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Abstract We study global and local dynamics of a simple search andmatching model
of the labormarket.We show that themodel exhibits chaotic and periodic dynamics for
empirically plausible parameter values both in backward and forward time. In contrast
to the global results, we show that the model can be locally indeterminate or have no
equilibrium at all, but only for parameterizations that are empirically unreasonable.
In contrast to earlier work, we establish these results analytically without placing
numerical restrictions on the parameters.
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1 Introduction

The search and matching model of the labor market has proved to be a convenient
framework for studying the joint behavior of unemployment and job vacancies. Much
of the qualitative and quantitative analysis in this framework relies on linear approxi-
mations and local solutions of fundamentally nonlinear environments, as does most of
the dynamic literature in macroeconomics. Yet, researchers increasingly have come to
realize that the global dynamics of such frameworks can have quite different implica-
tions than those derived from local counterparts. In particular, nonlinear dynamics can
be periodic or chaotic, which a linear approach cannot capture. Moreover, a purely lin-
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ear approach may rule out steady-state equilibria as unstable with explosive dynamics,
and therefore miss on cyclical equilibria or stable dynamics elsewhere in the economic
domain. Without a full characterization of the nature of the processes that generate
economic data, any conclusions drawn based on a local approach can therefore be
misleading.

In this paper, we study the global and local dynamics of the simple search and
matching model in light of these concerns. Specifically, we add to the literature by
showing analytically that the model exhibits periodic and chaotic dynamics for a wide
range of plausible parameterizations that have been used in the quantitative literature.
We employ analytic proofs that are derived without placing numerical restrictions on
the parameters. We are aided in this effort by the specific structure of the search and
matching framework, which can be reduced to a recursive two-variable system. The
model is thereby amenable to analytical characterization of its local and global prop-
erties. The key dynamics arise from the model’s job-creation condition, whereby we
show that this holds both in backward and forward time. For the backward dynamics,
we derive a mapping that can be easily analyzed after introducing a variable change.
Thismapping ensures that the evolution of labormarket dynamics is both economically
meaningful in the sense that trajectories of the model’s variables are well defined, and
that it is consistent with the model’s job-creation condition in terms of uniqueness of
the steady state. This differentiates our work from prior analysis of this model, which
uses a map that can have more than one steady state for certain parameter values and
may not always be defined on its domain.

Our paper contributes to the literature along two dimensions. First, the phenomenon
of chaotic dynamics in economic models is interesting on its own. However, most
work has focused on the Real Business Cycle (RBC) model or variants of the New
Keynesian model, although there is recent interest in global dynamics in the literature,
best exemplified by the contribution of Gu et al. (2013) in the monetary search model.
While this and our model both rest on search theory, the general frameworks are
different enough to make ours an independent contribution in this area, as the study of
the global dynamics of the labor market search and matching model is new. Second,
our paper emphasizes the importance of considering global dynamics more broadly,
especially since there is a growing awareness that reliance on local dynamics can be
misleading. For example, as is the case with our model, it can be shown that under
certain conditions the steady state may be a repeller, and it may therefore be tempting
to conclude the model exhibits explosive dynamics. We show that this is not always
the case—the loss of stability in the steady state coincides with emergence of cyclical
behavior.

Our work builds on papers by Medio and Raines (2007) and Mendes and Mendes
(2008).1 The former authors study backward dynamics in general economic models
and provide the general template for our analysis. Specifically, they develop general

1 There is also earlier work by Bhattacharya and Bunzel (2003a) and Bhattacharya and Bunzel (2003b),
who study global dynamics in a search and matching framework but impose parametric restrictions and
only consider the social-planner solution of the model. They establish the potential for n-period cycles in
the model, but the modeling restrictions have been criticized by Shimer (2004). Our paper can be seen as
contribution that unifies and clarifies these previous results.
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conditions under which periodic and chaotic dynamics can arise in a wide class of
economic models that can be conveniently characterized by classes of mappings. The
work in Mendes and Mendes (2008) applies some of these insights to a labor market
framework that is similar to ours. They show that the backward dynamics in the
search and matching model can undergo a period-doubling bifurcation that leads to
chaos. However, this result is established under strict restrictions on parameter values.
Moreover, they show period doubling and existence of periodic points of period 3
and 5 only numerically. Our work improves upon theirs by establishing existence of
periodic and chaotic solutions in the model analytically, which allows us to extend
the range of acceptable parameter values under which cycles and chaos can occur.
From a technical perspective, Mendes and Mendes (2008) uses symbolic dynamics
and inverse limit theory to establish cycles and chaos going forward in time, when
backward dynamics exhibit similar behavior. Using the result established by Kennedy
and Stockman (2008), we establish chaotic and periodic solutions in forward time
more generally, without imposing numerical restrictions on parameter values.2

Our paper is most closely related to recent work by Sniekers (2017), who studies a
labor market search and matching model in continuous time. Continuous-time models
are often easier to analyze than their discrete-time counterparts since stability and local
indeterminacy analysis requires checking only one threshold, namely the behavior
around zero of the first derivative of a mapping as opposed to the behavior around
± 1 in the discrete case. As such, results for two-equation systems are easier to come
by, whereas we assume a specific parameterization, namely risk-neutral agents, to
allow for a recursive system, where we can analyze the global behavior using a single
equation. The second difference is that the model in Sniekers (2017) has multiple
steady states on account of a demand externality, while we study the standard search
and matching model with a unique steady state, as we show. This assumption allows
him to generate plausible cycles that can replicate a reduced-form relationship between
unemployment and vacancies, the so-called Beveridge curve.

This paper is also close in spirit to recent contributions that analyze global dynamics
in Real Business Cycle models, such as Coury and Wen (2009), Growiec et al. (2018)
and Sorger (2016). In a RBC model with production externalities, the work in Coury
andWen (2009) shows that the unique steady state is surroundedby stable deterministic
cycles, which implies global indeterminacy that is not apparent from a local analysis.
Their paper is similar to ours in that we also work in a two-equation environment that
is amenable to straightforward, and intuitive, analytical and numerical analysis. As in
our paper, they find that indeterminacy ismore pervasive than previously believed. The
work in Sorger (2016) extends this analysis to show that under standard monotonicity
and convexity assumptions on technology and preferences the basic RBC model can
have periodic solutions of any period as well as chaotic solutions. However, this
does not arise for typical parameterizations that are employed in the literature. In
contrast, we show that in the search and matching framework chaotic dynamics arise

2 Another paper that studies global dynamics in a search and matching setting in labor and capital markets
is Ernst and Semmler (2010). Their model has multiple steady states, one of which is a local attractor while
another is saddle-path stable. Their analysis is fully numerical based on value-function iteration, whereas
we solve the nonlinear equilibrium conditions that emerge from the first-order conditions.
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even under standard parameterization. Finally, Growiec et al. (2018) show that in an
extended version of the RBC model limit cycles can explain the empirical evidence
on substantial medium-to-long run, pro-cyclical swings in the labor share in the USA.

The paper is structured as follows. In the next section, we describe the simple search
and matching model of the labor market. Section 3 is the central part of the paper. It
presents the global analysis, showing more general results on the presence of periodic
and chaotic dynamics. In Sect. 4, we provide further insights on the general results by
studying a special case analytically and by conducting a numerical analysis based on a
calibration of the model. This section also contains a local determinacy analysis and a
comparisonwith the global results. Thefinal section concludes. Relevantmathematical
concepts and proofs are presented in Appendix.

2 A simple search and matching model of the labor market

We develop a simple version of the search and matching model of the labor market.
The model has become the workhorse framework for studying unemployment and
vacancy dynamics and employment flows more generally, especially since Shimer’s
(2005) seminal contribution. The exposition follows Krause and Lubik (2010) closely,
to which we refer for further details.

We assume time is discrete and a model period is one quarter. A continuum of
identical firms employs workers who inelastically supply one unit of labor.3 Output y
of a typical firm is linear in employment n:

yt = Ant , (1)

where A is exogenous aggregate productivity.4 Thematching process betweenworkers
and firms is described by the function m(ut , vt ) = muξ

t v
1−ξ
t , with unemployment u,

vacancies v, and parameters m > 0 and 0 < ξ < 1. m is match efficiency and
measures the effectiveness of thematching process, while ξ is thematch elasticity. The
matching function captures the number of newly formed employment relationships
that arise from the contacts between unemployed workers and firms seeking to fill
open positions. Unemployment is defined as:

ut = 1 − nt , (2)

which is the measure of all potential workers in the economy who are not employed
at the beginning of the period and are thus available for job search activities.

We can write the law of motion for employment as follows:

nt = (1 − ρ)[nt−1 + m(ut−1, vt−1)], (3)

3 For expositional convenience, we present the problem of a representative firm only. We abstract from
indexing the individual variables.
4 Labor productivity At is generally assumed to be the main driver of business cycle fluctuations in the
search andmatchingmodel (see Shimer 2005).We assume that At = A is constant throughout the exposition
since we are abstracting from stochastic fluctuations.
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where new hires add to the existing stock of workers. The end-of-the-period workforce
is subject to separation at the rate 0 < ρ < 1.5 We define q(θt ) as the probability of
filling a vacancy, or the firm-matching rate, where θt = vt/ut is labormarket tightness.
In terms of the matching function, we can write this as q(θt ) = m(ut , vt )/vt = mθ

−ξ
t .

