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Abstract This paper considers two-sided matching in continuous time without trans-
ferable utility or costly effort signaling. Two continua of impatient agents signal their
types by delaying before proposing or accepting a match. I use a mechanism design
approach to study what matchings and schedules of match times are implementable
when there is private information on one or both sides. When only one side has pri-
vate information, a sufficient condition to implement assortative matching is for the
uninformed side to value the log gain in partner quality from waiting more than the
informed side, so that it pays to wait. When information is incomplete on both sides,
the sufficient conditions to implement assortative matching are much more restrictive:
even when coarse matching is considered, a simple sufficient condition is provided
under which only simple random matching is implementable.

Keywords Matching · Mechanism design · Non-transferable Utility

JEL Classification D85 · C73 · C78

1 Introduction

In manymatching markets, using monetary transfers to allocate partners would appear
uncouth, if not morally repugnant. Similarly off-putting are the advances of potential
partners who are too eager to enter into a commitment, thereby revealing their lack of
quality or sophistication. Thus, holding back from entering a match can act as a signal
of quality, helping others to deduce one’s type in the absence of publicly observable
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expenditures of money or effort. Unlike an environment where independent contests
for partners canbeheld onboth sides of themarket to provide credible signals, however,
competition in this environment requires agents on both sides to agree on the time at
which a match is consummated. Otherwise, agents will be tempted to exit early in
favor of a lower quality partner but a shorter wait, and separating equilibria unravel.
This paper provides sufficient conditions for efficient matching to be implementable
when information about partner quality is private information on one or both sides and
shows that when simple random matching can turn out to be the only implementable
allocation.

Time is continuous and agents are impatient. Agents are divided into two disjoint
sides of the market, and each agent seeks to match to someone from the opposite side.
Each agent’s suitability as a partner plays a role in determining the value of the match
to the two parties. While unmatched, agents receive a flow payoff of zero, but upon
matching, they leave the market and receive a match value that is increasing and either
strictly log-supermodular or strictly log-submodular in the quality of the two partners.
Agents with private information in this paper reveal their types by delaying the point
at which they “dropout” and announce they are ready to commit to a match. In this
sense, the game resembles a one- or two-sided war of attrition. Unlike standard wars
of attrition, signaling is not modeled as mounting pecuniary or effort costs, but instead
as the opportunity cost of remaining unmatched. The main objective of the paper is to
investigate when positive or negative assortative matching are implementable in the
absence of costly signaling, as in Heidrun and Sela (2009) or Johnson (2013). When
competition for partners cannot be conducted independently—so that types on either
side who are slated to be matched must agree on the time at which to match—either
strong sufficient conditions are required to ensure that efficient matching can occur or
the patterns of matching that are implementable are very restricted. The reason is that
whichever side has the larger gains from getting a higher quality partner will need to
delay longer to provide credible signals. In the meantime, the other side will be willing
to sacrifice partner quality for a shorter wait, and separating equilibria unravel.

Section 3 considers the case where only one side of the market has private infor-
mation. The informed side issues proposals over time, where higher-quality agents
wait longer before dropping out. When match surplus is strictly log-supermodular or
log-submodular, positive or negative assortative matching is the only implementable
allocation, and the market clears from the top or bottom, respectively. I extend the
mechanism design analysis so that the strategy space of the agents is a dropout time
rather than a type report, and proposing agents can approach any potential partner,
rather than just the one prescribed by the mechanism. Such a deviation might lure a
higher-quality agent on the uninformed side into leaving the market early with lower-
quality partners in order to match sooner. A simple sufficient condition to ensure that
matching is synchronized across the two sides and the positive assortative outcome
prevails is available: swapping partners among any two pairs matched under positive
assortative matching always produces a larger log gain to the side that is waiting for
proposals than the side that is making them. This ensures that in equilibrium, the
side waiting for proposals has nothing to gain by accepting an early proposal by an
agent of lower quality than the one they expect to match with in equilibrium. Negative
assortativematching, however, is not implementable since the highest type partners are
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Synchronized matching with incomplete information 591

available at the earliest dates, and all agents on the signaling side can profitably deviate
by approaching these high-quality partners immediately, unraveling the market.

When information is incomplete on both sides of the market, however, the results
are more negative. I first consider complete separation, where agents on both sides
are continuously matching and exiting. This requires that agents on both sides have
the same marginal return to waiting an additional instant, which requires their utility
functions to grow as a function of partner quality at the same rate. Except for particular
situations where the payoffs are determined by a constant split of a shared surplus,
this kind of alignment of the two sides’ preferences seems unlikely, and assortative
matching fails to arise purely from using delays as a signal of type. If complete
separation fails to be implementable, then any equilibrium must then involve some
kind of random matching. I consider the case of “coarse matching” (McAfee 2002;
Damiano and Li 2007), where the market is split into a finite number of sub-markets
which meet at discrete dates. Within these sub-markets, agents are matched randomly,
but later sub-markets reward patience by providing a more attractive distribution of
partner types on each side of the market, creating some stochastic assortativity in the
matching. Implementability of a given coarse matching then requires that the lowest
and highest types in a given sub-market are indifferent between deviating and joining
the previous or next sub-market, respectively, and the measures of agents on both
sides are equal. While a given coarse matching then only requires a finite number
of indifference conditions hold, I show that if one side always experiences a larger
log gain from receiving a higher-quality partner at the same type quantile, then only
simple random matching is implementable. This implies that when the environment
does not allow costly effort signaling and transferable utility, assortative matching will
be difficult to implement even under standard supermodularity assumptions. The final
result of the paper then provides a condition under which non-trivial coarse matching
is possible, which takes the form of a crossing condition in the log gains to the two
sides: for example, the gain to workers from matching to a mediocre firm rather than
theworst firms is larger than the gain tomatching to the best firms instead of amediocre
firm, while the gain to firms from matching to the best workers rather than mediocre
workers is larger than the gain from matching to mediocre workers rather than the
worst workers.

While Roth (1982) showed that stable matching is generally impossible in discrete
timewith incomplete information and in the absence of transfers, positive results in the
literature with transfers (Damiano and Li 2007; Heidrun and Sela 2009; Johnson 2013;
Pavan andGomes 2015; Utgoff 2015; Liu et al. 2014) suggested that the assumption of
supermodularitymight generally be enough to implement the efficient allocationwhen
agents were allowed to signal or otherwise “bid” in a market for partners. The intuition
for these positive results is that if surpluses are supermodular in types, higher-quality
agents can expend part of the returns to getting a better partner on costly signaling
and keep the rest, leading to a separating equilibrium. This, however, exploits the fact
that contests can be held instantly and independently on both sides of the market.
When transferable utility or costly effort signaling are eliminated, however, rationing
partners on the basis of time is an obvious substitute: low-type agents will agree
to a match quickly since they have little to gain by waiting, allowing higher-type
agents to compete and “wait one another out” for the most desirable partners. While
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this intuition is correct on each side of the market considered in isolation, the two
schedules must synchronize in equilibrium, and heterogeneity in payoffs and type
distributions between the two sides will lead to different schedules.

This paper considers a dynamic matching model following Becker (1973) and
Becker (1974), rather than a search-and-matching following Shimer and Smith (2000).
The market here is non-stationary, since the expected quality of the remaining agents
will be monotonically increasing or decreasing in time, and the market clears in a
finite amount of time. In the infinite horizon search literature, market churning is
achieved by assuming match quality varies idiosyncratically over time or matches end
according to some exogenous process, making them unsuitable for studying markets
where fixed sets of agents that meet once and clear quickly, like the primary market
for labor in professions where hiring occurs once a year or marriage markets where
transfers are not possible and people typically marry within narrowly defined age and
socioeconomic groups.

