, by the definition of X .) A SWO
� is rank-additive if it is represented by a rank-additive social welfare function. For
example:

– Suppose that φ±
n (r) = r for all r ∈ R± and all n ∈ N.5 Then we obtain the

classical utilitarian SWF, defined by

W (x) =
∞∑

n=1

x+n +
∞∑

n=1

x−n =
∑

i∈I
xi , for all x ∈ X . (2C)

– Let φ : R−→R be a continuous, increasing function with φ(0) = 0. Suppose that
φ±
n (r) = φ(r) for all r ∈ R± and all n ∈ N. Then we obtain the generalized

utilitarian SWF, defined by

W (x) =
∞∑

n=1

φ(x+n ) +
∞∑

n=1

φ(x−n ) =
∑

i∈I
φ(xi ), for all x ∈ X . (2D)

In particular, if φ is strictly concave, then (2D) is called a prioritarian SWF, and
exhibits inequality aversion.

– Let {c+n }∞n=1 and {c−n }∞n=1 be two sequences of positive constants. Suppose that
φ±
n (r) = c±n r for all r ∈ R± and all n ∈ N. Then we obtain the rank-weighted

utilitarian SWF (Weymark 1981; Yaari 1988):

W (x) =
∞∑

n=1

c+n x+n +
∞∑

n=1

c−n x−n , for all x ∈ X . (2E)

– In particular, let β ∈ (0, 1), and suppose that φ±
n (r) = βn r for all r ∈ R± and all

n ∈ N. Then we obtain the geometric SWF proposed by Sider (1991):

W (x) =
∞∑

n=1

βn x+n +
∞∑

n=1

βn x−n , for all x ∈ X . (2F)

4 As noted in footnote 1, this terminology is somewhat misleading. But I use it because it is standard.
5 In other words, φ+

n (r) = r for all r ∈ R+ and φ−
n (r) = r for all r ∈ R−. I will often use the notation “±”

in this way to simultaneously make two assertions: one in which all uses of “±” in a particular statement
become “+”, and the other in which all uses of “±” in that statement become “−”.
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Rank-additive population ethics 867

The classical utilitarian SWF (2C) arises as a special case of generalized utilitarianism
(with φ(x) = x) and rank-weighted utilitarianism (with c±n = 1 for all n ∈ N).
Unfortunately, as is well known, any generalized utilitarian SWF (and in particular,
the classical utilitarian SWF ) leads to Parfit’s Repugnant Conclusion. In contrast, the
rank-weighted utilitarian SWF (2E) evades the Repugnant Conclusion, as long as the
sequence {c+n }∞n=1 decays quickly enough that

∑∞
n=1 c

+
n < ∞ (see Proposition 2.2(a)).

However, in this case, the rank-weighted utilitarian SWF is anti-egalitarian amongst
all people with positive lifetime utility (see Proposition 2.4). To reconcile inequality
aversion with evasion of the Repugnant Conclusion, we will need to consider rank-
additive SWOs defined by other choices of functions {φ±

n }∞n=1.
Rank-additive SWOs have several attractive properties. For any x, y ∈ X and

z ∈ R
N , write “y = x � z” if there exist distinct j1, j2, . . . , jN ∈ I such that x jn = 0

and y jn = zn for all n ∈ [1 . . . N ], while xi = yi for all i ∈ I \ { j1, j2, . . . , jN }.6
In other words, y is obtained by adding to x exactly N new people, whose lifetime
utilities are given by (z1, . . . , zN ). For any r ∈ R, we define x � r := x � z, where z
is an outcome containing a single individual with lifetime utility r . It is easily verified
that any rank-additive possibilist SWO satisfies the next four axioms.

Pareto. For all x, y ∈ X , if xi � yi for all i ∈ I, then x � y. If, furthermore,
xi > yi for some i ∈ I, then x � y.
Positive expansion (orMere Addition). For any x ∈ X and any r > 0, x� r � x.
Negative expansion. For any x ∈ X and any r < 0, x � r ≺ x.
No Sadistic Conclusion. For any x ∈ X , any N , M ∈ N, and any y ∈ R

N++ and
z ∈ R

M−−, x � y � x � z.

Positive expansion says it is always good to add another person whose life is worth
living (i.e. whose lifetime utility is positive). Negative expansion says it is always
bad to add another person whose life is not worth living (i.e. whose lifetime utility is
negative).Both of these are consequences of thePareto axiom.Meanwhile,NoSadistic
Conclusion is a consequence ofPositive expansion andNegative expansion; itmeans
that rank-additive possibilist SWOs avoid a well-known problem of average utilitarian
and critical-level generalizedutilitarian principlesfirst identifiedbyArrhenius (2000).7

For any x ∈ R
∝±, let |x| denote the number of nonzero entries in x. Rank-additive

possibilist SWOs also satisfy the next axiom.

Existence independence of the wretched. For all x, y ∈ X and N , M ∈ N

such that |x+| = |y+| = N and |x−| = |y−| = M , and any z ∈ R such that
max{x−M , y−M } � z � min{x+N , y+N }, we have x � y if and only if x � z � y � z.

This axiom is similar to the axiom of Existence independence of Blackorby et al.
(2005, §5.6), but it only applies the people whose lifetime utilities are close to zero
(“the wretched”).8

An important feature of RA possibilist SWOs is that individuals with positive
lifetime utilities (i.e. lives worth living) are evaluated using the functions {φ+

n }∞n=1,

6 Throughout this document, the notation “[1 . . . N ]” refers to the set {1, . . . , N }. Likewise, “[N . . .∞)”
refers to the set {N , N + 1, . . .}.
7 See just formula (3C) for the definition of critical-level utilitarianism.
8 See Sect. 4 for further discussion of the Existence independence axiom.
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868 M. Pivato

whereas individuals with negative lifetime utilities (i.e. lives not worth living) are
evaluated using {φ−

n }∞n=1. This gives us the freedom to treat lives which are not worth
living in a completely different way than we treat lives worth living, in accord with
many people’s ethical intuitions. For example, if we augment a social outcome by
adding a trillion wretched lives that are barely worth living, then a rejection of the
Repugnant Conclusion suggests that the marginal gain in social welfare obtained by
adding the trillionth such life is less than the marginal gain from adding the first such
life. But if we add a trillion lives of terrible suffering that are clearly not worth living,
then our ethical intuitions suggest that the addition of the trillionth such life adds
just as much evil to the world as the first one. This intuition is sometimes called the
asymmetry (McMahan 1981, 2009; Roberts 2011, 2019). Since {φ+

n }∞n=1 and {φ−
n }∞n=1

can have different properties, it is easy to accommodate this intuition.
It seems natural to assume that {φ+

n }∞n=1 and {φ−
n }∞n=1 should both arise as restric-

tions toR+ and R− of some common family of utility functions defined on all of R, as
in the generalized utilitarian SWF in formula (2D). If they didn’t, and we treated neg-
ative and positive utilities in a completely different way, then one might worry about
creating an “ethical discontinuity” in our treatment of an individual as her lifetime util-
ity changes from positive to negative. But this concern is misconceived. To understand
this, let x ∈ X be a social outcome, and define x+ = (x+1 , x+2 , x+3 , . . . , x+N , 0, 0, . . .)
and x− = (x−1 , x−2 , x−3 , . . . , x−M , 0, 0, . . .) as prior to statement (2A). If we imagine
all the coordinates of x of being arranged in decreasing order, then the (infinite) num-
ber of zero coordinates will all appear between the coordinates of x+ and those of x−.
In other words,

x = (x+1 , x+2 , x+3 , . . . , x+N , 0, 0, 0, . . . . . . . . . . . . , 0, 0, 0, x−M , . . . , x−3 , x−2 , x−1 ).

Observe that {φ+
n }∞n=1 deal with the coordinates at the left end of this infinite array,

while {φ−
n }∞n=1 deal with the coordinates at the right end. There is no reason to believe

that these two families of functions should have anything in commonwith one another.
Indeed, suppose we gradually reduce one individual’s lifetime utility, while holding
all other utilities constant. As her utility decreases, it is shuffled further and further
rightward in the ordering of x+1 , . . . , x+N . But when it passes from positive to negative,
it jumps an infinite number of positions rightward (leaping over the infinite number of
zero coordinates), to become part of x−M , . . . , x−1 . If there is an “ethical discontinuity”
in our treatment of the person at this moment, it can be attributed to this infinite jump.

2.2 Axiomatic characterization

The first main result of the paper is an axiomatic characterization of rank-additive
SWOs in the possibilist framework. This will use the Anonymity and Pareto axioms

introduced in Sect. 2.1, along with two other axioms. For any N ∈ N, let R
N↓
+ :=

{r ∈ R
N ; r1 � r2 � · · · � rN � 0}, and let R

N↑
− := {r ∈ R

N ; r1 � r2 � · · · �
rN � 0}. We can treat R

N↓
+ as a subset of R

∝↓
+ in a natural way, by identifying the

N -tuple (x1, x2, . . . , xN ) with the sequence (x1, x2, . . . , xN , 0, 0, . . .). Likewise, we
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Rank-additive population ethics 869

can treat R
N↑
− as a subset of R

∝↑
− . Note that R

2↓
+ ⊂ R

3↓
+ ⊂ R

4↓
+ ⊂ · · · ⊂ R

∝↓
+ and

R
2↑
− ⊂ R

3↑
− ⊂ R

4↑
− ⊂ · · · ⊂ R

∝↑
− . It follows that9

R
∝↓
+ × R

∝↑
− =

∞⋃

N=1

(
R

N↓
+ × R

N↑
−

)
. (2G)

For all N ∈ N, let �N be the restriction of �∗ to R
N↓
+ × R

N↑
− . The order �∗ is

uniquely determined by this sequence (�N )∞N=1 of finite-population SWOs. The next

two axioms concern these orders. Note that R
N↓
+ × R

N↑
− is a closed convex subset of

R
N ×R

N = R
2N ; endow it with the subspace topology it inherits from R

2N . We need
two more axioms.

Continuity. For every N ∈ N, the order �N is continuous on R
N↓
+ × R

N↑
− .

Separability. For every N ∈ N, and every pair of subsetsJ+,J− ⊆ [1 . . . N ], there
is a preference order�J± defined on R

J+ ×R
J− such that, for any x = (x+, x−)

and y = (y+, y−) in R
N↓
+ × R

N↑
− , if x+n = y+n for all n ∈ [1 . . . N ] \ J+, and

x−n = y−n for all n ∈ [1 . . . N ] \ J−, then x �N y if and only if (x+J+ , x−J−) �J±
(y+J+ , y−J−).10

These axioms are somewhat weaker than the familiar axioms with similar names: they
only apply to the restriction of � to a population of fixed, finite size N , and only
compare social outcomes that are comonotonic. The Continuity axiom says that a
small change in the lifetime utilities of individuals should only cause a small change
in the ranking of the social outcome, in comparison with other social outcomes hav-
ing the same population. Separability says that, if certain people (namely those in
[1 . . . N ] \ J+) have the same positive lifetime utility in two social outcomes x and
y, and furthermore occupy the same position in the ranking from best-off to worst-
off, then the comparison between x and y should be entirely determined by other
people—those whose utilities differ from x to y (namely those in J+). Likewise, if
certain people (namely those in [1 . . . N ] \J−) have the same negative lifetime utility
in two social outcomes x and y, and furthermore occupy the same position in the rank-
ing fromworst-off to best-off, then the comparison between x and y should be entirely
determined by other people—those whose utilities differ from x to y (namely those
in J−). Thus, this axiom has the same normative content as the standard Separability
axiom—it is just more complicated to state (and in fact, logically weaker), because it
must deal separately with people having positive and negative lifetime utilities, and
furthermore only deals with rank-ordered vectors of utility. Here is the first main result
of the paper.

9 To see this, let (x+, x−) ∈ R
∝↓
+ × R

∝↑
− . Then x+ ∈ R

P↓
+ and x− ∈ R

N↑
− for some P, N ∈ N. Let

M := max{P, N }; then, R
P↓
+ ⊆ R

M↓
+ and R

N↑
− ⊆ R

M↑
− , so that (x+, x−) ∈ R

M↓
+ × R

M↑
− .

10 Here, x±J± = (x±j ) j∈J± , an element of R
J± . Strictly speaking, the order �J± need only be defined

on R
J+
↓

+ × R
J−
↑

− . But it makes no difference if we suppose it is defined on all of R
J+ × R

J− .
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Theorem 1 Let� be a possibilist SWOonX . Then� satisfiesAnonymity,Continuity,
Pareto, and Separability if and only if it is rank-additive. Furthermore, in the repre-
sentation (2B), the functions {φ±

n }∞n=1 are unique up to multiplication by a common
positive constant.

Proof sketch For all N ∈ N and all x ∈ R
N↓
+ × R

N↑
− , use the classic representation

theorem of Debreu (1960) to obtain a “local” additive representation of �N in a
neighbourhood of x. Then glue together these local representations to obtain a single,
global additive representation on all of R

N↓
+ ×R

N↑
− , using a result of Chateauneuf and

Wakker (1993). Finally, for any N < M , use the natural embedding R
N↓
+ × R

N↑
− ⊂

R
M↓
+ × R

M↑
− together with standard uniqueness results to show that the 2N utility

functions involved in the additive representation onR
N↓
+ ×R

N↑
− are actually the first 2N

utility functions involved in the additive representationonR
M↓
+ ×R

M↑
− . SeeAppendixA

for details.

Independence of the axioms Consider a rank-additive SWF (2B). If some of the
functions {φ±

n }∞n=1 are not increasing, but all are continuous, then the resulting SWO
violates Pareto but satisfies the other three axioms of Theorem 1. If, on the other hand,
some of {φ±

n }∞n=1 are not continuous, but all are increasing, then the resulting SWO
violates Continuity but satisfies the other three axioms.

Next, suppose we replace (2B) with the expression
(∑∞

n=1 x
+
n

)2 − (∑∞
n=1 |x−n |

)2.
The resulting SWO violates Separability but satisfies the other three axioms. Finally,
for all i ∈ I, let φi : R−→R be a continuous, increasing function with φi (0) = 0,
and define W : X−→R by setting W (x) := ∑

i∈I φi (xi ) (well defined because only
finitely many summands are nonzero). The resulting SWO � satisfies Pareto, but if
the functions {φi }i∈I are distinct, then it violates Anonymity. It is meaningless to ask
whether � satisfies Continuity or Separability, since these axioms are formulated in
terms of the order �∗, which is not even well defined if � violates Anonymity. But
for any finite subset J ⊂ I, if we define �J to be restriction of � to the (finite-
dimensional) subspace R

J × {0}I\J , then it is easy to see that �J satisfies axioms
analogous to Continuity and Separability.

2.3 Further results

I earlier noted that any rank-additive SWO satisfies the axiom Existence indepen-
dence of the wretched. We might also consider SWOs that satisfy the following
axioms:

Top-independence in goodworlds. For all x, y ∈ X such that xi � 0 and yi � 0
for all i ∈ I, and all z ∈ R with z > max{x+1 , y+1 }, we have x � y if and only if
x � z � y � z.
Bottom-independence in bad worlds. For all x, y ∈ X such that xi � 0 and
yi � 0 for all i ∈ I, and all z ∈ R with z < max{x−1 , y−1 }, we have x � y if and
only if x � z � y � z.
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These axioms are similar to Separability; they say that, when comparing certain kinds
of social outcomes, we can disregard the utility—or even the existence—of certain
people who are indifferent between these outcomes. The first axiom is like Asheim
and Zuber’s (2014) axiom Existence independence of the best off, except that it applies
only in “good” worlds, where everyone’s lifetime utility is nonnegative. The second
axiom is like Asheim and Zuber’s (2014) Existence independence of the worst off,
but it applies only in “bad” worlds.11 The next result says that these axioms lead to
something resembling Sider’s (1991) “geometric” SWF from formula (2F).

Proposition 2.1 Let � be a rank-additive possibilist SWO with the SWF (2B).

(a) � satisfies Top-independence in goodworlds if and only if there is a continuous,
increasing function φ+ : R+−→R+ (unique up to multiplication by a positive
constant) and a unique constant β+ > 0 such that φ+

n = βn+ φ+ for all n ∈ N.
(b) � satisfies Bottom-independence in bad worlds if and only if there is a con-

tinuous, increasing function φ− : R−−→R− (unique up to multiplication by a
positive constant) and a unique constant β− > 0 such that φ−

n = βn− φ− for all
n ∈ N.

(c) If � satisfies the conditions of both (a) and (b), then φ+ and φ− are unique up to
multiplication by the same positive constant.

If � satisfies both Top-independence in good worlds and Bottom-independence
in bad worlds, then Proposition 2.1 yields a variant of Sider’s geometric SWF. But
nothing in Proposition 2.1 requires β+ = β−, nor are either β+ or β− required be
less than 1.

Repugnant Conclusions For any N ∈ N, let 1N refer to an element of X such
that exactly N coordinates take the value 1, and all other coordinates are zero. (By
Anonymity, it does not matter which coordinates we choose.) For any r ∈ R, r 1N
refers to the corresponding element of X such that exactly N coordinates take the
value r , and all other coordinates are zero. Consider the following axioms.

No Repugnant Conclusion. There exist r0 > 0 and x ∈ X such that x � r0 1N
for all N ∈ N.
No utility monsters. For all N ∈ N, there exists x ∈ X such that x � r 1N for all
r > 0.

The first axiom rules out Parfit’s Repugnant Conclusion. It says there is a minimum
positive utility r0 (representing a life which is technically worth living, but perhaps not
very pleasant) and a social outcome x (e.g. the population of a modern industrialized
country) which is better than any population of people with life utilities less than or
equal to r0, no matter how large this population becomes. The second axiom rules out
Nozick’s (1974) Utility Monster paradox. It says that for any finite-population size
N , there exists a social outcome (presumably involving a larger number of people)
which is better than any society which involves only N people, no matter how high
their lifetime utilities becomes. Thus, even if the first N people are somehow much

11 Asheim and Zuber’s axioms are also stronger in that they compare populations of different sizes. Also
similar are the axioms HIGAP and LIGAP, used by Bossert (1990) to characterize single-series Gini SWOs.
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Fig. 1 Functions φ+
n (r) = n · (1− exp(−r/n)), for n ∈ {1 . . . 10}

more efficient at converting resources into lifetime utility than everyone else, the SWF
does not allow them to simply absorb unlimited amounts of resources from the rest of
humanity to boost their own utilities.

Proposition 2.2 Let � be a rank-additive possibilist SWO with the SWF (2B). Let
W := sup{W (x); x ∈ X }.
(a) � satisfies No Repugnant Conclusion if and only if there exists r0 > 0 such that

∞∑

n=1

φ+
n (r0) < W.

(b) � satisfies No utility monsters if and only if lim
r→∞

∑N

n=1
φ+
n (r) < W, for all

N ∈ N.

If W < ∞, then both these conditions are satisfied.

It is well known that Nozick’s Utility Monster paradox can be evaded by using
a generalized utilitarian social welfare like (2D) when the function φ is bounded
above. In particular, some prioritarian social welfare functions have this form. But
Proposition 2.2(b) goes beyond this trite observation, because in an RA SWF, the
functions {φ+

n }∞n=1 need not be identical, so they need not have the same upper bound.
For example, suppose that φ+

n (r) := n ·(1−exp(−r/n)) for all n ∈ N and all r ∈ R+;
then, the condition of Proposition 2.2(b) is satisfied. However, as shown in Fig. 1, we
have sup(φ+

n (R+)) = n for all n ∈ N.

The Saint Petersburg paradox The Repugnant Conclusion and the Utility Monster
are both ethical paradoxes which arise when a valuable thing is allowed to become
extremely small in one “dimension”, as long as it simultaneously grows extremely
large along some other dimensions. Perhaps the earliest paradox of this kind is the
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Saint Petersburg Paradox (Bernoulli, 1738 [1954]). This suggests the next axiom. Let
W : X−→R denote a SWF representing a SWO �.

No Saint Petersburg Paradox. There is some ε > 0 and some x ∈ X such that for
any y ∈ X and any p < ε, W (x) > p W (y).