Similarly, the job-finding rate is p(θt ) = m(ut , vt )/ut = mθ
1−ξ
t . An individual firm

is atomistic in the sense that it takes the aggregate matching rate q(θt ) as given. The
employment constraint on the firm’s decision problem is therefore linear in vacancy
postings:

nt = (1 − ρ)[nt−1 + vt−1q(θt−1)]. (4)

Firms maximize profits, using the discount factor β t λt
λ0

(to be determined below):

max
{vt ,nt }∞t=0

∞∑

t=0

β t λt

λ0
[Atnt − wt nt − κvt ]

+
∞∑

t=0

β t λt

λ0
μt

{
(1 − ρ)

[
nt−1 + vt−1q(θt−1)

] − nt
}
. (5)

Wages paid to the workers are w, while κ > 0 is a firm’s cost of posting a vacancy. μ
is the Lagrange multiplier on the firm’s employment constraint. It can be interpreted
as the marginal value of a filled position. Firms decide how many vacancies to post
and how many workers to hire. The first-order conditions are:

nt : μt = At − wt + β(1 − ρ)
λt+1

λt
μt+1, (6)

vt : κ = β(1 − ρ)
λt+1

λt
μt+1q(θt ), (7)

which imply the job-creation condition (JCC):

κ

q(θt )
= (1 − ρ)β

(
λt+1

λt

) [
At − wt+1 + κ

q(θt+1)

]
. (8)

This optimality condition trades off expected hiring cost κ/q(θt ) against the benefits
of a productive match. This consists of the output accruing to the firm net of wage
payments and the future savings on hiring costs when the current match is successful.
The existence of positive vacancy posting costs also ensures that θt > 0 and therefore
vt > 0 since the marginal value of an open position is strictly positive.

As is common in the literature, we assume the economy is populated by a represen-
tative household. The household is composed of workers, who are either unemployed
or employed. If they are unemployed, they are compelled to search for a job, but they
can draw unemployment benefits b ≥ 0. Employed members of the household receive
pay w, but share this with the unemployed. They do not suffer disutility from working

5 Note that newly matched workers who are separated from their job within the period reenter the matching
pool immediately.
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and supply a fixed number of hours.6 Since the household’s only choice variable is
consumption, and since there is no mechanism to transfer resources intertemporally,
the utility maximization problem is trivial. Assuming constant relative risk aversion,
this determines the marginal utility of wealth, λt = C−σ

t , whereC is consumption and
σ−1 > 0 is the intertemporal elasticity of substitution. In equilibrium, total income
accruing to the household equals net output in the economy, which is composed of
production less real resources lost in the search process, Yt = yt −κvt . SinceCt = Yt ,

we can now derive the discount factor β t λt
λ0

= β t Y
−σ
t

Y−σ
0

, where 0 < β < 1.

Finally, we need to derive how wages are determined. We assume that wages are
set according to the Nash bargaining solution.7 As this is a lengthy, but standard,
derivation, we refer to Krause and Lubik (2010) for further exposition. The Nash-
bargained wage is thus:

wt = η (At + κθt ) + (1 − η)b, (9)

where the bargaining parameter 0 < η < 1 captures theworker’s bargaining power. As
shown by Hosios (1990), the model attains its social optimumwhen η = ξ . The works
in Bhattacharya and Bunzel (2003a) and Bhattacharya and Bunzel (2003b) restrict
their analysis to this case, whereas we allow for a more general parameterization. We
consider ξ = 0.5 as our benchmark case since it allows analytical characterization of
some results. The wage equation can then be substituted into the JCC to derive:

κ

m
θ

ξ
t = β(1 − ρ)

Y σ
t

Y σ
t+1

[
(1 − η) (At − b) − ηκθt+1 + κ

m
θ

ξ
t+1

]
. (10)

This completes the description of the model.
We now establish some preliminary results and properties of the model that frame

the later global and local analysis. Moreover, we also introduce a regularity condition
that ensures the economic plausibility of the findings. We first show that the model
has a unique steady state. Steady state θSS solves the following nonlinear equation:

θ
ξ
SS − β(1 − ρ)θ

ξ
SS = β(1 − ρ)(1 − η)m

A − b

κ
− β(1 − ρ)ηmθSS, (11)

which is derived from the JCC (10) after rearranging terms.Wenowprove the following
Lemma.

6 We thus assume income pooling between employed and unemployed households and abstract from
potential incentive problems concerning labor market search. This allows us to treat the labor market
separate from the consumption choice. See Merz (1995) and Andolfatto (1996) for a discussion of these
issues.
7 This is a standard assumption in the literature. Shimer (2005) provides further discussion.
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Lemma 1 The job-creation condition has a unique steady state θSS.

Proof Consider the left-hand side and the right-hand side of the above equation
separately. The left-hand side f1 = [1 − β(1 − ρ)] θξ

SS has an intercept at the ori-
gin and is strictly increasing in θSS since 1 − β(1 − ρ) > 0. The right-hand side
f2 = β(1− ρ)(1− η)m A−b

κ
− β(1− ρ)ηmθSS is linear in θSS and strictly decreasing

with a positive intercept. It therefore follows that the two functions intersect once and
that there is a unique steady state θSS. ��

The simple search and matching model does not suffer from the multiple steady-
state problem identified, for example, by Benhabib et al. (2001) in a monetary model
with an interest rate feedback rule for monetary policy, which can raise considerable
issues for interpreting data or developing policy recommendations.8 This is not an issue
in our model. Instead, our focus of investigation is whether the unique steady state
is locally and globally stable or unstable and whether there are chaotic endogenous
dynamics. The remaining steady-state values can be computed in a straightforward
manner. The steady-state unemployment rate uSS can be derived from the law of
motion for employment, that is, ρ

1−ρ
1−uSS
uSS

= mθ
1−ξ
SS . The rest of the variables then

follow immediately.
We also derive a regularity condition that imposes a parametric restriction to ensure

economic plausibility. The job-matching and job-finding rates are defined as, respec-
tively, q(θ) = mθ−ξ and p(θ) = mθ1−ξ . These should properly be interpreted as
the probabilities of a firm filling a vacancy and a worker finding a job, respectively.
It is a quirk of the discrete-time matching model that mathematically these variables
can take on values above one. Intuitively, at a low enough frequency, everyone in the
pool of searchers transitions out of unemployment at least once, which translates into
a job-finding rate of above one. While this is conceptually valid—the rate counts the
number of newmatches per searchers over a long enough period—it arguably violates
the spirit of the search and matching model in that successful matching is probabilis-
tic. We note that this is not an issue for the continuous-time version of the search and
matching model since q(θ) and p(θ) are instantaneous transition rates and thus are
true probabilities. In what follows, we therefore restrict these rates to lie on the unit
interval (see also Bhattacharya and Bunzel 2003a, b; Shimer 2004). The following
Lemma establishes the necessary parametric restriction.

Lemma 2 If the transition rates q(θ) and p(θ) are less than one then m < 1.

Proof Define q(θ) = mθ−ξ and p(θ) = mθ1−ξ . q(θ) < 1 implies θ >
( 1
m

)−1/ξ
;

p(θ) < 1 implies θ <
( 1
m

)1/(1−ξ)
. For both transition rates to be less than one, this

requires:
( 1
m

)−1/ξ
< θ <

( 1
m

)1/(1−ξ)
. This is a nonempty interval for θ if m < 1. ��

8 They show that the interaction of the Fisher equation, that is, the relationship between nominal and real
interest rates and expected inflation, with an ad hoc policy rule results in the existence of two steady states,
one stable and one that is unstable globally. The key finding is that the globally unstable steady state is
locally saddle-path stable and is actually the one that is imposed in linearized analyses. Benhabib et al.
(2001) therefore argue that policy recommendations based on local analysis can be perilous in the global
context (see Wolman and Couper 2003, for further discussion, and also Aruoba et al. 2018, for developing
the empirical implications).
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3 Global dynamics

We now turn to an analysis of the global dynamics of the standard search andmatching
model. We first provide some general insights into its properties and set up the map
that we use to study global equilibria.We then perform a stability analysis of the steady
state and focus on the bifurcation that occurs when the dynamics switch from stable to
unstable in backward time. We show that this switch corresponds to cyclical behavior
in the model and then establish the presence of chaotic dynamics in backward and
forward time.

3.1 Preliminaries

We analyze the benchmark case of an economy with risk-neutral agents as described
above. The dynamics are governed by the job-creation condition, which we replicate
here for convenience:

κ

m
θ

ξ
t = β(1 − ρ)

[
(1 − η) (A − b) − ηκθt+1 + κ

m
θ

ξ
t+1

]
. (12)

This is an autonomous first-order nonlinear difference equation in θ . It describes the
evolution of labor market tightness θt and can be solved independently from the rest
of the model. This allows us to study the evolution of θt in isolation.9 We rewrite the
JCC by isolating terms in θt+1 on the left-hand side:

β(1 − ρ)θ
ξ
t+1 − β(1 − ρ)mηθt+1 = θ

ξ
t − β(1 − ρ)(1 − η)m

A − b

κ
. (13)

Expressing this equation in coefficient form, we have:

aθ
ξ
t+1 − cθt+1 = θ

ξ
t − d, (14)

where the regularity conditions 0 < m < 1 and the assumption A > b allow us to
bound the parameters:

0 < a = β(1 − ρ) < 1,

0 < c = β(1 − ρ)mη < 1,

0 < d = β(1 − ρ)(1 − η)m
A − b

κ
.

Equation (14) describes the forward dynamics of labor market tightness θ . It is
expressed in implicit form and is not invertible; that is, we cannot explicitly relate
θt+1 to θt . In other words, the forward dynamics are captured by a correspondence.

