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Abstract

This paper theoretically investigates which auctions are selected by competing sellers
when they can choose between first-price auctions and second-price auctions, and
when homogeneously risk averse bidders endogenously enter one of the auctions. In
order to study this, we first consider bidders’ entry decisions between exogenously
given auctions. We find that there exists a symmetric entry equilibrium that is unique
and is characterized by a mixed strategy, which depends on whether bidders exhibit
constant, decreasing or increasing absolute risk aversion. In a next step, we endogenize
the sellers’ choice of auctions. We show that competing sellers have adominant strategy
to select first-price auctions if bidders exhibit nondecreasing absolute risk aversion. If
bidders exhibit decreasing absolute risk aversion, other equilibria may exist in which
sellers select second-price auctions as well. For instance, we demonstrate that sellers
may select second-price auctions if the distribution of private values is sufficiently
skewed.

Keywords Auctions - Endogenous entry - Risk aversion - Competing sellers

JEL Classification D44 - D81

We are grateful to Stephanie Rosenkranz, Britta Hoyer and Swantje Falcke for useful comments and
suggestions. We would also like to thank the participants of the TKI Seminar Series in Utrecht, the
Maastricht Lecture Series in Economics, the 2014 International Workshop on Game Theory and
Economic Applications of the Game Theory Society in Sdo Paulo, the 2015 Conference on Economic
Design in Istanbul and the 2015 International Conference on Game Theory in Stony Brook. We thank
Emesa Nederland BV for financial support. Special thanks are due to one anonymous referee and to the
editor for helpful comments.

B Joyce Delnoij
J.M.].Delnoij@uu.nl

1 Department of Sociology/ICS, Utrecht University, P.O.Box 80140, 3508 TC Utrecht,
The Netherlands

2 Utrecht University School of Economics, Utrecht University, P.O.Box 80125, 3508 TC Utrecht,
The Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00199-018-1161-5&domain=pdf
http://orcid.org/0000-0002-0627-5318
http://orcid.org/0000-0002-5745-5933

184 J. Delnoij, K. De Jaegher

1 Introduction

Nowadays, a vast array of commodities and services is being sold through online
auctions. Online marketplaces like eBay offer a multitude of simultaneous auctions in
which goods such as collectibles and phones are sold. Moreover, specialized online
auction stores sell goods for which well-established markets already exist, such as
holidays, concert tickets and computers. In this online environment, a single good is
often sold through a variety of auction formats. Vintage cars, watches and jewelry, for
instance, are sold through both English and Dutch auctions.! This implies that sellers
operate in a competitive market, in which they compete not only through the goods
they sell, but also through the auction formats in which they sell these goods.

The economics literature has long treated auctions as isolated, studying how a single
seller facing multiple bidders can maximize his revenue or, in the case of procurement
auctions, how a single bidder facing multiple sellers can maximize her utility. Auction
theory’s most celebrated results, the revenue ranking theorems, compare the expected
revenues of different auction formats while treating the number of bidders in each
auction as given (e.g., Vickrey 1961; Myerson 1981; Riley and Samuelson 1981;
Maskin and Riley 1984). Though these results have proved to be very valuable for
the design of auctions for isolated sales such as the spectrum auctions, the traditional
revenue ranking theorems may no longer apply if sellers operate in a competitive
market, where the ability to attract bidders is a crucial determinant of an auction’s
success (e.g., Klemperer 2002; Ivanova-Stenzel and Salmon 2008a). After all, an
auction that in isolation generates the highest revenue may no longer do so if bidders
have no incentive to enter this auction. “In practice, auctions [...] often fail because
of insufficient interest by bidders” (Milgrom 2004, p. 209). A seller operating in
a competitive market should therefore consider bidders’ preferences, as well as the
selling mechanisms his competitors offer, when deciding which auction to offer.

The aim of this paper is to study the auction selection problem of competing sellers.
That is, we theoretically investigate which auctions are selected by sellers when they
operate in a competitive market and when bidders endogenously enter auctions. In
doing so, we consider an auction selection game consisting of three stages. At Stage 1
of the game, sellers decide which auctions to offer. At Stage 2, the bidders learn which
auctions are offered and enter one of them. At Stage 3, the auctions are conducted.

Throughout this paper, we make the following assumptions about sellers. We con-
sider risk neutral sellers who simultaneously offer a single unit of a homogeneous
good in sealed bid auctions. More precisely, sellers may choose to offer a first-price
auction or a second-price auction. These auctions and their dynamic counterparts (the
Dutch and English auction, respectively) are frequently used both on and off the Inter-
net and have, for that reason, also attracted considerable attention in the theoretical
and experimental literature.

On the bidders’ side, we assume that bidders demand one unit of the good and choose
to enter one of the auctions. They cannot choose to opt out of the auctions or enter
multiple auctions instead. We assume that bidders have independent private values,

! For example, see www.catawiki.com for online ascending auctions and www.dutchauction.com for online
descending auctions (both visited in June 2018). Both online auction platforms offer specialty objects such
as fine arts and collector’s items.
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but also consider an extension with affiliated private values (Sect. 6). Additionally, the
bidders are ex ante symmetrically informed, which implies that they cannot make their
entry decisions dependent on any private information they may have. Before entering
an auction, bidders do not know their own value for the good, but they do know
the distribution of values. This is a common assumption in much of the theoretical
and experimental literature studying entry into auctions (e.g., McAfee and McMillan
1987b; Engelbrecht-Wiggans 1987, 1993; Levin and Smith 1994; Smith and Levin
1996; Pevnitskaya 2004; Palfrey and Pevnitskaya 2008; Ivanova-Stenzel and Salmon
2004a,b, 2008a,b). We also consider an extension where bidders know their values
before entering (see Sect. 5.2). Furthermore, we assume that bidders know whether
and to which extent they are risk averse, and assume that bidders are homogeneous
in this respect. In an extension, we discuss the implications of allowing bidders to be
heterogeneously risk averse (see Sect. 5.1).

Various studies have analyzed the role of risk aversion in auctions and have shown
thatitis a critical factor explaining why bidders may not be indifferent between various
auction formats. Theoretical research predicts that risk aversion results in overbidding
in first-price auctions but does not change the equilibrium bidding strategy in second-
price auctions (e.g., Riley and Samuelson 1981; Maskin and Riley 1984; Cox et al.
1985, 1988). As such, it also affects the utility bidders can expect from participating in
these auctions (Matthews 1983, 1987). Previous experimental studies have shown that
risk aversion may play a role in bidders’ entry decisions between different auctions
formats, although the results are contingent on the experimental design.? Our study
aims to provide the theoretical foundations for these findings and additionally explores
the implications for the auction selection problem of competing sellers.

The auction selection game is solved using backward induction. We use existing
results on bidding strategies and bidder preferences among auctions to analyze bidders’
entry decisions in Stage 2. In doing so, we extend the models of endogenous entry
of Levin and Smith (1994), Smith and Levin (1996) and Pevnitskaya (2004), who
model entry as a symmetric equilibrium involving mixed strategies. We find that
the probability of entering each auction depends on whether bidders exhibit constant,
decreasing or increasing absolute risk aversion. More specifically, when bidders decide
between entering first-price and second-price auctions, all auctions are entered with
equal probability if bidders are risk neutral or exhibit constant absolute risk aversion.
However, if bidders exhibit decreasing absolute risk aversion, they are more likely to
enter second-price auctions; if bidders exhibit increasing absolute risk aversion, they
are more likely to enter first-price auctions. As risk averse bidders overbid in first-price
auctions, but not in second-price auctions, these findings imply that in Stage 1 all
sellers prefer to offer first-price auctions when bidders exhibit nondecreasing absolute
risk aversion. However, when bidders exhibit decreasing absolute risk aversion, other
auction selection equilibria may exist.

Our study adds to the literature on bidder preferences over auction formats and
endogenous entry, as well as to the literature on competing auctions. Whereas auction

2 vanova-Stenzel and Salmon (2004a, 2008b) find that risk aversion explains entry decisions between
English and first-price auctions when each auction consists of only two bidders. In another set of experiments,
the authors allow bidders to coordinate freely over the auctions (Ivanova-Stenzel and Salmon 2008a, 2011).
In these circumstances, risk aversion does not seem to explain entry decisions.
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theorists have traditionally focused on the seller’s perspective, researchers are now also
taking the bidder’s point of view. It can be seen that Myerson’s (1981) proof for the
revenue equivalence between first-price and second-price auctions follows from utility
equivalence for risk neutral bidders. Risk neutral bidders are thus indifferent between
first-price and second-price auctions. Matthews (1983, 1987) compares the utility
of bidders with constant, decreasing and increasing absolute risk aversion. He finds
that bidders who exhibit constant absolute risk aversion are also indifferent between
first-price and second-price auctions. This result is later generalized by Monderer and
Tennenholtz (2004) for all k-price auctions and by Hon-Snir (2005) for all auctions
in which the bidder with the highest bid wins. Hon-Snir additionally shows that the
utility equivalence for risk averse bidders holds if and only if bidders exhibit constant
absolute risk aversion. This is consistent with the findings of Matthews (1987), who
shows that bidders with decreasing absolute risk aversion prefer second-price auctions
and bidders with increasing absolute risk aversion prefer first-price auctions.

The theoretical literature on entry into auctions studies the decision whether or not to
enter an auction with an entry fee or when there exists an outside option. This literature
can roughly be divided into two strands. The first strand assumes that bidders do not
possess any private information before deciding to enter an auction or not. In this case,
the theoretical literature focuses on two types of equilibria. McAfee and McMillan
(1987b) and Engelbrecht-Wiggans (1987, 1993) focus on deterministic, asymmetric
equilibria involving pure entry strategies. This approach results in a plethora of equi-
libria, where a subset of bidders enters the auction and another subset does not. The
process by which symmetric bidders are divided into these subsets, however, is not
identified. Levin and Smith (1994) and Smith and Levin (1996) therefore focus on a
unique, stochastic, symmetric equilibrium involving mixed entry strategies. Various
experimental and empirical studies have compared these two approaches and find that
entry is best explained by the stochastic model (e.g., Smith and Levin 2002; Bajari
and Hortacsu 2003; Reiley 2005). The second strand of the literature assumes that
bidders obtain some type of private information before making their entry decisions.
This includes bidders’ private values (Menezes and Monteiro 2000) and bidders’ het-
erogeneous rates of risk aversion (Pevnitskaya 2004; Palfrey and Pevnitskaya 2008).
These studies find that there is a unique entry equilibrium in pure strategies, which
involves a cutoff value based on the bidders’ private information. To the best of our
knowledge, our study is the first to develop a theoretical model on entry decisions
between different auction formats, although some experimental studies on this topic
exist (Ivanova-Stenzel and Salmon 2004a,b, 2008a,b, 2011; Engelbrecht-Wiggans
and Katok 2005).