Let z be an outcome such that W (z) = 0 (for example, the “empty world” where
zi = 0 for all i ∈ I). We can interpret p W (y) as the expected W value of a lottery
which yields y with probability p, and z with probability (1 − p). Thus, No Saint
Petersburg Paradox says that the sure outcome x is better than any such lottery, no
matter how good y is.12

Proposition 2.3 Let� be a rank-additive possibilist SWO with the SWF (2B). Then�
satisfies No Saint Petersburg Paradox if and only if sup{W (x); x ∈ X } < ∞. In this
case, � automatically satisfies No Repugnant Conclusion and No utility monsters.

Inequality aversion Let x, y ∈ X . Say that y is a Pigou–Dalton transform of x if
there exist j, k ∈ I and ε > 0 such that y j = x j + ε � yk = xk − ε, while yi = xi
for all other i ∈ I \ { j, k}. Consider the following axioms.

Inequality neutrality. Let x, y ∈ X . If y is a Pigou–Dalton transform of x, then
y ≈ x.
Inequality aversion. Let x, y ∈ X . If y is a Pigou–Dalton transform of x, then
y � x.
Strict inequality aversion. Let x, y ∈ X . If y is a Pigou–Dalton transform of x,
then y � x.

Proposition 2.4 Let � be a rank-additive possibilist SWO with the SWF (2B).

(a) � satisfies Inequality neutrality if and only if it is classical utilitarianism.
(b) � satisfies Inequality aversion if and only if, for all n,m ∈ N, r , s ∈ R and ε > 0:

(i) If r � 0 � s, then φ+
n (r + ε) − φ+

n (r) � φ−
m (s) − φ−

m (s − ε).
(ii) If n < m and r � s � ε > 0, then φ+

n (r + ε)− φ+
n (r) � φ+

m (s)− φ+
m (s − ε).

(iii) If n > m and s � r � −ε < 0, then φ−
n (r+ε)−φ−

n (r) � φ−
m (s)−φ−

m (s−ε).

Thus, for all q ∈ R+, we have

φ+
1 (q) � φ+

2 (q) � φ+
3 (q) � · · · · · ·

· · · · · · � −φ−
3 (−q) � −φ−

2 (−q) � −φ−
1 (−q). (2H)

In particular, if {φ+
n }∞n=1 and {φ−

n }∞n=1 are differentiable, then for any positive non-
increasing sequence r1 � r2 � r3 � · · · � 0 and negative nondecreasing sequence
s1 � s2 � s3 � · · · � 0,

12 Technically, this “lottery” interpretation goes beyond the formal framework of the rest of the paper,
which involves no risk. But in reality, social decisions always involve risk. I have confined the analysis to
riskless decisions only for simplicity. We could explicitly model risk using social lotteries, and then, No
Saint Petersburg Paradox could be stated directly in terms of such lotteries. But this would also raise many
other issues that are beyond the scope of this paper; see, for example, Mongin and Pivato (2015, 2016,
2018).
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(φ+
1 )′(r1) � (φ+

2 )′(r2) � (φ+
3 )′(r3) � · · · · · ·

· · · · · · � (φ−
3 )′(s3) � (φ−

2 )′(s2) � (φ−
1 )′(s1). (2I)

(c) � satisfies Strict inequality aversion if and only if all the statements in part (b)
hold with strict inequalities.

Example 2.5 The generalized utilitarian SWF (2D) satisfies Inequality aversion if and
only if the function φ is concave; it satisfies Strict inequality aversion if and only
if φ is strictly concave. The rank-weighted utilitarian SWF (2E) satisfies Inequality
aversion if and only if c+1 � c+2 � c+3 � · · · � c−3 � c−2 � c−1 ; it satisfies Strict
inequality aversion if and only if these inequalities are all strict. Note, however, that
in a general rank-additive SWF, we do not need the functions {φ+

n }∞n=1 and {φ−
n }∞n=1 to

be concave to ensure inequality aversion, as long as the conditions of Proposition 2.4
are satisfied. ��

Unfortunately, by comparing Proposition 2.4 with Proposition 2.2(a), one sees that
it is impossible to simultaneously satisfy Inequality aversion and No Repugnant
Conclusion. If ε > 0 is small, then No Repugnant Conclusion requires the sequence
{φ+

n (ε)}∞n=1 to be summable, whereas Inequality aversion requires this sequence to be
nondecreasing as in (2H)—a contradiction. Thus, to avoid the Repugnant Conclusion,
we must somehow weaken Inequality aversion. Let θ > 0. Let x, y ∈ X . Say that y is
a θ -restricted Pigou–Dalton transform of x if there exist j, k ∈ I and ε > 0 such that
y j = x j +ε � yk = xk−ε, while yi = xi for all other i ∈ I \{ j, k}, and furthermore,
none of x j , y j , xk, yk is in the interval [0, θ ]. Consider the following axioms.

Restricted inequality neutrality. There is some θ > 0 such that, for any x, y ∈ X ,
if y is a θ -restricted Pigou–Dalton transform of x, then y ≈ x.
Restricted inequality aversion. There is some θ > 0 such that, for any x, y ∈ X ,
if y is a θ -restricted Pigou–Dalton transform of x, then y � x.
Restricted strict inequality aversion. There is some θ > 0 such that, for any
x, y ∈ X , if y is a θ -restricted Pigou–Dalton transform of x, then y � x.

This might seem like a rather stingy version of inequality aversion, since it specifically
excludes the wretched. But it allows us to avoid the Repugnant Conclusion.

Proposition 2.6 Let � be a rank-additive possibilist SWO with the SWF (2B).

(a) � satisfies Restricted inequality neutrality if and only if there are linear functions
φ± : R±−→R± and constants {cn}∞n=1 such that for all n ∈ N, φ−

n = φ− and
φ+
n (r) = φ+(r) + cn for all r � θ .

(b) � satisfies Restricted inequality aversion if and only if, for all n,m ∈ N, all
r , s ∈ R and all ε > 0:

– If r � θ > 0 � s, then φ+
n (r + ε) − φ+

n (r) � φ−
m (s) − φ−

m (s − ε).
– If n < m and r > s > ε + θ > 0, then φ+

n (r + ε)−φ+
n (r) � φ+

m (s)−φ+
m (s− ε).

– If n > m and s < r < −ε < 0, then φ−
n (r + ε) − φ−

n (r) � φ−
m (s) − φ−

m (s − ε).

In particular, for all r < 0, the sequence {φ−
n (r)}∞n=1 is nonincreasing.
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Fig. 2 Functions φ+
n (r) in Example 2.7, for n ∈ {1, . . . , 5}

(c) � satisfies Restricted strict inequality aversion if and only if all the statements
in part (b) hold with strict inequalities. In this case, for all r ∈ R−, the sequence
{φ−

n (r)}∞n=1 is strictly decreasing.

Note that Proposition 2.6 does not require the sequence {φ+
n (r)}∞n=1 to be nonde-

creasing for any r > 0. In effect, φ+
n must be inequality-averse for “sufficiently large”

lifetime utilities (those above the threshold θ ), but to block the Repugnant Conclusion,
φ+
n must become increasingly inequality-seeking for “small” positive lifetime utilities

(those in [0, θ ]), as n→∞. This is because the rank-additive SWF (2B) must assign
rapidly decreasing marginal value to adding more wretched people to an already very
populatedworld. But to respect Positive expansion,�must still regard thesewretched
new lives as a net improvement, as long as they are lives worth living. The only way
to reconcile these two conflicting imperatives is for the slope of φ+

n near zero to decay
to zero as n→∞.13

Example 2.7 For all n ∈ N, let an := ln
(
1+ 1

n2

)
, and then define

φ+
n (r) :=

{
an r if r ∈ [0, 1];
ln

(
r + 1

n2

)
if r � 1.

(See Fig. 2.) If n is large, then an ≈ 1/n2 (by the Taylor expansion of ln(x) around
x = 1). Thus, for all r ∈ [0, 1], we have

∑∞
n=1 φ+

n (r) ≈ r · ∑∞
n=1

1
n2
, which is

finite; thus, the hypothesis of Proposition 2.2(a) is satisfied, so the resulting RA SWO
satisfies No Repugnant Conclusion (for any r0 < 1). Meanwhile, for all n ∈ N, we
have

13 Similarly, Roemer (2004) proposed an axiom he called Triage, which treats individuals differently
depending on whether their utility is above or below a threshold corresponding to a “barely mediocre” life.
But Roemerwas not concernedwith population ethics; rather, he was concernedwith reconciling conflicting
intuitions about distributional ethics which apply at different levels of utility.
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(φ+
n )′(r) = 1

r + 1/n2
, for all r ∈ (1,∞).

Thus, φ+
n is concave increasing on [1,∞), and furthermore, if n < m and r � s, then

(φ+
n )′(r) < (φ+

m )′(s). Thus, the second condition in Proposition 2.6(c) is satisfied
(with θ := 1). Observe that (φ+

n )′(r) < 1 for all n ∈ N and r ∈ R+. Thus, if φ− :
R−−→R− is any concave, increasing, differentiable function such thatφ−(0) = 0 and
(φ−)′(0) � 1, and we define φ−

n := φ− for all n ∈ N, then the other two conditions
of Proposition 2.6(c) are also satisfied. Thus, the resulting SWO satisfies Restricted
strict inequality aversion. ��
Related literature In possibilist population ethics, a lifetime utility of zero plays
a special role, because it is the utility assigned to non-existent people. This makes it
possible to axiomatize SWOs that treat positive and negative utilities differently—a
possibility first recognized by Blackorby and Donaldson (1982) and further developed
by Zank (2007). Like the results in this section, Zank axiomatically characterizes rank-
dependent SWOs that assign special significance to zero utility, and hence treat positive
and negative utilities differently. However, he works with a fixed population and uses
different axioms than the ones used here.

3 Actualist social welfare orders

3.1 Definition and examples

As in Sect. 2, let I be an infinite set, whose elements represent all the people who
could ever possibly exist. Let R∗ := R�{�}, where � is a special symbol representing
“non-existence”. Let R

I∗ be the set of all I-indexed profiles r = (ri )i∈I of R∗. For
all i ∈ I, if ri = �, then this means i does not exist. On the other hand, if ri ∈ R,
then interpret ri as the lifetime utility of individual i , with the same interpretation as
in Sect. 2: if ri > 0, then i’s life is worth living, if ri < 0, then i’s life is not worth
living, and if ri = 0, then i’s life is indifferent (for her) to non-existence.

Let X∝ be the set of all elements of R
I∗ where only finitely many entries are not

equal to �. (Some of these non-� entries may be zero.) An element of X∝ represents
a complete specification of all the people who will ever exist (I assume this number
to be finite), and the lifetime utilities each of them. I will refer to elements of X∝ as
social outcomes. An actualist social welfare order is a preference order on X∝.14

If π : I−→I is any bijection, then define π∗ : R
I∗ −→R

I∗ by setting π∗(r) :=
(rπ(i))i∈I for all r = (ri )i∈I in R

I∗ . Clearly, π(X∝) = X∝, and π restricted to X∝
defines a bijection from X∝ to itself. We will be interested in SWOs satisfying the
following axiom:

Anonymity. If π : I−→I is any bijection, and x ∈ X∝, then x ≈ π∗(x).

14 There is a risk of terminological confusion here: “moral actualism” has also been used to refer to the
philosophical claim that ethical judgements should be based only on the interests of the people who actually
exist. See Hare (2007) for a refutation of this position. This is not what I mean by the term.
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For any x ∈ X∝, let |x| be the number of non-� entries in x. In particular, let ∅ be the
empty world: the unique element of X∝ such that all entries are �; then, |∅| = 0. If
|x| > 0, then we say x is nonempty. For any N ∈ N, let XN := {x ∈ R

I∗ ; |x| = N },
and let R

N↑ := {r ∈ R
N ; r1 � r2 � · · · � rN } be the set of all nondecreasing

elements of R
N . For any x ∈ XN , let x↑ := (x↑1 , x↑2 , . . . , x↑N ) ∈ R

N↑ be the N -
dimensional vector consisting of all non-� entries of x, listed in nondecreasing order.
Let R∝↑ := ⋃∞

N=1 R
N↑ , and let�∗ be a preference order on R

∝↑ . Then we can define
an SWO � on X∝ by the formula:

for all x, y ∈ X∝
(
x � y

) ⇐⇒ (
x↑ �∗ y↑

)
. (3A)

It is easy to see that � satisfies Anonymity: if π : I−→I is any bijection, and
y = π∗(x), then y↑ = x↑, so that x ≈ y. Conversely, if� is an SWO onX∝ satisfying
Anonymity, then there is a unique preference order �∗ on R

∝↑ satisfying formula
(3A). In other words, there is a natural bijective correspondence between preference
orders on R

∝↑ and SWOs on X∝ satisfying Anonymity. Thus, we can work directly
with preference orders on R

∝↑ .
For all n ∈ N, let φn : R−→R be a continuous, increasing function. Consider the

social welfare function W : X∝−→R defined as follows:

W (∅) := 0, and W (x) :=
|x|∑

n=1

φn(x
↑
n ), for all nonempty x ∈ X∝. (3B)

This is called an ascending rank-additive (ARA) social welfare function. The social
welfare order it represents is an ascending rank-additive SWO. For example:

– Suppose c ∈ R, and φn(r) = r − c for all n ∈ N and all r ∈ R. Then formula
(3B) yields the critical-level utilitarian SWF. In particular, if c = 0, then we get
the classical utilitarian SWF. If φ : R−→R is a continuous, increasing function,
and φn = φ for all n ∈ N, then (3B) yields a generalized utilitarian SWF:

W (∅) := 0, and W (x) :=
|x|∑

n=1

φ(x↑n ), for all nonempty x ∈ X∝. (3C)

– Let {an}∞n=1 be a decreasing sequence of positive constants, and suppose φn(r) =
an r for all n ∈ N and all r ∈ R. Then formula (3B) yields an ascending rank-
weighted utilitarian SWF.

– More generally, let φ : R−→R be a continuous, increasing function, and suppose
φn(r) = an φ(r) for all n ∈ N and all r ∈ R. Then formula (3B) yields an
ascending rank-weighted generalized utilitarian SWF:

W (x) :=
|x|∑

n=1

an φ(x↑n ), for all x ∈ X∝. (3D)

These have been studied by Asheim and Zuber (2017). In particular, let β ∈ (0, 1),
and for all n ∈ N, let φn := βn φ. Then formula (3D) becomes a rank-discounted
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generalized utilitarian SWF, which was axiomatically characterized by Asheim
and Zuber (2014):

W (x) :=
|x|∑

n=1

βn φ(x↑n ), for all x ∈ X∝. (3E)

In these examples, I do not assume that φn(0) = 0. In other words, I do not assume
that the existence of an individual with a neutral level of lifetime utility is ethically
equivalent to her non-existence. In fact, even if φn(0) = 0 for all n ∈ N, this would
not be the case: introducing a new person with zero lifetime utility can change the
rankings of people who already exist, thereby changing overall social welfare in a
complex way. Thus, ARA SWOs are fundamentally different from the possibilist
rank-additive SWOs introduced in Sect. 2; they typically do not satisfy either Positive
expansion or Negative expansion.

However, as noted by Asheim and Zuber (2014, 2016, 2017), ARA SWOs are
attractive because they can avoid the Repugnant Conclusion while exhibiting inequal-
ity aversion at all welfare levels. To see this, consider the ascending rank-weighted
generalized utilitarian SWF (3D). For simplicity, suppose φ(r) = r for all r ∈ R.
If the sequence {an}∞n=1 is decreasing, then this SWF is inequality-averse, because it
assigns lower marginal social welfare to the lifetime utilities of more fortunate indi-
viduals (who appear higher in the ranking). Furthermore, Asheim and Zuber (2017,
Proposition 6) show that this SWF avoids the Repugnant Conclusion if and only if∑∞

n=1 an < ∞. Clearly, this summability condition is compatible with {an}∞n=1 being
a decreasing sequence—for example, it is satisfied by the rank-discounted generalized
utilitarian SWF (3E). I generalize this result in Proposition 3.2.

3.2 Axiomatic characterization

I will characterize ARA SWOs with six axioms. The first one is Anonymity. The next
three are quite standard and also appeared in Sect. 2.2. To state these axioms, suppose
an SWO � on X∝ satisfies Anonymity. Then it can represented by a preference order
�∗ on R

∝↑ . For any N ∈ N, recall that R
N↑ ⊂ R

∝↑ ; let �N be the restriction of �∗
to R

N↑ . Note that R
N↑ is a closed, convex subset of R

N ; endow it with the subspace
topology it inherits from R

N . The next two axioms concern the preference orders
{�N }∞N=1.

Continuity. For every x ∈ X∝, and every N ∈ N, the upper contour sets {y↑;
y ∈ XN and x � y} and the lower contour sets {y↑; y ∈ XN and x � y} are closed
subsets of R

N↑ .
Pareto. For every N ∈ N and for all x, y ∈ R

N↑ , if xn � yn for all n ∈ [1 . . . N ],
then x �N y. If, furthermore, xn > yn for some n ∈ [1 . . . N ], then x �N y.

These axioms have the same justification as the corresponding axioms in Sect. 2. Note
that Continuity is slightly stronger than requiring the orders �N to be continuous: it
also requires closure of contour sets determined by elements outside of XN .15

15 Blackorby et al. (2001, 2005) and Asheim and Zuber (2017) refer to a similar axiom as Extended
continuity.
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To formulate the last axiom, we need some notation. Let x ∈ X∝, let N := |x|,
let n ∈ [1 . . . N ], and let b ∈ R be such that x↑n−1 � b � x↑n+1.

16 Let b(n)x be

the unique element y ∈ X such that |y| = |x|, y↑n = b, and y↑m = x↑m for all other
m ∈ [1 . . . N ] \ {n}.17

Now let n < m ∈ N, and let a < b < c < d ∈ R. I will write (a
n� b) ∼= (c

m� d)

if there exists x ∈ X∝ such that x↑n = a, x↑m = c, b(n)x, and d(m)x are well defined,
and b(n)x ≈ d(m)x. This means that switching a to b in coordinate n is “ethically
equivalent” to switching c to d in coordinate m. If � is represented by a SWF W ,
then (a

n� b) ∼= (c
m� d) if the change in W induced by switching a to b in the

nth coordinate is exactly equal to the change in W induced by switching c to d in
the mth coordinate. If W has an ascending rank-additive representation (3B), then
(a

n� b) ∼= (c
m� d) if and only if φn(b) − φn(a) = φm(d) − φm(c). Here is the last

axiom:

Trade-off Consistency. For any n < m ∈ N, and any a < b < c < d ∈ R such
that (a

n� b) ∼= (c
m� d), and any y, z ∈ X∝, such that y↑n = a, y↑n−1 � b � y↑n+1,

z↑m = c, and z↑m−1 � d � z↑m+1, if y ≈ z, then b(n)y ≈ d(m)z.

Note that this axiom does not assume that |y| = |z|. It says: if the act of switching
a to b in coordinate n is “ethically equivalent” to the act of switching c to d in
coordinate m when both switches are applied to the same outcome x, then this same
ethical equivalence should also be observed when these switches are applied to two
different outcomes y and z, possibly with different population sizes. Finally, we need
the following structural condition.

Neutral population growth. For all N ∈ N, there exists some x ∈ XN such that
x ≈ ∅.

This condition is natural and easily satisfied. For example, if � is a rank-weighted
generalized utilitarian SWO as in (3D), then it satisfies Neutral population growth if
and only if φ(r) = 0 for some r ∈ R. Meanwhile, if � is an ARA SWO represented
by (3B), then it satisfies Neutral population growth if φ1 is unbounded below, while
φn takes at least some positive values for all n � 2. Here is the second main result of
the paper.

Theorem 2 Let� be an actualist SWO satisfying Neutral population growth on X∝.
Then � satisfies Anonymity, Continuity, Pareto, and Trade-off Consistency if and
only if it is ascending rank additive. In the representation (3B), the functions {φn}∞n=1
are unique up to multiplication by a common scalar.