9 Under risk aversion, the dynamics dependon the timepath of output yt .Output is a function of employment
nt , which evolves based on the law of motion (3). Since this feeds back onto the JCC via the definition of
θt = vt/ut , it results in an interconnected two-equation system that cannot be solved analytically.
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In cases like this, it is therefore much more convenient to study the global properties
using the backward dynamics, that is, by expressing θt as a function of θt+1 as the
dynamics of tightness evolve backwards in the sense that its current value depends
on its future value one period ahead. We can then use the results of Kennedy and
Stockman (2008) to relate the backward dynamics to those in forward time.10

In the previous literature, for exampleMendes andMendes (2008) andBhattacharya
and Bunzel (2003a), Bhattacharya and Bunzel (2003b), the backward dynamics are
defined via the map g (θ) by rearranging (14) to isolate θt :

θt =
(
aθ

ξ
t+1 − cθt+1 + d

)1/ξ = g (θt+1) . (15)

However, the choice of the map g is problematic, since it can produce results that are
inconsistent with the logic of the JCC.We show inAppendix A.2 that for plausible val-
ues of the parameter ξ the map g can have multiple positive steady states, whereas the
positive steady state θSS in JCC is unique (see Lemma 1). To avoid this inconsistency,
we therefore introduce a change of variables such that for economically meaningful
values θt ≥ 0:

zt = θ
ξ
t . (16)

This allows us to rewrite Eq. (14) as the following backward recurrence relation:

zt = azt+1 − cz1/ξt+1 + d = f (zt+1), (17)

where the coefficients are defined as above. Backward solutions of (14) and (17) are
well defined for any ξ ∈ (0, 1), as long as zt and θt are nonnegative which is the
economically meaningful range. The solutions of (14) in terms of the original variable
can then be obtained by using θt = z1/ξt . The model in the form of (17) thus provides
us with a more convenient and consistent means for studying the backward dynamics
of the model.

3.2 Stability properties

We now study the dynamics of the backward map zt = f (zt+1). We first establish the
properties of the function f . We then study the stability properties of the steady state,
where we distinguish two broad areas of dynamics in the backwardmap, namely stable
and unstable. The backward dynamics are governed by the properties of the map:

f (z) = az − cz1/ξ + d, (18)

10 The relationship between the backward and forward dynamics of nonlinear systems is an active area
of research (see, for example, Kennedy and Stockman 2008 and references thereof). This distinction is
immaterial for the study of linear systems since they are always invertible in this sense. That is, the properties
of the forward dynamics are the ‘inverse’ of the properties of the backward map. If, on the other hand, one
of the dynamic maps is a correspondence, this equivalence fails.
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where f (0) = d > 0 defines the intercept. The first derivative of f is given by:

f ′ (z) = a − c

ξ
z
1−ξ
ξ , (19)

and the map f has a global maximum zmax at:

zmax :=
(
aξ

c

) ξ
1−ξ

. (20)

Given that f is increasing on [0, zmax) and decreasing on (zmax,∞), the map f is
a Type-B map as defined in Appendix A.3. The point z0 > 0 is the unique positive
intersection point such that f (z0) = az0 − cz1/ξ0 +d = 0.11 Note that the coefficients
are independent of thematch elasticity ξ , which therefore only determines the shape of
the mapping but not its location in (θt+1, θt )-space. Furthermore, the term A−b

κ
scales

the intercept d but does not affect other coefficients.We can also express themaximum

of f in terms of the structural parameters of the model: zmax =
(
aξ
c

) ξ
1−ξ =

(
ξ
mη

) ξ
1−ξ

.

Themaximumonly depends on three parameters,which reduce to twounder theHosios
condition ξ = η. In this special case, zmax > 1 since m < 1. In the general case, zmax
can be less than one if m >

ξ
η
. Notably, the location of the maximal point does not

depend on other parameters, chiefly the scale term A−b
κ

. In the next step, we establish
that the equation in (17) has a unique positive steady state. It is straightforward to
see that the fixed point zSS of the map f , i.e., the steady state of (17), is the same
as zSS = θ

ξ
SS, or θSS = (zSS)1/ξ = ( f (zSS))1/ξ as established in Lemma 1 (see

Appendix A3 for the formal proof).
We now analyze the stability properties of the steady state. These properties are

determined around the thresholds ±1 and are given by the first derivative f ′ (zSS). If∣∣ f ′ (zSS)
∣∣ < 1, the steady state zSS is stable in its backward dynamics and unstable

otherwise. At
∣∣ f ′ (zSS)

∣∣ = 1 a bifurcation occurs, and the dynamics switch from stable
to unstable. Clearly, the stability properties of zSS translate directly to that of θSS. We
can establish the following thresholds.

∣∣ f ′ (zSS)
∣∣ < 1 if and only if:

− 1 < a − c

ξ
z
1−ξ
ξ < 1, (21)

or, alternatively:

a − 1 <
c

ξ
z
1−ξ
ξ < 1 + a. (22)

Since the value of the parameter a is less than one, the first inequality above holds
trivially, given Lemma 1 and the restrictions on the parameters. This also means that

11 It is straightforward to show that z0 is unique over [0, ∞). Since f (0) = d > 0 and f is increasing
on [0, zmax), then f (zmax) > 0. Given that f is decreasing on [zmax,∞), the intersection point z0 such
that f (z0) = 0 is unique. Note that the point z0 corresponds to the point q in the general notation used in
Appendix A.3.
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Table 1 Summary of results

Condition Outcomes Comments

(23) Existence of a unique steady state The steady state is stable in backward
map

(26) Bifurcation threshold Period-doubling cycles emerge as d
passes through threshold

(39) and d < zmax Existence of a 3-cycle Occurs for small values of ξ

Cycles of all periods k ≥ 3 and chaos

(39), d > zmax and (40) Existence of a 5-cycle Occurs for empirically plausible
values of ξ

Cycles of all periods k ≥ 5 and chaos

(41) Sets the 3-cycle {0, d, z0} Occurs for small values of ξ

whenever f ′ (zSS) is positive, it is less than one. In other words, if zSS ≤ zmax,
then zSS is stable. Since a bifurcation cannot occur in this region of the map, we
focus our attention on the other case, namely 0 > f ′ (zSS) > −1. In the case when
zSS > zmax, f ′ (zSS) is negative, and the steady state zSS may or may not be stable.
Since f ′ (zSS) > −1 implies that:

c

ξ
(zSS)

1−ξ
ξ < 1 + a, (23)

then zSS is stable if (23) holds; it is unstable otherwise. We collect these results and
classification for types of equilibria in Table 1 for further reference.

These conditions can also be expressed in terms of the underlying structural param-
eters of the model, which allow for a more meaningful economic interpretation. The
stability condition (23) can be written in terms of θSS as follows:

mθ
1−ξ
SS <

1 + β(1 − ρ)

β(1 − ρ)

ξ

η
. (24)

We note that the conditions in (23) and, equivalently, in (24) are in implicit form since
zSS and θSS are functions of the composite parameters a, c, d, and ξ , and ultimately
the structural parameters; at the same time, the analytical expression for zSS cannot
always be obtained explicitly. We find it therefore convenient to express the stability
threshold in terms of a boundary condition for the job-finding rate p (θSS) = mθ

1−ξ
SS ,

as it is useful for developing intuition and for ease of economic interpretation. In that
sense, the stable equilibrium is an outcome of condition (24), in which the steady-
state job-finding rate is less than the given threshold. Moreover, while p (θSS) is an
endogenous variable, it is often treated parameterically in quantitative analyses as a
target value for calibration (see Haan et al. 2000, and the discussion further below).
For our benchmark case ξ = 0.5, we can solve for zSS directly and express Eqs. (26)
and (24) in terms ofmodel parameters only.We present quantitative results and discuss
the benchmark case in a later subsection.
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Condition (24) states that the steady state of the standard search andmatchingmodel
is stable if the job-finding rate is below the threshold. Under the Hosios condition
ξ = η, the threshold reduces to 1+β(1−ρ)

β(1−ρ)
> 1. Given the parameteric restriction

m < 1 developed in Lemma 2, the steady state would thus always be stable. The
solution to the model is such that starting from an initial value in a close neighborhood
of the steady state, the economy will converge nonmonotonically (since f ′ (zSS) < 0)
to the steady state, which is an attractor in the forward dynamics. The law of motion
is given by the correspondence (14). The steady state loses stability if the job-finding
rate is above the threshold. This is consistent with a high enough p (θSS) and requires
ξ < η. In this case, the equilibrium is unstable. While it is tempting to conclude that θt
and vt would grow without bound, we show that under appropriate parameterization
solutions stay bounded. In fact, we show in the next section that the loss in stability
coincides with the emergence of cyclical and chaotic behavior.12

3.3 Periodic and chaotic solutions

We first establish under which conditions we observe nonexplosive dynamics.