The “large market” approach used in this paper is similar to Olszewski and Siegel
(2016), who consider profit-maximizing contests with large numbers of players for
heterogeneous prizes, but with quasi-linear utility and “prizes” rather than partners
that are indifferent to their winner. This is similar to the first part of Sect. 3, but in
subsequent analysis the “prizes” in my paper have preferences over their partners,
leading to very different results. The coarse matching analysis in Sect. 4 uses the
general idea of taking a matching market and breaking it into discrete sub-markets
within which the agents match randomly. I focus on the incentives of the “boundary”
types and use a similar approach to Damiano and Li (2007) to reduce the problem
to analysis of local constraints. While Damiano and Li (2007) show that a profit-
maximizing matchmaker might desire to use coarse matching to improve profits, I
consider it as an alternative when full separation is not implementable. Even when
the designer’s goal is to implement the most efficient allocation of partners possible,
however, coarse matching turns out to be extremely restricted.

2 Model

There are two continua of agents of unit mass, one called the X side and one called
the Y side. Each agent on the X side has a privately known type x , which is distributed
uniformly1 on [0, 1]. Each agent on the Y side has a type y which is distributed
uniformly on [0, 1]. In Sect. 3, the Y side agents’ types are common knowledge while
in Sect. 4, they are private information.

When agents x and y match, x receives a match value v(x, y) > 0 and y receives
a match value u(y, x) > 0 for all future moments. The functions v and u are strictly
positive and strictly increasing in both arguments, so that v(x, y) > 0,

1 This model is isomorphic to one in which x ′ ∼ F(x ′) and y′ ∼ G(y′), and x = F−1(x ′) and y =
G−1(y′), since cumulative distribution functions aremonotonically increasing, thereby preserving the signs
of first derivatives and cross-partials of functions of (x, y). Thus, the assumption of uniformly distributed
types is without loss of generality.
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∂v(x, y)

∂x
= v1(x, y) > 0,

∂v(x, y)

∂y
= v2(x, y) > 0,

and similarly for u(y, x). This is a one-to-one matching model, so that if agent x is
matched to y, agent y is matched to no other agent x ′, and agent x is matched to no
other agent y′. No transfers are allowed, differentiating this case from those studied
in the supermodular literature with payments or non-pecuniary signaling. Agents are
impatient and share a common discount rate ρ > 0, so that they discount payoffs
t moments from now by a factor of e−ρt . Upon matching, agents exit the market
immediately and permanently, so there are no breakups or experimentation.

Let the utility functions be twice differentiable on [0, 1]2. The X side’s utility
function is strictly log-supermodular if for all (x, y)

∂2 log(v(x, y))

∂x∂y
= v12(x, y) − v1(x, y)v2(x, y)

v(x, y)2
> 0,

and strictly log-submodular if

∂2 log(v(x, y))

∂x∂y
= v12(x, y) − v1(x, y)v2(x, y)

v(x, y)2
< 0,

and similarly for the Y side utility function.2 Since a mechanism design approach
will be exploited, these act as sufficient conditions to ensure that local incentive con-
straints are sufficient for monotonic allocations to be implementable.3 I will focus on
the two cases where v(x, y) and u(y, x) are either both strictly log-supermodular or
both strictly log-submodular, since in the former case the efficient match is positive
assortativematching, and in the latter it is negative assortativematching. In other cases,
the sum v(x, y)+u(y, x) is neither necessarily log-supermodular nor log-submodular,
so it is unclear whether implementing positive or negative assortative matching would
even be optimal from an allocative efficiency perspective.

Whether or not a particular pattern of matching is implementable will, in general,
depend on how each side of the market trades off partner quality with the opportunity
cost of waiting. The next definition provides a general concept of one side valuing
increases in partner quality more than the other side and plays a key role in deriv-
ing sufficient conditions throughout the paper: v(x, y) exhibits larger log gains than
u(y, x) at q, q ′, and z < q ′

v(q, q ′)
v(q, z)

>
u(q, q ′)
u(q, z)

.

2 Note that monotonicity of v(x, y) in x and y along with log-supermodularity implies v12(x, y) >

v1(x, y)v2(x, y), which is stronger than supermodularity alone, and similarly for the Y side.
3 If the utility functions took the form u(x, y) = xy = v(y, x), for example, the strategy that maximizes
one type’s payoff also maximizes the payoff of all the other types on that side of the market; consequently,
I restrict attention to multiplicatively non-separable utilities.
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If this condition holds for all q, q ′, and all z < q ′, then simply say that v(x, y) exhibits
larger log gains than u(y, x). Note that if this condition holds, it implies the differential
version

v2(q, q ′)
v(q, q ′)

>
u2(q, q ′)
u(q, q ′)

.

One example of a pair of functions that are strictly log-supermodular, increasing in
both arguments, and for which v(x, y) exhibits larger log gains than u(y, x) are

v(x, y) = γX xy + d, u(y, x) = γY xy + d,

where γX > γY > 0, and d > 0.
A matching market is symmetric if u(x, y) = v(y, x) for all (x, y) ∈ [0, 1]2. Thus,

the distributions of types and utilities are the same on both sides of the market. One
non-trivial example is when there is some match value s(x, y) split according to Nash
bargaining and the agents’ types are distributed identically on both sides.

A matching is a function μ(x) = y that is strictly monotonic and onto: it assigns
somepartner y to each agent x . In this continuumframework, the appropriate feasibility
or market-clearing constraint is that for any x and y who are matched, the cumulative
distribution functions of matched agents are equal. Since quantiles q ∈ [0, 1] are
uniformly distributed, this defines positive assortative matching as μ(q) = q, and
negative assortative matching as μ(q) = 1 − q.

Themain research questions of the paper arewhether positive or negative assortative
matching can be implemented and whether the market clears “from the bottom” with
the lowest quality agents matching first, or “from the top,” with the highest quality
agents matching first.

3 One-sided incomplete information

This section considers markets in which the X side has private information about its
type, but the Y side does not. Such a situation arises in, for example, university admis-
sions or junior academic hiring settings where the reputation of a school is typically
well-established but students or junior professors are more informationally opaque, or
a heterosexual dating market where observable physical attractiveness is most impor-
tant to the X side but unobservable earnings potential is most important for the Y
side. I first exploit a mechanism design framework to characterize the implementable
allocations in a static, Bayesian incentive compatibility framework where the Y side
is treated as passive. Then I will analyze a dynamic game where the agents on the Y
side observe the waiting game on the X side and can strategically reject proposals.

A direct mechanism is a pair of functions {τ(x), μ(x)}where τ(x) gives the match-
ing time for an X -side agent reporting type x and μ(x) is the partner type received by
such an agent. Since μ(x) is one-to-one, it is invertible, so these times and partners
likewise define the allocation for the Y side, {τ(y), μ−1(y)}. Define the direct utility
function for X -side agents
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Synchronized matching with incomplete information 595

UX (x ′, x) = e−ρτ(x ′) v(x, μ(x ′))
ρ

.

Since the Y side’s types are common knowledge and there is no scope for them to
manipulate the current mechanism considered, they impose no additional incentive
constraints. On the X side, necessary and sufficient conditions for incentive compati-
bility then follow from standard arguments in nonlinear pricing where the payment is
replaced with the matching time:

Proposition 1 If v(x, y) is strictly log-supermodular (strictly log-submodular), the
unique implementable and measure-preserving allocation is positive (negative) assor-
tative matching μ(q) = q (μ(q) = 1 − q), and the matching time for quantile q is
given by

τ(q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

ρ

∫ q

0

v2(z, z)

v(z, z)
dz, v(x, y) strictly log-supermodular

1

ρ

∫ 1

q

v2(z, 1 − z)

v(z, 1 − z)
dz, v(x, y) strictly log-submodular.

(1)

In a complete information model like Becker (1973) and Becker (1974), the super-
or sub-modularity properties of the match value function determine whether positive
or negative assortative matching is the efficient outcome. In this model, the same
properties determine what allocations are implementable, so that log-supermodularity
results in positive assortative matching, while log-submodularity results in negative
assortative matching. In addition, the super- or sub-modularity properties of v(x, y)
also determine whether the market clears from the top or bottom, since incentive com-
patibility requires that the quality schedule and match times are either both increasing
or both decreasing. In (1), τ(q) is increasing for log-supermodular match values, so
that the lowest quality agents on the X side are matched first, but decreasing for log-
submodular ones, so that the highest quality agents on the X side are matched first.
Thus, when the complete information model is extended to a incomplete information
environment with dynamic signaling, the features that determine the socially efficient
pattern of matching also determine which types leave the market first.