Most studies in the competing auctions literature analyze auction selection prob-
lems where the dimension along which sellers compete is the reserve price or the
entry fee (e.g., McAfee 1993; Peters and Severinov 1997; Damianov 2012). Instead,
the dimension along which sellers compete in our study is the auction format itself. The
study that is perhaps most closely related to ours is that of Monderer and Tennenholtz
(2004), who theoretically investigate auction selection with bidders who exhibit con-

3 Extensive overviews of the literature on entry into auctions can be found in Kagel and Levin (2014) and
Aycinena et al. (2018).
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stant absolute risk attitudes, but who assume exogenous random participation (McAfee
and McMillan 1987a). They find that sellers prefer to select a first-price auction when
bidders exhibit constant absolute risk aversion. When bidders exhibit constant abso-
lute risk seekingness, however, sellers will be better off selecting a k-price auction
of higher order. Including a larger range of risk attitudes and assuming entry to be
stochastic allow us to obtain novel insights into auction selection and simultaneously
add to existing revenue ranking results. Moreover, our model can be used to study
auction versioning by monopolists as well (see “Appendix 3”).

The remainder of this paper is structured as follows. Section 2 describes the model
in detail. Section 3 analyzes the entry decisions in Stage 2 of our three-stage game, and
Sect. 4 analyzes the auction selection in Stage 1. Section 5 considers extensions toward
heterogeneous bidders, and Sect. 6 relaxes the assumption of independent private
values. Finally, Sect. 7 discusses our findings and provides concluding remarks.

2 Model

Suppose that M > 2 sellers simultaneously each offer a single unit of a homogeneous
good to a group of N > 2 bidders. Each seller decides to offer the good either in
a first-price auction (FPA) or in a second-price auction (SPA); bidders are free to
enter any auction. We assume that sellers are risk neutral and have zero value for
the good. Bidder i’s preferences are given by the utility function u(x;), which is
twice continuously differentiable, satisfies u’(x;) > 0 and u”(x;) < 0, and where
x; represents her payoff. Throughout this paper, we use r to refer to the Arrow-Pratt
coefficient of absolute risk aversion, such that r = —u”(x;)/u’(x;). We distinguish
between constant (dr /dx; = 0),decreasing (dr/dx; < 0)andincreasing (dr/dx; > 0)
absolute risk aversions. This is generally interpreted as how absolute risk aversion
changes as an individual’s wealth changes. In the context of auctions, however, this is
interpreted as how absolute risk aversion changes as a bidder’s value changes. Hence,
decreasing absolute risk aversion (DARA) means that bidders take more risk as their
value increases; increasing absolute risk aversion (IARA) means that bidders take less
risk as their value increases; and constant absolute risk aversion (CARA) means that
bidders take the same amount of risk as their value increases (see Sect. 4.1 for a further
discussion regarding DARA).

We consider the following three-stage game, which is an extension of the models
of endogenous entry by Levin and Smith (1994), Smith and Levin (1996), and Pevnit-
skaya (2004). At Stage 1, seller £ € {1, ..., M} selects auction format a; € {I, I1},
where a, refers to the auction format selected by seller £, which can take on one of the
two values: I, referring to FPA, and 11, referring to SPA. At this stage, the number of
bidders, N, their utility functions, u(x;), and the distribution of values, F', are common
knowledge. Prior to Stage 2, the N bidders learn each ay, i.e., they learn which auctions
have been selected by the sellers. Subsequently, each of the N bidders enters one of
the auctions, such that n, bidders enter a,, where ZQ/IZI ny = N.* At the beginning
of Stage 3, each bidder i learns n, in the auction a, that she has entered. Moreover,

4 Note that which bidder enters which auction may be the result of mixed strategies.

@ Springer



188 J. Delnoij, K. De Jaegher

she receives her private value v;, which is independently and identically distributed
according to the common distribution function F, with strictly positive density f on
the interval [v, v]. All bidders then simultaneously submit sealed bids according to
the unique, symmetric and increasing Bayesian Nash equilibrium bidding function
b(v]ae, ng) of the Stage 3 subgames. The outcome of the auctions is to allocate the
goods to the highest bidders. If bidder i wins the auction, she receives a payoff of
v; — pi, where p; represents i’s payment. Whereas in the FPA p; is equal to i’s own
bid, in the SPA it is equal to the bid of the second highest bidder. If bidder i does not
win the auction, she receives a payoff of zero.

The equilibria of the Stage 3 subgames have been extensively analyzed in the
literature (e.g., Vickrey 1961; Riley and Samuelson 1981; Maskin and Riley 1984).
In the FPA, the equilibrium bidding strategy when bidders are risk neutral is to bid an
amount equal to the expectation of the highest of ny, — 1 values below one’s own value.
When bidders are risk averse, however, the equilibrium bidding strategy is higher. In
the SPA, the equilibrium bidding strategy is to bid one’s own value, regardless of
whether bidders are risk averse or not. Applying backward induction, we use these
outcomes to analyze the entry decisions in Stage 2 and the selection of auctions in
Stage 1.

3 Endogenous entry

In this section, we analyze bidders’ entry decisions in any Stage 2 subgame, where in
line with backward induction bidders anticipate the unique, symmetric Bayesian Nash
equilibrium of each Stage 3 subgame. Let E[u|ay, n¢] denote each bidder’s ex ante
expected utility in auction ay, after learning 7, and her value v, and bidding according
to the symmetric equilibrium bidding strategy b(v|ag, n¢). Note that E[u|ag, n¢] is
strictly decreasing in n¢, because an increase in the number of bidders decreases the
probability of winning and raises the payment in both the FPA and the SPA (Smith
and Levin 1996). Moreover, if a bidder is the only one in an auction, she will earn a
positive payoff with certainty.

Following Levin and Smith (1994), Smith and Levin (1996) and Pevnitskaya (2004),
we focus on a symmetric entry equilibrium of a Stage 2 subgame (henceforth referred
to as symmetric entry equilibrium). Any symmetric entry equilibrium will necessarily
involve mixed strategies, such that in equilibrium each bidder enters auction a; with
probability g;, where ZQ’IZI q; = 1. The reason for this is simple. Suppose that no
bidder enters auction a;. Then each bidder has an incentive to switch to auction ay,
as in this auction she will be the only bidder and therefore earn a positive payoff with
certainty. It follows that each auction must be chosen with positive probability. In
equilibrium, each bidder must therefore be indifferent between entering auction ay
and any other auction ayr.
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This implies that each bidder’s ex ante expected utility of entering auction ay is
described by:

N

Z N )@ A = gHN T Elulag, ne] (0

where g; € (0, 1) and where the coefficient of E{ulag, n¢] gives the binomial proba-
bility that exactly ny — 1 competing bidders also enter the auction, giving n, bidders
in total. By summing over any possible n ranging from 1 to N, each bidder considers
every possible number of competing bidders in the chosen auction.>-°

The value of the equilibrium probability of entering auction ay, given by g}, cru-
cially depends on the auction formats that are selected by the sellers and on the utility
functions of the bidders. Lemma 1 defines g; when all or some sellers select the same
auction format.

Lemma 1 Ifthere exist sellers £ and £’ who select the same auction format (a; = ay),
then in any symmetric entry equilibrium q; = qj,.

Proof Let a; = ay. It follows immediately that E[ulag, n¢]l = Elulay, ng] for ng =
¢. Further note that (1) is a polynomial in Bernstein form (e.g., Farouki 2012).
By Lemma 5 in “Appendix 1” and because E[u|ag, n¢] is strictly decreasing in ny, it
follows that (1) is continuous and strictly decreasing in g;. Hence, the ex ante expected
utility of entering auction a, equals that of any other auction a, if and only if ¢, = ¢q;;.
(]

From Lemma 1, it follows that when more than one seller selects the FPA (or,
equivalently, selects the SPA), then the ex ante expected utility in any of those identical
auction formats is the same as long as the number of bidders in each auction is also
the same. This implies that bidders are indifferent between entering any auction of
the same format, and will enter any such auction with the same probability. Lemma 1
further implies that when all sellers select FPAs or, equivalently, SPAs, bidders will
enter each auction with equal probability in equilibrium, that is, g; = (1/M).

Let us now consider a case where sellers offer their respective goods in different
auction formats. Suppose that m; > 1 sellers offer an FPA and mp > 1 sellers
offer an SPA, where m; +m = M. By Lemma 1, any auction of the same format is
entered with the same probability. As such, we can view each bidder’s entry decision as
consisting of two stages. First, the bidder chooses between entering an FPA and an SPA.
Second, given this choice, she will choose to enter any of the FPAs, or SPAs, with equal

5 Throughout the paper, we will refer to E[ulag, ng] as the ex ante expected utility in a specific auction
and to (1) as the ex ante expected utility of entering a specific auction.

6 Like in the case where bidders choose between entering a single auction and not entering it (e.g., Levin and
Smith 1994; Smith and Levin 1996), even with symmetric bidders asymmetric entry equilibria may exist,
e.g., where bidders partition themselves over auctions such that each bidder enters a specific auction with
probability 1. Furthermore, note that the assumption of pure strategies may lead to very many equilibria,
dependent on how bidders partition themselves over the auctions. This creates an equilibrium selection
problem. Therefore, we solely focus on a symmetric entry equilibrium, which not only restores full symmetry
to the model but also turns out to be unique.
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probability. Therefore, with a slight abuse of notation, let us denote the probability of
entering an FPA by ¢ and entering an SPA by (1 — g). Then the probability of entering
one of the FPAs, that is entering an auction a; = I, is equal to g /m . Correspondingly,
the probability of entering one of the SPAs, that is entering an auction ay = II, is
equal to (1 — g)/my. In this way, my(g/my) + mpy((1 — g)/my) = 1. Hence, our
symmetric entry equilibrium can be defined by a single ¢*.