Lemma 3 If f (zmax) ≤ z0, then the solutions stay bounded in the interval [0, z0].
Proof Let x ∈ [0, z0]. Then f (x) ≤ f (zmax) ≤ z0 for all x ≥ 0. Further, if 0 ≤
x ≤ zmax, then f (x) ≥ f (0) = d > 0 since f is increasing on [0, zmax), and if
zmax ≤ x ≤ z0, then f (x) ≥ f (z0) = 0 since f is decreasing on [0, z0]. ��

We now establish that the transition in backwards time between stable and unstable
dynamics at f ′ (zSS) = −1 corresponds to a period-doubling bifurcation, namely the
emergence of a sequence of cycles of doubling periods. As the steady state zSS loses
its stability and goes through this bifurcation, a new attractor emerges with double
the period of the steady state, that is, a 2-cycle when compared to stable adjustment
dynamics before the threshold. The solution exhibits oscillations, but in a nonexplosive
manner. As the value of the bifurcation parameter changes, new attractors continue to
appear with double the period of the previous ones. Eventually, this leads to bounded
aperiodic and chaotic fluctuations in the dynamics of the model. We first establish this
result analytically in terms of the composite coefficients of the map defined above. We
choose d as the bifurcation parameter, since it scales in A−b

κ
. Whereas the parameters

in the coefficients a and c are comparatively tightly restricted, the parameters in this
scale coefficient are less economically restricted.13

The change in stability of zSS occurs at f ′ (zSS) = −1, or:

c

ξ
(zSS)

1−ξ
ξ = 1 + a. (25)

12 In a linear model, an unstable equilibrium implies that θt and vt do grow without bound. While this is
a possibility mathematically, it cannot be a rational expectations equilibrium since the resources κ needed
to support increased vacancy postings would eventually exhaust finite production since the total size of the
labor force is limited to one, see Eq. (2).
13 We discuss this aspect inmore detail in Sect. 4, as it bearsmore relevance for the quantitative implications
of the model.
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We rewrite (25) in terms of the bifurcation parameter d as follows. At the steady state,

we have f (zSS) = azSS − cz1/ξSS + d = zSS, or a − c (zSS)
1−ξ
ξ + d

zSS
= 1. Hence,

c (zSS)
1−ξ
ξ = a − 1 + d

zSS
. Substituting this expression into (25), yields:

d

zSS
= ξ(1 + a) + (1 − a), or: d = μzSS, (26)

where μ = ξ(1 + a) + 1 − a. When d < μzSS, −1 < f ′(zSS) < 0; and when
d > μzSS, f ′(zSS) < −1. In addition, note that if ξ ≥ 0.5, μ ≥ 1 + 0.5(1 − a) > 1,
since a < 1. We can now establish the following theorem for period doubling.14

Theorem 1 The point d∗ = μz∗SS is a bifurcation point for period doubling. Passing
of d through the bifurcation threshold corresponds with emergence of cycles of period
2, 4, 8, etc.

Proof It is relatively straightforward to check the conditions required for period-
doubling bifurcations given in Elaydi (2007) and summarized in Theorem 9 in
Appendix A.1. For fixed values of a, c, ξ , the parameterized map is:

fd(z, d) = az − cz1/ξ + d. (27)

Observe that the parameterized map fd(zSS) = zSS for d > 0, i.e., fd has a unique
positive fixed point zSS for all positive values of d. At the bifurcation point d∗ = μz∗SS,
∂ fd
∂zSS

(zSS) = −1. Finally, ∂2 f 2

∂d∂zSS
(d∗, z∗SS) cannot be zero, where f 2d is the composition

of the map f with itself, i.e., f 2d (d, zSS) = fd( fd(d, zSS)). We have:

f 2(d, z) = a
(
az − cz1/ξ + d

)
− c

(
az − cz1/ξ + d

)1/ξ + d, (28)

and:
∂2 fd
∂z∂d

= − c

ξ

1 − ξ

ξ

(
az − cz1/ξ + d

) 1−2ξ
ξ

(
a − c

ξ
z
1−ξ
ξ

)

= 0, (29)

for zmax < zSS < z0, which is our domain of analysis. ��
We illustrate the emergence of period-doubling cycles at this bifurcation point by

means of a simple numerical example. We fix the match elasticity at our benchmark
value ξ = 0.5 and choose the composite parameters a = 0.891 and c = 0.4 for
expositional convenience.15 Given a range of parameter values for d > 0 we generate

14 The condition in (26) is expressed in implicit form since zSS depends on d, as well as a, c, and ξ . We
show explicit analytical results in terms of the structural model parameters for the benchmark case ξ = 0.5
in the next section.
15 This parameterization is only one example of emergence of periodic doubling and chaos. These values
are, however, economically plausible, as a = 0.891 is obtained by setting the discount rate β = 0.99 and
the job separation rate ρ = 0.1. Under the Hosios condition η = ξ = 0.5, the value of c = 0.4 implies
that m is around 0.9. For values of d between 5 and 5.5, the implied steady-state unemployment rate uSS
ranges between 0.167 and 0.174, which is well within economically plausible bounds.
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Fig. 1 Bifurcation diagram for a = 0.891, c = 0.4, ξ = 0.5

500 iterates of the map f and plot the last 200 against d. Figure 1 shows the period
doubling numerically. For low values of d, the iterates converge to a single steady
state. Around d = 2.5, we see the emergence of a 2-cycle. Four cycles appear as d
passes through 3.7. Past 4, one can also discern the emergence of an 8-cycle, while a
little past d = 5, there is a stable 3-cycle. For larger values of d, the shaded region of
the diagram shows aperiodic oscillations and is the chaotic region at this bifurcation.
Right at the threshold between stability and instability small changes in parameters that
preserve the bifurcation can lead to dramatically different behavior of the endogenous
variables. Instead of gradual adjustment toward the unique steady state, labor market
tightness θ can oscillate between two values without ever converging. At the threshold
for a 2-cycle this requires a benefit parameter b of around 0.4 at a vacation creation
cost of κ = 0.1, both values of which are not implausible. We provide more numerical
examples in the next section. In the next step, we establish existence of periodic and
chaotic solutions more generally.

Theorem 2 For certain parametrization, the map f is chaotic, i.e., the equation in
(17) has chaotic as well as coexisting periodic equilibria of multiple periods.

Proof The proof of the theorem relies on the results from the literature on discrete
dynamical systems, which are presented in Appendix A.1. Since the proof relies on an
application of these theorems we only give an outline of the arguments here and refer
to Appendix A.1 and A.4 for further details. For example, for a map f to generate
chaotic solutions, it is sufficient for it to have a periodic point that is not a power of
2 (see Theorem 7). In particular, existence of a 3-cycle implies chaos in the sense of
Li and Yorke, Block and Coppel and Devaney (Theorems 6, 7 and 8, respectively).
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Fig. 2 Graphical proof of existence of a 3-cycle for the map f

Sufficient conditions for existence of periodic points of odd period p for a map f , as
shown in Lemma 5 are:

f p(x) ≤ x < f (x) or f (x) < x ≤ f p(x), (30)

where x is a point in the domain of f , and f p is the composition of f with itself p
times. Furthermore, by Sharkovski’s and Li and Yorke’s Theorems (5 and 6), if a map
has a periodic point of period 3, then it also has periodic points of all possible periods
(and in the case of a 5-cycle, of all possible periods except for period 3).

We now outline several cases where periodic points of odd periods (3 and 5-cycles)
are found for the map f in (18). This is largely determined by the shape of f , in the
sense that for chaotic behavior to occur, its peak has to be sufficiently high, but not
too high so that the solutions stay bounded, positive and economically meaningful.
This is accomplished by setting f (zmax) = z0 (Theorem 12), where z0 > zmax is the
preimage of 0 under f , i.e., f (z0) = 0. Graphically, this is shown in Fig. 2. We then
have the following:

(i) If d < zmax and f (zmax) = z0, then the map f has a periodic point of period 3,
as:

zmax < f (zmax) = z0, (31)

and
f 3(zmax) = f ( f ( f (zmax))) = f ( f (z0)) = f (0) = d < zmax. (32)

Hence,
d = f 3(zmax) < zmax < f (zmax) = z0. (33)
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(ii) For the case when d > zmax, if we let z+ be the right preimage of zmax, i.e.,
z+ > zmax is such that f (z+) = zmax, then if f (d) ≥ z+, the function f has a
period point of period 5, as under f , z+ is iterated as follows:

z+ → zmax → f (zmax) = z0 → f (z0) = 0 → d → f (d), (34)

and hence:
zmax = f (z+) < z+ ≤ d = f 5(z+). (35)

(iii) Finally, setting f (d) = z0 pins down the cycle:

{. . . 0, d, z0, 0, d, z0 . . .}, (36)

since f (d) = z0, f (z0) = 0, f (0) = d.

��
While Theorem 1 showed the existence of a bifurcation point that leads to period

doubling in the map that captures the key relationship in the search and matching
model, Theorem 2 proves the existence of chaos in this map and gives conditions on
the map’s parameters for it to arise.16 We relegate a discussion of these boundaries to
the next section since analytical results can only be partially obtained under a specific
parameterization so that we have to rely on numerical results. In addition, this also
allows us to interpret the conditions in the proof of Theorem 2 in terms of the structural
model parameters. What remains to be done as a final step is to relate the equilibria
in backward time to those of their forward representation. This is accomplished in the
following Theorem.

Theorem 3 Under certain parameterization, the equations in (17) and (14) have
periodic as well as chaotic equilibria going both forward and backward in time.

Proof Translating cycles from backward to forward time (and vice-versa) is straight-
forward. Kennedy and Stockman in Kennedy and Stockman (2008) show that
equilibria in forward dynamics are chaotic if and only if they are chaotic in back-
ward time (as stated in Theorem 10 in Appendix). Hence this result is a corollary to
Theorems 2 and 10. ��

4 Quantitative analysis

After establishing general results in the previous section, we now provide further anal-
ysis for a restricted version of the model together with some numerical examples. We
first discuss calibration of the model which informs how empirically relevant our gen-
eral results are. We then provide analytical results for a benchmark parameterization
of the model that delineates the parameter regions where chaos can occur. In the next

16 Theorem 13 in Appendix presents the above proof for a general family of maps classified by Medio and
Raines (2007) as Type B maps.
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Table 2 Calibration and parameter ranges

Parameter Values Source

Separation rate ρ (0, 1) Shimer (2005): ρ = 0.1

Match elasticity ξ (0, 1) Petrongolo and Pissarides: (0.5, 0.7)

Match efficiency m (0, 1) Lemma 2

Benefit b (0, A) Shimer (2005): b = 0.4

Bargaining η (0, 1) Hosios condition: η = ξ

Job-creation cost κ > 0 Imputed from steady-state sample means

Risk aversion σ 0 Benchmark

Discount factor β 0.99 Standard value

Productivity A 1.00 Normalized

step, we discuss more general numerical results and explicitly link the bifurcation to
the structural parameters of the economic model. Finally, we contrast and compare
our analysis of the global dynamics to results for local determinacy that have been
derived for linearized versions of the search and matching model.