The closed-form expression for the X side’s signaling strategy (1) clarifies the
welfare losses due to delay: agents expend the entire marginal gain attributable to
increases in partner quality, v2(q, q)/v(q, q). Their equilibrium payoffs then only
grow at a rate v1(q, q)/v(q, q) in equilibrium, which is the marginal contribution of
their own type to match value. Thus, in markets where the returns to a higher own
type are primarily through the indirect effect of getting a more desirable partner rather
than the direct effect of an increase in one’s own type, the losses from signaling will
be highest.

It is notable that the equilibrium payoffs are independent of the discount factor ρ.
This also holds in finite versions of the model, where passing to the limit as ρ → 0
turns out to provide no additional help in characterizing or simplifying equilibria.
The intuition is similar to the Revenue Equivalence Theorem: any change in ρ is
absorbed into the endogenous strategies, as if an auctioneer changed the currency in
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which payments were denominated. Thus, any matching mechanism that delivers the
same allocation of partners will subsume such changes in the environment into the
strategies, leaving payoffs unchanged.

In the static approach of Proposition 1, the X side agents report a type and learn
the time at which they are to be matched and the Y side agents wait passively for
their partner to arrive. An agent on the X side might, however, exploit a dynamic
mechanism to his advantage. Consider a dynamic game in which the strategy space
of the X -side agents is not a type report, but instead the time at which the agent drops
out and who he proposes to:

i. All agents start off unmatched.
ii. At any time t , any unmatched agent on the X side can drop out and propose to

any agent on the Y side. The Y side agent then accepts or rejects. If accepted, the
agents are matched and if rejected, the X side agent remains unmatched.

iii. The market continues until all agents are matched.

An enterprising agent on the X side might wait until his prescribed matching time, but
then deviate and propose to a different Y side agent. Since the mechanism is incentive
compatible, the Y side agent should correctly infer the deviator’s type since he has
exploited the mechanism to signal that he deserves at least his prescribed partner. The
deviator can then potentially tempt a higher-type Y side agent into leaving the market
and taking an allocation intended for a different type. On the other hand, since the
Y side agents’ types are observable, unilateral deviations like staying in longer than
prescribed are unprofitable, since then the market will “pass y by” as X side agents
demand more attractive partners to compensate them for remaining unmatched, thus
rendering y undesirable.

This implies that in the case where v(x, y) is strictly log-supermodular and the
market clears from the bottom, no type y should be tempted by the allocation of
y′ < y, who matches earlier to a lower-type partner. Incentive compatibility for the Y
side then requires

e−ρτ(y) u(y, y)

ρ
≥ e−ρτ(y′) u(y′, y)

ρ
, ∀y′ < y.

In the strictly log-submodular case, however, the highest quality X -side agents are
leaving the market first, so it will be impossible to implement negative assortative
matching:

Theorem 2 In the dynamic version of the game,

i. If v(x, y) is strictly log-supermodular, positive assortative matching is incentive
compatible on the Y side only if for all y and y′ < y,

τ(y) − τ(y′) ≤ 1

ρ
log

(
u(y, y)

u(y, y′)

)

. (2)

A sufficient condition for the mechanism to be incentive compatible on the Y side
is that u(y, x) have larger log gains than v(x, y), so that for all q ∈ [0, 1] and
q ′ < q,
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v(q, q)

v(q, q ′)
≤ u(q, q)

u(q, q ′)
. (3)

If (2) holds for all x ∈ [0, 1] and x ′ < x, then there is no type x ∈ [0, 1] that can
profitably deviate from dropping out at time τ(x) and proposing to his prescribed
partner under positive assortative matching.

ii. Negative assortative matching is not implementable.

Since the contest for partners entails a schedule of matching times that must be
acceptable to both sides, incentives must align so that agents on the Y side are suffi-
ciently rewarded for waiting for their prescribed partner under the schedule of X -side
matching times that implement positive assortative matching. Condition (2) is thus a
straightforward implication of incentive compatibility, but (3) exploits (2) and strict
log-supermodularity to provide a more subtle sufficient condition for implementabil-
ity: when the matched pairs (q, q) and (q ′, q ′) are swapped to (q ′, q) and (q, q ′),
q ′ < q, the log loss to the signaling side X is less than that for the waiting side Y . This
is the first of three such conditions that will appear in the paper, relating incentive con-
straints on each side of the market to the properties of the match values on each side.
To see that (3) is not vacuous, note that it always holds for symmetric markets. When
positive assortative matching is implementable, however, it is also true that X -side
agents cannot deviate from complying with the proposed matching times at any point
in the game and receive a better payoff. The intuition is that X -side agents can only
affect the outcome of the game through a successful proposal. This reduces the game
to an optimal stopping time problem, in which the agents trade off an additional wait
for partner quality. But the schedules from the direct mechanism of Proposition 1 are
then indirectly implemented by the dynamic game, and dropping out at the prescribed
time is optimal.

Part ii, however, shows that negative assortative matching is not implementable
when the Y side has agency in the match process over which partners to accept or
reject. Focus on the highest type agent on the Y side, who matches at the latest date
the market meets to the lowest type agent on the X side. This agent is willing to leave
immediatelywith anyone, since an immediatematchwith any agent dominateswaiting
for the market to clear only to be matched to the lowest type X -side agent. The entire
matching then unravels, since any X -side agent can improve his payoff by proposing to
the highest type Y side agent and be accepted immediately. Thus, negative assortative
matching is not implementable when utilities are increasing in types. This eliminates
the possibility of the market clearing from the top rather than bottom and is driven by
the fact that u(y, x) is increasing in x .

The previous result examined dynamic incentives, but the dynamics of matching
are of interest as well. In particular, the market might speed up or slow down as it
clears, depending on how value is generated between the two sides. To formalize this,
consider whether the time it takes for the market to clear4 a window � of quantiles at

4 Alternatively, define X (t) as the fraction of agents that have matched by time t . Then since X (t) is the
inverse of τ(x), X ′(τ (x)) = 1/τ ′(x), and X ′′(τ (x)) = −τ ′′(x)/(τ ′(x))3. Because τ ′(x), it then follows
that the sign of X ′′(t) is the same as −τ ′′(x), and the rate at which matching occurs falls or rises depending
on whether τ(x) is convex or concave.
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x , τ(x + �) − τ(x), is larger or smaller than the time it took the market to clear the
same window � of quantiles at x − �, τ(x) − τ(x − �). This leads to the inequality

τ(x + �) − τ(x) � τ(x) − τ(x − �),

which can be rearranged as

τ(x + �) + τ(x − �)

2
� τ(x).

If τ(x) is a convex function, the left-hand side will be larger then the right-hand side
for all � < min{1 − x, x}, and if τ(x) is a concave function, the opposite inequality
will hold. So, I will say the market speeds up as it clears if τ(x) is convex, and that it
slows down as it clears if τ(x) is concave.

Proposition 3 If v(x, y) is strictly log-supermodular and log-convex in y, then the
market slows down as it clears.

An X -side agent retains the rents from an increase in his own type, but the rest of
the surplus generated by increases in partner quality is expended in signaling. Due to
strict log-supermodularity and positive assortative matching, an increase in one’s own
type already leads to a better partner, so an ambiguous result will obtain if the marginal
benefit of a better partner is also increasing in partner type. This requires that the gains
from partner quality should be log-convex so that there are increasing returns to getting
a better partner. In other cases, changes in market speed will be ambiguous, since, for
example, log-concavity of the utility function in y rather than log-convexity would
lead to decreasing marginal benefit from a higher-quality partner, working against
the complementarities resulting from log-supermodularity. Thus, markets will tend to
slow down when the match value is sufficiently convex in partner type, while they
will speed up when complementarities are weak and the marginal benefit of a higher
partner type is decreasing in partner type.