The symmetry from Lemma 1 implies that, for ¢g* € (0, 1) to constitute a symmetric
entry equilibrium, it now suffices that each bidder is indifferent between one of the
FPAs and one of the SPAs. That is, any symmetric entry equilibrium is described by:

N * ny—1 * N-—n
Z N_l q ! q !

ny=1

N -1 N—n
N —1 1 —g* nm 1 —g* /4
=3 ( )( . ) (1 -— ) Elulllny] ()
o N =1 mip mip

where the left-hand side (LHS) of (2) gives the ex ante expected utility of entering
a specific FPA and the right-hand side (RHS) gives the ex ante expected utility of
entering a specific SPA, and where n; — 1 denotes the number of competing bidders
entering an FPA and ny; — 1 denotes the number of competing bidders entering an
SPA. We find that the resulting equilibrium probability of entry is unique for a given
r

Lemma 2 Suppose that bidders may choose between entering at least one FPA and
at least one SPA. Then there exists a symmetric entry equilibrium in mixed strategies,
such that each bidder enters an FPA with probability q* and enters an SPA with
probability 1 — q*. The equilibrium probability of entry is implicitly defined by (2)
and is unique for a given absolute rate of risk aversion r.

Proof Define z(q, r) as the function equal to the LHS minus the RHS of (2). As both
the LHS and the RHS are polynomials in Bernstein form, and because E[u|ag, n¢] is
strictly decreasing in ny, we can again use Lemma 5 in “Appendix 1” to show that
the LHS of (2) is continuous and strictly decreasing in ¢, and that the RHS of (2)
is continuous and strictly increasing in g. This implies that z (g, r) is continuous and
strictly decreasing in g.

Equilibrium is achieved when z(¢*,r) = 0. Notice that any g* satisfying this
condition must be in the interval (0, 1). For instance, suppose that ¢* = 0, such that
all bidders enter an SPA. Then z(¢*, r) > 0 and each bidder can receive a positive
payoff with certainty by entering an FPA. Conversely, suppose that g* = 1, such that
all bidders enter an FPA. Then z(¢*, r) < 0 and each bidder can receive a positive
payoff with certainty by entering an SPA. As a result, only 0 < ¢* < 1 can satisfy

7 Note that the actual number of bidders in a specific FPA then follows a binomial distribution with mean
(g*/mp)N and variance (¢*/mp)[1 — (¢*/m)]N. Similarly, the actual number of bidders in a specific
SPA follows a binomial distribution with mean [(1 — ¢*)/m ;N and variance [(1 — ¢*)/m1{1 — [(1 —
q*)/myiN.
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z(g*, r) = 0. By the intermediate value theorem, it then follows that there exists a
unique symmetric equilibrium probability of entry, ¢*, and it is defined by (2). O

While the symmetric entry equilibrium is defined by a single ¢*, the value of ¢*
itself differs with the absolute rate of risk aversion r. Lemma 3 and Proposition 1 give
q* for different circumstances.

Lemma 3 Suppose that bidders may choose between entering at least one FPA and at
least one SPA, and that bidders are risk neutral (r = 0). The symmetric entry equilib-
rium is then given by q* = (mj/M), where q* defines the equilibrium probability of
entering an FPA and 1 — g™ defines the equilibrium probability of entering an SPA,
and where M denotes the total number of auctions offered, consisting of my FPAs and
my; SPAs.

Proof Let r = 0. From the utility equivalence principle for risk neutral bidders that
follows from Myerson (1981), we know that E[u|l,n;] = E[u|ll,ny] forn; =ny.
As a result, each bidder’s entry decision is only affected by the number of competing
bidders in each auction. This leads bidders to randomize over auctions with equal
probability, that is, g* = (m;/M). O

Lemma 3 therefore shows that when sellers select both FPAs and SPAs and bidders
are risk neutral, then bidders will enter each auction with equal probability. When
bidders are risk averse, however, the equilibrium probability of entry depends on
whether bidders exhibit constant, decreasing or increasing absolute risk aversion.

Proposition 1 Suppose that bidders may choose between entering at least one FPA
and at least one SPA, and that bidders are risk averse (r > 0). The symmetric entry
equilibrium is then given by

(i) g* = (my/M), ifbidders exhibit CARA
(ii) g* < (my/M), if bidders exhibit DARA
(iii) q¢* > (my/M), if bidders exhibit IARA

where q* defines the equilibrium probability of entering an FPA and 1 — g™ defines
the equilibrium probability of entering an SPA, and where M denotes the total number
of auctions offered, consisting of m; FPAs and mj; SPAs.

Proof The proof of this proposition consists of two steps. Recall that the value of ¢*
that satisfies z(¢*, r) = 0 characterizes the symmetric entry equilibrium. In Step 1,
we show that if each auction is entered with equal probability, i.e., g = (m;/M), then
z(q, r) is equal to zero if bidders exhibit CARA, is negative if bidders exhibit DARA,
and is positive if bidders exhibit IARA. In Step 2 of the proof, we demonstrate how ¢
needs to be adjusted such that the equilibrium condition is satisfied.

Step 1 Suppose that » > 0 and that ¢ = (m;/M). From Theorem 1 of Matthews
(1987, p. 638), it then follows that, for n; = ny;, the ex ante expected utility in each
auction is

() Elu|l,n;] = E[u|Il,ny], if bidders exhibit CARA
(i) E[u|l,n;] < E[u|Il,ny], if bidders exhibit DARA
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(i) E[ull,n;] > Elulll,ny], if bidders exhibit IARA
This implies that, for a given ¢ = (mj/M), the LHS of (2) is equal to the RHS if
bidders exhibit CARA, is smaller than the RHS if bidders exhibit DARA, and is larger
than the RHS if bidders exhibit IARA. Hence,

(1) z((m;/M), r) =0, if bidders exhibit CARA

(i) z((m;/M),r) <0, if bidders exhibit DARA
(iii) z ((my/M),r) > 0, if bidders exhibit [ARA

Step 2 Part (i) of this proposition follows immediately from Lemma 2. What follows

here is a proof of part (ii). From the proof of Lemma 2, we know that z(g, r) is
continuous and strictly decreasing in g. As z ((m;/M),r) < 0 if bidders exhibit
DARA, it therefore follows that ¢ needs to decrease in order to achieve equilibrium.
As aresult, g* < (mj/M) if bidders exhibit DARA. Part (iii) of this proposition is
proved analogously. O

Proposition 1 implies that if bidders exhibit CARA, they will enter each auction
with equal probability. However, bidders will be more likely to enter an SPA if they
exhibit DARA, and will be more likely to enter an FPA if they exhibit [ARA. These
findings follow from the utility equivalence results from Matthews (1983, 1987), who
compares auctions for risk averse bidders when the number of bidders in each auction
is fixed. Risk averse bidders tend to bid more in the FPA than in the SPA, making
the SPA more desirable from the bidders’ perspective. At the same time, however, the
payment in the SPA is a random variable, making the FPA more desirable. Matthews
(1987) finds that when bidders exhibit CARA, the fact that bids are higher in the FPA
exactly compensates the fact that the payment in the SPA is riskier, so that bidders are
indifferent between the two auction formats. However, if bidders exhibit DARA, they
prefer the SPA to the FPA, while the opposite is true if they exhibit [ARA.

The envelope theorem is the key to understanding the findings of Matthews (1987).
By this theorem, when marginally changing a parameter in the bidder’s utility function,
we need only look at the direct effect of this parameter on the utility, and not at the
indirect effect that the parameter has through a change in the optimal bidding function.
Given that the bidder with the lowest value v is indifferent between the FPA and the
SPA, one can now check how a marginal increase in the value affects the bidder’s
risk attitudes toward the FPA and the SPA, considered as given lotteries. For IARA,
marginally increasing the value means that the bidder becomes more risk averse, and
therefore is more inclined toward the less risky auction, namely the FPA. For DARA,
marginally increasing the value means that the bidder becomes less risk averse, and
therefore more inclined toward the riskier auction, namely the SPA. For CARA, as
increasing her value does not change her risk attitudes, she continues to be indifferent
between the FPA and the SPA.

Combining Matthews’s (1987) findings with the fact that the ex ante expected
utility in an auction is decreasing in the number of bidders gives us Proposition 1.
For instance, suppose that bidders exhibit DARA. In this case, each bidder is only
indifferent between entering an FPA and an SPA when the number of competing
bidders is larger in the SPA than in the FPA. Similarly, if bidders exhibit IARA, each
bidder is only indifferent between entering an FPA and an SPA when the number of
competing bidders is larger in the FPA than in the SPA.
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Simulations for M = 2and m; = m; = 1 with utility functions exhibiting CARA,
DARA or IARA show that ¢* remains close to 0.5 for any absolute rate of risk aversion
r. This is shown in Figs. 1, 2 and 3 in Sect. 4, which show how ¢* develops when
bidders exhibiting DARA get more risk averse.® It seems that even though bidders
may highly prefer one auction over the other, there are negative externalities from
other bidders entering the auction. This latter effect seems to be rather strong, causing
g™ to remain close to 0.5 even when bidders have a strong preference for one of the
auction formats.

4 Auction selection

In this section, we use the insights obtained in Sect. 3 to evaluate the sellers’ decisions
in Stage 1 of our game, where consistent with backward induction, sellers anticipate
the unique, symmetric entry equilibrium of each Stage 2 subgame and the unique,
symmetric Bayesian Nash equilibrium of each Stage 3 subgame. Recall that there are
M sellers, who each offer one unit of a homogeneous good in either an FPA or an SPA.
Like before, let ¢* denote the equilibrium probability of entering an FPA and 1 — ¢*
the equilibrium probability of entering an SPA. The expected revenues of offering an
FPA or an SPA are then given by:

N n N—n
B N q* 1 q* 1
arn=3 () (i) (1=35) mi ®

n,:O
N N—n
N 1 — *\ i 1 — * n
ElRpl= Y 1 -1 Rutun) ()
p0 U mip mip

where Rj(ny, r) is the seller’s ex ante expected revenue when the FPA is entered by ny
bidders who have absolute rate of risk aversion r. It represents the expected payment
made by the highest of n; bidders. Similarly, Ry (njy) is the seller’s ex ante expected
revenue when the SPA is entered by nj; bidders. The ex ante expected revenues of
both auctions are increasing in the number of bidders, n; and ny (e.g., Kagel and
Levin 1993).