4.1 Calibration

This section describes our choice for parameter values and ranges that we use in the
numerical analysis of the global and local properties (see Table 2). We assume, as
in Shimer (2005), that households are risk-neutral, that is, σ = 0. This simplifies
derivation of analytical results considerably; in fact, it makes it possible to obtain
analytical results for global dynamics (see also Bhattacharya and Bunzel 2003a). We
set the discount factor β = 0.99 and normalize the productivity level A = 1 without
loss of generality. The separation rate ρ ∈ (0, 1). A typical value for quarterly data is
ρ = 0.1, which is consistent with the evidence reported in Shimer (2005). The bar-
gaining parameter η ∈ (0, 1). Most of the literature assumes η = 0.5, as independent
observations on its value are not obvious to obtain. An alternative calibration is to
impose the Hosios condition ξ = η. However, we largely treat η as a free parame-
ter. The match elasticity ξ ∈ (0, 1). In a well-known study, Petrongolo and Pissarides
(2001) argue for values between 0.5 and 0.7. The plausibility of this range is supported
by the evidence in Lubik (2013). However, we regard values outside this range as plau-
sible enough. The level parameter in the matching functionm > 0 can be used to scale
the unemployment rate, for instance, but it is otherwise generally left unrestricted in
the literature. However, we restrict this parameter to obey m ∈ (0, 1) based on the
reasoning in Lemma 2. As for the remaining parameters, benefits b ∈ (0, A) since
they cannot exceed the marginal product of the firm, in which case it could not offer
any wage that would induce an unemployed person to work. Given our normalization
A = 1, this restricts b to the unit interval. Typical values in the literature range from
b = 0.4 to b = 0.9 (as in Shimer 2005; Hagedorn and Manovskii 2008 respectively).
Vacancy posting cost κ > 0. It is a scale variable that can be measured in terms of
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resource loss as a percentage of GDP. Typical values are in the low percentage points
when measured relative to output.

We also consider calibrating the steady-state unemployment rate uSS directly. This
has the advantage that we can bring direct observations to bear on the model, such
as the unemployment rate. In order to obtain a specific target value, a parameter
that may not be easy to pin down otherwise thus needs to be adjusted endogenously.
Another advantage of this approach is that a judicious choice of setting steady-state
values can allow for analytical solutions. For instance, the stability condition (24) is
expressed for an endogenous variable. Using the law of motion for employment (3),

we can compute θSS =
(

1
m

ρ
1−ρ

1−uSS
uSS

)1/(1−ξ)

without having to solve the nonlinear

Eq. (11). Similarly, we can fix the job-finding rate pSS = p(θSS), which implies
θSS = (pSS/m)1/(1−ξ). The JCC then delivers the following restriction on the imputed

parameter: A−b
κ

= η
1−η

θSS + 1
1−η

1−β(1−ρ)
β(1−ρ)

θ
ξ
SS
m , from which we can obtain either b,

κ , or even η. We note that in this expression b and κ are not separately identifiable.
However, the term A−b

κ
scales various expressions, which we can then treat as a

bifurcation parameter as discussed before. In terms of numerical values assigned to the
steady-state values, uSS can be chosen to correspond to observed samplemeans, which
typically is around 5%. An alternative approach is to target the observed employment
rates, which would imply an unemployment rate that is much higher, for instance,
25%. Both approaches have been used in the literature, with different implications for
the dynamic behavior of the calibrated model.17

4.2 A simple illustration for a benchmark parameterization

We derive analytic conditions for the existence of periodic and chaotic equilibria in
the special case when the match elasticity ξ = 0.5. We regard this specification as
empirical plausible, as discussed above.Moreover, it is often implicit in the imposition
of the Hosios condition with equal bargaining power. This is also the case studied by
Bhattacharya andBunzel (2003a) andBhattacharya andBunzel (2003b). In this special
case, the map f becomes the quadratic:

f (z) = az − cz2 + d, (37)

which allows us to explicitly solve for zSS, z0, and z+. We find that zSS =
1
2c

(
(1 − a) + √

(1 − a)2 + 4cd
)
, z0 = 1

2c

(
a + √

a2 + 4cd
)

and z+ = 1
2c(

a + √
a2 + 4cd − 2a

)
. The critical value for a period doubling bifurcation d∗ =

μz∗SS then corresponds to:

17 The idea is to capture both measured unemployment in terms of recipients of unemployment benefits
and potential job searchers that are only marginally attached to the labor force but are open to job search.
Since we do not model labor force participation decisions, this is a shortcut to capturing effective labor
market search. This approach has been taken by Cooley and Quadrini (1999) and Trigari (2009).
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Fig. 3 Values of d and c at Bifurcation threshold, 0 < a < 1, ξ = 0.5

d∗ = 1

2c

(
1 + 1 − a

2

) (
(1 − a) +

√
(1 − a)2 + 4cd∗

)
, (38)

where the coefficients a and c are defined above. This equation is in implicit form and
defines a surface in a three-dimensional coefficient space for a, c, and d. For any fixed
values of one of these parameters, we can plot implicit curves in two dimensions to
show parameter ranges that satisfy this condition.

We depict the relationship between the three composite parameters given ξ = 0.5
in Fig. 3. We plot c on the horizontal axis against d > 0 on the vertical axis and
vary a ∈ (0, 1) to satisfy the threshold condition above. This traces out a downward-
sloping narrow band of combinations of the composite parameters that imply period
doubling. Over the admissible region 0 < c < 1, there is a wide range of parameter
combinations where periodic and chaotic behavior can occur.18 This is associated with
high values ofmatch efficiencym and the scale coefficient (A − b) /κ which translates
into low unemployment benefits and vacancy posting costs. We will dig deeper into
the parameter regions that can imply periodic behavior in the next section.19 We

18 In the figure, we extend the range of c = β (1 − ρ)mη beyond what is economically permissible since
the map (37) is in principle not restricted in such manner.
19 We also want to highlight one additional case under this benchmark parameterization. An alternative
way to establish chaotic behavior is to use the logistic map r(μ) = μr(1 − r), which in the literature is a
canonical example for demonstrating chaos in one-dimensional maps, as, for example, in Elaydi (2007). For
the quadratic case ξ = 0.5, it is straightforward to pin down the values of parameters a, c, d that establish
qualitative, or topological, equivalence of the dynamic behavior of the iterates of the map f to those of the
logistic map.
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Fig. 4 Period-3 points for ranges of 0 < a < 1, ξ = 0.5

can also solve for period-3 points of the map f more generally. Specifically, we
solve for the fixed points of the composite map f 3 that are different from zSS. The
parameter values where such points are found are given in Fig. 4 for the same ranges
as before. The results are qualitatively close to those in the previous figure. We thus
conclude that periodic and chaotic behavior is a feature of the standard search and
matching model over a reasonably wide range of economically plausible parameter
values.

4.3 Chaos regions for structural parameters

We now provide further insight on the conditions in the proof of Theorem 2 and
describe them in terms of the model parameters. We proceed in two steps. First, we
delineate parameter ranges that imply chaos for the composite coefficients of the map
(18), while in the second step we capture the range of equilibria by expressing them
in terms of the structural parameters of the underlying model. The main challenge is
that we cannot solve for the relevant expressions analytically. Moreover, the model is
richly parameterized with a fairly large number of structural parameters. It is therefore
convenient to look at the composite coefficients first.

The key values are the z-intercept z0 and the maximum zmax of the map and the
condition f (zmax) = z0, which we need to solve to derive restrictions for the existence
of chaotic equilibria. In most cases, we cannot solve for z0 analytically. Instead, we
use the insight that for f (zmax) = z0, it is necessary that the second iterate of zmax
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Fig. 5 Implicit curves for f (zmax) = z0, d < zmax, a = 0.891, 0 < c < 1

maps to zero, i.e., f 2(zmax) = 0. Since f (zmax) = a
(
aξ
c

) ξ
1−ξ − c

(
aξ
c

) 1
1−ξ + d, the

condition f 2(zmax) = 0 implies:

f 2(zmax) = a2
(
aξ

c

) ξ
1−ξ − ac

(
aξ

c

) 1
1−ξ + ad

− c

[
a

(
aξ

c

) ξ
1−ξ − c

(
aξ

c

) 1
1−ξ + d

] 1
ξ

+ d = 0. (39)

As in the previous section, this equation is in implicit form and defines a surface in a
four-dimensional coefficient space for a, d, c, and ξ . For any fixed values of two of
these parameters, we can plot implicit curves in two dimensions to show parameter
ranges that satisfy this condition. Figure 5 shows the plot of a family of such curves that
also satisfy d < zmax for ranges of parameters when a is set at 0.891 and 0 < c < 1.
In this case, corresponding to (i) in the proof of Theorem 2, cycles emerge only at
unreasonably low values of the match elasticity.