Proof sketch For all N ∈ N, use Trade-off Consistency to show that �N satisfies
a limited separability axiom called Coordinate Independence18 in a neighbourhood
around each point inR

N↑ . Then use a result ofWakker (1988) to obtain “local” additive
representations in a neighbourhood of each point in R

N↑ . Then, as in the proof of

16 Here we adopt the notational convention that x↑0 := −∞ and x↑N+1 = ∞.
17 Note that “b(n)x” is not well defined unless x

↑
n−1 � b � x↑n+1.

18 This is like Separability in Sect. 2.2, but in the case when J± is the complement of a single coordinate.
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Theorem 1, use a result of Chateauneuf and Wakker (1993) to get a global additive
representation on all of R

N↑ . Next, use Trade-off Consistency to show that, for any
N < M , the N utility functions in the additive representation on R

N↑ are actually the
first N utility functions for the additive representation on R

M↑ . Finally, use Trade-off
Consistency again to show that these additive representations also correctly account
for comparisons between outcomes with different population sizes. For details, see
Appendix B.

Independence of the axioms One can demonstrate the independence of Anonymity,
Continuity, Pareto using examples very similar to those at the end of Sect. 2.2. Mean-
while, one can show the independence of Trade-off Consistency using an example
very similar to the example for Separability from Sect. 2.2.

3.3 Further results

Critical levels Let x ∈ X∝ and let c ∈ R. In the terminology of Blackorby et al.
(2005), c is a critical level for x if adding a new person with lifetime utility c to x is an
ethically neutral act. By the Pareto axiom, such a critical level is unique, if it exists.
For example, in the classical utilitarian SWO, c = 0 for all x ∈ X∝ . In the average
utilitarian SWO, c is the average lifetime utility in x. The ARA SWOs characterized
in Theorem 2 do not necessarily possess such critical levels for every social outcome.
In other words, they do not necessarily satisfy the following axiom:

Critical levels. For any x ∈ X∝, there exists c ∈ R (depending on x) with x ≈ x�c.
This axiom says that there is no outcome x so bad that adding any new person to
x is always considered an improvement, or so good that adding any new person to
x is always considered a deterioration. Suppose � is an ARA SWO defined by a
collection of functions φ := {φn}∞n=1. To ensure that � satisfies Critical levels, we
must impose some conditions on φ. One might think that it is sufficient to require,
for all n ∈ N, the existence of some cn ∈ N with φn(cn) = 0. But this is not quite
sufficient, as we will now see. For all n ∈ N, define the function δφn : R−→R by
δφn(r) := φn+1(r) − φn(r). Then define

S(φ) := sup

{
N∑

n=1

δφn(xn) ; N ∈ N and x1 � x2 � · · · � xN

}

. (3F)

Proposition 3.1 Let � be an ARA SWO on X∝ with representation (3B), such that
for all n ∈ N, there is some cn ∈ N with φn(cn) = 0. The following statements are
equivalent:

(a) � satisfies Critical levels.
(b) inf(φ1(R)) � −S(φ), and if inf(φ1(R)) = −S(φ), then the supremum in formula

(3F) is never obtained.

In most cases, the condition in Proposition 3.1 is easily satisfied. For example, if φ1
is unbounded below (so that inf(φ1(R)) = −∞), then the condition is automatically
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true. Meanwhile, in a generalized utilitarian SWO (3C), we have S(φ) = 0, so the
condition simply requires that that inf(φ1(R)) < 0.

Suppose that � is as in Proposition 3.1. Then for any N ∈ N and x ∈ X∝, if
|x| = N −1 and max(x) � cN , then x ≈ x� cN . In other words, adding a person with
lifetime utility cN to the world is an ethically neutral act, as long as everyone who
already exists has an even lower level of lifetime utility. This is similar to the axiom
Existence of a critical level employed by Asheim and Zuber (2014) in their axiomatic
characterization of rank-discounted generalized utilitarian SWOs, but weaker: Asheim
and Zuber additionally require that cN = cM for all N , M ∈ N.

Inequality and the Repugnant Conclusion As Asheim and Zuber (2014) noted, an
ARA SWO can reconcile inequality aversion with evasion of the Repugnant Conclu-
sion by assigning lower marginal social welfare to the lifetime utility of the better-off
individuals in any social outcome. The next result makes this precise. It parallels
Propositions 2.2 and 2.4.

Proposition 3.2 Let � be an ARA SWO with the SWF (3B).

(a) � satisfies No Repugnant Conclusion if and only if there exists r > 0 such that
∞∑

n=1

φn(r) < ∞.

(b) � satisfies Inequality aversion if and only if for all n,m ∈ N with n � m, all
r , s ∈ Rwith r � s, and all ε > 0, we haveφn(r+ε)−φn(r) � φm(s)−φm(s−ε).
In particular, for all r ∈ R+, we have φ1(r) � φ2(r) � φ3(r) � · · ·
Furthermore, if {φn}∞n=1 are differentiable, then for any nondecreasing sequence
r1 � r2 � r3 � · · · of real numbers, we have φ′

1(r1) � φ′
2(r2) � φ′

3(r3) � · · ·
(c) � satisfies Strict inequality aversion if and only if all the statements in part (b)

hold with strict inequalities.

There are also versions of Proposition 2.2(b) and 2.3 for ARA SWO (for avoiding
utility monsters and the St. Petersburg Paradox), but they are obvious, and are left to
the reader.

Example 3.3 Let φ : R−→R be a concave increasing function, let {an}∞n=1 be a
nonincreasing sequence of positive constants, and suppose W is the ascending rank-
weighted generalized utilitarian SWF (3D). Then Proposition 3.2(b) says that �
satisfies Inequality aversion. If

∑∞
n=1 an < ∞, then Asheim and Zuber (2017) say

that � is proper. In this case, Proposition 3.2(a) says that � satisfies No Repugnant
Conclusion. In particular, if β ∈ (0, 1), andW is the rank-discounted generalized util-
itarian SWF (3E), then � satisfies both Strict inequality aversion and No Repugnant
Conclusion. ��

Tyrannies of aggregation and nonaggregation For any x ∈ X∝, let I(x) := {i ∈ I;
xi �= �} be the set of people who exist in the outcome x. Fleurbaey and Tungodden
(2010) have proposed the following axiom:

Minimal Aggregation. For some N ∈ N, and all x ∈ XN , and all i ∈ I(x), there
exists some α > β > 0 such that, for any other y ∈ X∝ with I(y) = I(x), if
xi � yi � xi − β, while y j � x j + α for all other j ∈ I(x), then y � x.
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This says that there is at least one situation where it is considered acceptable for one
person (namely i) to make a small sacrifice (at most β) so that everyone else can gain
a larger amount (at least α). This rules out the maximin and leximin SWFs, which give
absolute priority to the worst-off. In the terminology of Fleurbaey and Tungodden, it
excludes the tyranny of nonaggregation.

For any x ∈ X∝, let I(x) := {i ∈ I(x); xi � x j for all j ∈ I(x)}; these are the
worst-off people in the outcome x. Let I(x) := {i ∈ I(x); xi � x j for all j ∈ I(x)};
these are the best-off people in x. Fleurbaey and Tungodden (2010) also propose the
next axiom:

Mild Nonaggregation. For all r , q ∈ R with r > q, there exists some α > β > 0
such that, for any x, y ∈ X∝ with I(x) = I(y), if there exists i ∈ I(y)with yi � q
and xi � yi + α, while for all other j ∈ I(x), either x j = y j or j ∈ I(x) ∩ I(y),
y j � r , and x j � y j − β, then x � y.

This is an egalitarian principle which says that, if one of the worst-off people (namely
i) has the opportunity to gain a large enough amount (at least α), then it is acceptable
to require all the best-off people to make a small sacrifice (at most β). This rules out
principles such as utilitarianism, in which a tiny welfare gain for every member of
a large group (say, a billion people) could in principle justify a huge sacrifice (say,
a painful death) for one person. In the terminology of Fleurbaey and Tungodden, it
excludes the tyranny of aggregation.Note that the axiomallows us tomakeα arbitrarily
large and β arbitrarily small, depending on the values of q and r ; in that sense it is a
fairly mild principle. However, α and β do not depend on the size of I(x); thus, even
if I(x) ∩ I(y) has a quadrillion people, their β-sized gains are insufficient to offset
i’s α-sized loss.

For any x ∈ X∝ and N ∈ N, let xN denote a social outcomewith |xN | = N |x|, such
that every person in x is “replicated” N times in xN . (If an SWO satisfiesAnonymity, it
does not matter how we arrange these N replicated copies). An SWO� is replication-
invariant if, for any x, y ∈ X∝ with x � y, we have xN � yN for all N ∈ N. It is
easily seen that rank-additive SWOs are not replication-invariant, in general.

Fleurbaey and Tungodden prove that Minimal Aggregation and Mild Nonaggre-
gation are incompatible in any replication-invariant SWO.19 But they note that these
axioms are compatible if we give up replication invariance; in particular, they are both
satisfied by rank-discounted utilitarian SWFs like (3E). The next result makes this
precise.

Proposition 3.4 (a) Any ARA SWO satisfies Minimal Aggregation.
(b) Let � be an ARA SWO with the SWF (3B). Suppose {φn}∞n=1 are concave and

differentiable, and for all r ∈ R, there exists A ∈ R+ such that
∑∞

n=N+1 φ′
n(r) <

A ·φ′
m(r), for any m, N ∈ Nwith m � N. Then� satisfiesMild Nonaggregation.

The condition in Proposition 3.4(b) implies that the sequence {φ′
n(r)}∞n=1 decays

quickly enough that
∑∞

n=1 φ′
n(r) < ∞. But it says more: it says that this sequence

19 Fleurbaey and Tungodden are not concerned with population ethics, so they only consider social welfare
orders that compare social outcomes having the same population. I have reformulated their axioms in the
notation of this paper.
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decays with roughly “exponential” speed. For example, suppose there is some
b ∈ (0, 1) such that φ′

n+1(r) � b · φ′
n(r) for all n ∈ N (e.g. φ′

n(r) = 1/bn for
all n ∈ N); then, the condition in Proposition 3.4(b) is satisfied, with A := b/(1− b).
Asheim and Zuber (2017, Proposition 5) have proved a result similar to Proposition 3.4
for ascending rank-weighted generalized utilitarian SWFs of type (3D).

Top-independence and bottom-independence For any x ∈ X∝, let max(x) be
the maximal lifetime utility of any person in the social outcome x. (Equivalently, if
x↑ = (x↑1 , . . . , x↑N ), then max(x) = x↑N .) All ARA SWOs clearly satisfy the next
axiom.

Top-independence. For all x, y ∈ X∝ with |x| = |y| and all z ∈ R with z �
max{max(x),max(y)}, we have x � y if and only if x � z � y � z.

This axiom has a similar justification to Separability or the axiom of Top-
independence in good worlds from Sect. 2.3: it says that, when comparing two
social outcomes, we can disregard the utility—or even the existence—of someone
who is indifferent between these outcomes, as long as she would be the happiest
person in both outcomes. Unfortunately, ARA SWOs do not, in general, satisfy the
analogous property involving unhappy people:

Bottom-independence. For all x, y ∈ X∝ with |x| = |y| and all z ∈ R with
z � min{min(x),min(y)}, we have x � y if and only if x � z � y � z.

One way to obtain SWFs satisfying Bottom-independence is to apply a formula like
(3B) to decreasing rather than increasing sequences. Formally, for any N ∈ N, let
R

N↓ := {r ∈ R
N ; r1 � · · · � rN } be the set of all nonincreasing elements of R

N .
Let R

∝↓ := ⋃∞
N=1 R

N↓ . For any x ∈ XN , let x↓ := (x↓1 , . . . , x↓N ) ∈ R
N↓ be the

N -dimensional vector of all non-� entries of x, listed in nonincreasing order. For all
n ∈ N, let φn : R−→R be continuous and increasing. Define W : X∝−→R by:

W (∅) := 0, and W (x) :=
|x|∑

n=1

φn(x
↓
n ), for all nonempty x ∈ X∝.

This is called a descending rank-additive (DRA) social welfare function. These
are axiomatically characterized by a result very similar to Theorem 2, except that
the axioms Pareto, Continuity, and Trade-off Consistency are applied to orderings
defined on R

N↓ rather than R
N↑ (for all N ∈ N). However, DRA SWOs are less

appealing than ARA SWOs. As observed in Proposition 3.2, ARA SWOs can simulta-
neously Strict inequality aversion and No Repugnant Conclusion. But DRA SWOs
cannot. Indeed, for a DRA SWO to satisfy No Repugnant Conclusion, it must be
inequality-promoting, which is much less attractive. Fortunately, there is another way
to obtain Bottom-independence, while preserving the other desirable properties of
ARA SWOs.

Corollary 3.5 Let � be an actualist SWO on X∝. Then � satisfies the axioms of Theo-
rem 2 and also Bottom-independence if and only if it is rank-discounted generalized
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utilitarian, as in formula (3E). In this representation, β is unique and φ is unique up
to multiplication by a positive constant.

This is similar to themain result ofAsheim andZuber (2014), except that they do not
requireTrade-offConsistency, but instead employversions ofTop-independence and
Bottom-independence,20 an axiom positing the existence of egalitarian equivalents,
and a slightly stronger form of Critical levels.

Related literature Ebert (1988) axiomatizes a class of ascending rank-additive
SWOs, but he works with populations of fixed size, and uses different axioms. Ble-
ichrodt et al. (2008) obtain a very general axiomatization of rank-additive utility
representations. Although their intended application is descriptive decision theory,
they note that their result can also be applied to social welfare. They also use continu-
ity, monotonicity (i.e. Pareto), a richness condition analogous to Neutral population
growth, and a “Trade-off Consistency” axiom, but their version of this axiom is dif-
ferent than the one in this paper.

3.4 Actualism versus possibilism

Proposition 3.1 shows that ARAs do not generally satisfy Critical levels. Even when
they do, the critical level depends on the social outcome under consideration, and is
not typically zero. But suppose that � was an actualist SWO where the critical level
was zero for every social outcome. Thus, for any x ∈ X∝, if x′ is obtained from x
by converting any finite number of � components to zeros, then x ≈ x′. Let X be
the space of “possibilist” social outcomes defined in Sect. 2.1, and let Φ(x) be the
element of X obtained by converting all the � components in x to zeros. This defines
a surjection Φ : X∝−→X . We can then define a possibilist SWO�′ on X as follows:
for any x′, y′ ∈ X , stipulate that x′ �′ y′ if and only if x � y for some x, y ∈ X∝ such
that Φ(x) = x′ and Φ(y) = y′. (This is well defined independent of the choice of x
and y, precisely because the critical level of � is zero for all outcomes.)

Given this construction, it seems that possibilist SWOs are just a special case of
actualist SWOs—namely those with a universal zero critical level. Thus, it seems
redundant to introduce the separate framework of Sect. 2. It is also puzzling that the
axioms Anonymity, Pareto, Continuity, and Separability were enough to axiomati-
cally characterize rank-additive SWOs in the possibilist framework (Theorem1),when
these four axioms are not enough in the actualist framework. (The axiom of Trade-off
Consistency is stronger than Separability.) Furthermore, the class of ARA SWOs we
eventually do obtain in Theorem 2 is substantially different in nature.

However, a closer inspection reveals that the possibilist framework is not “just” a
special case of the actualist framework. Its additional structure allows for logically
weaker versions of key axioms and leads to different conclusions. For example, the
possibilist Continuity axiom is not just the actualist Continuity axiom “projected”
through the mapping Φ—it is a weaker axiom. To see this, note that the possibilist
Continuity axiom makes a rigid distinction between the positive and negative compo-

20 Asheim and Zuber’s versions of Top- and Bottom-independence are called Existence independence of
the best off and Existence independence of the worst off; they allow x and y to have different populations.
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nents of a social outcome; it essentially says that the SWO is continuous with respect
to small perturbations of individual utility levels, as long as these perturbations do not
switch a positive utility to a negative one, or vice versa. The actualist Continuity axiom
makes no such distinction. For similar reasons, the possibilist Separability axiom is
weaker than the axiom that would be obtained by formulating an analogous Separa-
bility axiom in the actualist framework, and then “projecting” this axiom through Φ.
There is a further difference between the two Continuity axioms (already noted in
Sect. 3.2). Both axioms require closed contour sets in the set XN of outcomes of size
N (for all N ∈ N). But the possibilist Continuity axiom only considers contour sets
determined by elements ofXN itself, whereas the actualistContinuity axiom considers
contour sets in XN determined by all elements of X∝.

Of course, the possibilist Continuity and Separability axioms could be formu-
lated in the actualist framework and might even appear reasonably natural if we were
already fully committed to a universal zero critical level. We could then formulate a
version of Theorem1 in the actualist framework, using these two axioms (togetherwith
Anonymity and Pareto), along with an axiom universal zero critical level. However,
the fact that these two axioms are substantiallyweaker than their actualist counterparts,
and yet still sufficient to characterize the (possibilist) rank-additive SWOs without the
need for Neutral population growth or Trade-off Consistency, tells us that univer-
sal zero critical level is in fact a very powerful axiom—powerful enough that it is
perhaps more appropriate to think of it as determining an entirely different analytical
framework, rather than just a special case of the actualist framework.21

4 Existence independence

Rank-additive SWOs violate an axiom which Blackorby et al. (2005, §5.6) call
Existence independence. This axiom says that the ethical evaluation of outcomes
concerning some collection K of individuals (say, those currently alive on planet
Earth) should not depend upon information about the lifetime utilities—or even the
existence—of people outside of K (say, people who died long ago, who will be born
in the far future, or who live on other planets). As Blackorby et al. (2005, §5.1.1) note,
the ethical evaluation of presently existing people should not depend on the utility of
some long-dead historical figure, such as Euclid. Likewise, suppose that a colony of
humans on another planet has long ago lost all contact with Earth; Blackorby et al.
(2005) argue that it would be absurd if the ethical evaluations of the colonists depended
upon the utilities of the earthlings (or vice versa).22

The generalized utilitarian SWF in formula (2D) satisfies Existence Independence,
as does any “critical-level” variant of generalized utilitarianism (with a constant critical
level). But it is violated by average utilitarianism, number-dampened utilitarianism,
and any other SWF where the critical level depends on the utilities of already exist-
ing people. Rank-additive SWOs violate Existence Independence in an even more

21 Alternately, instead of imposing a universal zero critical level directly through an axiom, we could derive
it as a consequence of Continuity and the conjunction of two other axioms, namely Positive expansion and
Negative expansion. This shows that these two axioms are also stronger than they look.
22 See section 4 of Thomas (2019) for further discussion of these arguments.
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fundamental way: if K is the collection of individuals under consideration, then we
don’t even know how to assign ranks to the members of K until we know the lifetime
utilities of all the other people not inK. We know almost nothing about the well-being
of the vast majority of people who have existed in human history (say, over the last
250,000 years). This creates problems for any SWO whose assessment of present and
future social outcomes is sensitive to such historical data.23 There are several possible
responses:

(A) Interpret social outcomes inX as specifying only the lifetimeutilities of individuals
who will be affected by policy decisions; treat everyone else as ethically irrelevant.
(In particular, ignore anyone who is already dead.)

(B) Interpret social outcomes inX as specifying only the lifetimeutilities of individuals
living in the present or the future. Ignore the past.

(C) Interpret social outcomes inX as specifying all individuals whose lifetime utilities
are already known or can be predicted (including some people in the past). Ignore
people about which nothing can be known.

(D) Interpret social outcomes inX as specifying only the lifetimeutilities of individuals
living after a fixed date (e.g. January 1, 2018). Ignore everyone before this date.

(E) Treat the utilities of unobserved individuals as a source of policy uncertainty, and
dealwith it the samewaywedealwith any other source of uncertainty: by positing a
probability distribution over the unknown variables and thenmaximizing expected
value with respect to this probability distribution.