4 Two-sided incomplete information

In the previous section, the X side vied for the Y side’s attention by proposing at
strategic times. If both sides have incomplete information, however, the analysis of
the Y side changes: they will need to engage in a similar waiting game to signal their
types. The matching times on both sides of the market, however, must then agree: the
time at which x proposes must align with the time at which his prescribed partner y
optimally comes forward to be matched. But since the incentive compatible matchings
and matching time schedules constructed on each side of the market are unlikely to
align, assortative matching will typically fail to be implementable: the side with the
slower schedule values the benefits of a more suitable partner more highly, leading
to “delays” from the other side’s point of view. The other side will then compromise
on partner suitability for a shorter wait. Consequently, a separating equilibrium will
unravel unless the two sides are in perfect agreement. This implies randomization or
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pooling of some kind will be a ubiquitous feature of such markets. To address this
kind of matching, I then consider coarse matching, where the market is split into a
finite number of “sub-markets” that meet at prescribed times where matching occurs
randomly within the sub-market.

Rather than define a single schedule of matching times and partner qualities, I will
define them separately on the X side and the Y side. This allows me to characterize
incentive compatibility for each side separately and then consider when the necessary
and sufficient conditions for both sides can be satisfied simultaneously. To that end,
define a direct mechanism as a set of functions {τX (x), μX (x), τY (y), μY (y)} where
τX (x) ∈ [0,∞) is the period of time that an agent who reports a type of x must
wait before being matched, μX (x) ∈ [0, 1] is the quality of partner allocated to an
agent who reports a type of x , and similarly for τY (y) and μY (y). By the Revelation
Principle, any Bayesian equilibrium of the market can be implemented as a Bayesian
Nash equilibrium of some direct mechanism.

Define the direct utility function for the X side as

UX (x ′, x) = e−ρτX (x ′) v(x, μX (x ′))
ρ

,

and similarly for the Y side. Incentive compatibility for the X side then requires that
UX (x, x) ≥ UX (x ′, x) for all x ′ ∈ [0, 1], and similarly for the Y side. If a mechanism
is incentive compatible for both sides, it is incentive compatible.

Compared to the results in Sect. 3, the consequence of adding two-sided incomplete
information is that Y side agents can profitably deviate both up and down, rather than
only agree to leave earlier for a less desirable partner as in the one-sided case.

In addition to incentive constraints, feasibility constraints must be imposed. Note
that—without loss of generality in a strictly separating equilibrium—themonotonicity
of the dropout times implies that they can be arranged to correspond to the moment
when agents are matched, so that no agents “wait” for a partner after dropping out.
For an allocation to be feasible, the mechanism must then be measure-preserving for
all t ∈ [0,∞), so

τ−1
X (t) = τ−1

Y (t).

This implies that the total mass of agents who have been matched at any time is equal
on both sides of the market. Say that positive assortative matching is implementable
if there is an incentive compatible mechanism that is also measure-preserving.

By now investigating when incentive compatibility and measure preservation can
be combined to yield implementability, it can be determined whether a mechanism
that implements positive assortative matching exists or not:

Theorem 4 i. If v(x, y) and u(y, x) are strictly log-supermodular, positive assor-
tative matching is implementable iff for all q ∈ [0, 1],

u2(q, q)

u(q, q)
= v2(q, q)

v(q, q)
. (4)
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A sufficient condition for this to hold is that the market be symmetric.
ii. If v(x, y) and u(y, x) are strictly log-submodular, negative assortative matching

is not implementable.

This result shows that implementation of the efficient outcomewill occur only under
very restrictive conditions. In particular, conditions from Proposition 1 determine an
incentive compatible matching time for each q ∈ [0, 1] that depends on the growth
rate of an agent’s utility as a function of his partner’s type. In order for the match
to be measure preserving, it then follows that each agent q ∈ [0, 1] on the X side
want to match at exactly the same time as the corresponding q ∈ [0, 1] on the Y side.
Consequently, the rate at which the incentive compatible stopping times grow must be
the same, yielding (4). In the one-sided incomplete information case, the gains to the
Y side simply had to be large enough for the Y side to be willing to wait, resulting in
the sufficient condition (3). But if the match values accruing to each side are only their
own marginal contribution to match value, then the remaining gains—the marginal
rents generated by an increase in partner type—must go into the signaling effort.
This leads to (4), which requires that both sides have the same rate of increase of log
gains to partner quality. When the market is symmetric, assortative matching will be
implemented, but there is little reason to think in general that growth rates of math
values in partner quality are exactly equated across both sides of the market along the
matching (q, q) ∈ [0, 1] × [0, 1]. More generally, this shows that complementarity
of types and access to a “signaling” device are not jointly sufficient to implement
positive assortative matching: the contests on both sides must be independent of one
another.

Without (4), fully separating equilibria and assortative matching are not imple-
mentable in the two-sided incomplete information case, and the outcome will exhibit
randomization of some kind. I now turn to coarse matching without transfers, which
has previously been suggested inmatching environmentswith transfers (McAfee 2002;
Damiano and Li 2007) as an alternative to fully separating equilibria.

Definition 1 A coarse matching M = (PX ,PY , α) is (i) a partition of [0, 1]

PX =
{
X0 =

[
0, x1

)
, X1 =

[
x1, x2

)
, . . . , XK = [xK , 1]

}
,

with x1 < x2 < · · · < xK , (ii) a partition of [0, 1]

PY =
{
Y 0 =

[
0, y1

)
,Y 1 =

[
y1, y2

)
, . . . , Y K =

[
yK , 1

]}
,

with y1 < y2 < · · · < yK , and (iii) a one-to-one function α : PX → PY assigning
each element of PX to an element of PY such that

∫

x∈Xk dx = ∫

y∈α(Xk )
dy.

The coarse matching partitions the set of types on each side of the market, then
creates “sub-markets” within which agents will match randomly. I will call a coarse
matching α positive assortative if α(X0) = Y 0, α(X1) = Y 1, and so on, so that
α(Xk) = Y k . A coarse matching α is negative assortative if α(X0) = Y K , α(X1) =
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Fig. 1 Positive (solid) and negative (hatched) assortative coarse matching

Y K−1, and so on, so that α(Xk) = Y K−k . Denote the matching time for each sub-
market (Xk, α(Xk)) by τk ; note that without loss of generality, the first sub-market can
meet at time zero. Figure 1 gives an example, illustrating both a positive assortative
coarse matching and a negative assortative coarse matching.

A direct mechanism is a set of functions {τX (x), μX (x), τY (y), μY (y)} where
μX (x) assigns each report x to an element of the partition PX , τX (x) gives the appro-
priate matching time for that element of PX , and similarly for τY (y) and μY (y). A
mechanism is incentive compatible if for every x and every alternative x ′ the agent
could pick,

e−ρτX (x)

ρ

∫

y∈α(μX (x)) v(x, y)dy
∫

y∈α(μX (x)) dy
≥ e−ρτX (x ′)

ρ

∫

y∈α(μX (x ′)) v(x, y)dy
∫

y∈α(μX (x ′)) dy
,

and similarly for the Y side. To streamline notation, let the expected flow payoff to x
from joining sub-market � be

V�(x) =
∫

y∈α(X�)
v(x, y)dy

∫

y∈α(X�)
dy

,
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and the expected flow payoff to y from joining sub-market � be

U�(y) =
∫

x∈α−1(Y �)
u(y, x)dx

∫

x∈α−1(Y �)
dx

.

To implement a given coarse matching, the meeting times must be selected so that
all types on both sides are satisfied with the proposed time and slate of potential part-
ners. If a given (PX ,PY , α) leads to huge gains on one side but only modest gains
on the other, however, the delay required between markets necessary to satisfy incen-
tive compatibility constraints on the first side might be so large that the second side
prefers to exit the market early. This can result in “disagreements” about when match
times should occur, similar to the previous cases. It turns out that it is similarly diffi-
cult to implement non-trivial coarse matching schemes, despite allowing for random
matching:

Theorem 5 Suppose v(x, y) and u(y, x) are strictly log-supermodular. A measure-
preserving and positive assortative coarse matching M is implementable iff for all
k = 1, . . . , K,

V�

(
x�

)

V�−1
(
x�

) = U�

(
y�

)

U�−1
(
y�

) . (5)

Theorem 5 is a version of the envelope theorem for the discrete coarse matching
case: (5) can be used to derive the matching times for each partition as

τk = 1

ρ

k∑

�=1

log

(
V�

(
x�

)

V�−1
(
x�

)

)

= 1

ρ

k∑

�=1

log

(
U�

(
y�

)

U�−1
(
y�

)

)

.