The case (ii) where d > zmax and f (d) ≥ z+ implies that f 2(d) ≤ zmax, since we
cannot always solve for z+ analytically. This corresponds with the inequality:

a(ad − cd1/ξ + d) − c
(
ad − cd1/ξ + d

)1/ξ + d ≤
(
aξ

c

) ξ
1−ξ

. (40)
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Fig. 6 Implicit curves for f (zmax) = z0, d > zmax and f (d) > z+, a = 0.891, 0 < c < 1

The family of curves that satisfy (39) and the above inequality are presented graphically
in Fig. 6 for ranges of parameters a = 0.891 and 0 < c < 1. Period-5 cycles occur for
a range of the match elasticity from around 0.28 to upwards of 0.7 which covers an
empirically plausible range. This is consistent with a wide range of values for the scale
parameter d and thus implicitly (A − b) /κ . Finally, the condition f (d) = z0 exactly
pins down the three cycle {. . . , 0, d, z0, 0, d, z0, . . .}, as 0 → d → f (d) = z0 → 0.
This condition can be rewritten as f 2(d) = 0, or:

a(ad − cd1/ξ + d) − c
(
ad − cd1/ξ + d

)1/ξ + d = 0, (41)

as shown in Fig. 7. In this case, cycles occur only for low values of ξ and d, with
the latter being consistent with very high unemployment benefits and vacancy posting
costs.

In summary, Figs. 5, 6 and 7 give an idea for which parameterizations periodic and
chaotic dynamics can arise in the nonlinear model. Previously, Mendes and Mendes
(2008) have established chaos under the restriction ξ = 0.2. This is consistent with our
finding that conditions in (39) and d < zmax, as well as (41), imply low values of the
match elasticity ξ , e.g., as in Fig. 7. We generalize their findings to the full parameter
space. Moreover, empirical estimates of the match elasticity ξ in the literature are
considerably higher.20 In contrast to this earlier work, we find that the conditions in

20 In their benchmark study, Petrongolo and Pissarides (2001) find a value ξ of 0.7, while Hall and
Schulhofer-Wohl (2015) report estimates that range between 0.28 and 0.7 from a wide variety of studies,
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Fig. 7 Implicit curves for f (d) = z0, a = 0.891, 0 < c < 1

(39) and (40) yield values of ξ that are consistent with the empirical estimates. We
can now summarize these results and reformulate Theorem 2 more concretely in the
following Lemma. The conditions are also collected in Table 1.

Lemma 4 For certain parametrization, the map f is chaotic, i.e., the equation in (17)
has chaotic as well as coexisting periodic equilibria of multiple periods. In particular,

(i) If (39) holds and zmax > d, then the equation in (17) has periodic equilibria of
every period p ≥ 3, as well as aperiodic and chaotic solutions.

(ii) If (39) and (40) hold and zmax < d, then the equation in (17) has periodic
equilibria of every period p ≥ 5, as well as aperiodic and chaotic solutions.

(iii) If (41) holds, then the equation in (17) has a 3-cycle.

In a final step, we link these chaos regions identified for the composite parameters
of the map to the structural parameters of the search and matching model. This is not
straightforward since themodel is richly parameterized in the sense that the equilibrium
and the dynamic behavior of one endogenous variable, namely labor market tightness
θ , is determined by eight parameters in the JCC. In order to identify the relevant
regions where chaos can occur, we therefore have to condition judiciously on specific

parameters values. Recall that the location of zmax =
(

1
m

ξ
η

) ξ
1−ξ

is determined by three

parameters only. Furthermore, we keep the separation rate ρ and the discount factor β

Footnote 20 continued
data, and empirical approaches. Nevertheless, ξ = 0.2 would be considered below the plausible empirical
range.
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fixed for the purposes of this analysis since they pin down the coefficient a and are a
component in c and d. We then analyze the equilibria in terms of the remaining model
parameters that affect the type of equilibria and the shape of the map. This leaves the
scale coefficient A−b

κ
as the key component, whereby we normalize A = 1 without

loss of generality. We note that A−b
κ

shifts the map f (z) vertically, thereby changing
the location of the steady state zSS and the intercept z0 with the zero line. The shape
of the map, however, is unaffected.

As before, we describe the analytical properties of the map in terms of the
steady-state values of endogenous variables. Specifically, we consider the steady-
state unemployment rate uSS as a calibration target. Since θSS = z1/ξSS , we can

back out the implied labor market tightness θSS =
(

1
m

ρ
1−ρ

1−uSS
uSS

)1/(1−ξ)

from the

law of motion for employment when we treat uSS parametrically. Given the JCC,
this strategy restricts the parameterization of either b or κ based on the relationship
A−b
κ

= η
1−η

θSS + 1
1−η

1−β(1−ρ)
β(1−ρ)

θ
ξ
SS
m . It thus leaves one remaining parameter for which

we can do bifurcation analysis. Intuitively, this approach targets a specific unemploy-
ment rate by setting, for instance, benefits b at a specific level. Changing of b (or κ )
necessarily changes the steady state uSS. Instead of discussing the effects of changes
in this parameter on the implied uSS, this reparameterization allows us a more direct
and economically intuitive consideration.

We focus on the case where the first derivative of the map f is negative since
it admits a bifurcation. We have that for zmax < zSS < z0, f ′ (zSS) < 0, which
establishes the bifurcation point at f ′ (zSS) = −1:

uSS = 1

1 + β−1+(1−ρ)
ρ

ξ
η

, (42)

which is the counterpart to condition (24) written in terms of uSS.21 If the parame-
terization is such that this condition holds, that is, if the endogenous unemployment

rate is equal to the threshold
[
1 + β−1+(1−ρ)

ρ
ξ
η

]−1
, then the equilibrium undergoes a

bifurcation. We can now depict this scenario in terms of the structural parameters of
the model. This is shown in Fig. 8. These graphs are created for ranges of composite
parameter values where chaos is observed. For a given point in the shaded region (for
instance m and u), there exist parameter values a, c, d, and ξ = 0.5, which result in

21 For completeness, we also have that at 0 > f ′ (zSS) > −1:

1

1 + β−1+(1−ρ)
ρ

ξ
η

< uSS <
1

1 + 1−ρ
ρ

ξ
η

, (43)

and at −1 > f ′ (zSS):

uSS <
1

1 + β−1+(1−ρ)
ρ

ξ
η

. (44)
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Fig. 8 Global dynamics: chaos regions

chaotic behavior in the model.22 We observe that chaos is prevalent in the nonlinear
model for economically plausible parameter values. Generally, we observe chaos for
values of the match efficiency parameterm above 0.5, which is consistent with empir-
ical estimates of this parameter. At the same time, chaotic behavior requires a high
bargaining parameter η, a comparatively low job-matching rate q, and is consistent
with a moderately high steady-state unemployment rate u. On the other hand, combi-
nations of the separation rate ρ and m that imply chaos are in the plausible range for
the former but not the latter.

4.4 Local indeterminacy

Finally, we contrast our results on global dynamics to those derived from a local analy-
sis. Much of the macroeconomic labor market literature relies on local approximation
of fundamentally nonlinear models in a neighborhood of the steady state. The thus
approximated model is solved using standard techniques such as the “root-counting”
approach developed by Blanchard andKahn (1980). Equilibria are classified as unique
or determinate, indeterminate, or non-existent depending on whether the number of
explosive eigenvalues of the linear equation system derived from the local approx-
imation is, respectively, equal to, less than, or larger than, the number of state or
backward-looking variables in the model. There is a rough correspondence between

22 Except for the case shown in m-ρ space of Fig. 8, a is fixed at 0.891, which is obtained by setting
β = 0.99 and ρ = 0.1. We also impose the Hosios condition that sets ξ = η.
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the concept of global stability and local non-uniqueness, and global instability and
local nonexistence, but local analysis cannot consider by construction periodic and
chaotic dynamics. It is therefore instructive to compare the local determinacy results
to global dynamics.

The local dynamics of the simple search and matching model have been studied
by Krause and Lubik (2010), whom we follow in the description below. As discussed
above, we consider the case σ = 0 so that we can obtain an analytical characterization.
The job-creation condition then becomes:

κ

m
θ

ξ
t = β(1 − ρ)

[
(1 − η) (A − b) − ηκθt+1 + κ

m
θ

ξ
t+1

]
. (45)

We linearize this equation around the unique steady state, which results in:

θ̂t = β(1 − ρ)

(
1 − η

ξ
mθ

1−ξ
SS

)
θ̂t+1, (46)

where θ̂t = θt −θSS is the deviation from the steady state θSS.23 This is an autonomous
first-order linear difference equation in θ , the dynamic properties of which depend on

the coefficient β(1 − ρ)
[
1 − η

ξ
mθ

1−ξ
SS

]
. Since this is a forward-looking equation, a

unique and determinate equilibrium requires that the eigenvalue lies within the unit
circle (see Blanchard and Kahn 1980). More formally, we establish the following
Theorem.