The revenue equivalence theorem states that the ex ante expected revenue from the
FPA equals that of the SPA if bidders are risk neutral, thatis, R;(n;, 0) = Ry (ny) for
ny = ny (Vickrey 1961). Recall that, in equilibrium, bidders enter each auction with
equal probability, i.e., ¢* = (mj/M), if they are risk neutral (see Lemma 3). Hence,
it immediately follows that E[R;] = E[Rj] if bidders are risk neutral, and therefore,
competing sellers will be indifferent between selecting the FPA and the SPA.

If bidders are risk averse, the situation is more complex. Whereas the equilibrium
bidding strategy in the SPA is insensitive to changes in risk attitudes, the equilibrium
bidding strategy in the FPA is increasing in risk aversion (e.g., Riley and Samuelson
1981; Maskin and Riley 1984; Cox et al. 1985, 1988). As a result, the ex ante expected

8 AsDARA s implied by constant relative risk aversion, we focus on the effect of different levels of relative
risk aversion in our simulations underlying Figs. 1, 2 and 3.
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revenue of the FPA is larger than that of the SPA if bidders are risk averse, that is,
Ri(ny,r) > Ry (ny) forany ny = nyy and r > 0. Given our results from Sect. 3, this
implies the following for the expected revenues when bidders exhibit nondecreasing
absolute risk aversion (NDARA).

Lemma 4 Suppose that there exist sellers £ and £ such that € selects the FPA (ag = 1)
and U selects the SPA (ap = II), and that bidders are risk averse (r > 0), exhibit
NDARA and choose between auctions as described in Proposition 1. The FPA then
yields more expected revenue than the SPA.

Proof Proposition 1 shows that ¢* > (m;/M) if bidders exhibit CARA or IARA,
where ¢* defines the equilibrium probability of entering an FPA and 1 — ¢* defines
the equilibrium probability of entering an SPA. This permits direct comparison of
expected revenues.

N £ nr * N—n]
_ N\ (g q
=3 () () (1=3)  mreen

n;=0
N N—n
N 7\ q* I
> Z ( ) (—) 1 - — Ry (nyr)
—o \i mj mj
np=

N N—n
N 1 — g*\"™ 1 —g* I
> E ( )( el ) (1 - el > Ry(ny) = E[Ry]
ny mjy mijy

The strict inequality is based on the fact that R;(n;,r) > Ry (ny) forany n; = ny
and r > 0. To prove that the second inequality holds, note that both equations are
polynomials in Bernstein form (e.g., Farouki 2012). Further recall that the ex ante
expected revenue of the SPA is strictly increasing in the number of bidders. Then by
Lemma 5 in “Appendix 1,” the LHS of the second inequality is continuous and strictly
increasing in g and the RHS is continuous and strictly decreasing in g. Substituting
q* = (my/M) and m;; = M — mj shows that the two sides of the second inequality
are equal for g* = (m;/M). It then follows that the LHS of the second inequality is
strictly greater than the RHS forany g > (m;/M),and vice versaforanyg < (m;/M).
Since g* > (m/M) if bidders exhibit CARA or IARA (see Proposition 1), the second
inequality must hold. This concludes the proof. O

If competing sellers offer their respective goods in different auction formats, and
risk averse bidders exhibiting NDARA endogenously enter one of the auctions, then
each bidder is at least as likely to enter an FPA as she is likely to enter an SPA (see
Proposition 1). This finding, combined with the familiar ranking of ex ante expected
revenues for risk averse bidders, gives us Lemma 4. Our finding also implies that
DARA is a necessary condition for the traditional revenue ranking to reverse. After
all, if bidders exhibit DARA, they prefer the SPA over the FPA, which makes them
more likely to enter the SPA. Only if sufficiently many bidders enter an SPA, the initial
advantage of the FPA may be overcome.
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We now focus on the auction selection game in Stage 1, where competing sellers
choose which auction format to offer while taking into account the bidding behavior
and entry decisions of risk averse bidders. Recall that in the auction selection game
each seller has two possible actions: to select an FPA or an SPA. The payoffs of
selecting an FPA are given by (3); the payoffs of selecting an SPA are given by (4).
Let us first point out that the strategy profile where all sellers select FPAs generates
greater total payoffs to the sellers than the strategy profile where all sellers select SPAs.
From Lemma 1, we know that when all sellers select the same auction, each auction
is entered with equal probability. Hence, the payoffs for seller £ € {1,2,..., M} of
selecting an FPA when all M — 1 competing sellers also select an FPA are given by:

NN (LN M= 1\N
> (o)) (57)  monn
l’l]:O

Similarly, seller £’s payoffs of selecting an SPA when all M — 1 competing sellers
also select an SPA are given by:

NN N (M- N*"”R( :
E — —_— n
~ \ny) \ M M I
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As a result of the revenue ranking with risk averse bidders, the strategy profile where
all sellers select an FPA gives greater total payoffs than the one where all sellers select
an SPA. The ranking of the other strategy profiles is influenced by whether bidders
exhibit CARA, DARA or IARA, as it crucially depends on the value of the equilibrium
probability of entry, g*.

Proposition 2 Suppose that the M competing sellers choose either an FPA or an SPA,
and that bidders are risk averse (r > 0), exhibit NDARA and choose between auctions
as described in Proposition 1. Then each seller has a dominant strategy to select the
FPA.°

Proof Suppose that m; sellers currently offer an SPA, with 1 < mjy; < M. Then the
auction of an individual seller offering an SPA is entered with probability (1—g¢™*)/m,
where ¢* denotes the equilibrium probability of entering an FPA (note that ¢* > 0
ifmy < M,and ¢* = 0if m; = M). Now suppose that one of the sellers switches to
offering an FPA. This leads to a new symmetric entry equilibrium in the correspond-
ing Stage 2 subgame, where the aforementioned seller’s auction is now chosen with
probability ¢*'/(M —m; + 1), where ¢*' denotes the new equilibrium probability of
choosing an FPA (note that g*' = 1if mj; = 1, as in that case only FPAs are offered,
and each identical FPA is entered with the same probability (1/M)). We now claim
that the individual seller’s expected revenue will be greater when selecting the FPA
than when selecting the SPA if bidders have NDARA utility functions. That is,

9 We are grateful to an anonymous referee for this formulation of the proposition.
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To see why this is true, note that from the traditional revenue ranking it follows that
Ry(ny,r) > Ry(ny) forany n;y = nyy and r > 0. By Proposition 1, if bidders exhibit
CARA, then (1 — g*)/my = q* /(M —my + 1) = (1/M). As the distribution over
all possible numbers of entering bidders is then identical in both auctions, revenue
ranking implies that the FPA yields higher expected revenue. Also by Proposition 1, if
bidders exhibit IARA, then (1 —g*)/my < (1/M) < q*' /(M —m ; + 1). Moreover,
by the proof of Lemma 4, the LHS and RHS are continuously increasing in respectively
(1—g*)/my and g*' /(M —m;+1). Starting now from the case where (1—g*)/m =
q*' /(M —my + 1), the fact that (1 —g*)/my < (1/M) < q¢*' /(M —my + 1) means
that, all else equal, the RHS becomes smaller than the LHS. The inequality is further
reinforced by the revenue ranking. This concludes the proof of this proposition. O

Proposition 2 implies that if bidders exhibit NDARA, all competing sellers select an
FPA. This follows naturally, as in these cases the FPA is ex ante (weakly) preferred to
the SPA by both sellers and bidders. If bidders exhibit DARA, however, two opposing
effects occur. On the one hand, the FPA generates more ex ante expected revenue than
the SPA if bidders are risk averse. On the other hand, if bidders exhibit DARA, they
are more likely to enter the SPA than the FPA, that is, ¢* < (m;/M) by Proposition 1.
Proposition 2 implies that DARA is a necessary condition for any equilibrium other
than one where all sellers select an FPA to exist, but it is by itself not sufficient. In the
remainder of this section, we demonstrate by example that if bidders exhibit DARA,
other equilibria may exist in which sellers select SPAs as well.

4.1 An example of auction selection with DARA bidders

Consider the following example, where M = 2 sellers compete to attract bidders,
and where bidders’ preferences are described by a particular form of DARA, i.e., the
constant relative risk aversion (CRRA) utility function.'? That is, we assume that each
bidder i has a utility function of the form u (x;) = x; 1=0) , where x; represents a bidder’s
payoff and p € [0, 1) represents the coefficient of relative risk aversion. This utility
function is often used in auction theory, as in combination with independent private
values it results in a linear bidding function that captures bidding behavior rather well.
Using parameterization of the above-mentioned utility function in experimental FPAs,
estimates for the coefficient of relative risk aversion range from p = 0.67 to p = 0.52

10 For simplicity, we have chosen to present here the simulations for one of the simplest and most often
used utility functions in economics: the power utility function for positive powers. However, qualitatively
similar results can be obtained when using a more general utility function, for instance, one exhibiting
hyperbolic absolute risk aversion. For a discussion of the characteristics of the power utility function, see
Wakker (2008).
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and p = 0.48 (Cox and Oaxaca 1996; Goeree et al. 2003; Chen and Plott 1998,
respectively). Yet, to the best of our knowledge, no studies exist that systematically
analyze whether bidders’ preferences can indeed best be described by DARA utility
functions, or whether perhaps CARA or IARA are more suitable assumptions in the
context of auctions. Following Arrow’s (1971) hypothesis, however, economists seem
to agree that DARA is the more customary assumption. Moreover, DARA seems to
best support the experimental evidence outside the auction realm (e.g., Levy 1994;
Holt and Laury 2002).