The problem with (A) is that it is not entirely predictable who will be affected by
our decisions in the future. For example, suppose the lost colony world unexpectedly
re-establishes contact with Earth, after many centuries of isolation; at this moment,
the rankings of everyone on the colony and on Earth would need to be recalculated,
possibly leading to large changes in the evaluation of social policies. In particular, if x
and y are two social outcomes which concern only the colonists and x′ and y′ are two
social outcomes which concern only earthlings, then we may end up with a perverse
situation where x � y and x′ � y′, but x � x′ ≺ y � y′.

Option (B) avoids this problem. But an obvious problem with both (A) and (B) is
time inconsistency: as time passes, people move from “the future” or “the present” into
“the past”, and are removed from the specification of the social outcome. This changes
the rankings of the remaining people, and hence, the evaluation of social outcomes. It
would seem strange if social outcome x was deemed preferable to outcome y before
David Bowie died, but a moment after he dies, we decide that y′ is actually better than
x′ (where x′ and y′ are obtained by removing Bowie’s lifetime utility from x and y,
respectively).

Approach (C) avoids time inconsistency. But it can still respond perversely to
the arrival of new information. For example, a new and unanticipated archaeological
discovery could change our estimate of the lifetime utilities of the citizens of a large

23 This also raises the question of whether we should include proto-human species such as Homo nean-
derthalensis orHomo heidelbergensis in the scope of the SWO. This is a deep and fascinating philosophical
problem. But by the same token, it creates even more difficulties for SWOs which violate Independence
of the wretched.
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ancient civilization (say, the Achaemenid Empire) and thus perturb our evaluation of
social outcomes in the present day. Again, this seems absurd.

Approach (D) avoids the problems of (A), (B), and (C), but it is motivated more
by pragmatism than by principle; certainly, we must give up any pretentions of moral
realism if we allow our ethical evaluations to depend on an arbitrarily stipulated date
on a calendar. Furthermore, (D) is still vulnerable to unknown information about the
future; since we cannot really predict the lifetime utilities of far future people with any
degree of precision, how are we supposed to incorporate them into the social welfare
evaluation?

This leaves us with approach (E). Approach (E) does not try to exclude unknown
or unknowable lifetime utilities from the specification of the social outcome by some
arbitrary criterion. Instead, it “bites the bullet”, acknowledging that these unknowns
exist, they are ethically relevant, and they must be taken into account. To formalize
approach (E), I will assume the possibilist framework of Sect. 2. (The formalization
for actualist SWOs is similar and is left to the reader.)24 Let I = J � K, where
J is an infinite set representing all potential unobserved individuals (living in the
distant future, the forgotten past, or on faraway planets), while K is another infinite
set representing all observable individuals (e.g. those presently alive on Earth). Let
Y := {y ∈ R

J ; only finitely many coordinates of y are nonzero} and let Z := {z ∈
R
K; only finitely many coordinates of z are nonzero}. Then X = Y × Z . Let μ be

a probability distribution over Y , representing our beliefs about the lifetime utilities
of all unobserved people. For any social outcome z ∈ Z (representing the lifetime
utilities of observed people), define

W̃ (z) :=
∫

Y
W (y � z) dμ[y]. (4A)

This defines a new SWF W̃ : Z−→R, and it is this SWF that (E) says we should
maximize. How does this work from a practical point of view? Let z := (z+, z−) ∈
R
∝↓
+ ×R

∝↑
− . For any n ∈ N, we can define a probability distribution ρ+

z,n on [n . . .∞)

where ρ+
z,n(m) is the probability (according toμ) that the individual inKwith lifetime

utility z+n actually has rankm amongst all individualswith positive utility, oncewe take
into account all the unobserved individuals in J . Likewise, for any n ∈ N, we define
a probability distribution ρ−

z,n on [n . . .∞), where ρ−
z,n(m) is the probability that the

individual inKwith lifetime utility z−n actually has rankm amongst all individualswith
negative utilities. (Note that ρ±

z,n are only supported on [n . . .∞), because introducing
new individuals to the list can only increase the rank of any existing individual.) We
then define the functions φ̃±

n : R±−→R± by

φ̃±
n (r) :=

∞∑

m=n

ρ±
z,n(m) φ±

m (r), for all r ∈ R±. (4B)

The SWF W̃ in formula (4A) is then simply the rank-additive SWF obtained by
inserting {φ̃+

n }∞n=1 and {φ̃−
n }∞n=1 into formula (2B).

24 For another rank-dependent approach to population ethics with uncertainty, see Asheim and Zuber
(2016).
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Of course, approach (E) faces the same question as any decision under uncertainty:
How can we construct the probability distribution μ? But this question already con-
fronts any social decision problem which concerns people living in the far future. One
way to minimize the dependency onμ is to minimize the amount of variation between
the functions {φ+

n }∞n=1 and {φ−
n }∞n=1—or more importantly, between their derivatives.

If the derivatives {(φ+
n )′}∞n=1 are all very similar to one another, then the derivatives

{(φ̃+
n )′}∞n=1 of the functions defined in formula (4B) will also be very similar, inde-

pendent of the precise choice of μ (and likewise for {(φ−
n )′}∞n=1 and {(φ̃−

n )′}∞n=1).
Proposition 2.2 tells us that the functions {φ+

n }∞n=1 must rapidly decay to zero in
a neighbourhood of the neutral utility 0. Hence, in this neighbourhood, we cannot
expect them to be similar in this desired sense. But outside of this neighbourhood,
nothing prevents us from ensuring that their derivatives are as similar as possible;
see Example 2.7. If (φ+

100)
′ and (φ+

10000)
′ are almost the same, then it doesn’t matter

whether a certain individual is ranked 100th or 10,000th—the marginal social welfare
contribution of her lifetime utility is almost the same in both cases, so she will treated
the same in any policy decision in both cases.

This consideration suggests avoiding the rank-weighted utilitarian SWFs such as
(2E) and (3D), where inequality aversion is obtained by systematically increasing the
slopes of the functions {φ+

n }∞n=1 as n→∞ (and systematically decreasing the slopes
of the functions {φ−

n }∞n=1 as n→∞). Instead, it suggests that we use something like
the generalized utilitarian SWF in formula (2D), where the functions {φ+

n }∞n=1 are all
as similar as possible, and inequality aversion is obtained by making them sufficiently
concave.

5 Excess (in)egalitarianism

As explained in Example 3.3, an ascending rank-weighted generalized utilitarian
(ARWGU) SWO (3D) is proper if

∑∞
n=1 an < ∞. If {an}∞n=1 is decreasing, then

such an SWO satisfies both Inequality aversion and No Repugnant Conclusion—an
attractive combination. However, these SWOs have a problem. If there is a sufficiently
large number of people with “satisfactory” lives, then a proper ARWGU SWO will
prioritize the needs of a small population with slightly worse lives over the creation of
an arbitrarily large population with excellent lives. To see this, note that, for any ε > 0,
there is some N (ε) ∈ N such that

∑∞
k=N (ε)+1 ak < ε. Suppose for simplicity that φ is

the identity. (The same argument works for any choice of φ). Consider a population
x consisting of a large number N of people with lifetime utility 100 (representing a
“satisfactory” life) and a much smaller number M of people with lifetime utility 99.
For concreteness, say that M = 50. Let B := ∑M

k=1 ak , let ε := B/1,000,000, and
suppose that N > N (ε). Now consider the following options:

– y consists of N + M people, all having lifetime utility 100.
– z = x � u, where u is a “utopia” containing a trillion people, all having lifetime
utility 1,000,000.
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It is easily seen that W (y) > W (z). Formally:

W (y) = W (x) +
M∑

n=1

ak = W (x) + B

= W (x) + 1,000,000 ε > W (x � u) = W (z).

In other words, the ARWGU SWO represented by W considers it better to help 50
people slightly improve their lifetime utility from 99 to 100, rather than to create a
utopia with a trillion people leading excellent lives, each with a lifetime utility of
1,000,000.

For concreteness, let’s say N = 10billion, and that 100 represents the lifetimeutility
of the average middle-class person in aWestern European country in the early twenty-
first century. So x represents a world somewhat more populous than our own, but with
poverty entirely eliminated worldwide. Perhaps it is Earth two hundred years in the
future. Now suppose that astronomers discover that this world faces an apocalyptic
threat—say, it is about to be struck by a huge asteroid, and the resulting explosion will
destroy all life on the planet. However, for a relatively small investment of resources,
it would be possible to evacuate some fraction of humanity to a self-sufficient lunar
colony. (This is a futurewhere the technological problems of space travel and lunar set-
tlement have been solved.) Let us suppose that this lunar colony will not only survive,
but flourish, and give rise to a vast and long-lived interstellar civilization (represented
by u) which, over the coming millennia will be home to a trillion inhabitants who
all live very long, happy, and fulfilling lives. For the sake of the thought experiment,
suppose (implausibly) that this happy outcome is guaranteed in advance, and is known
to the inhabitants of Earth. This is outcome z.

Alternately, instead of saving human civilization,we could use these same resources
to slightly improve the well-being of a small but unfortunate minority, who have
slightly subaverage lifetime utility (i.e. 99 instead of 100). Perhaps they need minor
cosmetic surgery. This is outcome y. Most people’s moral intuitions say that z is better
than y. But according to the ARWGU social welfare function W says y is better than
z.25

Here is another counterintuitive consequence. For any N ∈ N, let xN describe a
world containing N million people, where the vast majority (say, 99.9999%) have
excellent lives (say, a lifetime utility of 10,000) but a tiny minority (0.00001%) have
lives so terrible that they are not even worth living (say, a lifetime utility of −1). Any
“utopia” which one can imagine will have welfare distribution something like this: no
matter howperfect the utopia, therewill inevitably be some tiny fraction of peoplewho,
through simple bad luck, end up with miserable lives—perhaps they suffer from some
extremely rare disease, or perhaps they are victims of some incredibly improbable but
terrible accident.

25 This is reminiscent of Fleurbaey and Tungodden’s (2010) tyranny of nonaggregation, but it is not the
same thing. Indeed, Proposition 3.4(a) showed that any ARA (including any ARWGU) satisfies Minimal
Aggregation and hence avoids the tyranny of nonaggregation. But the tyranny of nonaggregation involves
a fixed population, whereas the paradox presented here depends on a variable population.
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One would think that such a utopia is so wonderful that we should make N as
large as possible. But according to the SWO W , the larger we make N , the worse xN

becomes.26 Indeed, if N is large enough, then total social welfare is negative, meaning
that a vast galactic utopia with the above statistical welfare distribution of well-being
is ethically worse than a totally lifeless galaxy. For a less stark comparison, let y be a
“small, safe, but boring” world, containing only one million people, all of whom have
lives which are wretched, but technically worth living (say, a lifetime utility of 1). It
is easily verified that, if N is large enough, then W (xN ) < W (y). Suppose humanity
had to choose between two futures: one leading to a galactic utopia (xN , for large N )
and the other leading to a wretched but anodyne future (y). The SWO W says that
humanity should choose y.

Excess egalitarianism in particular affects the rank-discounted utilitarian SWO
(3E) characterized by Asheim and Zuber (2014). However, if proper ARWGU SWOs
suffer from excess egalitarianism, then possibilist RA SWOs can suffer from an even
worse problem: excess inegalitarianism. To see this, recall from Proposition 2.2(a) that
a possibilist RA SWO with SWF W as in (2B) satisfies No Repugnant Conclusion if

and only if there exists r0 > 0 such that
∑∞

n=1
φ+
n (r0) < ∞. Thus, for any ε > 0,

there is some N (ε) such that
∑∞

n=N+1
φ+
n (r0) < ε.

For concreteness, suppose that r0 = 1, while a lifetime utility level 100 represents,
say, a middle-class life in aWestern European country. Let ε := 0.0001×(φ+

1 )′(100);
this is roughly the increase in total value that would be obtained if the best-off person
in society increased her lifetime utility from 100 to 100.0001. Let N := N (ε), and let
M := 1,000,000,000 N . Let x be a social outcome containing N “well-off” people
with lifetime utility 100, and M “miserable” people with a lifetime utility of 0.1
(that is, lives of abject misery, barely worth living). Consider the following possible
improvements:

– In y, the best-off person’s lifetime utility is increased from 100 to 100.0002, while
the lifetime utility of everyone else stays exactly the same as in x.

– In z, the N well-off people remain the same, while the lifetime utilities of the M
miserable people are increased from 0.1 to 1.

It is easily verified that W (y) > W (z); in other words, the SWO considers it better
to increase the utility of the most fortunate individual by a minuscule amount, rather
than significantly boost the utilities of an astronomically vast population of miserable
people.

6 Conclusion

Excess egalitarianism and excess inegalitarianism are very unappealing problems,
which plague any rank-additive SWO (either actualist or possibilist) that avoids the
Repugnant Conclusion via Propositions 2.2(a) and 3.2(a). In the light of this, Theo-
rems 1 and 2 might not seem like positive results, but rather impossibility theorems.
Rank-additive SWOs also have other shortcomings: actualist SWOs violate Positive

26 This illustrates that ARAs are not replication-invariant, as already noted in Sect. 3.3.
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and Negative expansion, while possibilist SWOs violate Inequality aversion. As
always in population ethics, there are trade-offs to be made. What is the best way to
make them? This is an interesting problem for future research.

A Appendix: Proofs from Section 2

Proof of Theorem 1 The proof of “⇐�” is straightforward, so I will focus on the proof
of “�⇒”. First I will show that each of the orders �N admits an additive representa-

tion on R
N↓
+ × R

N↑
− . Then I will combine all these representations together to obtain

a rank-additive SWF on R
∝↓
+ × R

∝↑
− . To achieve the first of these steps, I will com-

bine the classic representation theorem of Debreu (1960) with a well-known result
of Chateauneuf and Wakker (1993) (see Claim 6). But the deployment of this result
requires some technical preliminaries; this is the role of Claims 1–5.

For any N ∈ N, let R
N↓↓
++ := {x ∈ R

N ; x1 > x2 > · · · > xN > 0} and

R
N↑↑
−− := {x ∈ R

N ; x1 < x2 < · · · < xN < 0}. Clearly, R
N↓↓
++ is the topological

interior of R
N↓
+ as a subset of R

N , while R
N↑↑
−− is the topological interior of R

N↑
− . Thus,

R
N↓↓
++ × R

N↑↑
−− is the interior of R

N↓
+ × R

N↑
− in R

2N .

Claim 1 Let N ∈ N. Every indifference set of �N in R
N↓↓
++ × R

N↑↑
−− is connected.

Before proving Claim 1, we must develop some machinery. For any N ∈ N and

any r = (r1, . . . , rN ) ∈ R
N , let ‖r‖ :=

√
r21 + · · · + r2N be its Euclidean norm. For

any x = (x+, x−) in R
N↓↓
++ × R

N↑↑
−− , define

〈|x|〉 :=
√

‖x+‖2 + 1

‖x−‖2 .

(This is always well defined because ‖x−‖ �= 0 for all x ∈ R
N↑↑
−− ). As the notation

suggests, this will be like a sort of “pseudo-norm” on R
N↓↓
++ ×R

N↑↑
−− (even though it is

not a norm). For any r ∈ R++ and x ∈ R
N↓↓
++ ×R

N↑↑
−− , we define r � x := (r x+, 1

r x
−).

It is easily verified that 〈|r � x|〉 = r 〈|x|〉. Let SN := {s ∈ R
N↓↓
++ × R

N↑↑
−− ; 〈|s|〉 = 1};

this plays the role of the “unit sphere” for this “norm”. For any x ∈ R
N↓↓
++ × R

N↑↑
−− , if

r := 〈|x|〉, then 1
r � x ∈ SN .

Claim 2 Let N ∈ N, and let x ∈ R
N↓↓
++ ×R

N↑↑
−− . LetZ := {z ∈ R

N↓↓
++ ×R

N↑↑
−− ; z ≈N x}

be the indifference set of x. For any s ∈ SN , there is a unique r ∈ R++ with r � s ∈ Z .
Let φ(s) := r � s; this defines a continuous surjection φ : SN−→Z .

Proof Existence and uniqueness Since R
N↓
+ × R

N↑
− is a connected, separable topo-

logical space, and �N satisfies Continuity, the theorem of Debreu (1954) yields

a continuous function w : R
N↓
+ × R

N↑
− −→R that represents �N—i.e. for all
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(a+, a−), (b+,b−) ∈ R
N↓
+ × R

N↑
− , we have (a+, a−) � (b+,b−) if and only if

w(a+, a−) � w(b+,b−). Furthermore, w is increasing in every coordinate, because
�N satisfies Pareto.

Fix s ∈ S. For any r ∈ R++, let v(r) := w(r � s). Then v : R++−→R is clearly a
continuous function. Suppose r is large enough that every coordinate of rs+ is larger
than the corresponding coordinate of x+, while every coordinate of 1

r s
− is smaller in

magnitude than the corresponding coordinate of x−. Then r � s � x by Pareto, and
thus, v(r) = w(r � s) > w(x).

On the other hand, suppose r is small enough that every coordinate of rs+ is less
than the corresponding coordinate of x+, while every coordinate of 1

r s
− is larger in

magnitude than the corresponding coordinate of x−. Then r � s ≺ x by Pareto, and
thus, v(r) = w(r � s) < w(x).

Since w is continuous, the intermediate value theorem yields some r ∈ R++ such
that v(r) = w(x)—in other words, w(r � s) = w(x), and hence r � s ≈N x. Thus,
r � s ∈ Z , as desired. This proves that such a r exists. The fact that it is unique follows
from the Pareto axiom. This argument works for all s ∈ S.
Surjective Given z ∈ Z , let r := 〈|z|〉 and let s := 1

r � z; then, s ∈ SN . But r � s = z.
Thus, r � s ∈ Z , so φ(s) = r � s = z.
Continuity For any s ∈ S and δ > 0, let B(s, δ) := {b ∈ SN ; ‖b− s‖ < δ}. For any
ε > 0, we will find a δ > 0 such that ‖φ(b) − φ(s)‖ < ε for all b ∈ B(s, δ).

Suppose that φ(s) = r0 � s for some r0 ∈ R++. For any b = (b+,b−) ∈ SN ,
define

R(b) := r0 ·max

{
s+1
b+1

, . . . ,
s+N
b+N

,
b−1
s−1

, . . . ,
b−N
s−N

}

.

If r > R(b), then r b+n > r0 s+n and 1
r b

−
n > 1

r0
s−n for all n ∈ [1 . . . N ]; thus,

r �b = (r b+, 1
r b

−) � (r0 s+, 1
r0
s−) = φ(s) ≈ z, so that r �b /∈ Z . (Here, the “�” is

by Pareto.) Likewise, define

R(b) := r0 ·min

{
s+1
b+1

, . . . ,
s+N
b+N

,
b−1
s−1

, . . . ,
b−N
s−N

}

.

If r < R(b), then r b+n < r0 s+n and 1
r b

−
n < 1

r0
s−n for all n ∈ [1 . . . N ]; thus,

r �b = (r b+, 1
r b

−) ≺ (r0 s+, 1
r0
s−) = φ(s) ≈ z, so that r �b /∈ Z . (Again, the “≺”

is by Pareto.) Thus,

φ(b) = r �b for some r ∈ R++ with R(b) < r < R(b). (A1)

Let δ := min{|s±n |}Nn=1. For δ ∈ (0, δ), define

R(δ) := r0 ·max

{
s+1

s+1 − δ
, . . . ,

s+N
s+N − δ

,
s−1 − δ

s−1
, . . . ,

s−N − δ

s−N

}
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and R(δ) := r0 ·min

{
s+1

s+1 + δ
, . . . ,

s+N
s+N + δ

,
s−1 + δ

s−1
, . . . ,

s−N + δ

s−N

}

.