Theorem 4 The equilibriumdynamics of the job-creation condition are locally unique
if:

0 < p(θSS) <
1 + β(1 − ρ)

β(1 − ρ)

ξ

η
. (47)

The equilibrium dynamics are locally indeterminate if:

1 + β(1 − ρ)

β(1 − ρ)

ξ

η
< p(θSS) < 1. (48)

Proof The equilibrium is locally unique if
∣∣∣β(1 − ρ)

(
1 − η

ξ
mθ

1−ξ
SS

)∣∣∣ < 1. Con-

sider the boundaries in turn. Denote p(θSS) = mθ
1−ξ
SS . β(1 − ρ)

(
1 − η

ξ
p(θSS)

)
<

1 implies p(θSS) > 0 > − ξ
η
1−β(1−ρ)
β(1−ρ)

, which is always true. Second, −1 <

β(1 − ρ)
(
1 − η

ξ
p(θSS)

)
implies p(θSS) <

ξ
η
1+β(1−ρ)
β(1−ρ)

. Since 0 < p(θSS),

this proves the first part of the theorem. The equilibrium is indeterminate if∣∣∣β(1 − ρ)
(
1 − η

ξ
mθ

1−ξ
SS

)∣∣∣ > 1. ��
The theorem establishes that for a wide range of parameter values the dynamic

equilibrium is locally unique. Under the Hosios condition ξ = η, the threshold is

23 Log-linearizing this equation around the steady state would result in the same dynamic properties.
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always above one, so that under the requirement that we only admit job-matching
rates 0 < p(θSS) < 1, the equilibrium is always determinate. In the context of this
deterministic model the unique equilibrium is θ̂t = 0, which can be found by iterating
the linearized JCC forward since it is stable in its forward dynamics. This puts labor
market tightness at its steady-state value as the only possible equilibrium. The steady
state θSS is locally unstable in this case. As time goes forward, the path for tightness
will become unbounded unless the economy is placed on the initial condition θ0 = θSS.
Starting values in a small neighborhood of the steady state will thus lead to explosive
paths. In the terminology of linear difference equations, the equilibrium is saddle-
path stable.24 The equilibrium is locally indeterminate if the job-finding rate is high
enough. In this case, the JCC is a stable difference equation, one solution of which is:

θ̂t+1 =
[
β(1 − ρ)

(
1 − η

ξ
mθ

1−ξ
SS

)]−1

θ̂t . (49)

The steady state is therefore an attractor under this parameterization. All paths with
starting values in a small neighborhood around θSS converge to it. Different adjustment
paths are indexed by their starting values θ i0, which correspond to the various dynamic
equilibria.25

The theorem is stated in terms of boundary conditions for the job finding rate
p(θSS), which parallels the results from the global stability analysis in Sect. 3.2. In
fact, the threshold between determinacy and indeterminacy coincides with the stability
threshold in (24). High enough job-finding rates result in indeterminacy. They are
high when the labor market is tight, that is, when there is a relatively large number
of vacancies compared to the pool of unemployed. In this case, equilibria can be self-
fulfilling because firms post additional vacancies even without supporting underlying
fundamentals, such as high productivity, because the high job-finding rate stimulates
job search by the unemployed and thereby validates the original vacancy posting. If
the parameterization is such that the economy falls into the indeterminacy region, then
any initial condition is consistent with stable adjustment dynamics to the steady state.

We can now draw a more precise distinction between the implications of local and
global analysis. Local indeterminacy in forward time as established in Theorem 4
coincides with instability in backward time as shown in Eq. (24). Intuitively, in the
linearized model this just implies inversion of the eigenvalues of the difference equa-
tion in question. We also show in Sect. 3.3 that loss of stability of the steady state
in backward time gives rise to cyclical and chaotic behavior both in backward and

24 An alternative way of seeing this is by inverting the linearized JCC. This implies the backward-looking

representation θ̂t+1 =
[
β(1 − ρ)

(
1 − η

ξ
mθ

1−ξ
SS

)]−1
θ̂t . The root of this representation is the inverse of

the root of the forward equation. Forward stability therefore implies backward instability, and vice versa.
Given the parametric restrictions established in the theorem, the JCC would have explosive dynamics if
expressed backward. Consequently, the only solution to be consistent with local stability is θ̂t = 0. One
important insight is that in the linear case the roots of the forward and the backward representation of the
difference equation in question are the inverse of each other. Local analysis can therefore rely on either
representation. This is, in general, not the case for global dynamics.
25 This aspect and the existence of sunspot equilibria is treated more formally in Lubik and Schorfheide
(2003) and Farmer et al. (2015).
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Fig. 9 Local dynamics: determinacy regions

forward time as shown by Kennedy and Stockman (2008). This gives one example
that analysis focused on local dynamics only may omit potentially interesting and
economically relevant behavior away from the steady state.

Figure 9 depicts indeterminacy regions for various structural parameter combina-
tions.26 The panels show that for wide ranges of the parameter space, the steady-state
equilibrium is locally unique. Indeterminacy generally arises when the match elastic-
ity ξ is small. A special case is when ξ = η. In this case, p(θSS) < 1 <

1+β(1−ρ)
β(1−ρ)

, and
local indeterminacy can never arise, which is the main finding by Bhattacharya and
Bunzel (2003a) and Bhattacharya and Bunzel (2003b). In the lower right-hand panel,
the Hosios condition can be represented by the 45-degree line where η = ξ . The inde-
terminacy region lies in the upper left-hand corner where the bargaining parameter η

is high and ξ small, which is consistent with the theorem above. However, the Hosios
condition is empirically violated as the literature has amply demonstrated, and we do
not regard this as a likely parameterization. The threshold is tightened as the term ξ

η
becomes smaller. Low values of the match elasticity and high values for the bargaining
share are therefore more likely to imply indeterminacy. For instance, for β = 0.99,
ρ = 0.1, ξ = 0.4, and η = 0.9, the threshold coefficient is 0.94. The work in Haan
et al. (2000) reports an estimate for p(θ) of 0.45. Although this is far away from the
threshold, we would nevertheless regard the possibility of local indeterminacy as more
than a curiosity.

26 The figure also shows regions where the equilibrium does not exist. But for the purposes of this paper
we rule these out on account of Lemma 2, which restricts the match efficiency to be less than one.
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Fig. 10 Cycles and chaos for various values of ξ

Finally, it is instructive to contrast these findings to the results on global dynamics
as described in the previous section and depicted in Fig. 8. While we cannot talk about
chaotic and periodic behavior locally, one conclusion we can draw from analysis of
the local dynamics is that for a wide region of the parameter space the search and
matching model exhibits locally unique dynamics. It is only in extreme regions of
the parameter space that we observe explosive or excessively stable behavior, or in
the language of local analysis nonexistence or indeterminacy, respectively. In con-
trast, the possibility of periodic and chaotic dynamics is more prevalent in the sense
that we can obtain such equilibria for an economically plausible and reasonably large
region of the parameter space. More specifically, at ξ = 0.5 local analysis would
show a determinate equilibrium, while the corresponding regions seen in Fig. 8 reveal
chaotic dynamics for high m and unemployment and job-finding rates between 0.1
and 0.2. Figure 9 shows that indeterminacy arises for small values of the match elas-
ticity ξ . This compares with the emergence of chaotic behavior for small ξ in Figs. 5
and 7.
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5 Conclusion

This paper demonstrates that periodic and chaotic dynamics are an economically
plausible feature of the simple search and matching model of the labor market. This
contrasts with findings from the literature on local dynamics that the model exhibits
locally unique and stable equilibria over the wide range of the parameter space. Com-
pared to previous literature on global dynamics in this class of models, we are able to
characterize analytically a larger set of regions implying chaotic dynamics. Specifi-
cally,we showexistence of chaos for parameterizations that are economically plausible
and that have been used in the literature before. We specifically accomplish this by
utilizing some recent results from the literature on chaotic equilibria.

Our paper is purely theoretical in nature, although we highlight the economic plau-
sibility of the results in light of conventional calibration. This paper does not dig deeper
into the question whether the theoretically plausible periodic behavior can in fact be
observed in the data; that is, whether the fully nonlinear model with parameters that
fall into the chaotic region is an actual data-generating process in a statistical sense.
Specifically, it seems important to study whether actual labor market time series, such
as the unemployment rate and vacancies, exhibit behavior of the type that are consistent
with such equilibria. As an example, Fig. 10 depicts time paths of labor market tight-
ness with periodic and chaotic behavior generated under different values of the match
elasticity ξ . At first pass, such actual observations seem unlikely since we do not typ-
ically observe oscillating behavior in the data, or at least not at the frequency depicted
here. A formal empirical investigation of the global behavior uncovered in this paper is
thus a fruitful direction for future research. A second issue is the degree to which local
theoretical models or linear empirical methods fail in describing such global dynam-
ics. Most empirical studies use empirical methods relying on linearity, which cannot
uncover global effects. Research in this area is still sparse.However, the analytic results
in this paper can serve as a background against which to conduct such an analysis.
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A Appendix

In this appendix, we list definitions and results necessary for the establishment of
periodic and chaotic solutions in the search and matching model, as discussed in the
paper.

A.1 Preliminaries

Let f : R → R be a map and consider the first-order difference equation given by:
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xt+1 = f (xt ). (50)

Definition 1 (Invariance) The interval I ⊂ R is invariant under f if f (I ) ⊆ I . For
the first-order equation in (50), the above definition implies that if the initial value
x0 ∈ I , then xt ∈ I for t > 0.

Definition 2 (Periodic points) Let p be a nonnegative integer and let f p = f ◦ f ◦
· · · ◦ f be the composition of the map f with itself p times. The point s ∈ R is a
p-periodic point of the map f if f p(s) = s. The first-order equation in (50) has a
periodic solution of period p if the map f has a p-periodic point. In this case, we
say that the equation in (50) has a periodic solution of period p (or a p-cycle), i.e.,
xt+p = xt for all t ≥ 0.

The following result in Block and Coppel (1986) establishes sufficient conditions
for existence of periodic points of odd periods.

Lemma 5 Let f : R → R be a continuous map. If for some odd integer p > 1 there
exists a point x such that:

f p(x) ≤ x < f (x) or f (x) < x ≤ f p(x), (51)

then f has a periodic point of period p.

Wenext list Sharkovski’s ordering of positive integers defined as follows (seeElaydi
2007, for more):

3 � 5 � 7 � · · ·
2 · 3 � 2 · 5 � 2 · 7 � · · ·
22 · 3 � 22 · 5 � 22 · 7 � · · ·

· · ·
2n · 3 � 2n · 5 � 2n · 7 � · · ·

· · ·
2n � 2n−1 � · · · � 22 � 2 � 1

Now the theorem.