Recall that if bidder i wins the auction, her payoff (x;) is equal to her private value
(v;) minus her payment (p;). If bidder i loses the auction, her payoff is equal to zero.
We assume that values are distributed according to F = v* forv € [0, 1], wherew > 1
and takes integer values only. Note that values are uniformly distributed if « = 1. An
increase in « represents an increase in the skewness of the distribution of values such
that higher values are drawn with larger probability. In this case, the ex ante expected
revenues are given by:

a(ny—1) anj
R ,r) = 5
1. r) anf—1D+1—pany+1 ®)
a(ng —1 an
Ry(npy) = rn — 1) I (6)

ang—D +1ang+1

The bidders’ ex ante expected utilities in the auctions are given by:

u,nl_an1+l—p a(n]_l)_;r_l_p
Elulll,ny] = i (a(ny — 1) ©

ang +1—p(ang —1)+1—p)!

where (a(ngy —1)+1—p)! = Hf‘g” _1)(i + 1 — p). The derivations of these results
are shown in “Appendix 2”.'!

To analyze which auctions are selected by competing sellers, we use (7) and (8) to
compute the equilibrium probability of entry, ¢*, and use (5) and (6) to compute g and
. Let g be defined as the probability of entry for which seller £ € {1, 2} is indifferent
between selecting the FPA and the SPA given that seller £’ offers an FPA. Recall that
if both sellers offer the same auction format, bidders enter each auction with equal
probability, i.e., ¢* = 0.5.

N N
N N
05" ) (n1>R1(n1, =) (n1[>(1 — )" (@N " Ry (ni)  (9)
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1 An alternative way of formulating E[u|ll, nj] is as a function of the gamma function, I'". In this case,
it is given by
o Flamy —D+DIr2-p)
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Similarly, let g be defined as the probability of entry for which seller £ € {1, 2} is
indifferent between selecting the FPA and the SPA given that seller £’ offers an SPA.

NN NN
Z( )(c‘z)”f(l—a)N"IRI(nI,r>=0.5N Z( )ann) (10)
ny=0 ni ny=0 i

Note that because R;(n;,r) > Ry (ny) for any n;y = ny and r > 0, and because
E[R;] is continuous and strictly increasing in g (see proof of Lemma 4), the LHS
of (10) will be larger than the RHS for any ¢ > 0.5. Likewise, because E[Rj] is
continuous and strictly decreasing in g (see proof of Lemma 4), the LHS of (9) will
be larger than the RHS for any ¢ > 0.5. Therefore, both g and g will be strictly below
0.5.

Figure 1 illustrates the values of ¢*, ¢ and g for different values of « and p and for
N = 4. The numbered regions in Fig. 1 correspond to different equilibrium outcomes.
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Fig. 1 Effect of the distribution of values on auction selection with CRRA bidders (where F = v and
N=4)Laa=1Lba=5ca=10.da=15
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In region I, where ¢ > ¢, ¢, sellers have a dominant strategy to select the FPA. As a
result, in this region there is a unique Nash equilibrium and it is given by the strategy
profile (FPA, FPA). In region I, where g < ¢, ¢, the unique Nash equilibrium is given
by (SPA, SPA). In region III (visible for some parameter values in Fig. 1, but not
explicitly indicated), it is the case that ¢ < ¢ < q. As E[R;] is increasing in ¢ and
E[Rj] is decreasing in g, it follows that in this case, the auction selection game is in
fact a coordination game. The Nash equilibria are then given by (FPA, FPA), (SPA,
SPA) and one involving mixed strategies.'?

Figure 1a shows that, when values are uniformly distributed, ¢* remains above ¢
and g forany p € (0, 1). This implies that sellers have a dominant strategy to select the
FPA. However, as the distribution function becomes more skewed (« becomes larger),
q and g shift upwards, leading to an increase in region II at the expense of region L.
As aresult, we find that if the distribution of values is sufficiently skewed and bidders
are sufficiently risk averse, then ¢* also moves through regions II and III (see Fig. Ic,
d), such that in equilibrium both sellers could also end up selecting SPAs. Our finding
is analogous to that of Smith and Levin (1996), who show, in a model where bidders
can choose whether or not to enter an auction at an entry cost, that the traditional
revenue ranking for risk averse bidders can be reversed if the distribution of values is
sufficiently skewed. The reason for these results is that an increase in « reduces the
variance in payments generated in the SPA and therefore decreases the difference in
ex ante expected revenues between the FPA and SPA. This can immediately be seen
from (5) and (6), where an increase in « leads to a relatively larger change in the ex
ante expected revenue for the SPA than for the FPA.

Smith and Levin (1996) suspect that increasing the number of bidders (N) affects
the revenue ranking between the FPA and SPA in a similar way as increasing the
skewness of the distribution does (). They therefore “conjecture that SPA would tend
to be favored by the seller more often in markets with many potential bidders than in
markets with few” (Smith and Levin 1996, p. 558). We find that this does not hold for
our setting. Rather, we find that increasing the number of bidders decreases both g and
g, thereby making it less likely that the dominance of FPA is overthrown. Figures 2
and 3 show the effect of increasing N to 6 and 9 when values are uniformly distributed
(¢ = 1) and when the distribution of values is rather skewed (o« = 15), respectively.
This finding extends to larger N as well.

12 Note that there may exist a fourth possible equilibrium outcome, i.e., where ¢ > g > ¢. In this case,
the auction selection game is in fact an anti-coordination game, such that the resulting Nash equilibria are
given by (FPA, SPA), (SPA, FPA) and an equilibrium involving mixed strategies. While we do not find any
evidence for cases where ¢ > g in our simulations, we cannot rule out that such cases exist for certain
distribution functions or utility functions.
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5 Bidder heterogeneity

We now consider to what extent our results are maintained when bidders are heteroge-
neous in their risk preferences (Sect. 5.1) or heterogeneous in their values (Sect. 5.2),
meaning that bidders know their independent and private values before entering auc-
tions. Such extensions are important, as in the symmetric entry equilibria described
in Proposition 1 bidders mix between the auctions with specific probabilities, in spite
of being indifferent between them. With bidder heterogeneity, these mixed equilibria
are reinterpreted as instances where some bidder types prefer FPAs and other bidder
types prefer SPAs.

5.1 Heterogeneous risk preferences

To examine how introducing heterogeneity in risk aversion affects our results, let us
assume that each bidder’s absolute rate of risk aversion is given by r = y + v, where
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v denotes the bidder’s value, and y and § are parameters defining the bidder’s type. We
consider two cases of heterogeneity. In Case 1, given that we have previously looked
separately at bidders with CARA, DARA and TARA utility functions, we assume that
all those bidder types are present in the market. That is, every bidder has the same
y > 0, but bidders differ according to §, which is independently distributed over [§, 5],
with § < 0 and 5 > 0, and follows a cumulative distribution function G!. This means
that bidders with§ < § < 0 exhibit DARA, bidders with exactly § = 0 exhibit CARA,
and bidders with 0 < § < § exhibit IARA. In Case 2, all bidders have the same §, but
differ according to y, which is independently distributed over [y, ¥] and follows a

cumulative distribution function G2, such that bidders may be more or less risk averse
overall.

Denote generically by ¢ the parameter according to which bidders differ, withe = ¢
in Case 1 and ¢ = y in Case 2. The game described in Sect. 2 is then modified such
that at the beginning of Stage 2, prior to deciding which auction to enter, each bidder
additionally finds out her own type ¢. The distribution of types, GX(¢) with k € {1, 2}
referring to either Case 1 or 2, is common knowledge. The rest of the game proceeds
as before.

To analyze the robustness of our results, we start by considering bidders’ entry
decisions in each Stage 2 subgame. Let us first point out that Lemma 1, which states
that equal auction formats are entered with equal probability, continues to apply.
Hence, like before, we need only consider bidders’ entry decisions between one of
the FPAs and one of the SPAs. In accordance with Pevnitskaya (2004) and Palfrey
and Pevnitskaya (2008), we conjecture that any symmetric entry equilibrium with
heterogenously risk averse bidders is characterized by a cutoff value £*, where bidders
with ¢ < &* self-select into the SPA, and bidders with ¢ > ¢* self-select into the FPA.
Such a symmetric entry equilibrium is implicitly defined by the following equality for

8:8*:
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where Elull,nj,¢e] (respectively, E[u|ll,nj, €]) is the ex ante expected utility
of a bidder of type ¢ in an FPA (respectively, an SPA) when finding out that
ny — 1 (respectively, nj; — 1) competing bidders have entered. The line of reasoning in
Proposition 1 suggests that 1 — Gk (¢*) = (m;/M) if the cutoff bidder exhibits CARA,
1—G*(e*) < (m;/M) if the cutoff bidder exhibits DARA, and 1 — G (¢*) > (m /M)
if the cutoff bidder exhibits IARA.

Let us now consider how (11) is affected when marginally changing the bidder’s
type €. Applying the envelope theorem, we only need to consider the direct effects of
marginally increasing € on the ex ante expected utilities in the auctions and can thus
ignore any indirect effects this may have through the bidding function. In both cases
of heterogeneous risk preferences considered, an increase in ¢ implies an increase in
risk aversion. In Case 2, this is obvious; in Case 1, increasing § weakly increases each
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bidder’s r for any utility function. For a systematic discussion, we regard situations in
which the cutoff bidder exhibits CARA, DARA and IARA separately.

In any symmetric entry equilibrium where the cutoff bidder exhibits CARA,
1 - G* (¢*) = (my/M) implies that bidders face the same distribution over the num-
ber of competing bidders in each auction format. Moreover, for any given number of
competing bidders, for each v, bidders have the same probability of winning in each of
the auction formats. The lottery corresponding to entering the SPA in the RHS of (11)
therefore only differs from the lottery corresponding to entering the FPA in the LHS,
in that a winning bidder in the SPA faces a distribution of prices that she could pay
rather than a single price. The risk averse cutoff bidder £* is only indifferent between
entering the SPA and the FPA because overbidding occurs in the latter. Let us now
marginally increase ¢ above ¢*. Then, as the SPA is riskier, an increase in & means
that the FPA is preferred. The opposite is true if € is decreased.