(Note: δ < δ, so s+n − δ > 0 and s−n + δ < 0 for all n ∈ [1 . . . N ].) Then

R(δ) � R(b) � R(b) � R(δ), for all b ∈ B(s, δ). (A2)

Furthermore, note that

lim
δ→0

R(δ) = lim
δ→0

R(δ) = r0. (A3)

Let M := ‖s‖ + 1. Then

‖b±‖ < ‖b‖ � ‖s‖ + 1 = M, for all b = (b+,b−) in B(s, 1). (A4)

Given any ε > 0, let η > 0 be small enough that

√

η2 +
(

η

r0 (r0 − η)

)2

<
ε

2M
. (A5)

By statement (A3), there exists some δ1 ∈ (0, δ) such that

|R(δ) − r0| < η and |R(δ) − r0| < η, for all δ < δ1. (A6)

Meanwhile, let

δ2 := ε

2
√
r20 + 1

r20

. (A7)

Finally, define δ := min{1, δ1, δ2}. Now, let b ∈ B(s, δ), and suppose φ(b) = r �b
for some r ∈ R++. Then

‖φ(b) − φ(s)‖ = ‖r �b− r0 � s‖ � ‖r �b− r0 �b‖ + ‖r0 �b− r0 � s‖

=
√

|r − r0|2
∥∥b+

∥∥2 +
∣∣∣∣
1

r
− 1

r0

∣∣∣∣

2 ∥∥b−
∥∥2 +

√

r20
∥∥b+ − s+

∥∥2 + 1

r20

∥∥b− − s−
∥∥2

�
(a)
M

√

|r − r0|2 +
∣∣∣
∣
1

r
− 1

r0

∣∣∣
∣

2

+
√

r20 δ2 + 1

r20
δ2

�
(b)

M

√

η2 +
(

η

r0 (r0 − η)

)2

+ δ

√

r20 + 1

r20

�
(c)
M

√

η2 +
(

η

r0 (r0 − η)

)2

+ δ2

√

r20 + 1

r20
�
(d)

ε

2
+ ε

2
= ε,
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as desired. Here, (a) is because ‖b+ − s+‖ < δ and ‖b− − s−‖ < δ because b ∈
B(s, δ), while ‖b±‖ � M , by inequality (A4), because δ � 1. Next, (b) is because
r ∈ (r0 − η, r0 + η) by statements (A1), (A2), and (A6), because b ∈ B(s, δ) and
δ � δ1. Meanwhile, (c) is because δ � δ2. Finally, (d) is by definitions (A5) and (A7).

� Claim 2

Claim 3 For any N ∈ N, SN is path-connected.

Proof For any r ∈ (0, 1), let

SN+ (r) :=
{
x ∈ R

N↓↓
++ ; ‖x‖ = r

}
and SN− (r) :=

{
x ∈ R

N↑↑
−− ; ‖x‖ = r

}
.

Then it is easily verified that

SN :=
⊔

r∈(0,1)

(
SN+ (r) × SN−

(
1√

1− r2

))
. (A8)

Now let p = (p+,p−) and r = (r+, r−) be two elements of SN . Let p+ := ‖p+‖
and r+ := ‖r+‖, and let p− := 1/

√
1− p2+ and r− := 1/

√
1− r2+. Then equation

(A8) implies that p ∈ SN+ (p+) × SN− (p−) and r ∈ SN+ (r+) × SN− (r−). Now, define

q+ := p+
r+

r+ and q− := p−
r−

r−.

Then q+ ∈ R
∝↓↓
++ and q− ∈ R

∝↑↑
−− (because r+ ∈ R

∝↓↓
++ and r− ∈ R

∝↑↑
−− ) and ‖q+‖ =

p+ and ‖q−‖ = p−. Thus, if q := (q+,q−) then q ∈ SN+ (p+) × SN− (p−); hence,
q ∈ SN .

Now SN+ (p+) is path-connected, since it is the intersection of the convex cone
R
∝↓↓
++ with the radius-p+ sphere around 0 inR

N . Likewise,SN− (p−) is path-connected.
Thus, the Cartesian product SN+ (p+) × SN− (p−) is also path-connected. Thus, there
is a continuous function γ : [−1, 0]−→SN+ (p+) × SN− (p−) such that γ (−1) = p
and γ (0) = q. Next, for all t ∈ [0, 1], let ρ+(t) := t r+ + (1 − t) p+, and define
ρ−(t) := 1/

√
1− ρ+(t)2. Then ρ± : [0, 1]−→(0, 1) are continuous functions, with

ρ+(0) = p+ and ρ−(0) = p−, while ρ+(1) = r+ and ρ−(1) = r−. Define γ :
[0, 1]−→SN by

γ (t) :=
(

ρ+(t)

r+
r+,

ρ−(t)

r−
r−

)
, for all t ∈ [0, 1].

Then γ is a continuous function, with γ (0) = q and γ (1) = r. Furthermore, γ (t) ∈
SN for all t ∈ [0, 1] by equation (A8).

At this point, we have constructed a continuous function γ : [−1, 1]−→SN such
that γ (−1) = p and γ (1) = r. This works for any p, r ∈ SN . Thus, SN is connected.

� Claim 3
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Proof of Claim 1 Let Z be an indifference set of �N in R
N↓↓
++ × R

N↑↑
−− . Claim 2 says

that Z is the image of SN under a continuous function. Claims 3 says SN is path-
connected. The continuous image of a path-connected set is also connected. Thus, Z
is path-connected. � Claim 1

Claim 4 For every x ∈ R
N↓
+ ×R

N↑
− , there is some y ∈ R

N↓↓
++ ×R

N↑↑
−− such that x ≈N y.

Proof As explained at the start of the proof of Claim 2, there is a continuous function

w : R
N↓
+ × R

N↑
− −→R that is increasing in every coordinate and that represents �N .

Suppose x = (x+, x−). Let z+ ∈ R
N↓↓
++ be obtained by increasing all coordinates

of x+ slightly, so that z+1 > z+2 > · · · > z+N > 0. Thus, w(z+, x−) > w(x), by

Pareto. Let z− ∈ R
N↑
− be obtained by decreasing all coordinates of x− slightly, so

that z−1 < z−2 < · · · < z−N < 0. Thus, w(x+, z−) < w(x), by Pareto. Now, for all
r ∈ [0, 1], let y+(r) := r z+ + (1 − r) x+ and let y−(r) := r x− + (1 − r) z−, and
let y(r) := (y+(r), y−(r)). Thus, y(0) = (x+, z−) and y(1) = (z+, x−). It is easily

verified that y+(r) ∈ R
N↓↓
++ for all r ∈ (0, 1], and y−(r) ∈ R

N↑↑
−− for all r ∈ [0, 1);

thus, y(r) ∈ R
N↓↓
++ × R

N↑↑
−− for all r ∈ (0, 1). Now, w[y(0)] = w(x+, z−) < w(x) <

w(z+, x−) = w[y(1)], and the function r  → w[y(r)] is clearly continuous. Thus, the
intermediate value theorem yields some r ∈ (0, 1) such thatw[y(r)] = w(x). In other
words y(r) ≈N x. Now set y := y(r) to prove the claim. � Claim 4

Let x = (x+, x−) ∈ R
N↓
+ × R

N↑
− . For all n ∈ [1 . . . N ], say that the coordinate x+n is

interior if there is some y ∈ R
N↓↓
++ ×R

N↑↑
−− such that x+n = y+n . (Recall thatR

N↓↓
++ ×R

N↑↑
−−

is the interior of R
N↓
+ ×R

N↑
− in R

2N .) We likewise define the interior property for the
coordinates x−1 , . . . x−N . In the terminology of Chateauneuf and Wakker (1993), x is

interior-matched if x ≈N y for some y ∈ R
N↓↓
++ × R

N↑↑
−− and at most one of the

coordinates x+1 , . . . x+N , x−1 , . . . x−N is not interior.27 (Observe that the first half of this
condition is automatically satisfied, by Claim 4.) Next, x is second-order interior-

matched if x ≈N y for some interior or interior-matched y ∈ R
N↓
+ × R

N↑
− , and

at most one of the coordinates x+1 , . . . x+N , x−1 , . . . x−N does not occur in an interior
or interior-matched element. Likewise, x is third-order interior-matched if x ≈N y
for some interior, interior-matched, or second-order interior-matched y ∈ R

N↓
+ ×

R
N↑
− , and at most one of the coordinates x+1 , . . . x+N , x−1 , . . . x−N does not occur in

an interior, interior-matched element, or second-order interior-matched element. We
likewise define nth-order interior-matched for all n ∈ [1 . . . N + 1]. Finally, x is
matched if it is interior or is nth-order interior-matched for some n ∈ [1 . . . N + 1].
Claim 5 Every element of R

N↓
+ × R

N↑
− is matched.

Proof x = (x+, x−) ∈ R
N↓
+ × R

N↑
− . Claim 4 guarantees that x ≈N y for some

y ∈ R
N↓↓
++ × R

N↑↑
−− . It remains to check the matching condition on the coordinates.

27 Actually our definition is slightly stronger than that of Chateauneuf andWakker (1993). But it is sufficient
for our purposes.
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For all n ∈ [1 . . . N ], it is easily verified that x+n is interior if and only if x+n > 0.
Likewise, x−n is interior if and only if x−n < 0. Thus, x is interior-matched if and only
if at most one of the coordinates x+1 , . . . x+N , x−1 , . . . x−N is zero. It is easily seen that
this occurs if and only if x+N−1 > 0 and x−N−1 < 0, and at least one of x+N and x−N is
nonzero.

Now suppose that both x+N = 0 and x−N = 0. Then each of these two coordinates
can be matched to an interior-matched point (by the previous paragraph). Thus, in this
case, x is second-order interior-matched if and only if all the coordinates x±1 , . . . , x±N−2
are nonzero, and at least one of the coordinates x+N−1 and x−N−1 is nonzero.

If both x+N−1 = 0 and x−N−1 = 0 (and hence, x+N = 0 and x−N = 0), then each of the
two coordinates x+N−1 and x−N−1 can individually be matched to some second-order
interior-matched point (by the previous paragraph), while each of the two coordinates
x+N and x−N can individually be matched to some interior-matched point. Thus, in this
case, x is third-order interior-matched if and only if all the coordinates x±1 , . . . , x±N−3
are nonzero, and at least one of the coordinates x+N−2 and x−N−2 is nonzero.

Proceeding inductively, we see that, for all n ∈ [1 . . . N ], x is nth-order interior-
matched if and only if all the coordinates x±1 , . . . , x±N−n are nonzero, and at most one
of the coordinates x+N−n+1 and x−N−n+1 is zero. In particular, x is N th-order interior-
matched if and only if at least one of x+1 and x−1 is nonzero—in other words, as
long as x itself is not the zero vector. Thus, the zero vector itself is (N + 1)th-order

interior-matched. Hence, every element of R
N↓
+ × R

N↑
− is either interior or nth-order

interior-matched for some n ∈ [1 . . . N + 1] and thus matched. � Claim 5

Claim 6 For all N ∈ N with N � 3, there exists a unique system of continuous,
increasing functions ψ+

1 , . . . , ψ+
N : R+−→R and ψ−

1 , . . . , ψ−
N : R−−→R with

ψ+
1 (1) = 1 and withψ±

n (0) = 0 for all n ∈ [1 . . . N ], such that, for any x = (x+, x−)

and y = (y+, y−) in R
N↓
+ × R

N↑
− , we have

(
x �N y

) ⇐⇒
(

N∑

n=1

ψ+
n (x+n ) +

N∑

n=1

ψ−
n (x−n ) �

N∑

n=1

ψ+
n (y+n ) +

N∑

n=1

ψ−
n (y−n )

)

.

(A9)

Proof An open box in R
2N is an open set of the form (a1, z1) × (a2, z2) × · · · ×

(a2N , z2N ) ⊂ R
2N , for some a1 < z1, a2 < z2, . . ., a2N < z2N . LetB ⊂ R

N↓↓
++ ×R

N↑↑
−−

be an open box, and let �B be the restriction of �N to an ordering on B. In the
terminology of Debreu (1960), �B is continuous, separable, and increasing in every
coordinate, by the axioms Continuity, Separability, and Pareto, respectively. Thus,
Theorem 3 of Debreu (1960) says that�B admits an additive representation—that is,
there are continuous, increasing functions ψB

n : (an, zn)−→R for all n ∈ [1 . . . 2N ]
such that, for any b, c ∈ B, we have
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(
b �B c

) ⇐⇒
(

2N∑

n=1

ψB
n (bn) �

2N∑

n=1

ψB
n (cn)

)

. (A10)

R
N↓↓
++ × R

N↑↑
−− is open, so it can be covered by such open boxes. Thus, in the termi-

nology of Chateauneuf and Wakker (1993), the ordering �N admits “local” additive

representations everywhere on R
N↓↓
++ × R

N↑↑
−− . Since R

N↓↓
++ × R

N↑↑
−− is a convex set, it

clearly satisfies conditions (1) and (2) in StructuralAssumption 2.1 ofChateauneuf and
Wakker (1993). Meanwhile, condition (3) of Chateauneuf and Wakker (1993) is true
by Claim 1. Finally, Claim 5 says that every element ofR

N↓
+ ×R

N↑
− is “matched”. Thus,

by Theorem 3.3(a) of Chateauneuf and Wakker (1993), the local additive representa-
tions (A10) can be combined together to yield a single global additive representation

of �N on all of R
N↓
+ × R

N↑
− . That is, there exist continuous, increasing functions

ψ+
1 , . . . , ψ+

N : R+−→R and ψ−
1 , . . . , ψ−

N : R−−→R giving the additive represen-
tation (A9). Furthermore, the functions ψ+

1 , . . . , ψ+
N , ψ−

1 , . . . , ψ−
N are unique up to

increasing affine transformation with a common scalar multiplication.
For all n ∈ [1 . . . N ], let k±n := ψ±

n (0). By replacingψ±
n with the functionψ±

n −k±0
if necessary, we can assume without loss of generality that ψ±

n (0) = 0 for all n ∈
[1 . . . N ]. Now let s := ψ+

1 (1). By replacing ψ±
n with the function ψ±

n /s for all
n ∈ [1 . . . N ] if necessary, we can assume without loss of generality that ψ+

1 (1) = 1.
� Claim 6

For all N ∈ N, Claim 6 yields a collection of functions ψ+
N ,1, . . . , ψ

+
N ,N : R+−→R+

and ψ−
N ,1, . . . , ψ

−
N ,N : R−−→R− providing an additive representation (A9) for �N

on R
N↓
+ × R

N↑
− , and furthermore such that ψ+

N ,1(1) = 1 and ψ±
N ,n(0) = 0 for all

n ∈ [1 . . . N ].
Now, if N < M , then R

N↓
+ can be embedded into R

M↓
+ in a natural way, by sending

(x1, x2, . . . , xN ) to (x1, x2, . . . , xN , 0, 0, . . . , 0) (where there areM−N zeros). Like-
wise, R

N↑
− embeds into R

M↑
− in a natural way. Thus, we obtain a natural embedding of

R
N↓
+ ×R

N↑
− intoR

M↓
+ ×R

M↑
− .Under this embedding, the ordering�N is the restrictionof

the ordering�M toR
N↓
+ ×R

N↑
− (because both arise as restrictions of the order�∗ to their

respective domains). Thus, the functions ψ+
M,1, . . . , ψ

+
M,N , ψ−

M,1, . . . , ψ
−
M,N yield a

second additive representation of �N . But the additive representations in Claim 6 are
unique. Thus, we obtain ψ±

M,n = ψ±
N ,n for all n ∈ [1 . . . N ]. It follows that there is in

fact a single infinite sequence of functions (φ+
n )∞n=1 such that

ψ+
N ,n = φ+

n , for all N ∈ N and all n ∈ [1 . . . N ]. (A11)

Likewise, there is a single infinite sequence of functions (φ−
n )∞n=1 such that

ψ−
N ,n = φ−

n , for all N ∈ N and all n ∈ [1 . . . N ]. (A12)

It remains to show that the functions {φ+
n }∞n=1 and {φ−

n }∞n=1 yield the additive repre-
sentation (2B) for �∗. To see this, let x, y ∈ R

∝↓
+ × R

∝↑
− . From formula (2G), there
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exist L, M ∈ N such that x ∈ R
L↓
+ ×R

L↑
− , and y ∈ R

M↓
+ ×R

M↑
− . Let N := max{L, M}.

Then R
L↓
+ × R

L↑
− ⊆ R

N↓
+ × R

N↑
− and R

M↓
+ × R

M↑
− ⊆ R

N↓
+ × R

N↑
− . Thus, both x and y

are elements of R
N↓
+ × R

N↑
− , and we have

(
x �∗ y

) ⇐
(a)
⇒ (

x �N y
)

⇐
(b)
⇒

(
N∑

n=1

ψ+
N ,n(x

+
n ) +

N∑

n=1

ψ−
N ,n(x

−
n ) �

N∑

n=1

ψ+
N ,n(y

+
n ) +

N∑

n=1

ψ−
N ,n(y

−
n )

)

⇐
(c)
⇒

(
N∑

n=1

φ+
n (x+n ) +

N∑

n=1

φ−
n (x−n ) �

N∑

n=1

φ+
n (y+n ) +

N∑

n=1

φ−
n (y−n )

)

⇐
(d)
⇒

( ∞∑

n=1

φ+
n (x+n ) +

∞∑

n=1

φ−
n (x−n ) �

∞∑

n=1

φ+
n (y+n ) +

∞∑

n=1

φ−
n (y−n )

)

,

as desired. Here, (a) is by the definition of �N , (b) is by the additive representation

(A9), (c) is by Eqs. (A11) and (A12), and (d) is because x, y ∈ R
N↓
+ × R

N↑
− , so that

x+n = 0 and y+n = 0 for all n ∈ [N + 1 . . .∞). ��
Remark The proof of Claim 6 uses a very similar strategy to Ebert’s (1988) proof of
his Theorem 1. But Ebert’s proof contains an error, identified byWakker (1993, §2.3).
Fortunately, the result claimed by Ebert is actually correct (Wakker 1993, Corollary
3.6). But this result only applies to the open cone of strictly positive nonincreasing

vectors R
N↓
++, whereas we need the corresponding result for the closed cone R

N↓
+ of

nonnegative nonincreasing vectors. As shown by Wakker (1993, Example 3.8), this
extension does not come for free; hence, the detailed argument is provided above
in the proof of Claims 1–6. Despite Wakker’s (1993) admonition, later authors have
recapitulated Ebert’s error. For example, Balasubramanian (2015, Corollary 3) repeats
Ebert’s proof almost verbatim. Likewise, in the proof of their Lemma 1, Asheim and
Zuber (2014) cite Ebert’s (1988) Theorem 1 without correction.

Proof of Proposition 2.1 (a) Let �N be the restriction of the order �∗ to R
N↓
+ , while

�N+1 is the restriction of�∗ toR
N+1↓
+ . Let x = (x1, . . . , xN ) and y = (y1, . . . , yN ) be

in R
N↓
+ , let z > max(x1, y1), and let x′ := (z, x1, . . . , xN ) and y′ := (z, y1, . . . , yN ).

Then x′, y′ ∈ R
N+1↓
+ , and we have

(
x �N y

) ⇐
(†)
⇒ (

x′ �N+1 y′
)

⇐
(∗)⇒

(

φ+
1 (z) +

N∑

n=1

φ+
n+1(xn) � φ+

1 (z) +
N∑

n=1

φ+
n+1(yn)

)

⇐⇒
(

N∑

n=1

φ+
n+1(xn) �

N∑

n=1

φ+
n+1(yn)

)

.
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Here, (†) is by Top-independence in goodworlds, while (∗) is by the representation
(2B). This equivalence holds for all x, y ∈ R

N↓
+ , and this argument can be repeated

for any N ∈ N. Thus, if we define ψ+
n := φ+

n+1 for all n ∈ N, then the functions
{ψ+

n }∞n=1 and {φ−
n }∞n=1 yield another rank-additive representation like (2B) for �.

But the functions {φ±
n }∞n=1 in this representation are unique up to multiplication by a

common scalar. Thus, there is some β > 0 such that ψ+
n = β φ+

n for all n ∈ N—
equivalently, φ+

n+1 = β φ+
n for all n ∈ N. Let φ+ := φ+

1 /β; then, we obtain φ+
n :=

βn φ+ for all n ∈ N. The result follows.
The proof of (b) is almost identical, butworkswith {φ−

n }∞n=1 instead of {φ+
n }∞n=1. The

uniqueness claims in parts (a), (b) and (c) all follow immediately from the uniqueness
statement in Theorem 1. ��
Proof of Proposition 2.2 First, note that the supremum W is never obtained by any
x ∈ X , even if W is finite. To see this, suppose by contradiction that W (x) = W for
some x ∈ X . Let x′ be obtained by increasing x by some amount in every nonzero
coordinate. Then W (x′) > W (x), because the functions φ±

n are all strictly increasing.
Thus, W (x′) > W , contradicting the definition of W .

