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Abstract Weconsider the theoretical properties of amodel which encompasses bipar-
tite matching under transferable utility on the one hand and hedonic pricing on the
other. This framework is intimately connected to tripartite matching problems (known
as multi-marginal optimal transport problems in the mathematical literature). We
exploit this relationship in two main ways; first, we show that a known structural
result from multi-marginal optimal transport can be used to establish an upper bound
on the dimension of the support of stable matchings. Next, assuming the distribution
of agents on one side of the market is continuous, we identify a condition on their
preferences that ensures purity and uniqueness of the stable matching; this condition
is a variant of a known condition in themathematical literature, which guarantees anal-
ogous properties in the multi-marginal optimal transport problem. We exhibit several
examples of surplus functions for which our condition is satisfied, as well as some for
which it fails.
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394 B. Pass

1 Introduction

This paper considers the theoretical properties of a general model, which encom-
passes both the transferable utility matching model of Shapley and Shubik (1971) and
Becker (1973), extended to continuous type spaces by Gretsky et al. (1992), and the
hedonic model of Rosen (1974), whose theoretical properties (in a continuous, multi-
dimensional setting) were studied by Ekeland (2010), Ekeland (2005) and Chiappori
et al. (2010).

In the hedonic model, agents on two sides of a market (e.g., buyers and sellers) are
matched together according to their preferences to exchange certain goods, assuming
they are indifferent to which partner they do business with. Letting X and Y be spaces
of buyers and sellers, respectively, and Z the set of goods that can feasibly be produced,
we assume that agents’ preferences are encoded respectively by functions u(x, z) and
v(y, z), expressing the utilities of buyer x ∈ X and seller y ∈ Y if they purchase or
produce a product of type z ∈ Z , respectively. The main problem is then to determine
which buyers match with which sellers, which goods they exchange and the prices
they exchange for them, in equilibrium.

In the matching model, agent x (respectively y) has a preference u(x, y) [respec-
tively v(x, y)] tomatchwith agent y (respectively x). Together, a match between x and
y generates a joint utility, or surplus, s(x, y) = u(x, y) + v(x, y). Utility can then be
transferred in the form of a payment from one agent to the other; by this mechanism,
the total surplus s(x, y) can be divided in any way between the two agents. Here the
good z to be exchanged (or the nonmonetary terms of the contract) does not affect
agents’ preferences.

Recently, Dupuy et al. (2015) formulated a hybrid model in which agents have
preferences which depend on both their partners and the product under exchange. In
that paper, x and y represent agents on different sides of a marriage market, and z the
location where they would agree to settle; however, as was noted by the authors, the
model has much wider potential applicability. In family economics, for instance, when
a couple match together, there are many conditions of the match which can affect the
surplus generated. In addition to location, a couple may choose to marry or to live
together without marrying, and to have one or more children, for example. These
decisions affect the surplus differently depending on the couple; see, for example,
Mourifie and Siow (2014). When considering buyers and sellers, it also seems natural
in many scenarios to allow consumers’ preferences to depend on both the producer he
does business with and the good he receives. For example, consumers often exhibit
brand loyalty; they may be willing to pay more (for the same good) when dealing
with one company rather than another. On the other hand, producers’ preferences can
also depend on the consumers they sell to; for example, mortgage lenders often offer
better rates to clients with higher credit scores, reflecting the fact that they prefer to
do business with more creditworthy borrowers. Another example occurs in insurance
models like the one of Rothschild and Stiglitz (1976); insurance companies offer
the same policy at different prices to different consumers depending on how their
characteristics influence the risk of a claim.

The theoretical properties of these hybridmodels do not seem to have receivedmuch
attention. In this paper,we study thismodelwhen the type spaces X andY and the space
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Interpolating between matching and hedonic pricing models 395

of feasible contracts Z are all continuous. In both the classical matching problem, and
the hedonic problem, conditions are well known which ensure that the equilibrium, or
stable matching, is unique and pure. In the matching problem, this condition is known
as the twist, or generalized Spence–Mirrlees condition. Puritymeans that thematching
(which is a measure on the product space X × Y × Z—see Sect. 2) concentrates on
a graph [{x, FY (x), FZ (x)} over the first variable; economically, this means that all
buyers of type x choose to buy a good of type z = FZ (x) from a buyer of type
y = FY (x)].

One natural question in the present setting is to identify conditions on the joint
surplus function (which is now a function of x, y and z, without any specific form) in
the more general model which ensure purity and uniqueness of the stable match.

Both the strict matching and hedonic problems have well-established connections
to a variational problem known as optimal transportation; economically, this is exactly
the social planner’s problem of matching the agents in order to maximize their average
surplus (a detailed introduction to this subject can be found in the books of Galichon
2016; Santambrogio 2015; Villani 2009). The generalized model studied here turns
out to have natural connections to both the classical optimal transport problem, and
variant of it where there are three (rather than two) measures to be matched (known in
the mathematics literature as a multi-marginal optimal transport problem). Our main
contribution here is to establish and exploit these connections to uncover insights
into matching patterns for this generalized matching-hedonic model. As immediate
applications of the multi-marginal optimal transport point of view, we establish exis-
tence of stable matchings, under quite general conditions, and an upper bound on the
dimension of their supports (which are measures on the product space X × Y × Z )
in terms of the signature of the off-diagonal part of the Hessian of s. We then find
conditions on the functions u and v, and the measures μ and ν ensuring uniqueness
and purity of equilibria. Our condition here is a weaker variant of the twist on splitting
sets condition, which is known to ensure purity and uniqueness in the multi-marginal
optimal transport problem; we will call the condition for the hybrid matching problem
the twist on z-trivial splitting sets.