Next, in any symmetric entry equilibrium where the cutoff bidder exhibits DARA,
1 - Gk(s*) < (mj/M) indicates that the distribution over the number of bidders
is skewed toward larger numbers of bidders in the SPA and skewed toward smaller
numbers of bidders in the FPA. It continues to be the case that, for any given number
of bidders, a bidder faces a riskier lottery in the SPA than in the FPA. If we marginally
increase ¢ above £*, the bidder will thus prefer the FPA, both because it is less risky, and
because it continues to be skewed toward smaller numbers of bidders. Conversely, in
any symmetric entry equilibrium where the cutoff bidder exhibits IARA, 1 — G*(¢*) >
(mj/M) indicates that the distribution over the number of bidders is skewed toward
smaller numbers of bidders in the SPA and skewed toward larger numbers of bidders
in the FPA. Now, if we marginally decrease a bidder’s ¢ below &*, the bidder will
prefer the SPA as she cares less about risk than the cutoff bidder, and because the
SPA continues to be skewed toward smaller numbers of bidders. This suggests that
whether we consider Case 1 or Case 2, and whether the cutoff bidder exhibits CARA,
DARA or IARA, in any symmetric entry equilibrium bidders with ¢ < &* enter the
SPA, whereas bidders with ¢ > ¢* enter the FPA.

Our results for each Stage 2 subgame for homogeneous risk preferences in Propo-
sition 1 can be reinterpreted as approximating the results for heterogeneous risk
preferences. Applying Harsanyi’s (1973) purification theorem, consider a perturbed
version of each original Stage 2 subgame, where rather than having a single bidder type
with one specific risk aversion parameter, each bidder’s parameter is independently
chosen from the same density function over a continuum of parameters, distributed
around the original parameter. Each bidder knows her own risk aversion parame-
ter, but does not know the parameters of the other bidders, though the distribution
over parameters is common knowledge. We then obtain an incomplete information
game as described above, in which every bidder type plays a pure strategy, but where
from the perspective of the individual bidder, other bidders continue to choose their
strategies probabilistically. The purification theorem now states that starting from the
pure-strategy equilibrium of such an incomplete information game, and taking the
limit such that the continuum of parameters shrinks to the original parameter, one
approaches the original mixed-strategy equilibrium. The mixed-strategy equilibrium
itself can now be interpreted as the limit case of a pure-strategy equilibrium where
one range of bidder types chooses one, and the other range of bidder types chooses
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the other strategy. This in turn suggests that the results in Proposition 2 for Stage 1,
where sellers’ auction selection decisions are considered, are maintained as long as the
distribution of risk aversion parameters lies close to the originally considered unique
parameter. We conclude that our results are robust to a small degree of heterogeneity
in bidders’ risk preferences.

We finally confront our predictions for bidders with heterogeneous risk aversion
with experimental findings. In an experimental study, where bidders choose between
entering an English auction and an FPA, Ivanova-Stenzel and Salmon (2008a) find no
support for self-selection based on risk aversion. To analyze the self-selection effect,
the authors use the amount of overbidding as a measure of risk aversion. More specifi-
cally, they assume that bidders’ preferences can be described by u(x;) = xl.l_p , which
results in an equilibrium bidding strategy b(v|I,n;) = ((n; — 1)/(n; — p))v when
values are uniformly distributed between [0, 1]. They find that neither risk aversion
nor, more generally, the degree of overbidding has a statistically significant effect
on bidders’ entry decisions. At first sight, this does not seem to be in line with our
findings. It would therefore be interesting to investigate what drives the differences
between our predictions and these experimental results.

5.2 Known values

The assumption that bidders do not know their own value before entering an auction
is motivated by examples where bidders may only learn their exact value for the good
for sale once they actually participate in the auction, e.g., for goods that come in many
different varieties and require some research. Pevnitskaya (2004) gives an example of
antique auctions, where sellers often advertise general inventory and where bidders
can determine their exact value only after coming to the auction house and examining
the goods prior to sale. As aresult, these bidders do know the distribution of values, but
only know their independent private value after entering the auction. In online auctions,
this may occur in particular for experience goods such as leisure activities or holidays,
where a single purchase may include many different options. Alternatively, there may
be instances where assuming that bidders know their own value before entering an
auction is more suitable. For example, this may occur in auctions for collector’s items,
where experienced collectors have a precise idea of the value they attach to a specific
object before entering any of the auctions in which such an object is offered. We now
examine how our results are affected by allowing bidders to find out their own value
before deciding which auction to enter, where we continue to assume that each bidder
has the same utility function. More specifically, the game described in Sect. 2 is now
modified such that each bidder learns her own value v at the beginning of Stage 2,
prior to deciding which auction to enter.

Let us start by examining bidders’ entry decisions within each Stage 2 subgame.
Following Menezes and Monteiro (2000), we first consider whether any symmetric
entry equilibrium can be characterized by a cutoff value, such that bidders with a value
above this cutoff enter one auction format, and bidders with a value below the cutoff
enter another auction format. An immediate problem with such an equilibrium seems
to be that any bidder with a value above the cutoff has an incentive to enter the auction
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chosen by bidders with values below the cutoff, as this will ensure that she wins the
auction and pays a lower price than she currently would.'?

This suggests that when bidders know their values before entry, in any symmetric
entry equilibrium of a Stage 2 subgame each bidder continues to mix over the available
auctions. Indeed, consider the case where all bidders have the same CARA utility
function. Now consider a focal bidder, while assuming that all competing bidders
choose between auctions as described in Proposition 1. As Matthews’s (1987) results
hold regardless of whether bidders know their values or not, it follows that each bidder
has a weak best response to choose each auction with the same probability, regardless
of her value.

Now consider the case where all bidders have the same DARA utility function.
Again, consider a focal bidder, while assuming that all competing bidders follow
the strategy in Proposition 1, such that, regardless of their values, they enter any
SPA with the same, higher, probability than any FPA. Given that the focal bidder is
indifferent between the FPA and the SPA if she does not know her value, and given
that the range of values is a continuum, there must be some intermediate value v*
for which the bidder who does know her value is also indifferent. Now, marginally
decrease the bidder’s value below v*. By DARA, this implies that the bidder becomes
more risk averse. Following the same reasoning as in Sect. 5.1, she will then prefer
the FPA over the SPA. This shows that, unlike the case of CARA, with a DARA
utility function a symmetric entry equilibrium where all bidders mix with the same
probability, independently of their value, does not exist. This suggests that in any
mixed equilibrium, bidders should mix with a different probability depending on their
value. We conjecture that, if bidders exhibit DARA, bidders with higher values, who
are less risk averse, will enter the SPA more frequently, whereas bidders with lower
values, who are more risk averse, will enter the FPA more frequently. By the same
reasoning, the opposite would be true for bidders that exhibit [ARA.

Following the customary assumption that DARA utility functions are empirically
more plausible, our prediction could explain experimental findings by Ivanova-Stenzel
and Salmon (2011), who find that bidders with low values choose the FPA more
often, while bidders with high values choose the ascending auction more often. Yet,
contradicting such an explanation, these authors also again find that bidders’ entry
decisions are not affected by their degree of risk aversion, as measured by the amount
of overbidding in the FPA. Again, the question on the driving factors of this difference
between our predictions and the mentioned experimental results arises.

We conclude by looking at the implications for sellers’ auction selection decisions
in Stage 1 of our game. Given our conjectures about entry decisions when bidders
know their own value in each Stage 2 subgame, our results in Proposition 2 seem to
be maintained. If bidders exhibit CARA and continue to follow the strategy described

13 An exception may be a case where very few bidders enter the auction chosen by a range of high-value
bidders. If it is sufficiently likely to find oneself alone in the auction such that one can bid a minimal price,
high-value bidders may still prefer this auction. However, it cannot be excluded that low-value bidders
would prefer this auction for the same reason. Also, the simulations in Sect. 4.1 suggest that in the mixed
equilibria in Proposition 1 auctions that are entered more frequently are only entered marginally more
often. Following Harsanyi’s (1973) purification theorem (see Sect. 5.1), considering these mixed equilibria
as limit cases of incomplete information games, it should continue to be the case that no auction is chosen
substantially more often than any other auction.
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in Proposition 1, sellers will continue to have a dominant strategy to select the FPA.
If bidders exhibit IARA, it continues to be the case that FPAs are entered more fre-
quently overall. Moreover, FPAs may be entered more often by high-value bidders.
This strengthens our results in Proposition 2. Finally, if bidders exhibit DARA, SPAs
are entered more frequently overall, and may also be entered more often by high-value
bidders. However, as risk averse bidders continue to overbid in the FPA, the results
remain indeterminate.

6 Affiliated private values

In the previous, we have assumed that bidders have independent private values (IPV)
and showed that, unless bidders have DARA utility functions, sellers prefer to select
FPAs. In Sect. 4.1, we demonstrated that if bidders exhibit DARA, sellers may have an
incentive to select SPAs as well. This is most likely to happen when the distribution of
values is skewed toward higher values, which may be interpreted as inducing stronger
competition between bidders. We therefore now consider another source of increasing
competition between bidders: affiliation. This can be interpreted as positive correlation,
where values are jointly distributed in such a way that the individual bidder with a
high value expects the distribution of other bidders to be skewed toward higher values
(see Milgrom and Weber 1982 for a precise definition). As an example, Kagel et al.
(1987, p. 1275) refer to “charity fundraisers of consumer perishables, where an item
unusually appealing to you is typically more appealing to other bidders as well”. In
this section, we therefore consider the implications of relaxing the assumption of IPV,
instead assuming that bidders have affiliated private values (APV).

To examine the implications of allowing for APV, let us first consider how this
affects each Stage 2 subgame, where bidders decide which auction format to enter.
Note that with APV the utility equivalence for risk neutral and CARA bidders no longer
holds. Milgrom and Weber (1982) find that, if a fixed number of risk neutral bidders
have APV, the expected payment in the SPA is greater than in the FPA. As a result, risk
neutral bidders prefer the FPA to the SPA. This follows from the linkage principle,
which implies that the auction formats that reveal affiliated information in the course
of the auction, or use it in determining the price, will result in higher prices. As the
latter happens in the SPA, while no information is revealed in the FPA, the expected
payment in the SPA will be greater than in the FPA. This follows from the fact that
with an FPA, for any given bid that an individual bidder may make, conditional on
winning, increasing her value does not increase her expected payment, simply because
she pays her bid. With an SPA, for any given bid that an individual bidder may make,
conditional on winning, increasing her value does increase her expected payment,
because she expects others to have higher values. Matthews (1987) argues that the
linkage principle results in a preference for the FPA if APV bidders exhibit CARA
or IARA. If APV bidders exhibit DARA, however, which auction format is preferred
depends on how sharp the absolute rate of risk aversion decreases as a function of the
value relative to how strong affiliation is.