Theorem 5 (Sharkovski)27 Let f : I → I be a continuous map on the interval I ,
where I may be finite, infinite, or the whole real line. If f has a periodic point of
period k, then it has a periodic point of period r for all r with k � r .

Given Sharkovski’s ordering, the above theorem states that if a function f has a
periodic point of period 3, then it has periodic points of all periods, which is stated as
a theorem below.

27 The result is taken from Elaydi (2007).
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Theorem 6 (Li and Yorke 1975) Let f : I → I be a continuous map on an interval
I ⊆ R. If f has a periodic point in I of period 3, then f has a periodic point of every
integer period k ≥ 1.

There are several, not necessarily equivalent, definitions of chaos in mathematical
literature. The more commonly used ones are those in the sense of Li and Yorke,
Devaney, and Block and Coppel (see Aulbach and Kieninger 2001 for more details).
For the purpose of this paper, belowwe list the definition of chaos in the sense of Block
and Coppel and refer to the result in Aulbach and Kieninger (2001) that establishes
equivalence between chaos in the sense of Block and Coppel to that of Devaney.

Definition 3 A map f : I → I is called turbulent if there exist compact subintervals
J, K of I with at most one common point such that

J ∪ K ⊆ f (J ) ∩ f (K ). (52)

If J and K are disjoint, then f is said to be strictly turbulent.

Theorem 7 (Chaos in the sense of Block and Coppel) A continuous map f : I → I
on a nontrivial compact interval I is chaotic in the sense of Block and Coppel if and
only if one of the following equivalent conditions is satisfied:

(i) f m is turbulent for some m ∈ N.
(ii) f m is strictly turbulent for some m ∈ N.
(iii) f has a periodic point whose period is not a power of 2.

Theorem 8 (Aulbach and Kieninger 2001) A continuous map f : I → I on an
interval I is chaotic in Devaney sense if and only if it is chaotic in the Block and
Coppel sense.

Our next theorem is from Elaydi (2007) and lists conditions under which period-
doubling bifurcations occur.

Theorem 9 (Period-DoublingBifurcation)Let a one-parameter family Fμ(x)bewrit-
ten as a map of two variables, i.e., H(μ, x) : R×R → R and let x∗ be the fixed point
of Fmu. Suppose that

(i) Hμ(x∗) = x∗ for all μ in an interval around a threshold point μ∗.
(ii) H ′

μ∗(x∗) = −1.

(iii) ∂2H2

∂μ∂x∗ (μ∗, x∗) 
= 0.

where H2(μ, x) = H(H(μ, x)). Then there exists an interval I about x∗ and a
function p : I → R such that Hp(x)(x) 
= x, but H2

p(x)(x) = x.

Finally, we state the result of Kennedy and Stockman (2008) that relates the solu-
tions of a map iterated backward in time to those of forward representation. For
establishment of periodic solutions in the forward map, existence of periodic solu-
tions in the backward map is sufficient. Using the same notation as in Kennedy and
Stockman (2008), the map f −1 is defined for the map f on a metric space X with
f : X → X , regardless whether f is multi-valued or not. Their main result states:

123



Global dynamics in a search and matching model of the labor… 493

Theorem 10 Let f : X → X be continuous on a metric space X. Then f is chaotic
on X in the sense of Devaney if and only if f −1 is chaotic on X.

The above theorem is an important result showing that models with backward
dynamics are chaotic going forward in time if and only if they are chaotic going
backward in time. Hence, establishment of chaotic solutions in backward dynamics is
sufficient for existence of chaotic forward dynamics.

A.2 Fixed points of the g-map

Theorem 11 The map g(x) = (axξ − cx + d)
1
ξ can have two positive fixed points.

Proof The fixed points of the map g must satisfy the expression:

x = (axξ − cx + d)
1
ξ , (53)

or for x 
= 0

h(x) := (axξ − cx + d)
1
ξ

x
= 1 (54)

The derivative of h(x) is given by:

h′(x) = 1

ξ x2

[
(axξ − cx + d)

1
ξ
−1

(ξaxξ−1)x − (axξ − cx + d)
1
ξ

]
, (55)

which can be rewritten as:

h′(x) = 1

ξ x2

[
(axξ − cx + d)

1−ξ
ξ

] [
(ξ − 1)axξ − d

]
. (56)

Next, we determine the behavior of h(x) via the sign of its derivative h′(x). First,
note that lim

x→0+ h(x) = ∞. Since 0 < ξ < 1, then (ξ − 1)axξ − d < 0 for all x ≥ 0.

Also, we let:

φ(x) = axξ −cx+d with φ(0) = d > 0, φ(d/a)
1
ξ ) = −c(d/a)

1
ξ < 0, (57)

hence there exists a point x∗ ∈
(
0,

( d
a

) 1
ξ

)
such that φ(x∗) = 0. Moreover, φ(x) > 0

for x ∈ (0, x∗), φ(x) < 0 for x > x∗, and h(x∗) = g(x∗) = 0.
Now, if 1

ξ
= 2k for some positive integer k ≥ 1, then 1

ξ
− 1 is odd, which means

that (φ(x))1/ξ−1 is positive on (0, x∗) and negative on (x∗,∞). This means h(x) is
decreasing on (0, x∗) and increasing on (x∗,∞) and is exactly 0 at x∗. Therefore,
there exist precisely, two points x ′ and x ′′, at which h(x ′) = h(x ′′) = 1, hence x ′ and
x ′′ are the two fixed points of g(x), which proves the above claim.

If, on the other hand, 1
ξ

= 2k + 1, then (φ(x))1/ξ−1 > 0 for x > 0, hence h is
decreasing on (0,∞) and is equal to one at precisely one point, and in this case, the
positive fixed point of the map g is unique. ��
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Fig. 11 Multiple steady states of map g at a = 0.8, c = 0.7, d = 2 and ξ = 0.5

See an example of the map g at a = 0.8, c = 0.7, and d = 2 with ξ = 0.5 in
Fig. 11. The two steady states are clearly discernible at the intersection points of the
map g with the identity line.

A.3 Steady state of the f-map

Lemma 6 Equation (17) has a unique positive steady state zSS.

Proof The steady state(s) of (17) must be the fixed point(s) of the map f in (18). The
fixed point(s) z̄ of f must satisfy the equation

az̄ − cz̄1/ξ + d = z̄. (58)

To show that such a point z̄ exists, we define a function φ(z) = (1− a)z + cz1/ξ − d.

Since φ(0) = −d < 0 and φ
(

d
1−a

)
= c

(
d

1−a

)1/ξ
> 0, there exists a point z̄ ∈

(
0, d

1−a

)
such that φ(z̄) = 0. To show that z̄ is unique, we note that the derivative

φ′(z) = (1 − a) + c
ξ
z
1−ξ
ξ > 0 for z > 0. Therefore, φ is increasing on (0,∞), and

hence its zero is unique. It follows that z̄ = zSS is the unique positive fixed point of
the map f and the equation in (17) has a unique positive steady state. ��

123



Global dynamics in a search and matching model of the labor… 495

A.4 Chaos in type-B maps

Suppose f : R → R is a function with a critical pointm > 0 such that f is increasing
on [0,m) and decreasing on (m,∞) and f (0) = d > 0. Under appropriate scaling,
this type of a map has been characterized by Medio and Raines (2007) as a Type-B
map. We establish sufficient conditions for existence of periodic and chaotic solutions
for a general class of such maps.

Given that f is decreasing on (m,∞) and f (m) > 0, there exists a real number
q > m, such that f (q) = 0 (i.e., q is the preimage of 0). This gives us the following
result.

Theorem 12 If f (m) ≤ q, then the interval [0, q] is invariant under f .

Proof Let x ∈ [0, q]. Then f (x) ≤ f (m) ≤ q for all x ≥ 0. Further, if 0 ≤ x ≤ m,
then f (x) ≥ f (0) = d > 0 since f is increasing on [0,m), and if m ≤ x ≤ q, then
f (x) ≥ f (q) = 0 since f is decreasing on [0, q]. ��
Now, for the Type-B map defined above, for any point y ∈ [0, q], there exists a

pair of real numbers y− and y+ such that f (y−) = f (y+) = y, i.e., y− and y+ are
preimages of y. Moreover, if z < y, then:

z− < y− < m < y+ < z+. (59)

We use this to establish sufficient conditions for existence of odd periodic points in
Type-B maps.

Theorem 13 Let f be a Type-B map defined above.

(i) If m > d and f (m) = q, then f has a periodic point of period 3 in [0, q].
(ii) If f (d) ≥ m+ and f (m) = q, then f has a periodic point of period 5 in [0, q].
(iii) If f (d) = q, then f has a periodic point of period 3 in [0, q].
Proof (i) If m > d, then f (m) = q ≥ m, f 2(m) = f (q) = 0 and f 3(m) = f (0) =

d < m, hence:
d = f 3(m) < m ≤ f (m) = q, (60)

and the result follows by Lemma 5.
(ii) If f (d) > m+, then:

m+ → m → q → 0 → d → f (d), (61)

i.e., f (d) = f 5(m+) and:

m = f (m+) < m+ ≤ f 5(m+), (62)

and the result follows again by Lemma 5.
(iii) Setting f (d) = q pins down exactly the cycle {. . . 0, d, q, 0, d, q, . . .} as f (0) =

d, f (d) = q, f (q) = 0. ��

123



496 N. Lazaryan, T. A. Lubik

As a corollary, we also have the following result.

Corollary 1 If any of the hypotheses (i), (ii), or (iii) in Theorem 13 hold, then f has
periodic points of every periods in [0, q] (except for 3 in case of (ii)) and is chaotic in
the sense of Block and Coppel, and Devaney.
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