This exploits standard arguments about when sets of local incentive constraints can be
substituted for global ones. The condition in (5) resembles (3) and (4) and is a fairly
restrictive condition. In this continuum-type framework, the boundary types must be
indifferent about joining the sub-market they are assigned to, or deviating down one
sub-market. If some agent on the boundary of his sub-market strictly preferred his
sub-market, it would mean there were types arbitrarily close assigned to the lower
sub-market who could deviate up and get a strictly higher payoff due to continuity of
the utility functions. But then the indifference conditions on both sides of the market
imply that the two boundary types on each side who join the same sub-market must
actually get the same log-increase in utility from suffering the additional wait between
the time the k − 1-st sub-market meets and the k-th meets, yielding (5). But this is a
very restrictive condition: only when the ratios in (5) equate is there the opportunity
to create a new sub-market. Thus, the fineness of the partition is restricted by how
often the ratios of market segment payoffs are capable of crossing. The next results
provide some conditions that illustrate what patterns of matching are possible in this
environment.

Proposition 6 If v(x, y) exhibits larger log gains than u(y, x) or vice versa, then the
only implementable coarse matching M is simple random matching, where PX =
{[0, 1]} and PY = {[0, 1]}.
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The intuition for this result is that if one side has strictly higher log gains than the
other, there is no interior quantile at which the other side becomes willing to wait and
themeasures of agents beingmatched are equal. Thus, the other sidewill simplydeviate
and take a draw from a lower quality sub-market, unraveling the proposed coarse
matching. For a concrete example, recall the utility functions v(x, y) = γX xy+d and
u(y, x) = γY yx + d. If γX > γY , the X side has larger log gains from partner quality.
Since the types are distributed uniformly on both sides, the incentive compatible
matching time schedule for a separating equilibrium on the X side will always be
strictly later than that of the Y side. As a result, there can be no interior types on each
side which are indifferent between two adjacent sub-markets. In the case where γX =
γY , however, the results of Theorem 4 apply, and perfect separation is implementable,
but also any positive assortative coarse matching. Thus, under circumstances that
seem reasonably common—one side values partner quality uniformly more than the
other—only trivial coarse matchings are possible.

The negative nature of the previous result suggests that sufficient conditions that
ensure a coarse matching exists might be difficult to derive, but it also highlights
the fact that the log gains from partner quality must “cross” in order for there to be
an interior, indifferent type. The next definition formalizes this concept: v(x, y) and
u(y, x) exhibit alternatingly larger log gains on [0, 1] if there exists a q̃ ∈ [0, 1] such
that for q < q̃ and all q ′ ∈ [0, 1],

v(q, q)

v(q, q ′)
>

u(q, q)

u(q, q ′)

but for q > q̃ and all q ′ ∈ [0, 1],
u(q, q)

u(q, q ′)
>

v(q, q)

v(q, q ′)
,

or vice versa. Thus, q̃ constitutes a point at which the log gains to partner quality
switch from mainly benefiting the X side to the Y side or vice versa. For example,
workers might benefit more from moving from a low-quality firm to a mediocre one
thanmoving from amedicore one to the best ones, while firms benefitmore fromhiring
the best workers rather than mediocre ones than hiring mediocre ones rather than the
worst ones. This kind of crossing is enough to ensure the existence of a non-trivial
coarse matching:

Proposition 7 If v(x, y) and u(y, x) exhibit alternatingly larger log gains on [0, 1],
then there exists a partition Q = {[0, q∗), [q∗, 1]} for which positive assortative
coarse matching with PX = Q and PY = Q is implementable.

Note that q∗ need not equal q̃: the alternatingly larger log gains property simply
ensures that (5) can be satisfiedwith some interior quantile q∗ ∈ (0, 1). At this quantile
q∗, the agents of that quality on both sides of the market are indifferent about which
sub-market in Q to join, given the delay before the sub-market [q∗, 1] meets.

If there are multiple quantiles at which the log gains of the two sides alternate in
magnitude, Q̃ = {q̃1, q̃2, . . . , q̃M }, it is possible to construct partitions with more than
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one sub-market. However, the crossing quantiles Q̃ are not necessarily the boundary
types of the sub-markets, Q∗ = {q∗

1 , q∗
2 , . . . , q∗

M }. Thus, the alternatingly larger log
gains property has to hold across the points Q∗ rather than just Q̃. So while the
existence of crossing points ensures at least one bipartition constructed around the
highest crossing point is implementable, the presence of additional crossing points
doesn’t necessarily ensure that additional sub-markets can be added.

5 Conclusion

This paper shows that many of the positive results from the supermodular literature
with transfers continue to hold in a non-transferable utility framework only under
strong assumptions. The intuition is that transferable utility or costly signaling allow
the two sides to “disentangle” their efforts to reveal their types, making separating
equilibria possible. When the contests for partners on both sides of the market can-
not be separated, however, the signaling efforts on both sides must be synchronized
and assortative matching is typically not implementable. In addition, we learn that
not only is the pattern of efficient matching determined by the modularity properties
of the match values, but also the order in which matches are made. This provides a
potential explanation for why some markets clear from the bottom according to pos-
itive assortative matching when there is one-sided incomplete information, with the
worst types of agents leaving first, or with high types from one side leaving immedi-
ately to match to low types from the other side, consistent with negative assortative
matching. Unfortunately, later results in the paper show that when the contests on both
sides of the market for partners must be synchronized, negative assortative matching
becomes impossible to achieve, and positive assortative matching is possible only
under increasingly restrictive conditions.

While the mechanism design analyses provide some helpful intuition, extending
them to cover the finite agent cases presents a number of difficulties. The success of
the approach is based on the fact that

log(V X (x)) = log(v(x, μ(x))) − ρτ(x) − log(ρ),

so that the model becomes quasi-linear after taking logs, and standard mechanism
design tools then apply. For the finite agent case, such a transformation is not avail-
able, and the complications that arise are similar to those studied inQuah andStrulovici
(2012). Although finite agent results can be obtained by extending the usual war-of-
attrition under incomplete information framework (Fudenberg and Tirole 1991) to a
recursive contest for partners when the Y side’s types are known, extending the same
framework to two-sided incomplete information results in systems of ordinary dif-
ferential equations similar to the equilibria systems of asymmetric auctions. Analysis
of these recursive systems of nonlinear ordinary differential equations is challeng-
ing, since some agents are left “waiting around” for a partner, and exit by one agent
on either side can lead to a “cascade” of exits. Due to these challenges, this paper
focused on the continuum case where small-sample events that lead to large changes
in equilibrium outcomes are not an issue.
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Synchronized matching with incomplete information 605

In this paper, agents’ types were either complete or private information. By fixing
priors about the quality of the agents or giving the agents priors about one another
that evolve with experience, much more complicated patterns of matching would
likely ensue. In particular, the once-and-for-all assumption in this paper would be
inappropriate, and agents would likely experiment with different partners. Features
of this appear in Niederle and Yariv (2009), but using continuous-time rather than
discrete-time timing of offers allows the agents to signal and deduce cardinal rather
thanordinal information about their preferences. Fershtman andPavan (2015) allow for
transfers, and show how reports from the agents can be used to optimally experiment
over time to achieve welfare- or profit-maximization objectives.

One goal for this project was to analyze when the market would clear from the
top. For example, in the junior academic market for economists, casual empiricism
suggests that candidates from top universities take jobs first, and this frees up the
next tier of departments to make offers to second- or third-choice candidates, and
so on. The complexities for a middling university to decide who to pursue, then, are
quite daunting. The reader who is skeptical of this example need only consider the
thought experiment of an over-eager candidate hounding the recruiting chair shortly
after the first interview to see how delay and disinterest can be used to signal qual-
ity. The model in this paper abstracts away from many of the complications of the
real market, so that both sides are quite sure of their equilibrium partner, but it
seems unlikely that negative assortative matching as a consequence of log-submodular
preferences is the explanation. If universities have common priors about particular
candidates that are updated by idiosyncratic signals, this might explain delays as a
consequence of lower-ranked departments trying to retain the option value of remain-
ing unmatched until they are satisfied that they cannot get a better match before the
deadline.