As risk neutral, CARA and IARA APV bidders prefer the FPA to the SPA, more
bidders will enter the FPA in equilibrium (i.e., g* > (m;/M)). Hence, whereas Propo-
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sition 1(iii) is robust to allowing for APV, Lemma 3 and Proposition 1(i), which both
predict that FPAs and SPAs will be entered with equal probability, are changed even
when we allow for the slightest bit of affiliation. DARA bidders will prefer the SPA
if the rate at which the absolute rate of risk aversion decreases as a function of the
value is high; they will prefer the FPA if affiliation is strong. This suggests that Propo-
sition 1(ii), which predicts that bidders are more likely to enter SPAs, is maintained
as long as the absolute rate of risk aversion decreases strongly as a function of value,
and as long as affiliation is weak.

We now turn to Stage 1 of our game, where sellers select which auction format
they offer. Recall that, with risk neutral APV bidders, the ex ante expected revenue of
the SPA is greater than that of the FPA (e.g., Milgrom and Weber 1982). Combining
this with our result for risk neutral APV bidders in each Stage 2 subgame produces
an uncertain outcome of the auction selection game: whereas the higher number of
bidders in the FPA leads competing sellers to prefer the FPA, the higher expected
payment for a fixed number of bidders in the SPA leads these sellers to prefer the SPA.

The ranking of ex ante expected revenues is less clear-cut when APV bidders are
risk averse. Whereas affiliation leads the SPA to dominate the FPA in terms of ex ante
expected revenues, risk aversion has the opposite effect. Which effect predominates
thus depends on the strength of affiliation versus the strength of risk aversion. In a
series of laboratory experiments, Kagel et al. (1987) indeed find that the FPA generates
more revenue than the SPA when bidders’ values are weakly affiliated, whereas the
opposite ranking is found when bidders’ values are strongly affiliated. This suggests
the following for the robustness of Proposition 2.

With CARA and TARA APV bidders, by the above, if affiliation is comparatively
weak, all sellers will have a dominant strategy to select the FPA and Proposition 2 is
maintained. If affiliation is comparatively strong, then for a fixed number of bidders,
sellers prefer the SPA and bidders prefer the FPA. In this case, we do not have a
clear prediction. Hence, our results for Proposition 2 are robust to assuming a limited
amount of affiliation. With DARA APV bidders, if risk aversion decreases at a strong
rate, risk aversion will also be strong overall, meaning that affiliation is comparatively
weak. In this case, similar to the scenario with DARA IPV bidders, bidders prefer
the SPA, while sellers prefer the FPA. However, if affiliation is comparatively strong
(meaning that risk aversion decreases at a relatively slow rate and risk aversion is
also weak overall), then for a fixed number of bidders, sellers prefer the SPA and
bidders prefer the FPA. As more bidders enter the FPA in equilibrium, sellers may still
have an incentive to offer FPAs alongside SPAs. Finally, one could imagine that risk
aversion decreases at a weak rate, but is at the same time very strong overall, such that
affiliation is weak compared to overall risk aversion. In this case, sellers continue to
prefer the FPA. If affiliation is still relatively strong compared to the rate at which risk
aversion decreases, bidders also prefer the FPA. Hence, the FPA is offered. However,
if affiliation is also weak compared to the rate at which risk aversion decreases, bidders
prefer the SPA. In this case, our results are again robust to allowing for APV.

The prevalence of English auctions on the Internet suggests that APV may be a
more realistic assumption in the context of online auctions. It would therefore to be
interesting to investigate whether bidders’ private values in online auctions are indeed
affiliated instead of independent.
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7 Conclusion

The main objective of this paper is to investigate which auctions are selected by
competing sellers when they may choose between first-price and second-price auctions
and when risk averse bidders endogenously enter one of the auctions. We construct a
three-stage game in which two units of a homogenous good are offered simultaneously
to a group of N homogeneously risk averse bidders. At Stage 1, the sellers each select
an auction; at Stage 2, each bidder learns which auctions have been selected and
decides to enter one of the auctions; finally, at Stage 3, the auctions are conducted.

Our key findings can be summarized along two lines. First, we show that when
bidders may choose between entering first-price and second-price auctions, then a
symmetric entry equilibrium exists involving mixed strategies, where the mixing
probabilities depend on whether bidders exhibit constant, decreasing or increasing
absolute risk aversion. If bidders exhibit risk neutrality or constant absolute risk aver-
sion, they will enter each auction with equal probability. If bidders exhibit decreasing
absolute risk aversion, however, they will enter second-price auctions with greater
likelihood, and if bidders exhibit increasing absolute risk aversion, they will enter
first-price auctions with greater likelihood. Second, we find that if bidders exhibit
nondecreasing absolute risk aversion, competing sellers have a dominant strategy
to select first-price auctions. We demonstrate by example that if bidders exhibit
decreasing absolute risk aversion, sellers may also select second-price auctions if
the distribution of private values is sufficiently skewed. Our results are robust to
allowing for a limited degree of heterogeneity in risk aversion and affiliation, as well
as allowing bidders to find out their own value before deciding which auction to
enter.

Whereas traditional revenue ranking theorems predict that competing sellers should
prefer the first-price auction when bidders are risk averse, in reality most sellers seem to
offer English auctions, which are strategically equivalent to second-price auctions. Our
analysis suggests that this could be explained by the presence of decreasing absolute
risk aversion. Additionally, even though experimental studies often assume that values
are uniformly distributed, it is possible that in many real-world auctions values actually
follow a more skewed distribution. Future research might further explore this, both
experimentally and empirically.

In the context of online auctions, it would also be interesting to explore to which
extent our findings depend on the assumption that bidders know how many other
bidders actually enter each auction. After all, on the Internet, bidders may not be
aware of how many competing bidders participate in an auction. Matthews (1987)
shows that the preference rankings for risk averse bidders can be extended to a setting
where the number of bidders participating in each auction is concealed. We therefore
conjecture that in such a setting, there exists an entry equilibrium analogous to the
one we find in this paper. Future research may consider the effects of concealing the
number of competing bidders on bidders’ entry decisions and its implications for the
auction selection decisions of competing sellers.
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Appendix 1: Polynomials in Bernstein form

For any sequence (co,ci,...,c,) and for any ¢ € [0, 1], define the function
Yo () — )" % k¢, as a polynomial in Bernstein form (Farouki 2012, p. 385).
Both the bidders’ ex ante expected utility of entering an auction (1) and the sellers’
expected revenue of offering an auction (3)—(4) in our model have the form of such a
polynomial. The property of polynomials in Bernstein form in Lemma 5 (Property 11,
p- 391 in Farouki 2012) will be useful for several of our results. We show this property
formally.

Lemma5 For any t € [0, 1] and for any sequence (cy,ci, ..., cy), the function
o) =Y p_o () (1 — 1)"* tk¢y is continuous in t. Furthermore, ¢(t) is monotoni-
cally increasing (decreasing) in t if, for any k € [0, n — 1], cx4+1 > ¢k (k41 < Ck)-
Similarly, ¢(t) is strictly increasing (decreasing) in t if, for any k € [0,n — 1],
Ckt+1 > Ck (Cht1 < Ck).

Proof This proof consists of two steps. First, we argue that ¢(¢) is continuous in
t. Second, we show that how ¢(#) changes in ¢ crucially depends on the difference
between ci4+1 and c.

Step 1 Each term of ¢(¢) consists of a binomial probability that is continuous in
t, multiplied by a coefficient that is not a function of ¢. It follows that each term of
¢(t) in continuous in . Continuity of ¢(¢) then follows from the fact that the sum of
n continuous terms is continuous as well.

Step 2 Note that ¢(¢) is a polynomial in Bernstein form. One of the properties
of such polynomials is that its derivative with respect to ¢ can be written as follows
(Farouki 2012, p. 391).

) 9 n n .
o= (Z <k> (=0 * ke
k=0
n—1
=n Z (n ; l) (1= 0)" "k (cppr — )
k=0

To prove this property, note that ¢’(¢) can be written as follows.

, a n n .
o=~ (Z <k) (1—1) ktkck)

k=0

n—1 .
- X <Z> (=B -0t e+ ) (Z)k (=0l

k=1
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Now note that (}) (n — k) = n("zl), and that (})k = n(Zj) It follows that we can
rewrite the last expression as

n—1 n
—1 1
ot =-nS (" S L N (1 — =k k=1g,
k k—1
k=0 k=1
1

n—

n—1 g
—ny ( L )(1 — ik ke, +nZ< L )(1 — )" R R e
k=0

k=0

n—1
n—1
= né( } ) (="K (eer — )

It now follows that the sign of ¢’(¢) depends on the sign of cx+1 — ¢ for any
ke€[0,n—1).Foranyt €[0,1]andany k € [0,n — 1], ¢'(¢) > 0 if cpo1 — cx > 0,
@'(t) <0ifcpyy—cr <0,¢'(t) > 0if gy —cr > 0,and ¢’ (¢) < Oifcpyg —cp < O.
This concludes our proof. O

Appendix 2: Example with CRRA bidders

Suppose that bidder i has a CRRA utility function of the form u(x;) = xi(lfp ), where
x; represents i’s payoff and p € [0, 1) represents the constant degree of relative
risk aversion. Further suppose that values are distributed according to F = v® for
v € [0, 1], where @ > 1 and takes integer values only. From Smith and Levin (1996),
we know that the symmetric equilibrium in the FPA is then given by the bidding

strategy ( 1)
any —

v
anp—D+1-p
The ex ante expected revenue of the FPA is given by

1
—1
/ ny ( ol ) v) av® Ty =Dyy
0 anp—D+1-p

ang alnr — 1) /1 v dv
any—1)+1-pJg

1

an, am;—1) [ 1 Ucm,-i—l:|
anf—1D)+1—p|lan;+1 0

_ a(ny —1) any

o —D+1—pany+1

b(ll,ny) =

Ri(ny,r)

Given that there are n; bidders in the auction, each bidder then has an ex ante expected
utility of

1 1—p
E[M|I, Vll] — / avaflvot(nlfl) (U _ a(nl - 1) U) dv
0 a(np—D+1-p
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I=p rl
:a( 1—p ) / v Pdy
amr—1D+1-p 0

1— 1
=Ot( I—p ) p|: 1 vanI—H—p]
amy—D+1-p anj+1—p 0

3 o ( 1—p )H’
Canj+1l—p\am—D+1—p

For the SPA, the symmetric equilibrium is to bid one’s own value, that is,
b(v|II, njr) = v. The ex ante expected revenue of the SPA is then given by

1
Ry(ny) = / ny(nyg — Dvow® ™ Ly*r=2) [1—v*]dv
0

1
=any(ng — 1)/ =D (1 — y®)dy
0

1 1
=anyng —1) [;va("”_l)"'l] — [;UQMH—I]
amp—1)+1 0 ang + 1 0

_ag—1)  ang
ang—D+1any +1

Following Smith and Levin (1996), we show that, given that there are nj; bidders in
the auction, each bidder has an ex ante expected utility of

1 v
E[u|II,n11]=f [a(n,,—l)f t“(””_l)_l(v—t)l_pdt:|otv“_ldv
0 0

_ o (a(ny — 1)!
ang+1—p (amng—1)+1—p)!