(a) “�⇒” Let x and r0 be as in the formulation of No Repugnant Conclusion. For
any N ∈ N, we have x � r01N , and thus,

W (x) > W (r01N ) =
N∑

n=1

φ+
n (r0).

Taking the limit as N→∞, we obtain
∞∑

n=1

φ+
n (r0) � W (x) < W , as desired.

“⇐�” Let r0 satisfy the condition in the theorem. Then there exists some x ∈ X
such that W (x) >

∑∞
n=1 φ+

n (r0), and thus, W (x) >
∑N

n=1 φ+
n (r0) for all N ∈ N.

It follows that x � r01N for all N ∈ N, as desired.
(b) “�⇒” For any N ∈ N, let x ∈ X satisfy the statement of No utility monsters.

Thus, for all r ∈ R+, we have x � r 1N , and thus,

W (x) > W (r 1N ) =
N∑

n=1

φ+
n (r).

Taking the limit as r→∞, we obtain lim
r→∞

∑N

n=1
φ+
n (r) � W (x) < W , as desired.

“⇐�” For any N ∈ N, we have limr→∞
∑N

n=1 φ+
n (r) < W . Thus, there exists

some x ∈ X such that limr→∞
∑N

n=1 φ+
n (r) < W (x). Thus, for all r ∈ R+, we

have W (r 1N ) < W (x), and thus, r 1N ≺ x, as desired.

For the last statement of the theorem, suppose that W < ∞. Let r0 > 0, and let
r1 > r0; then,

∑∞
n=1 φ+

n (r1) � W . Now let δ := φ+
1 (r1) − φ+

1 (r0). Then δ > 0
because φ+

1 is strictly increasing, and we have
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∞∑

n=1

φ+
n (r1) � δ +

∞∑

n=1

φ+
n (r0) >

∞∑

n=1

φ+
n (r0).

It follows that
∑∞

n=1 φ+
n (r0) < W . Thus, the condition in part (a) is satisfied. (In

fact, this argument works for all r0 > 0.) By a similar argument, we deduce that
limr→∞

∑N
n=1 φ+

n (r) < W , for all N ∈ N. Thus, part (b) is satisfied. ��
Proof of Proposition 2.3 The first statement is obvious. The second follows immedi-
ately from Proposition 2.2. ��
Proof of Proposition 2.4 Before proceeding with the proof of (a), (b), and (c), we need
some preliminary observations. Let � be a SWO on X . Let �∗ be the ordering on
R
∝↓
+ × R

∝↑
− defined via statement (2A).

Claim 1 � satisfies Inequality neutrality (respectively, Inequality aversion, resp.
Strict inequality aversion) on X if and only if �∗ satisfies the same axiom on
R
∝↓
+ × R

∝↑
− .

Proof Let x, y ∈ X . Say that y is a rank-preserving Pigou–Dalton transform of x if
y is a Pigou–Dalton transform of x, and furthermore, for all i, j ∈ I, if xi < x j ,
then yi � y j ; also, if xi < 0, then yi � 0; finally, if xi > 0, then yi � 0. In other
words, the reallocation of utility does not change the ranking of people from best-off
to worst-off which we use to apply the rank-additive SWF (2B). Note that we allow
the possibility that xi < x j but yi = y j—the reallocation may equalize two people (so
that afterwards they could be ranked in either order). Likewise, we allow the possibility
that xi < 0 (or xi > 0) but yi = 0. The following facts are easily verified:

(a) For any x, z ∈ X , z is an ordinary Pigou–Dalton transform of x if and only if there
is a sequence x = y0, y1, y2, . . . , yN = z such that for all n ∈ [1 . . . N ], yn is a
rank-preserving Pigou–Dalton transform of yn−1.

(b) For any x, y ∈ X , if y is a rank-preserving Pigou–Dalton transform of x, then
(y+, y−) is an ordinary Pigou–Dalton transform of (x+, x−).

Fact (a) means that � satisfies Inequality neutrality (resp. Inequality aversion, resp.
Strict inequality aversion) with respect to rank-preserving Pigou–Dalton transforms
if and only if it satisfies this axiom with respect to all Pigou–Dalton transforms. Fact
(b) means that � satisfies one of these three axioms with respect to rank-preserving
Pigou–Dalton transforms if and only if �∗ satisfies the corresponding axiom (in its
ordinary form) on R

∝↓
+ × R

∝↑
− . This proves the claim. � Claim 1

Now let x = (x+, y−) and y = (y+, y−) be elements of R
∝↓
+ × R

∝↑
− , and suppose y

is a Pigou–Dalton transform of x. Then there exist m, n ∈ N and ε > 0 such that one
of the following three cases occurs:

(i) y−m = x−m + ε � 0 � y+n = x+n − ε, while y−� = x−� for all � ∈ N \ {m}, and
y+� = x+� for all � ∈ N \ {n}.

(ii) m > n, and y+m = x+m + ε � y+n = x+n − ε, while y+� = x+� for all � ∈ N \ {m, n},
and y−� = x−� for all � ∈ N.
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(iii) m < n, and y−m = x−m + ε � y−n = x−n − ε, while y−� = x−� for all � ∈ N \ {m, n},
and y+� = x+� for all � ∈ N.

Let W be the SWF in formula (2B). The W (y) − W (x) takes the following form in
Cases (i), (ii), and (iii):

(I) W (y) −W (x) = [
φ−
m (x−m + ε) − φ−

m (x−m )
] − [

φ+
n (x+n ) − φ+

n (x+n − ε)
]
.

(II) W (y) −W (x) = [
φ+
m (x+m + ε) − φ+

m (x+m )
] − [

φ+
n (x+n ) − φ+

n (x+n − ε)
]
.

(III) W (y) −W (x) = [
φ−
m (x−m + ε) − φ−

m (x−m )
] − [

φ−
n (x−n ) − φ−

n (x−n − ε)
]
.

With these preliminaries established,we proceedwith the proof of parts (a), (b), and (c)
of the theorem. In each of (a), (b), and (c), it is easily verified that the stated conditions
are sufficient for �∗ to satisfy the stated axiom—and hence, for � to satisfy it, by
Claim 1. It remains to prove that they are also necessary.

(a) Suppose� (and hence,�∗) satisfies Inequality neutrality. So if y is a Pigou–Dalton
transform of x, then W (y) = W (x). Thus, for any m, n ∈ N, any ε > 0, and any
x−m < −ε and x+n > ε, the right-hand side of equation (I) is zero. Thus, there is some
constantC > 0 such that φ−

m (x−m +ε)−φ−
m (x−m ) = C and φ+

n (x+n )−φ+
n (x+n −ε) = C

for all x−m < −ε and x+n > ε. Thus, φ+
n and φ−

m must each have a constant slope—in
fact, the same slope. Since φ+

n (0) = 0 and φ−
m (0) = 0 by assumption, this means they

are linear functions with the same slope. Varying this argument over all m, n ∈ N,
we conclude that the {φ+

n }∞n=1 and {φ−
n }∞n=1 are all linear functions with the same

slope. Thus, SWF (2B) is equivalent (up to multiplication by a scalar) to the classical
utilitarian SWF (2C).

(b) Suppose� (and hence,�∗) satisfies Inequality aversion. So if y is a Pigou–Dalton
transform of x, then W (y) � W (x). Thus, for any m, n ∈ N, any ε > 0, and any
x±n , x±m ∈ R, we have:

− If x−m < −ε and x+n > ε, then the right-hand side of equation (I) is nonnegative.
− If x+n − 2ε � x+m � 0, then the right-hand side of equation (II) is nonnegative.
− If 0 � x−n � x−m + 2ε, then the right-hand side of equation (III) is nonnegative.

Setting s := x±m + ε and r := x±n − ε in all three cases, we obtain inequalities (i),
(ii), and (iii) in part (b) of the theorem.

To obtain inequality (2H), let J ∈ N, and let ε := q/J . Then for any n < m ∈ N,

φ+
n (q) = φ+

n (q) − φ+
n (0) =

J−1∑

j=0

(
φ+
n (( j + 1)ε) − φ+

n ( jε)
)

= (
φ+
n (ε) − φ+

n (0)
) +

J∑

j=1

(
φ+
n (( j + 1)ε) − φ+

n ( jε)
)

− (
φ+
n ((J + 1)ε) − φ+

n (Jε)
)

�
(∗)

(
φ+
n (ε) − φ+

n (0)
) +

J∑

j=1

(
φ+
m ( jε) − φ+

m (( j − 1)ε)
)
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902 M. Pivato

− (
φ+
n (q + ε) − φ+

n (q)
)

= φ+
n

( q
J

)
+ φ+

m (q) −
(
φ+
n

(
q + q

J

)
− φ+

n (q)
)

.

Here, (∗) is by inequality (b)(ii), where for each summand, we set r = s = jε, so that
r + ε = ( j + 1)ε and s − ε = ( j − 1)ε. We have also used several times the fact that
φ+
n (0) = φ+

m (0) = 0. Taking the limit as J→∞, we obtain:

φ+
n (q) � φ+

m (q) + lim
J→∞φ+

n

( q
J

)

− lim
J→∞

(
φ+
n

(
q + q

J

)
− φ+

n (q)
)
= φ+

m (q),

where the last step is because φ+
n is continuos at 0 and at q. Thus, we deduce that

φ+
n (q) � φ+

m (q) for all q ∈ R+ and n < m ∈ N. This justifies all the inequalities
on the left side of (2H). By an almost identical argument [using inequality (b)(iii)],
we deduce that φ−

n (q) � φ−
m (q) for all q ∈ R+ and n > m ∈ N; this justifies all the

inequalities on the right side of (2H). Finally, by a similar argument [using inequality
(b)(i)], we deduce that φ+

n (q) � φ−
m (q) for all q ∈ R+ and all n,m ∈ N. This justifies

the inequalities between the left and right sides of (2H).
To prove inequality (2I), observe that inequalities (b)(i)–(b)(iii) imply the following

(i) If r � 0 � s, then
φ+
n (r + ε) − φ+

n (r)

ε
� φ−

m (s) − φ−
m (s − ε)

ε
.

(ii) If n < m and r � s � ε > 0, then
φ+
n (r + ε) − φ+

n (r)

ε
� φ+

m (s) − φ+
m (s − ε)

ε
.

(iii) If n > m and s � r � −ε < 0, then
φ−
n (r + ε) − φ−

n (r)

ε
� φ−

m (s) − φ−
m (s − ε)

ε
.

Taking the limit as ε→0 in all three cases, we deduce:

(i′) If r � 0 � s, then (φ+
n )′(r) � (φ−

m )′(s).
(ii′) If n < m and r � s > 0, then (φ+

n )′(r) � (φ+
m )′(s).

(iii′) If n > m and s � r < 0, then (φ−
n )′(r) � (φ−

m )′(s).
If r1 � r2 � r3 � · · · � 0 and s1 � s2 � s3 � · · · � 0, then each of the inequalities
in between adjacent terms in (2I) can be obtained by invoking one of inequalities (i′),
(ii′), or (iii′).
(c) The proof is identical to (b), but with strict inequalities.

��
Proof of Proposition 2.6 Easy modification of the proof of Proposition 2.4. ��

B Appendix: Proofs from Section 3

Parts of the proof of Theorem 2 are analogous to parts of the proof of Theorem 1.
When noting these analogies, I will refer to Claim N in the proof of Theorem 1 as
“Claim 1.N”.
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Proof of Theorem 2 The proof of “⇐�” is straightforward, so I will focus on the proof
of “�⇒”. First, Claims 1–6 will show that each of the orders �N admits an additive
representation on R

N↑ . Then, Claims 7–14 will combine all these representations
together to obtain an ARA SWF on R

∝↑ .
The binary relation “∼=” in the Trade-off Consistency axiom is clearly symmetric:

if (a
n� b) ∼= (c

m� d), then (c
m� d) ∼= (a

n� b). Claim 1 shows that ∼= is also
“transitive”.

Claim 1 Let n,m, � ∈ N be distinct, and let a, b, c, d, e, f ∈ R. If (a
n� b) ∼= (c

m� d)

and (c
m� d) ∼= (e

�� f ), then (a
n� b) ∼= (e

�� f ).28

Proof For any x ∈ X , if x↑n = a and x↑m = c, and b(n)x and d(m)x are well defined,29

then Trade-off Consistency says that

b(n)x ≈ d(m)x, (B1)

because (a
n� b) ∼= (c

m� d). Likewise, for any x ∈ X , if x↑m = c and x↑� = e, and
d(m)x and f(�)x are well defined, then Trade-off Consistency says that

d(m)x ≈ f(�)x, (B2)

because (c
m� d) ∼= (e

�� f ).
Now, find x ∈ X such that x↑n = a, x↑m = c, and x↑� = e, and such that b(n)x, d(m)x,

and f(�)x are all well defined. Then combining (B1) and (B2) and the transitivity of

the indifference relation ≈, we get b(n)x ≈ f(�)x. Thus, (a
n� b) ∼= (e

�� f ).
� Claim 1

Let R
N↑↑ := {x ∈ R

N ; x1 < x2 < · · · < xN }; this is the topological interior of R
N↑

as a subset of R
N . Let W ⊆ R

N↑↑ . The order �N is coordinate-independent on W
if the following is true: for any w, v,w′, v′ ∈ R

N↑ , and any n ∈ [1 . . . N ] such that
wn = vn and w′

n = v′n , while w−n = w′−n and v−n = v′−n , we have w �N v if
and only if w′ �N v′. Say that �N is locally coordinate-independent on R

N↑↑ if it is
coordinate-independent in an open neighbourhood of every point in R

N↑↑ .

Claim 2 For every N ∈ N, the order �N is locally coordinate-independent on R
N↑↑ .

Proof Let x ∈ R
N↑↑ . Since R

N↑↑ is an open subset of R
N , it contains an open neigh-

bourhood around x—in other words, y ∈ R
N↑↑ for all points y ∈ R

N that are “close
enough” to x. Throughout this proof, when I use the words close enough, I will mean
them in this way: the construction I want to perform involves a small enough change
in coordinate values that it does not change the strict ordering of the coordinates.

Now, fix n ∈ [1 . . . N ]. Let x, y, x′, y′ all be close enough together, and suppose
that xn = yn and x ′n = y′n , while x−n = x′−n and y−n = y′−n . I will show that x �N y
if and only if x′ �N y′.

28 Here, I assume that the ordering of a, b versus c, d versus e, f is the same as the ordering of n, m and
�. For example, if n < m < �, then a, b < c, d < e, f .
29 That is: x↑n−1 � b � x↑n+1 and x↑m−1 � d � x↑m+1.
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904 M. Pivato

For simplicity, suppose n = 1 (the same argument works in general). So x =
(a, x2, x3, . . . , xN ) and y = (a, y2, y3, . . . , yN ), while x′ = (b, x2, x3, . . . , xN ) and
y′ = (b, y2, y3, . . . , yN ), for some x2 < · · · < xN and y2 < · · · < yN and some
a, b < min{x2, y2}.

Let a1 := a. If y2 is close enough to x2, then Continuity and Pareto yield some
a2 ∈ R such that (a2, x2, x3, x4, . . . , xN ) ≈N (a1, y2, x3, x4, . . . , xN ).30 In other

words, (a1
1� a2) ∼= (x2

2� y2).
Next, if y3 is close enough to x3, then Continuity and Pareto yield some a3 ∈

R such that (a3, x2, x3, x4, . . . , xN ) ≈N (a2, x2, y3, x4, . . . , xN ). In other words,

(a2
1� a3) ∼= (x3

3� y3).
Now let n ∈ [4 . . . N ], and suppose we have constructed an−1. If yn is close enough

to xn , then Continuity and Pareto yield some an ∈ R such that

(an, x2, . . . , xn−1, xn, xn+1, . . . , xN ) ≈N (an−1, x2, . . . , xn−1, yn, xn+1, . . . , xN ).

In other words,

(an−1 1� an) ∼= (xn
n� yn), for all n ∈ [2 . . . N ]. (B3)

Now, by repeatedly applying Trade-off Consistency to the relations (B3), we obtain:

y = (a1, y2, y3, y4, . . . , yN ) ≈N (a2, x2, y3, y4, . . . , yN )

≈N (a3, x2, x3, y4, . . . , yN ) ≈N · · ·
· · · ≈N (aN , x2, x3, x4, . . . , xN ). (B4)

(If x and y are close enough, then all of these intermediate vectors are in R
N↑↑ .) Thus,

(
x �N y

) ⇐
(∗)⇒

(
(a1, x2, x3, . . . , xN ) �N (aN , x2, x3, . . . , xN )

)

⇐
(†)
⇒ (

a1 � aN
)
. (B5)

Here (∗) is because x = (a1, x2, x3, . . . , xN ) (because a1 = a = x1) and y ≈N

(aN , x2, x3, . . . , xN ) by formula (B4). Meanwhile (†) is by Pareto.
Now let b1 := b. If x and y are close enough, then by repeating the preceding

argument, we can construct a sequence b2, b3, . . . , bN ∈ R such that

(bn−1 1� bn) ∼= (xn
n� yn), for all n ∈ [2 . . . N ]. (B6)

By repeatedly applying Trade-off Consistency to (B6), we obtain:

y′ = (b1, y2, y3, y4, . . . , yN ) ≈N (b2, x2, y3, y4, . . . , yN )

≈N (b3, x2, x3, y4, . . . , yN ) ≈N · · ·
· · · ≈N (bN , x2, x3, x4, . . . , xN ),

30 See, for example, the proofs of Claims 1.2 and 1.4, or Claim 4, for similar constructions.
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where, if x′ and y′ are close enough, then all of these vectors are in R
N↑↑ . Thus,

(
x′ �N y′

) ⇐⇒ (
(b1, x2, x3, . . . , xN ) �N (bN , x2, x3, . . . , xN )

)

⇐⇒ (
b1 � bN

)
. (B7)

Now I will show that a1 � aN if and only if b1 � bN . Let z = (z1, z2, . . . , zN+1) be
some element ofR

N+1↑↑ such that z1 = a1 and z2 > max{a2, a3, . . . , aN , b2, b3, . . . ,
bN }. Let c1 := zN+1. Using Pareto and Continuity, we can construct c2, c3, . . . , cN

such that

(a1, z2, . . . , zN , c1) ≈N+1 (a2, z2, . . . , zN , c2)

≈N+1 (a3, z2, . . . , zN , c3) ≈N+1 · · ·
· · · ≈N+1 (aN , z2, . . . , zN , cN ), (B8)

and all these vectors are in R
N+1↑ . (This is possible if zN+1 is large enough, and

|an − an−1| is small enough for all n ∈ [2 . . . N ], which in turn is the case as long as
y is close enough to x.) In other words,

(cn
N+1� cn−1) ∼= (an−1 1� an), for all n ∈ [2 . . . N ]. (B9)

Since 1 �= n �= N + 1, we can combine equations (B3) and (B9) via Claim 1, to get

(cn
N+1� cn−1) ∼= (xn

n� yn), for all n ∈ [2 . . . N ]. (B10)

Then, combining equations (B6) and (B10) via Claim 1, we get

(cn
N+1� cn−1) ∼= (bn−1 1� bn), for all n ∈ [2 . . . N ]. (B11)

Thus, Trade-off Consistency yields

(b1, z2, . . . , zN , c1) ≈N+1 (b2, z2, . . . , zN , c2)

≈N+1 (b3, z2, . . . , zN , c3) ≈N+1 · · ·
· · · ≈N+1 (bN , z2, . . . , zN , cN ). (B12)

Thus,

(
a1 � aN

) ⇐
(∗)⇒

(
c1 � cN

) ⇐
(†)
⇒ (

b1 � bN
)
, (B13)

where (∗) is by (B8), (†) is by (B12), and both use Pareto. Putting it all together, we
obtain

(
x �N y

) ⇐
(∗)⇒

(
a1 � aN

) ⇐
(†)
⇒ (

b1 � bN
) ⇐

(‡)
⇒ (

x′ �N y′
)
, (B14)
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as desired. Here, (∗) is by statement (B5), (†) is by statement (B13), and (‡) is by
statement (B7).