Finally, the paper focuses on strict separation and coarse matching, and delivers
generally negative results for both cases. There are two avenues for further analysis:
allowmatching to occur randomly and in continuous time, or drop the measure preser-
vation property from the definition of coarsematching to allow agents to go unmatched
within given sub-markets. One can imagine a more general analysis in which the times
at which agents come to the market are mixed strategies, but the aggregate properties
of the market develop as a continuous function of time. Such an approach might pro-
vide a bridge between the finite-horizonmodels studied here, which exhibit significant
non-stationarity, and the search-and-matching literature, where the aggregate proper-
ties of the market are stationary and the agents are infinitely lived. Similarly, further
analysis of the coarse matching case might provide a more general framework that
mixes entry by masses of agents at particular times, along with continuous and sep-
arating intervals or mixing. Relaxing the measure preservation condition will allow
for more implementable allocations, but there will be a trade-off between creating
positive correlation between types and mismatch in which agents fail to get a partner.
For models that allow for random matching, a main question is then how to balance
welfare losses from agents who fail to get a partner with the mis-allocation that results
from random matching.
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6 Proofs

Proof of Proposition 1

Proof Incentive compatibility for the X side requires

UX (x, x) ≥ UX (x ′, x), x ′ ∈ [0, 1].

Note that taking logs of the direct utility function yields

log
(
UX (

x ′, x
)) = log

(
v

(
x, μ

(
x ′))) − ρτ

(
x ′) − log(ρ),

which is quasi-linear in the log-surplus and the dropout time. Let the indirect utility
function for the X side be

V X (x) = max
x ′∈[0,1]

log
(
UX (

x ′, x
))

.

Then the following, standard characterization of incentive compatibility for a direct
mechanism obtains: {μ(x), τ (x)} is incentive compatible iffμ(x) is (i) non-decreasing
and (ii) (V X )′(x) = v1(x, x)/v(x, x).

• To show necessity, first take logs of the direct utility function,

log
(
UX (

x ′, x
)) = log(v(x, μ(x ′)) − ρτ(x ′) − log(ρ).

The envelope condition follows by differentiation of the indirect utility function,
which is derived by taking the partial derivative of log(UX (x ′, x)) with respect
to x and evaluating at x ′ = x , yielding (ii). To show (i), rearrange two incentive
compatibility constraints

log(v(x, μ(x))) − ρτ(x) ≥ log(v(x, μ(x ′))) − ρτ(x ′)

and

log(v(x ′, μ(x ′))) − ρτ(x ′) ≥ log(v(x ′, μ(x))) − ρτ(x)

to get

log(v(x, μ(x))) + log(v(x ′, μ(x ′))) ≥ log(v(x, μ(x ′))) + log(v(x ′, μ(x))).

But if v(x, y) is strictly log-supermodular and x ≥ x ′, then for the inequality to
hold, μ(x) ≥ μ(x ′), establishing that the allocation must be monotone. But if the
market clears and the match is measure-preserving, that implies x = y for all x
and y whomatch, which must be positive assortative matching. If, instead, v(x, y)
were strictly log-submodular and x ≥ x ′, the reverse inequality would have to
hold, namely μ(x ′) ≥ μ(x).
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• To show sufficiency, suppose (i) and (ii) hold. Then

log
(
UX (x, x)

)
− log

(
UX (

x ′, x
)) = log(UX (x, x)) − log(UX (x ′, x ′))

+ log
(
UX (

x ′, x ′)) − log
(
UX (

x ′, x
))

= log(v(x, μ(x))) − log(v(x ′, μ(x ′)))
+ log(v(x ′, μ(x ′))) − log(v(x ′, μ(x)))

=
∫ x

x ′
v1(z, μ(z))

v(z, μ(z))
− v1(z, μ(x ′))

v(z, μ(x ′))
dz

=
∫ x

x ′

∫ μ(z)

μ(x ′)

v12(z, w) − v1(z, w)v2(z, w)

v(z, 2)2
dwdz.

Where the second equality follows from (ii). Now, assuming log-supermodularity,
the monotonicity of positive assortative matching as in (i), and x ≥ x ′ implies the
integrand is positive for all z ∈ [x ′, x]; similarly, log-supermodularity, monotonic-
ity of the allocation, and x ≤ x ′ implies the integrand is negative for all z ∈ [x, x ′].
Either way, the integral is positive, and log(UX (x, x)) ≥ log(UX (x ′, x)), estab-
lishing incentive compatibility. Assuming log-submodularity and a decreasing
match function yields the analogous conclusions.

To derive the schedule of matching times, note the envelope condition, (V X )′(x) =
v1(x, μ(x))/v(x, μ(x)), implies

V X (x) = V X (0) +
∫ x

0

v1(z, z)

v(z, z)
dz, V X (0) = log(v(0, 0)) − log(ρ) − ρτ(0)

in the positive assortative matching case, and

V X (x) = V X (1) −
∫ 1

q

v1(z, 1 − z)

v(z, 1 − z)
dz, V X (1) = log(v(1, 0)) − log(ρ) − ρτ(1)

in the negative assortativematching case. Note that τ(0) = 0 in the positive assortative
matching case, but τ(1) = 0 in the negative assortative matching case, since matching
times and partner qualities must move in opposite directions over time. Combining
these with the direct utility function evaluated at truth-telling yields

ρτ(x) = log

(
v(x, x)

v(0, 0)

)

−
∫ x

0

v1(z, z)

v(z, z)
dz =

∫ x

0

v1(z, z) + v2(z, z)

v(z, z)
dz

−
∫ x

0

v1(z, z)

v(z, z)
dz =

∫ x

0

v2(z, z)

v(z, z)
dz
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in the positive assortative matching case and similarly

ρτ(x) = log

(
v(x, 1 − x)

v(1, 0)

)

+
∫ 1

x

v1(z, 1 − z)

v(z, 1 − z)
dz

= −
∫ 1

x

v1(z, 1 − z) − v2(z, 1 − z)

v(z, 1 − z)
dz +

∫ 1

x

v1(z, 1 − z)

v(z, 1 − z)
dz

=
∫ 1

x

v2(z, 1 − z)

v(z, 1 − z)
dz

in the negative assortative matching case. These resemble the bid functions at an all-
pay auction, where the true log gains are shaded by an integral term that reflects the
agent’s contribution to surplus. This yields the incentive compatible stopping times
τ(x) in (1).

Finally, note that since the quantity ρτ(x) enters agent X ’s utility directly, ρ van-
ishes from the payoffs as soon as the strategies are substituted in and the indirect
utility function computed. Therefore, equilibrium payoffs in any incentive compatible
are independent of ρ. ��

Proof of Theorem 2

Proof i. To ensure that the mechanism is incentive compatible for the Y side, each
y must want to wait for her prescribed partner, so that for all y = x and y′ < y,

e−ρτ(y)u(y, y) ≥ e−ρτ(y′)u(y, y′).

Recall, the reason is that once an X -side agent has stayed in up to time τ(x), he
has signaled that his type is at least x . He could potentially profitably deviate by
approaching an agent of type y > x , and propose matching. This agent y must
find such a proposal unprofitable in order for incentive compatibility to hold.
Simplifying the incentive condition for the y type yields

ρ(τ(y) − τ(y′)) ≤ log

(
u(y, y)

u(y, y′)

)

,

which is the expression in the statement of the theorem. However, using the closed-
form expressions for the matching time functions from (1),

ρ(τ(y) − τ(y′)) =
∫ y

y′
v2(z, z)

v(z, z)
dz.