12)

where (¢(nyy — 1) +1—p)! = ]_[?:(ri”_l)(i + 1 — p). To establish (12), we start by
proving that the term in square brackets in (12), which represents the expected utility
of a bidder with value v, can be rewritten as follows.

(a(ng —1))! L =1+1=p
(a(ng —1)+1—p)!

v
a(ny — 1)/ ==ty =P dr =
0

(13)
Suppose that a(ny; — 1) = 1. Then (13) is trivially true.

v
/ w—0'"rdr=— ! [t2—p]”= ! v2P
0 2—p 0o 2—p

Let us now show that (13) also holds for a(n;; — 1) = 2. In order to do so, we need to
use integration by parts: [ udv = uv — [ vdu. Integrating the LHS of (13) by parts
gives us the following.
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v

1
—a(nyg —1) [z—t“(”ﬂ_l)—l(v _ t)Z—/J}

0
— 1 _ l v

ol = 1)%/ =2 (0 — > Pds
- 0

= oy = Dletr — 1) = 1 vt“(ﬂ11—1)—2(v

= — )2 Pdt (14)
2—-p 0

Now suppose that (nj; — 1) = 2. The RHS of (14) then becomes

ag —Dny —1) -1 fv(v e
0

2—-p
_ oy —Démy -1 -1 [ 1 w— t)g_p}”
_ 2% 1 V30
2=pGB—-p)
which proves that (13) holds for a(n;; — 1) = 2 as well. Having verified (13) for
any — 1) = {1,2} we now prove by induction. Assume that (13) holds for
alng —1) =k.
Y k k! k
k/ Tl w—n"Pdt = ———— (15)
0 (k+1—p)!

Now, we can show that (13) also holds for a(n;; — 1) = k + 1 . That is, we want to
prove the following.

* ok _nl=rq; — (k41! (k+1)+1—p
(k+l)/0 ' (v—1) dt_((k~|—1)+1—,0)!v (16)

We start by integrating the LHS of (16). This gives us the following.

(k+1){—[ 1 tk(v—t)z_p:l +L tk_l(v—t)z_pdt}
2—p o 2—pJo

_ k+D {k/”tk_l(v_t)z_pd,}
C-p | Jo

We now use (15) to rewrite this as follows.

(k—i—l){ k! vk+2p}— (k+1)! 2
2—=p) | (k+2—=p)!

T (k+2-p)!

This establishes (16) and concludes the proof of (13). Therefore, we can write the ex
ante expected utility, where the bidder does not know her private value yet, as follows.

1
Elulll,ny] :/ (@ — D) p(n=D+1=p | oa—1q,,
’ o Lamy—1)+1—)p)!
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(a(ny — 1) /1 any—p
=« v dv
(a(ng —1)+1-p)!Jo
(a(ny —1))! [ 1 vom11-4-l—,o:|1
(ang—1D+1—=p)! lang+1—p 0
B o (a(ng —1)!
Cang+1l—pamg—1)+1-p)

This concludes the proof of (12).
Notice that when bidders are risk neutral (o = 0) and when n; = ny;, then the FPA
and SPA are both revenue and utility equivalent.

—1
Riny, 0= — 2 =D __on
amy—1)+1—-0an; +1
a(ng —1) ang
= = R
ang—D+1ang +1 i)
o 1-0 1-0
Elu|l,n;] =
an;j+1—-0\a(n;—1)+1-0
— 1)
- et — 1) S = Elulll, ]
(a(ng—1)4+1—-0)any+1—-0
Appendix 3: Monopoly

Recently, some sellers have started offering a single good in multiple selling mech-
anisms at the same time. A Dutch travel agency, for instance, sells holidays through
ascending auctions, next to selling them at a posted price.'* In Canada, a charity offers
its donors two auction formats from which they may choose: FPAs and ascending auc-
tions.!> This suggests that the mechanism through which goods are sold has become
the subject of versioning. Therefore, we extend our model to a monopoly setting,
where we limit ourselves to two simultaneous auctions only. Consider a monopolist
who sells M = 2 units of a homogeneous good and decides to offer these in two
simultaneous auctions. He can either choose to offer two FPAs, two SPAs, or a com-
bination of an FPA and an SPA. The monopolist’s objective is to choose the strategy
profile with the highest expected revenue among these alternatives. Alternatively, the
monopoly setting can be interpreted as representing the auction selection decisions of
competing sellers when they collude.

14 Emesa Nederland BV offers an array of commodities and services in both online ascending auctions
and at posted prices (see www.vakantieveilingen.nl and www.actievandedag.nl, respectively, both visited
in June 2018).

15 Ducks Unlimited Canada organizes online charity auctions using both ascending and sealed bid auctions
(see www.ducks.ca/how-to-help/auction, visited in June 2018).
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Proposition 3 Suppose that a monopolist sells his goods in two simultaneous auctions
and chooses between FPAs and SPAs, and that bidders are risk averse (r > 0) and
choose between auctions as described in Proposition 1. Then there exists a range of
absolute rates of risk aversion around risk neutrality such that a monopolist prefers
to offer both units in FPAs.

Proof Recall that by Lemma 1, for M = 2, it is the case that ¢* = 0.5 when a; =
a. Additionally, recall that the traditional revenue ranking implies that R;(n;,r) >
Ry(np) for ny = ny and r > 0. It therefore follows immediately that the sum of
expected revenues of (FPA, FPA) is greater than that of (SPA, SPA). Consequently,
to prove Proposition 3, it suffices to show that the sum of expected revenues of (FPA,
FPA) is greater than that of (FPA, SPA). The sum of expected revenues of offering
both an FPA and an SPA is given by

N

N
> ( )(q*)"’(l — gV Ry (np, 1)
ny
ny=0
NoN
1 _ kNI * N—n”R
+n§0 (n”)( q)""(q") u(ng)

The sum of expected revenues of two FPAs is given by

N N

0.5V Z <Z)R1(n1,r)+0.5N Z <’Z>R1(n1,r)

ny=0 ny=0

To prove by contradiction, assume that the sum of expected revenues of (FPA, SPA)
is at least as large as that of (FPA, FPA). As the number of bidders ranges from 0 to
N in both FPAs and SPAs, from here on out we use one and the same »n, instead of n;
and n I -

N

N
> (n){uq*)"(l — g =2x05"1R (n, r)
n=0
+( - q*)"(q*)N”Rum)} >0 (17)

By the revenue equivalence theorem, Ry (n, 0) = Ry (n), and by Lemma 3, g* = 0.5
for r = 0. At risk neutrality (r = 0), the sum of expected revenues of (FPA, FPA)
must be equal to that of (FPA, SPA). Consequently, it suffices to show that at 7 = 0 the
derivative of (17) with respect to r is nonnegative. Differentiating (17) with respect to
r produces the following equation.
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N

2 (N> {[(q*)"(l AR MR L
= n ar
d *
+ (@) (1= gV = g*N] (fr Ry (n.r)
d *
+ (1 =g"" N gHV A - ¢*)N —n] (;]r Ru(n)} >0

We now evaluate this at » = 0, which by Lemma 3 implies ¢* = 0.5.

N

N IR (n, dg*

3 _osN ORI Lo sy 05019 R, (. 0)
n or dr

n=0

*

d
+0.5V2[0.5N — n] ;’

r

RII(”)} >0

where the last two terms cancel out as R;(n,0) = Ry (n) and where W > 0.

As aresult, the equation above is strictly negative, contradicting our assumption. This
concludes the proof of this proposition. O

Proposition 3 states that, for some range around risk neutrality, a monopolist prefers
to offer two FPAs to offering them in different auctions or in SPAs. This result is
independent of whether bidders exhibit CARA, DARA or IARA. In case of CARA,
however, we show that the result is more general.

Corollary 1 Suppose that a monopolist sells his goods in two simultaneous auctions
and chooses between FPAs and SPAs, and that bidders are risk averse (r > 0), exhibit
CARA, and choose between auctions as described in Proposition 1. Then a monopolist
prefers to offer both units in FPAs to offering them in an FPA and an SPA, which is
preferred to offering them in SPAs.

Proof By Proposition 1, we know that with CARA bidders, for M = 2, it is the case
that ¢* = 0.5 for every r. As Ry(n,r) > Ry (n) for r > 0, it follows immediately
that the sum of expected revenues from (FPA, FPA) is greater than that of (FPA, SPA),
which is in turn greater than that of (SPA, SPA). O

Simulations for utility functions exhibiting CARA, DARA and TARA consistently
show that a monopolist prefers to select only FPAs. We therefore conjecture that Corol-
lary 1 holds as well for bidders exhibiting DARA or IARA. Our findings are consistent
with traditional revenue ranking theorems, but seem less consistent with practice in
online auctions. Whereas our results indicate that it is not profitable to use auction
design as a means of versioning, this is exactly what happens on the Internet. Perhaps
such versioning by monopolists can only be explained when bidders have nonstan-
dard preferences. Future research might therefore consider behavioral assumptions
such as reference-dependent preferences and competitiveness. Taking into account
more sophisticated assumptions might better explain bidders’ entry decisions and,
hence, the form that auction versioning by monopolists takes.
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