For any x ∈ R
N↑↑ , we can obtain the equivalence (B14) for all y, x′, y′ ∈ R

N↑↑

that are close enough to x. A similar argument works for all n ∈ [1 . . . N ]. Thus, �N

is locally coordinate-independent on R
N↑↑ . � Claim 2

UsingClaim 2 and a result ofWakker (1988), I will soon show that�N admits a “local”
additive representation in a neighbourhood of each point in R

N↑↑ . I will then combine
all these local additive representations using a theorem of Chateauneuf and Wakker
(1993). Just as in the proof of Theorem 1, I must first check that all the technical
conditions of the Chateauneuf–Wakker theorem are satisfied; this is the purpose of
Claims 3 to 5.

Claim 3 Let N ∈ N. Every indifference set of �N in R
N↑↑ is path-connected.

The proof of Claim 3 is similar to the proof of Claim 1.1, but somewhat simpler.
First we need a preliminary result. Let YN := {x ∈ R

N↑↑ ; x1 = 0}. For any y =
(y1, . . . , yN ) ∈ R

N↑↑ and r ∈ R, define τ r (y) := (y1 + r , y2 + r , . . . , yN + r). The
next claim is analogous to Claim 1.2.

Claim 4 Let N ∈ N, and let x ∈ R
N↑↑ . Let Z := {z ∈ R

N↑↑ ; z ≈N x} be the
indifference set of x. For any y ∈ YN , there is a unique r ∈ R with τ r (y) ∈ Z . Let
φ(y) := τ r (y); this defines a continuous surjection φ : YN−→Z .

Proof Existence and uniqueness Since R
N↑↑ is a connected, separable topological

space, and�N satisfies Continuity, the theorem of Debreu (1954) yields a continuous
functionw : R

N↑↑−→R that represents�N . If r is large enough, then every coordinate
of τ r (y) is bigger than every coordinate of x, so Pareto says that τ r (y) �N x, and
hence,w[τ r (y)] � w(x). If r is small enough, then every coordinate of τ r (y) is smaller
than every coordinate of x, so Pareto says that τ r (y) �N x, and hence w[τ r (y)] �
w(x). The function w  → w[τ r (y)] is continuous, so the intermediate value theorem
yields some r ∈ R such that w[τ r (y)] = w(x), and hence, τ r (y) ≈N x. Thus,
τ r (y) ∈ Z . This value of r is unique by Pareto.

Surjective Let z ∈ Z . Let y := τ−z1(z). Then y1 = 0 by construction, so y ∈ YN .
Clearly, τ z1(y) = z. Thus, φ(y) = z.
Continuous In fact, φ is Lipschitz continuous. To see this, let u, v ∈ YN and let
ε := ‖u − v‖. Then |un − vn| � ε for all n ∈ [1 . . . N ]. Let u′ := φ(u) and
v′ := φ(v); then, there exist r , s ∈ R such that u′n = un + r and v′n = vn + s for all
n ∈ [1 . . . N ].

Suppose r > s+ε. Then for all n ∈ [1 . . . N ], we have u′n = un+r > un+s+ε �
vn + s = v′n . So u′ �N v by Pareto. This contradicts the fact that both u′ and v′ are
in the same indifference set Z .

Likewise, if r < s − ε, then u′n < v′n for all n ∈ [1 . . . N ], so u′ ≺N v by Pareto,
again contradicting the fact that they are in the same indifference set. To avoid these
contradictions, we must have |r − s| � ε. But ‖u′ − v′‖ � ‖u − v‖ + N |r − s|, and
ε = ‖u− v‖. Thus, ‖u′ − v′‖ � (N + 1) ‖u − v‖.

For any u, v ∈ YN , this argument yields ‖φ(u) − φ(v)‖ � (N + 1)‖u− v‖.
� Claim 4
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Proof of Claim 3 YN is the intersection of the hyperplane {x ∈ R
N ; x1 = 0} with the

convex set R
N↑↑ , so YN is convex, hence path-connected. If Z is any indifference set

of �N , then Claim 4 says that Z is the image of YN under a continuous surjection;
hence, Z is also path-connected. � Claim 3

Recall the matching terminology introduced by Chateauneuf and Wakker (1993) and
reviewed in the proof of Theorem 1. The next result plays the role of Claim 1.5.

Claim 5 Every element of R
N↑ is matched.

Proof Let x ∈ R
N↑ . It is easy to see that is some y ∈ R

N↑↑ such that x ≈N y. (This can
be proved by a perturbation argument using Pareto and Continuity. It is similar to the
proof of Claim 1.4, so the details are left to the reader.) Second, for every n ∈ [1 . . . N ],
we can find some y ∈ R

N↑↑ such that yn = xn . Thus, x is interior-matched, and hence,
matched. � Claim 5

The next result is analogous to Claim 1.6.

Claim 6 For any N ∈ N with N � 3, there exists a unique collection of functions
ψN
1 , . . . , ψN

N : R−→R with ψN
1 (1) = 1 and with ψN

n (0) = 0 for all n ∈ [1 . . . N ],
such that for any x, y ∈ R

N↑ , we have

(
x �N y

) ⇐⇒
(

N∑

n=1

ψN
n (xn) �

N∑

n=1

ψN
n (yn)

)

. (B15)

Proof The proof strategy is similar to the proof of Claim 1.6: first, I construct a “local”
additive representation in a neighbourhood of each point, and then, I stitch these local
representations together using a result of Chateauneuf and Wakker (1993).

For any x ∈ R
N↑↑ , Claim 2 yields an open neighbourhood O ⊂ R

N↑↑ with x ∈ O,
such that �N is coordinate-independent when restricted to O. Let B ⊂ O be an open
box containing x—say,B = (a1, z1)×· · ·×(aN , zN ) for some a1 < z1, . . ., aN < zN .
Let�B be the restriction of�N toB. Then�B is coordinate-independent (by Claim 2)
and continuous (by Continuity). Thus, Theorem 4.1 of Wakker (1988) says that there
are continuous, increasing functions ψB

n : (an, zn)−→R for all n ∈ [1 . . . N ] such
that, for any b, c ∈ B, we have

(
b �B c

) ⇐⇒
(

N∑

n=1

ψB
n (bn) �

N∑

n=1

ψB
n (cn)

)

. (B16)

R
N↑↑ is open, so it can be covered by such open boxes. Thus, �N admits “local”

additive representations (B16) everywhere on R
N↑↑ . Since R

N↑↑ is convex, it clearly
satisfies conditions (1) and (2) in Structural Assumption 2.1 of Chateauneuf and
Wakker (1993). Meanwhile, condition (3) of Chateauneuf and Wakker (1993) is true
by Claim 3. Finally, RN↑↑ is the interior of R

N↑ , and every coordinate of any element
on the boundary ofR

N↑ is matched, by Claim 5. Thus, by Theorem 3.3 of Chateauneuf
andWakker (1993), the local additive representations (B16) can be combined together
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to yield a single global additive representation (B15) on all of R
N↑ . Furthermore, the

functions ψ1, . . . , ψN are unique up to increasing affine transformation with a com-
mon scalar multiplication.

For all n ∈ [1 . . . N ], let kn := ψn(0). By replacing ψn with the function ψn −
kn if necessary, we can assume without loss of generality that ψn(0) = 0 for all
n ∈ [1 . . . N ]. Now let s := ψ1(1). By replacing ψn with the function ψn/s for all
n ∈ [1 . . . N ] if necessary, we can assume without loss of generality that ψ1(1) = 1.

For every N ∈ N, we can repeat the above construction. That is, for all N ∈
N, we obtain a collection of functions ψN

1 , . . . , ψN
N : R−→R yielding an additive

representation (B15) for �N , and furthermore such that ψN
1 (1) = 1 and ψN

n (0) = 0
for all n ∈ [1 . . . N ]. � Claim 6

Now I will show that these additive representations agree for different values of N .

Claim 7 There is single infinite sequence of functions (φn)
∞
n=1 such that

ψN
n = φn, for all N ∈ N and all n ∈ [1 . . . N ]. (B17)

Proof Let N , M ∈ N, and let n ∈ [1 . . . N ]. I will show that ψN
n = ψM

n . Let a, b ∈ R,
let m ∈ [1 . . . N ] with m �= n, and suppose there exist some c, d ∈ R such that
ψN
n (b) − ψN

n (a) = ψN
m (d) − ψN

m (c). (Such a c and d always exist if a and b are

close enough together.) Thus, if x ∈ XN is any social outcome such that x↑n = a and
x↑m = c, and b(n)x and d(m)x are well defined, then the additive representation (B15)

yields b(n)x ≈ d(m)x. Thus, (a
n� b) ∼= (c

m� d).

Now, for any M, L ∈ N, find y ∈ XM and z ∈ XL such that y↑n = a and z↑m = c,
b(n)y and d(m)z are well defined, and y ≈ z. Then Trade-off Consistency says that
b(n)y ≈ d(m)z. Thus, ψM

n (b) − ψM
n (a) = ψ L

m (d) − ψ L
m (c). Note that this equation

holds for any L ∈ N. In particular, it holds for L = N ; thus, ψM
n (b) − ψM

n (a) =
ψN
m (d) − ψN

m (c). But ψN
m (d) − ψN

m (c) = ψN
n (b) − ψN

n (a) by construction of c and
d. Thus, we conclude that ψM

n (b) − ψM
n (a) = ψN

n (b) − ψN
n (a).

This argument works for any sufficiently close a, b ∈ R. Thus, for any a ∈ R,
there is some ε > 0 such that ψM

n (b) − ψM
n (a) = ψN

n (b) − ψN
n (a) for all b ∈

(a−ε, a+ε). SinceR can be covered with overlapping intervals like this, we conclude
thatψM

n (b)−ψM
n (a) = ψN

n (b)−ψN
n (a) for all a, b ∈ R. Thus, there is some constant

k ∈ R such that ψM
n = ψN

n + k. But ψM
n (0) = 0 = ψN

n (0) by the construction in
Claim 6. Thus, k = 0. Thus, ψM

n = ψN
n .

This argument works for all N < M ∈ N and all n ∈ [1 . . . N ]. � Claim 7

For any x ∈ X∝, we defineΦ(x) := ∑N
n=1 φn(x

↑
n ), where N := |x|. For any x, y ∈ X∝

with |x| = |y|, Claims 6 and 7 together imply that

(
x � y

) ⇐⇒ (
Φ(x) � Φ(y)

)
. (B18)

It remains to show that statement (B18) also holds when |x| �= |y|. For any M, N ∈ N,
let IM,N := {r ∈ R; there exist x ∈ XN and y ∈ XM such that x ≈ y and Φ(x) = r}.
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Claim 8 IM,N is an nonempty interval. Thus, for any r ∈ R, if r /∈ IM,N , then either
r < s for all s ∈ IM,N , or r > s for all s ∈ IM,N . In particular, for any y ∈ XN ,

(a)
(
Φ(y) < s for all s ∈ IM,N

) ⇐⇒ (
y ≺ z for all z ∈ XM

)
.

(b)
(
Φ(y) > s for all s ∈ IM,N

) ⇐⇒ (
y � z for all z ∈ XM

)
.

Proof Nonempty For any N ∈ N, Neutral population growth yields some xN ∈ XN

such that xN ≈ ∅. Let s := Φ(xN ). Then s ∈ IM,N , because xN ≈ xM , and xM ∈ XM .

Interval Let r , t ∈ IM,N , with r < t . We claim that [r , t] ⊆ IM,N . To see this, let
s ∈ (r , t). There exists some x, z ∈ XN such that Φ(x) = r and Φ(z) = t , and such
that x ≈ x′ and z ≈ z′ for some x′, z′ ∈ XM . Define ΦN : R

N↑−→R by setting
ΦN (y) := ∑N

n=1 φn(yn) for all y = (y1, . . . , yN ) ∈ R
N↑ ; then, ΦN is continuous

(because each of φ1, . . . , φN is continuous). Since ΦN (x↑) = r and ΦN (z↑) = t ,
and R

N↑ is connected, the intermediate value theorem yields some v ∈ R
N↑ such that

ΦN (v) = s. Let y ∈ XN such that y↑ = v; then, Φ(y) = s. By statement (B18), we
have x ≺ y ≺ z, because r < s < t .

Let A := {a↑; a ∈ XM and a � y} and B := {b↑; b ∈ XM and b ≺ y}. By
the axiom Continuity, these are both open subsets of R

M↑ . Clearly, they are disjoint.
Furthermore, both are nonempty, because (x′)↑ ∈ B and (z′)↑ ∈ A (because x′ ≈
x ≺ y and z′ ≈ z � y). Thus, there must be some (y′)↑ ∈ R

M↑ such that y′ ≈ y—
otherwise, R

M↑ = A � B, which contradicts the fact that R
M↑ is connected. Since

s = Φ(y) and y ≈ y′, it follows that s ∈ IM,N , as desired. This argument works for
any r , t ∈ IM,N and s ∈ [r , t]; it follows that IM,N is an interval.

(a) “�⇒” (by contradiction) Let y ∈ XN , and suppose Φ(y) < s for all s ∈ IM,N ,
but also suppose y � z′ for some z′ ∈ XM . Now, IM,N is nonempty, so let s ∈ IM,N ,
and let x ∈ XN such that Φ(x) = s. We have Φ(y) < s = Φ(x), and hence, y ≺ x by
statement (B18). Meanwhile, there is some x′ ∈ XM such that x ≈ x′, by definition
of IM,N . Thus, y ≺ x′. Meanwhile, y � z′. By repeating the argument in the previous
paragraph (using Continuity and the connectedness of R

M↑ ), we can construct some
y′ ∈ XM such that y ≈ y′. But then Φ(y) ∈ IM,N , which is a contradiction. To avoid
the contradiction, we must have y ≺ z′.
“⇐�” Suppose y ≺ z for all z ∈ XM . Let s ∈ IM,N . Then s = Φ(x) for some
x ∈ XN , with some x′ ∈ XM such that x ≈ x′. But then y ≺ x′; hence, y ≺ x; hence,
Φ(y) < Φ(x) = s, by statement (B18), as desired.

The proof of (b) is very similar to the proof of (a). � Claim 8

For any r ∈ IM,N , find x ∈ XN such that Φ(x) = r . Then find y ∈ XM with x ≈ y,
and define VN ,M (r) := Φ(y). Then VN ,M (r) ∈ IN ,M .

Claim 9 VN ,M (r) is well defined independent of the particular choice of x and y.

Proof Let x′ ∈ XN and y′ ∈ XM , and suppose that Φ(x′) = r and x′ ≈ y′. Then y′ ≈
x′ ≈ x ≈ y (where the middle indifference is by (B18), because Φ(x′) = r = Φ(x))
hence y′ ≈ y (by transitivity), and hence Φ(y′) = Φ(y) [by (B18)]. � Claim 9

This yields a function VM,N : IM,N−→IN ,M . It is easily verified that VM,N is an
increasing bijection from IM,N to IN ,M , and V−1

M,N = VN ,M , as a function from IN ,M

back to IM,N .
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Claim 10 For any x ∈ XN and y ∈ XM, if Φ(x) ∈ IM,N , then

(
x � y

) ⇐⇒ (
VM,N [Φ(x)] � Φ(y)

)
.

Proof Let r := Φ(x), and let r ′ := VM,N (r). Then there is some x′ ∈ XM such that
x ≈ x′ and Φ(x′) = r ′. Let s := Φ(y). If s � r ′, then representation (B18) yields
y � x′. Meanwhile, x′ ≈ x; thus, y � x, by transitivity. If s � r ′, then representation
(B18) yields y � x′. Meanwhile, x′ ≈ x; thus, y � x, by transitivity. � Claim 10

Claim 11 For any n < m ∈ N and a < c ∈ R, there exists ε > 0 and a continuous,
increasing function ψ : (a − ε, a + ε)−→R with ψ(a) = c, such that for all b ∈
(a − ε, a + ε), if d := ψ(b), then (a

n� b) ∼= (c
m� d).

Proof Let x ∈ X∝ such that x↑n−1 < x↑n = a < x↑n+1 and x↑m−1 < x↑m = c < x↑m+1.
Let N := |x|. Since φm is continuous and strictly increasing, its imageRm := φm(R)

is an open interval in R, and φm : R−→Rm is a homeomorphism. Likewise, if
Rn := φn(R), then Rn is an open interval and φn : R−→Rn is a homeomorphism.
LetR′

m := {r −φm(c)+φn(a); r ∈ Rm}; then, φn(a) ∈ R′
m (because φm(c) ∈ Rm),

and thus, R′
m ∩ Rn is itself a nonempty open interval containing φn(a). Let Qn :=

φ−1
n (R′

m ∩Rn); then, Qn is an open interval containing a. Now define ψ : Qn−→R

by setting

ψ(q) := φ−1
m

(
φn(q) − φn(a) + φm(c)

)
, for all q ∈ Qn .

Then ψ(a) = c. IfQm := ψ(Qn), thenQm is an open interval containing c, and ψ is
a continuous, increasing bijection from Qn to Qm . Let Q′

n := Qn ∩ (x↑n−1, x
↑
n+1) ∩

ψ−1(x↑m−1, x
↑
m+1), and letQ′

m := ψ(Q′
n), thenQ′

n andQ′
m are open intervals around

a and c, respectively, and ψ : Q′
n−→Q′

m is a continuous, increasing function.

For any b ∈ Q′
n , the element b(n)x is well defined because x↑n−1 < b < x↑n+1. If

d := ψ(b), then d(m)x is well defined because x↑m−1 < d < x↑m+1 because d ∈ Q′
m .

Finally, b(n)x ≈ d(m)x by statement (B18), because Φ(b(n)x) = Φ(d(m)x), because
φm(d) − φm(c) = φn(b) − φn(a) by the definition of ψ . Since x↑n = a and x↑m = c,
we conclude that (a

n� b) ∼= (c
m� d).

Now find ε > 0 small enough that (a − ε, a + ε) ⊆ Q′
n . Then for any b ∈

(a − ε, a + ε), if d = ψ(b), then (a
n� b) ∼= (c

m� d), by the previous paragraph.
� Claim 11

Claim 12 For any M, N ∈ N, there exists a constant QM,N ∈ R such that VM,N (r) =
r + QM,N for all r ∈ IM,N .

Proof Let r ∈ IM,N . Find x ∈ XN with Φ(x) = r , and find y ∈ XM such that
x ≈ y; then, VM,N [Φ(x)] = Φ(y), by the definition of VM,N and Claim 9. Find
n,m ∈ [1 . . . N ] such that xn−1 < xn < xn+1 and ym−1 < ym < ym+1. Let a := xn
and c := ym . Letψ : (a−ε, a+ε)−→R be as described in Claim 11; then,ψ(a) = c.
Define

ε0 := min
{
ε, xn+1 − a, a − xn−1, ψ−1(ym+1) − a, a − ψ−1(ym−1)

}
.
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Then ε0 > 0. Let b ∈ (a − ε0, a + ε0), and let d := ψ(b). If δ := φn(b) − φn(a),
then also φm(d) − φm(c) = δ, because (a

n� b) ∼= (c
m� d) by the definition of ψ

in Claim 11. If x′ := b(n)x (which is well defined because b ∈ (xn−1, xn+1)), then
Φ(x′) = Φ(x)+ δ. Likewise, if y′ := d(m)y [which is well defined because d = ψ(b)
and b ∈ (ψ−1(ym−1), ψ−1(ym+1))], then Φ(y′) = Φ(y) + δ.

As x ≈ y, x′ ≈ y′, by Trade-off Consistency. Thus, VM,N [Φ(x′)] = Φ(y′), by
Claim 10. In other words, VM,N [Φ(x) + δ] = Φ(y) + δ = VM,N [Φ(x)] + δ.