By strict log-supermodularity, v2(x, y)/v(x, y) is increasing in x , so

∫ y

y′
v2(z, z)

v(z, z)
dz ≤

∫ y

y′
v2(y, z)

v(y, z)
dz =

∫ y

y′
d {log(v(y, z))} = log

(
v(y, y)

v(y, y′)

)

.
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Combining these results yields the sufficient condition,

v(q, q)

v(q, q ′)
≤ u(q, q)

u(q, q ′)
,

so that the log losses to the Y side of switching partners outweigh the log losses
of the X side, which is the sufficient condition in the statement of the theorem.
Now consider the noncooperative game in which the agents drop out strategically.
I will derive payoffs and solve for the perfect Bayesian equilibrium of the game.
Now, if (2) holds, no agent on the X side can manipulate the timing of his exit t
to guarantee a different type y is willing to accept than q ′ = τ−1(t). A rejected
offer has no impact on the strategies of the other agents in this equilibrium, so the
only relevant strategic decision is when to drop out. If dropping out at time t yields
surplus

v(x, τ−1(t))

ρ
= S(x, t),

then the Hamilton–Jacobi–Bellman equation satisfies

Jt (x) = 0 + e−ρ� max {Jt+�(x), S(x, t)} .

Suppose the maximum at time t + � is Jt+�(x), so that type x prefers to wait at
time t rather than match. Then

− Jt+�(x) − Jt (x)

�
+ Jt+�(1 − e−ρ�)

�
= 0

and taking the limit as � → 0 yields

− J̇t (x) + ρ Jt (x) = 0,

with solution Jt (x) = eρt Z(x), where Z(x) is an arbitrary constant. But at the
optimal dropout time, t∗(x), we must have Jt∗(x)(x) = S(x, t∗(x)), or

Z(x) = e−ρt∗(x) v(x, τ−1(t∗(x))))
ρ

.

The objective function for type x on the X side is then

max
t

e−ρt v(x, τ−1(t))

ρ

yielding the first-order condition,

−ρv(x, x)τ ′(x) + v2(x, x) = 0
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which, in the case of strict log-supermodularity, can solved alongwith the boundary
condition that τ(0) = 0 to yield the same matching schedule as in (1), which is
exactly the same matching schedule as in the direct mechanism that implements
positive assortative matching. Therefore, this dynamic game implements the same
allocation as the static direct mechanism, under assumption (2) or (3).

ii. If v(x, y) is strictly log-submodular, then μ(x) and τ(x) are both decreasing as a
consequence of Proposition 1 in any incentive compatible allocation, so that the
highest types match first to the lowest types on the opposite side. But since u(y, x)
is increasing in x , type 1 on the Y side prefers to match instantly with any type x
instantly, since she is allocated to the lowest type agent under the proposed match.
Then any type x could deviate and propose to 1 right away and match instantly,
getting a strictly higher payoff than v(x, x)e−ρτ(x)/ρ. Therefore, when the Y side
can decide whether or not to accept an out-of-equilibrium proposal, the matching
unravels and negative assortative matching is not implementable.

��

Proof of Proposition 3:

Proof Using (1),

ρτ(x) =
∫ x

0

v2(z, z)

v(z, z)
dz.

Taking the derivative twice with respect to x and evaluating at positive assortative
matching yields

ρτ ′′(x) = [v12(x, x)v(x, x) − v1(x, x)v2(x, x)] + [v22(x, x)v(x, x) − v2(x, x)2]
v(x, x)2

A sufficient condition for the first term to be positive is that v(x, y) be strictly log-
supermodular, and a sufficient condition for the second term to be positive is that
v(x, y) be log-convex in y. ��

Proof of Theorem 4:

Proof i. Note that Proposition 1 provides necessary and sufficient conditions for pos-
itive assortative matching to be implementable for each side separately, so that in this
proof, I only need to check whether the envelope condition can be jointly satisfied
on both sides of the market (or, equivalently, that the incentive compatible matching
times on the two sides of the market are the same for types that are matched under
positive assortative matching).

Suppose u(y, x) and v(x, y) are strictly log-supermodular. The envelope condition
from Proposition 1 and strict log-supermodularity implies the agents’ optimal strate-
gies are to report their types honestly. This yields the matching time schedule for the
X side,
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Synchronized matching with incomplete information 611

τX (q) = log

(
v(q, q)

v(0, 0)

)

−
∫ q

0

v1(z, z)

v(z, z)
dz =

∫ q

0

v2(z, z)

v(z, z)
dz,

and similarly for the Y side,

τY (q) = log

(
u(q, q)

u(0, 0)

)

−
∫ q

0

u1(z, z)

u(z, z)
dz =

∫ q

0

u2(z, z)

u(z, z)
dz.

But τX (0) = τY (0) = 0, so that τX (q) = τY (q) only if their derivatives are equal.
This is true if

τ ′
X (q) = v2(q, q)

v(q, q)
= u2(q, q)

u(q, q)
= τ ′

Y (q),

which is condition (4). Therefore, matching can be synchronized on the two sides of
the market if and only if (4) holds.

ii. Suppose the utility functions are strictly log-submodular. Then negative assor-
tative matching prescribes that the highest type on one side arrive at time zero to
match to the lowest type on the other with probability one. But the highest type on
the opposite side can deviate, arrive at probability zero, and get the highest possible
payoff. Therefore, there is a strictly profitable deviation for some type, and negative
assortative matching is not implementable. ��

Proof of Theorem 5

Proof I will prove the following claim: Suppose v(x, y) and u(y, x) are strictly
log-supermodular. A coarse matching M is incentive compatible iff it is positive
assortative and the downwards local incentive constraints bind.

• Necessity: SupposeM is incentive compatible. Then the downwards local incen-
tive constraints follow immediately since they are a subset of the original
constraints. Taking two local incentive constraints,

e−ρτk Vk(xk) ≥ e−ρτk−1Vk−1(xk), e−ρτk−1Vk−1(xk−1) ≥ e−ρτk Vk(xk−1).

Rearranging yields

Vk(xk)Vk−1(xk−1) ≥ Vk−1(xk)Vk(xk−1).

Suppose the set of partners allocated to sub-market k − 1 is greater than the set of
partners allocated to k in the strong set order. Then integrating over y ∈ α(Xk) and
y′ ∈ α(Xk−1), y < y′, on both sides of the strict log-supermodularity inequality,
v(x, y)v(x ′, y′) < v(x, y′)v(y′, x), since the inequality holds pointwise and x >

x ′ and y′ > y. Integrating on both sides over y ∈ α(Xk−1) and y′ ∈ α(Xk) over
all the pointwise inequalities yields

Vk(xk)Vk−1(xk−1) < Vk−1(xk)Vk(xk−1),
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612 T. R. Johnson

which is a contradiction: incentive compatibility thus implies a positive assortative
coarse match. Now, imagine a downwards local incentive constraint does not bind
strictly, so that

e−ρτk Vk(x
k) > e−ρτk−1Vk−1(x

k).

The function V�(x) is continuous in x since v(x, y) is differentiable in x . Then
there is a type xk − ε, ε > 0 but sufficiently small, for which

e−ρτk Vk(x
k − ε) > e−ρτk−1Vk−1(x

k − ε).

But this contradicts incentive compatibility, since xk − ε should weakly prefer the
k − 1 sub-market. Therefore, downwards local incentive constraints must bind.
Now, I can take two downwards incentive constraints on both sides of the market
and rearrange to yield

Vk(xk)

Vk−1(xk)
= Uk(yk)

Uk−1(yk)
= e−ρτk

e−ρτk−1
.

Taking logs and summing then yields a recursive equation that defines the times
at which the sub-markets meet, since it is without loss of generality that the first
market meets at time 0.

• Sufficiency: Suppose downwards local incentive constraints bind, α is positive
assortative, and (5) holds. Then M is incentive compatible. The proof is written
in a series of steps:
– If the local incentive constraints are satisfied for the boundary types, all the
incentive constraints are satisfied for the boundary types. First, if v(x, y) is
strictly log-supermodular and M is a positive assortative coarse matching,
then for x > x ′ and xk > xk

′
in the strong set order, v(x, y)v(x ′, y′) >

v(x, y′)v(x ′, y) holds pointwise. But integrating over y ∈ α(Xk) and y′ ∈
α(Xk′

) on both sides yields

∫

y∈α(Xk )

v(x, y)
1

∫

z∈α(Xk )
dz

dy ∗
∫

y∈α(Xk′ )
v(x ′, y) 1

∫

z∈α(Xk′ )
dz

dy

>

∫

y∈α(Xk )

v(x ′, y) 1
∫

z∈α(Xk )
dz

dy ∗
∫

y∈α(Xk′ )
v(x, y)

1
∫

z∈α(Xk′ ) dz
dy.