This equality holds for any sufficiently small δ—in particular, it holds for all δ in
the set {φn(b) − φn(a); b ∈ (a − ε0, a + ε0)}, which is an open interval around zero.
Thus, if r ∈ IM,N and s ∈ IN ,M are any values such that VM,N (r) = s, then we also
have VM,N (r + δ) = s + δ for all sufficiently small δ. This shows that VM,N is an
affine function with slope 1 in a neighbourhood of each point in IM,N . But IM,N is an
interval by Claim 8; it follows that VM,N is an affine function with slope 1 everywhere
on IM,N . � Claim 12

Based on Claim 12, we can extend VM,N to an affine function VM,N : R−→R, by
defining VM,N (r) = r + QM,N for all r ∈ R.

Claim 13 For any x ∈ XN and z ∈ XM,
(
x � z

) ⇐⇒ (
VM,N [Φ(x)] � Φ(z)

)
.

Proof Let r := Φ(x) and let t := Φ(z). If r ∈ IM,N , then the stated equivalence
follows from Claim 10. Likewise, if t ∈ IN ,M , then it follows from Claim 10 and the
observation that V−1

N ,M = VM,N and both are increasing, so that VM,N [Φ(x)] � Φ(z)
if and only if Φ(x) � VN ,M [Φ(z)].

So, suppose that r /∈ IM,N and t /∈ IN ,M . It follows that x �≈ z (because otherwise
we would have both r ∈ IM,N and t ∈ IN ,M ). Thus, either x ≺ z or x � z.

Claim 13A (a) If x ≺ z, then VM,N [Φ(x)] < Φ(z).
(b) If x � z, then VM,N [Φ(x)] > Φ(z).

Proof (a) Suppose x ≺ z. Claim 8 says IM,N is an interval. So, since r /∈ IM,N , we
must have either r < s for all s ∈ IM,N , or r > s for all s ∈ IM,N . If r > s for
all s ∈ IM,N , then Claim 8(b) says that x � y for all y ∈ XM , which contradicts the
hypothesis that x ≺ z. So, we must have r < s for all s ∈ IM,N . By a similar logic
[using Claim 8(a)], we must have t > s′ for all s′ ∈ IN ,M .

Now, let s ∈ IM,N and find some y ∈ XN such that Φ(y) = s, and some y′ ∈ XM

such that y ≈ y′. Thus, if s′ := Φ(y′), then s′ = VM,N (s). Furthermore, s′ ∈ IN ,M .
By the previous paragraph, we have r < s and s′ < t . Thus, VN ,M (r) < VN ,M (s) =
s′ < t . In other words, VM,N [Φ(x)] < Φ(z).

The proof of (b) is similar. � Claim 13A

Claim 13B VM,N [Φ(x)] �= Φ(z).

Proof (by contradiction) Suppose VM,N [Φ(x)] = Φ(z). By taking the contrapositive
parts (a) and (b) of Claim 13A, we cannot have either x ≺ z or x � z. So we must have
x ≈ z, because � is a complete relation. But we have already deduced that x �≈ z, so
this is a contradiction. � Claim 13B
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It follows from Claim 13B that either VM,N [Φ(x)] < Φ(z) or VM,N [Φ(x)] > Φ(z).
If VM,N [Φ(x)] < Φ(z), then the contrapositive of Claim 13A(b) says that x � z, and
hence, x ≺ z (because x �≈ z). If VM,N [Φ(x)] > Φ(z), then the contrapositive of
Claim 13A(a) says that x � z, and hence, x � z (because x �≈ z). At this point, we
have shown that x ≺ z if and only if VM,N [Φ(x)] < Φ(z). Likewise, x � z, if and
only if VM,N [Φ(x)] > Φ(z). Since we also know that x �≈ z and VM,N [Φ(x)] �= Φ(z)
(by Claim 13B), this suffices to prove the claimed equivalence. � Claim 13
For all N , M ∈ N, let QN ,M be as in Claim 12.

Claim 14 For all M, N ∈ N, we have QM,N = −QN ,M, and for all L ∈ N, we have
QL,M + QM,N = QL,N .

Proof As already noted, V−1
M,N = VN ,M , as a function from IN ,M back to IM,N ; thus,

Claim 12 yields QM,N = −QN ,M .
Now consider the set IM,N ∩ VN ,M (IL,M ). I claim this intersection is nonempty.

To see this, for all � ∈ {L, M, N }, let x� ∈ X� be such that x� ≈ ∅; such elements exist
by Neutral population growth. If r := Φ(xN ), then r ∈ IM,N (because xN ≈ xM ).
Likewise, if s := Φ(xM ), then s ∈ IL,M (because xM ≈ xL ). Finally, VN ,M (s) = r ,
because xM ≈ xN . Thus, r ∈ IM,N ∩ VN ,M (IL,M ); thus, IM,N ∩ VN ,M (IL,M ) �= {}.

It is easily verified that IM,N ∩ VN ,M (IL,M ) ⊆ IL,N , and VL,M ◦ VM,N (r) =
VL,N (r), for all r ∈ IM,N ∩ VN ,M (IL,M ). Thus, Claim 12 yields QL,M + QM,N =
QL,N . � Claim 14

For all N ∈ N, let qN := QN ,N−1. (In particular, q1 = Q1,0 = V1,0(0) =
V1,0[Φ(∅)] = φ1(x1), where x1 ∈ R is the unique value such that if x ∈ X1 is
the one-person outcome with lifetime utility x1, then x ≈ ∅; such an x1 exists by
Neutral population growth, and it is unique by Pareto.) For any N < M , Claim 14
implies that QM,N = qN+1 + · · · + qM . For all n ∈ N, define φ′

n := φn − qn . For any
x ∈ X∝, if N := |x|, then define

Φ ′(x) :=
N∑

n=1

φ′
n(x

↑
n ) =

N∑

n=1

φn(x
↑
n ) −

N∑

n=1

qn = Φ(x) − QN ,0. (B19)

Thus, for all M ∈ N and y ∈ XM ,

(
Φ ′(x) � Φ ′(y)

) ⇐
(a)
⇒ (

Φ(x) − QN ,0 � Φ(y) − QM,0
)

⇐⇒ (
Φ(x)+QM,0 − QN ,0 � Φ(y)

) ⇐
(b)
⇒ (

VM,N [Φ(x)]�Φ(y)
) ⇐

(c)
⇒ (

x � y
)
,

as desired. Here, (a) is by Eq. (B19). Next, (b) is because QM,0 − QN ,0 = QM,N by
Claim 14, so that Φ(x) + QM,0 − QN ,0 = Φ(x) + QM,N = VM,N [Φ(x)]. Finally,
(c) is by Claim 13. ��
Remarks In the proof of Theorem 2, Neutral population growth is only needed in
Claims 8 and 14, where it is used to show that certain sets are not empty.

If we had assumed that � satisfied an axiom of Separability similar to the one
used in Sect. 2.2, then Claims 1–5 would be unnecessary, and the proof of Claim 6
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could be made much simpler: we could just invoke Corollary 3.6 of Wakker (1993) to
immediately obtain an additive representation of �N on all of R

N↑ . (This argument
was used in an earlier version of this paper.)

Proof of Proposition 3.1 “(a) �⇒ (b)” (by contradiction) Let I := inf(φ1(R)). If
statement (b) is false, then either I > −S(φ), or I = −S(φ) and supremum in
formula (3F) is obtained.

Case 1 Suppose I > −S(φ). Then −I < S(φ). Thus, there exist x1 � x2 � · · · �
xN ∈ R such that

∑N
n=1 δφn(xn) > −I . Find x ∈ X∝ such that x↑ = (x1, . . . , xN ).

Suppose r < x1, and let y := x � r . Then y↑ = (r , x1, . . . , xN ). Thus,

W (y) = φ1(r) +
N∑

n=1

φn+1(xn), while W (x) =
N∑

n=1

φn(xn),

so that W (y) −W (x) = φ1(r) +
N∑

n=1

δφn(xn) > φ1(r) − I �
(∗)

0,

where (∗) is by definition of I . Thus, W (y) > W (x), so x � r � x. This holds for all
r < x1.

On the other hand, if s � x1, then s > r for any r < x1, and thus x � s � x � r by
Pareto, while x � r � x by the previous paragraph. Thus, x � s � x by transitivity. It
follows that x � s � x for all s ∈ R. This contradicts the axiom Critical levels.

Case 2 Suppose I = −S(φ) and supremum in formula (3F) is obtained. Then−I =
S(φ), and there exists some x1 � x2 � · · · � xN ∈ R such that

∑N
n=1 δφn(xn) = −I .

Again, let x ∈ X∝ be such that x↑ = (x1, . . . , xN ), let r < x1, and let y := x � r .
Then by a similar computation to Case 1, we get

W (y) −W (x) = φ1(r) +
N∑

n=1

δφn(xn) = φ1(r) − I > 0.

(Here, the last step is because φ1(r) > I because the infimum I is never obtained,
since φ1 is strictly increasing.) Thus, once again, W (y) > W (x); hence, x � r � x.
This argument holds for all r < x1. The rest of the argument is identical to Case 1;
again, we obtain a contradiction of Critical levels.
“(b) ⇐� (a)” Suppose � has an ARA representation satisfying the condition the
theorem. To show that � satisfies Critical levels, let x ∈ X∝. For any r ∈ R, define
ψ(r) = W (x � r). It is easily verified that ψ : R−→R is a continuous function. To
verify Critical levels, we must find some c ∈ R such that ψ(c) = W (x).

Claim 1 There exists d ∈ R such that ψ(d) > W (x).

Proof Let N := |x|, and let x↑ = (x↑1 , . . . , x↑N ). By hypothesis, we have
φN+1(cN+1) = 0. Thus, φN+1(d) > 0 for any d > cN+1. Suppose d >

max{x↑N , cN+1}, and let d := x � d. Then d↑ = (x↑1 , . . . , x↑N , d). Thus, ψ(d) =
W (d) = W (x) + φN+1(d) > W (x), because φN+1(d) > 0. � Claim 1
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Claim 2 There exists b ∈ R with φ1(b) < −
∑N

n=1
δφn(x

↑
n ).

Proof Let A := ∑N
n=1 δφn(x

↑
n ). Then S(φ) � A, so −S(φ) � −A. By hypothesis,

inf(φ1(R)) � −S(φ), and if inf(φ1(R)) = −S(φ), then the supremum (3F) is not
obtained. If inf(φ1(R)) < −S(φ), then there is some b ∈ R such that φ1(b) < −S(φ),
and hence, φ1(b) < −A as desired. On the other hand, if inf(φ1(R)) = −S(φ), then
the supremum (3F) is not obtained, so S(φ) > A. Thus, −S(φ) < −A, and hence
inf(φ1(R)) < −A, so there is some b ∈ R such that φ1(b) < −A, as desired.

� Claim 2

Claim 3 There exists b ∈ R with ψ(b) < W (x).

Proof Let b0 ∈ R be as in Claim 2. Note that any b < b0 also satisfies the inequality in
Claim 2. By making b small enough, we can assume that b < x↑1 . Thus, if b = x � b,

then b↑ = (b, x↑1 , . . . , x↑N ). Thus,

W (b) = φ1(b) +
N∑

n=1

φn+1(x
↑
n ), while W (x) =

N∑

n=1

φn(x
↑
n ),

so that W (b) −W (x) = φ1(b) +
N∑

n=1

δφn(x
↑
n ) < 0.

Thus, ψ(b) = W (b) < W (x). � Claim 3

From Claims 1 and 3, we have b, d ∈ R such that ψ(b) < W (x) < ψ(d). By the
intermediate value theorem, there exists some c ∈ (b, d) such that ψ(c) = W (x).
Thus, W (x � c) = W (x), which means x � c ≈ x, as desired. ��
Proof of Proposition 3.2 The proof of (a) is similar to the proof of Proposition 2.2(a).
The proof of parts (b) and (c) is similar to the proof of Proposition 2.4. ��
Proof of Proposition 3.4 (a) Instead of Minimal Aggregation, we will actually show
that any ARA SWO satisfies the following, slightly stronger axiom:

Minimal Aggregation+ For any N ∈ N, any α > 0 and all x ∈ XN , there exists
some β > 0 such that, for all y ∈ X∝ with I(y) = I(x), if there is some i ∈ I(x)
such that xi � yi � xi − β, while y j � x j + α for all other j ∈ I(x), then y � x.

If we represent � with an ordering �∗ on R
∝↑ , as in formula (3A), then this axiom is

equivalent to:

Minimal Aggregation* For any N ∈ N, any α > 0 and all x ∈ R
N↑ , there exists

some β > 0 such that, for all y ∈ R
N , if there is some n ∈ [1 . . . N ] such that

xn � yn � xn − β, while yn � xn + α for all other n ∈ [1 . . . N ], then y↑ �∗ x.

(Here, y↑ is the vector obtained by reordering the components of y in increasing order.)
To prove this, let N ∈ N, and x ∈ R

N↑ . Let N1 < N2 < · · · NJ � N be the unique
values such that
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x1 = · · · = xN1−1 < xN1 = · · · = xN2−1 < xN2 = · · · < · · ·
= xNJ−1 < xNJ = · · · = xN .

(For example, if x1 < x2 < · · · < xN , then we have J = N − 1, with N1 = 2,
N2 = 3, · · · , NJ = N ). Let α := min{xN j − xN j−1; j ∈ [1 . . . J ]}; then, α > 0. Fix
α > 0. If the axiom holds for α, then it holds for any α′ > α (by Pareto). Thus, we
can assume that α < α without loss of generality. Let β := α − α; then, β > 0. For
any n ∈ [1 . . . N ], let

Mn :=
N∑

m=1
m �=n

(
φm(xm + α) − φ(xm)

)
.

Then Mn > 0 because φ1, . . . , φN are all strictly increasing. Let M := min{M1, . . . ,

MN }. For all n ∈ [1 . . . N ], there exists some βn > 0 small enough that φn(xn) −
φn(xn − βn) < M (because φn is continuous). Let β := min{α, β, β1, . . . βN }; then,
α > β > 0.

Let y ∈ R
N , let n ∈ [1 . . . N ], and suppose xn > yn � xn −β, while ym � xm +α

for all m �= n. There are now two cases to consider:
Case 1 Suppose ym < xm+α for allm �= n. Then for all j ∈ [1 . . . J ], all n < N j , and
all m � N j , we have yn < ym . Thus, by permuting the coordinates internally within
each of the blocks [1 . . . N1), [N1 . . . N2), [N2 . . . N3), · · · , [NJ . . . N ) (which does
not change x, by definition of N1, . . . , NJ ), we can assume without loss of generality
that y1 � y2 � · · · � yN , so that y↑ = y. Furthermore,

φn(xn) − φn(yn) � φn(xn) − φn(xn − β) � φn(xn) − φn(xn − βn)

< M � Mn =
N∑

m=1
m �=n

(
φm(xm + α) − φ(xm)

)

�
N∑

m=1
m �=n

(
φm(ym) − φ(xm)

)
.

Rearranging this inequality, we get W (y) � W (x), and thus, y �∗ x, as desired.
Case 2 Suppose ym � xm + α for some m �= n. Define z by setting zn := yn and
zm := min{ym, xm + α} for all m �= n. Then ym � zm for all m ∈ [1 . . . N ]. Thus,
y↑m � z↑m for all m ∈ [1 . . . N ], so y↑ �∗ z↑ by the Pareto axiom. Meanwhile, z
satisfies Case 1 (because α < α), so z↑ = z �∗ x. By transitivity, we get y↑ �∗ x, as
desired.

(b) Let r , q ∈ R with r > q. Let α := (r − q)/2. By hypothesis, there is some
A > 0 such that

∑∞
n=N+1 φ′

n(q+α) = A ·φ′
m(q+α), for allm, N ∈ N withm � N .

Since the functions {φ′
n}∞n=1 are all nonincreasing (by concavity), this means that
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∞∑

n=N+1

φ′
n(x∗) � A · φ′

m(q + α), for all x∗ � q + α and m, N ∈ N with m � N .

(B20)

Let β > 0. For any n ∈ N, since φn is concave, we have

φn(x∗ + β) − φn(x∗) � β · φ′
n(x∗), for all n � N + 1. (B21)

In particular, if β � α/A, then we can substitute inequality (B21) into inequality
(B20) to obtain:

∞∑

n=N+1

(
φn(x∗ + β) − φ(x∗)

)
� α · φ′

m(q + α), for all m, N ∈ N with m � N .

(B22)

Meanwhile, if y � q, then

φm(y + α) − φm(y) � α · φ′
m(y + α) � α · φ′

m(q + α), (B23)

because φ′
m is concave. Combining inequalities (B22) and (B23) yields

∞∑

n=N+1

(
φn(x∗ + β) − φ(x∗)

)
� φm(y + α) − φm(y), (B24)

for any x∗ � q + α and y � q, and any m, N ∈ N with m � N .
Let β < min{α, α/A}; then, r − β > q + α (because α = (r − q)/2). Let

x, y ∈ X∝ with I(x) = I(y) = J , for some finite subset J ⊂ I. Suppose i ∈ I(y)
and yi � q, and xi � yi + α, while for all other j ∈ J , suppose that either x j = y j
or j ∈ I(x) ∩ I(y), y j � r and x j � y j − β. In particular, this means there exists
some y∗ � r and x∗ � y∗ − β > q + α such that y j = y∗ and x j = x∗ for all
j ∈ I(x)∩ I(y). Let N := ∣∣J \ (I(x) ∩ I(y)

)∣∣; thus, in both x and y, all individuals
in I(x) ∩ I(y) have rank at least N + 1 when all members of J are ordered from
lowest to highest utility. Furthermore, since all these individuals have identical utility
in x, and have identical utility in y, we can assume without loss of generality that they
have the same rank in x and y. For all j ∈ I(x) ∩ I(y), let n( j) be the rank that we
assign to j in x and y; thus, n( j) � N + 1. Thus,

∑

j∈I(x)∩I(y)

(
φn( j)(y j ) − φn( j)(x j )

) =
∑

j∈I(x)∩I(y)

(
φn( j)(y∗) − φn( j)(x∗)

)

�
(∗)

∑

j∈I(x)∩I(y)

(
φn( j)(x∗ + β) − φn( j)(x∗)

)
�
(†)

∞∑

n=N+1

(
φn(x∗ + β) − φn(x∗)

)

�
(�)

φm(yi + α) − φm(yi ) �
(‡)

φm(xi ) − φm(yi ), for all m ∈ [1 . . . N ]. (B25)
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Here, (∗) is because x∗ � y∗−β, (†) is because n( j) � N+1 for all j ∈ I(x)∩I(y),
(�) is by inequality (B24), because yi � q, and (‡) is because xi � yi + α.

Let m := |I(y)|; then, m � N , by the definition of N . There are now two cases.
Case 1 Suppose that xi � x j , for all j ∈ J \ I(y). Thus, in outcome x, individual i
has rank m � N when all members of J are ordered from lowest to highest utility. In
outcome y, individual i would have rank at most m, but since the bottomm individuals
have identical utilities, we can assume without loss of generality that i also has rank
m in y. By hypothesis, we have x j = y j for all j ∈ J \ ({i} ∪ [I(x) ∩ I(y)

])
. Thus,

W (x) −W (y) = (
φm(xi ) − φm(yi )

) −
∑

j∈I(x)∩I(y)

(
φn( j)(y j ) − φn( j)(x j )

)
�
(∗)

0,

where (∗) is by inequality (B25). Thus, x � y, as claimed
Case 2 Suppose that xi > x j , for some j ∈ J \ I(y). In this case, define z by setting
zi := min{x j ; j ∈ J \ I(y)}, while z j := x j for all other j ∈ I. Then x Pareto
dominates z, so x↑ Pareto dominates z↑, so x � z by the Pareto axiom. Meanwhile,
z satisfies Case 1, so z � y. Thus, by transitivity, x � y, as desired. ��
Proof of Corollary 3.5 The strategy is very similar to the proof of Proposition 2.1. The
uniqueness statement follows from the uniqueness statement in Theorem 2. ��
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