(6)

Now, the local downward local constraint for Xk+1 is

e−ρτk+1

∫

y∈α(Xk+1)

v(xk+1, y)
1

∫

z∈α(Xk+1)
dz

dy ≥ e−ρτk

∫

y∈α(Xk )

v(xk+1, y)

× 1
∫

z∈α(Xk )
dz

dy
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and the downward local constraint for xk is

e−ρτk

∫

y∈α(Xk )

v(xk, y)
1

∫

z∈α(Xk )
dz

dy ≥ e−ρτk−1

∫

y∈α(Xk−1)

v(xk, y)

× 1
∫

z∈α(Xk−1)
dz

dy.

Now, taking logs in the second constraint and adding and subtracting terms
corresponding to having type xk+1 but reporting xk−1 yields

−ρτk + log

(∫

y∈α(Xk )
v(xk+1, y)

1
∫

z∈α(Xk ) dz
dy

)

≥

−ρτk−1 + log

(∫

y∈α(Xk−1)
v(xk+1, y)

1
∫

z∈α(Xk−1) dz
dy

)

+ log

(∫

y∈α(Xk )
v(xk+1, y)

1
∫

z∈α(Xk ) dz
dy ∗

∫

y∈α(Xk−1)
v(xk , y)

1
∫

z∈α(Xk−1) dz
dy

)

− log

(∫

y∈α(Xk )
v(xk , y)

1
∫

z∈α(Xk ) dz
dy ∗

∫

y∈α(Xk−1)
v(xk+1, y)

1
∫

z∈α(Xk−1) dz
dy

)

.

Now, by the first step of the proof, the last two lines are strictly positive,
implying

−ρτk + log

(∫

y∈α(Xk )

v(xk+1, y)
1

∫

z∈α(Xk )
dz

dy

)

≥

−ρτk−1 + log

(∫

y∈α(Xk−1)

v(xk+1, y)
1

∫

z∈α(Xk−1)
dz

dy

)

,

and the downward local incentive constraints for xk+1 and xk imply that xk+1

prefers reporting honestly to reporting xk−1. Iterating on this argument and
exploiting downward local incentive constraints for types xk−� shows that
downward local incentive compatibility is satisfied for xk+1 for all lower
reports. A similar argument can be exploited to show that the upward local
incentive compatibility constraints are satisfied for all higher reports. Thus,
the local incentive constraints imply the global ones for the boundary types.

– If the local incentive constraints are satisfied for the boundary types, all the
incentive constraints are satisfied for the interior types. Take x ∈ (xk, xk+1).
If the downwards incentive constraint holds for the boundary type,

e−ρτk Vk(x
k) ≥ e−ρτk′ Vk′(xk)

with k′ < k, we also have

e−ρτk Vk(x) ≥ e−ρτk′
(
Vk′(xk)

Vk(xk)

Vk(x)

Vk′(x)

)

Vk′(x),
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614 T. R. Johnson

but the term in parentheses is greater than 1, so that

e−ρτk Vk(x) ≥ e−ρτk′ Vk′(x),

so that x prefers k to k′. The same argument can be applied to show the upwards
incentive constraints are satisfied for interior types, taking k′ > k and noting
the opposite log-supermodularity inequality will be satisfied.

– The upwards local incentive constraints are automatically satisfied; thus, only
the downwards local constraints are relevant. Take the binding downwards
local incentive constraint

e−ρτk+1Vk+1(x
k+1) = e−ρτk Vk(x

k+1).

This is equivalent to

e−ρτk+1Vk+1(x
k) = e−ρτk

(
Vk(xk+1)

Vk+1(xk+1)

Vk+1(xk)

Vk(xk)

)

Vk(x
k),

but the term in parentheses is strictly less than 1, since V�(x) is strictly log-
supermodular. This yields

e−ρτk+1Vk+1(x
k) < e−ρτk Vk(x

k),

so that the upwards local incentive constraints are satisfied.
– If (5) is satisfied, then so are the downwards local constraints; thus M is
incentive compatible.Thebindingdownwards local incentive constraints imply
that for each k = 1, ..., K ,

e−ρτk Vk(x
k) = e−ρτk−1Vk−1(x

k), e−ρτkUk(y
k) = e−ρτk−1Uk−1(y

k).

Taking logs and substituting in (5) shows that the downwards local incentive
constraints are all satisfied. ��

Proof of Proposition 6

Proof I will show that (5) cannot hold for any q∗ ∈ (0, 1) if v(x, y) exhibits larger
log gains than u(y, x). If v(x, y) exhibits larger log gains than u(y, x), then for all x ,
y, and y′ < y, we have

v(x, y)u(x, y′) > u(x, y)v(x, y′).

Integrate over y′ < q∗ ≤ y to get

v(x, y)
∫ q∗

0
u(x, z)dz > u(x, y)

∫ q∗

0
v(x, z)dz,
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Fig. 2 Intuition for existence argument

and over y > q∗ to get

∫ 1

q∗
v(x, z)dz

∫ q∗

0
u(x, z)dz >

∫ 1

q∗
u(x, z)dz

∫ q∗

0
v(x, z)dz,

and rearrange to get

∫ 1
q∗ v(x, z)dz

∫ q∗
0 v(x, z)dz

>

∫ 1
q∗ u(x, z)dz

∫ q∗
0 u(x, z)dz

.

This implies that for all q∗ ∈ (0, 1), (5) fails, so that there can be no non-trivial
coarse matching with two sub-markets. But note also that the same calculations apply
when considering two sub-markets in any coarse matching, [q�−1, q�) and [q�, q�+1),
q�−1 < q� < q�+1:

∫ q�+1

q�

v(x, z)dz
∫ q�+1

q�−1
u(x, z)dz >

∫ q�+1

q�

u(x, z)dz
∫ q�

q�−1
v(x, z)dz,

so that (5) must fail in general. ��

Proof of Proposition 7

Proof Define the function

g(q) =
∫ q

0
u(q, z)dz

∫ 1

q
v(q, z)dz −

∫ q

0
v(q, z)dz

∫ 1

q
u(q, z)dz.

If q is a zero of g(q), then (5) is an equality, and q partitions [0, 1] an implementable
coarse matching (Fig. 2).

Note that q = 0 and q = 1 are always solutions of g(q), so that simple random
matching is always implementable. To provide a condition under which there are is
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616 T. R. Johnson

at least one interior solution, note first that g(q) is continuous in q, g(0) = 0, and
g(1) = 0: to ensure another solution exists, a sufficient condition is

g′(0)g′(1) < 0.

This implies there is some quantile q ′ for which g(q ′) > 0, and some quantile q ′′ for
which g(q ′′) < 0, and by the intermediate value theorem, there exists an interior point
at which g(q∗) = 0, q∗ ∈ (0, 1). Computation of these derivatives yields

g′(0) = u(0, 0)
∫ 1

0
v(0, z)dz − v(0, 0)

∫ 1

0
u(0, z)dz

and

g′(1) = u(1, 1)
∫ 1

0
v(1, z)dz − v(1, 1)

∫ 1

0
u(1, z)dz

Then g′(0)g′(1) is a quantity proportional to

∫ 1

0

v(0, z)

v(0, 0)
− u(0, z)

u(0, 0)
dz ×

∫ 1

0

v(1, z)

v(1, 1)
− u(1, z)

u(1, 1)
dz.

Note that the integrands now must take the opposite signs by the alternatingly larger
log gains property, so that the overall value of this expression is negative, implying
g′(0)g′(1) < 0, and at least one interior zero q∗ exists. Then there exists a partition
Q = {[0, q∗), [q∗, 1]} for which positive assortative matching is implementable. ��
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