In addition, due to recent work of Chiappori et al. (2010), it is now clear that the
hedonic problem is actually equivalent to a matching problem, with a surplus equal to
the maximum possible joint utility for buyers and sellers, among all possible goods;
we often refer to the analogous maximized surplus s̄(x, y) [see (6)] in our setting
as the reduced surplus, as we have reduced the number of variables from three to
two (that is, s̄ depends only on x and y). This equivalence persists in our setting.
In this simplified but equivalent bipartite matching setting, the twist condition on
the maximal surplus (6) ensures the uniqueness and purity of the stable match. It
is desirable then, to understand when the twist condition on the surplus (6) holds;
we show that, under certain conditions, this is essentially equivalent to our twist on z-
trivial splitting sets condition on s. I am not aware of any nontwisted surplus s(x, y) for
which purity holds for general measures μ and ν; therefore, the equivalence described
above suggests that, in the hybrid problem, twist on z-trivial splitting sets may be a
necessary condition for purity. The equivalence also lets us adapt known results from
two marginal optimal transport to derive conditions under which stable matchings are
unique, but not necessarily pure.
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396 B. Pass

In the next section, we outline the model under consideration and establish some
of its basic properties. In Sect. 3, we use the connection with multi-marginal optimal
transport to establish a result on the local structure (i.e., the dimension of the sup-
port) of stable matchings. In Sect. 4, we develop our sufficient condition for purity
and uniqueness of stable matchings, while Sect. 5 is devoted to the reformulation
of our problem as a strict matching problem (with a reduced surplus function) and
the demonstration that the classical twist condition of s̄ is equivalent to our twist on
z-trivial splitting sets condition on the surplus s. Section 6 presents some examples,
while we offer a brief conclusion in the final section.

Short, simple proofs of mathematical results are included within the body of
the paper; longer or more involved mathematical arguments are relegated to an
“Appendix”, to avoid interrupting the flow of the paper.

2 The general model and basic properties

We consider heterogeneous distributions of buyer and seller types, encoded respec-
tively by compactly supported Borel probability measures μ on X ⊆ R

nx and ν on
Y ⊆ R

ny , and a set of feasible goods, parameterized by Z ⊆ R
nz . The sets X , Y and

Z will be the closures of open and bounded sets X0, Y 0 and Z0, respectively, with
smooth boundaries. Each buyer will buy exactly one good; each seller will produce
and sell exactly one good.1

The preference of a buyer of type x to purchase a good of type z from a seller
of type y will be given by a function u(x, y, z), while the preference of a seller of
type y to sell a good of type z to a buyer of type x is given by v(x, y, z). We will
assume throughout the paper that u and v are uniformly Lipschitz; stronger regularity
hypotheses will be adopted at various specific points. Utilities will be quasilinear, so
that the utility derived by a buyer purchasing a good of type z from a seller of type y
for a price p will be

u(x, y, z) − p

and similarly, the utility derived by a seller selling a good of type z to a buyer of type
x for a price p will be

v(x, y, z) + p.

We will denote by s(x, y, z) the total, or joint, surplus generated when a buyer of type
x purchases a good of type z from a seller of type y:

s(x, y, z) = u(x, y, z) + v(x, y, z).

1 It would be straightforward to enhance the model to allow for unequal numbers of buyers and sellers,
and to allow both to decline to participate in any match; this can be done as in Chiappori et al. (2010),
by augmenting the measures μ and ν with Dirac masses, representing null buyers and sellers. As this is
tangential to our main purpose here, we work instead with the simpler model in which all agents participate.
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Interpolating between matching and hedonic pricing models 397

As the utility can freely be transferred from one partner to another, the analytical
properties of s, rather than u and v separately, are most relevant in determining the
purity and uniqueness of equilibrium.

We define amatching as a probability measure γ on X ×Y × Z whose first marginal
is μ and whose second marginal is ν; that is

γ (A × Y × Z) = μ(A), γ (X × B × Z) = ν(B)

for all Borel A ⊆ X , B ⊆ Y . This represents an assignment of the agents in the sets
X and Y into pairs and assigns to each pair a good from the set Z to be exchanged.
We will denote by ΓXY Z (μ, ν) the set of all matchings of μ and ν on X × Y × Z .

We will say that a mapping T : X → Y pushes μ forward to ν, and write ν = T#μ
if μ(T −1(B)) = ν(B) for all Borel B ⊆ Y .

For a given measure γ on X × Y × Z , we denote by γXY its projection onto X × Y ,
a measure on X × Y defined by γXY (C) = γ (C × Z) for any C ⊂ X × Y . The
measures γX Z and γY Z are defined analogously. Note that γXY = (PXY )#γ , where
PXY : X × Y × Z → X × Y is the projection map, PXY (x, y, z) := (x, y). It is also
worth noting that if γ is a matching of μ and ν, then γXY has marginals μ and ν.

Given a matching γ , functions U (x) and V (y) are called payoff functions for γ if

U (x) + V (y) = s(x, y, z)

for γ almost every (x, y, z). For anymatching, points in the support2 spt (γ ) of γ (and
hence in the equality set {U (x)+ V (y) = u(x, y, z)+v(x, y, z)} for payoff functions
U and V ) represent buyer–seller pairs who are matched together by γ , together with
the good they exchange. Payoff functions then represent a division of the surplus
between matched pairs. Given such a triple (x, y, z) ∈ spt (γ ) and payoffs U (x) and
V (y), the price3 that y charges x in exchange for the good z is given

px,y,z := u(x, y, z) − U (x) = V (y) − v(x, y, z). (1)

The matching is called stable if there exist payoff functions U (x) and V (y) such
that

U (x) + V (y) ≥ u(x, y, z) + v(x, y, z) (2)

for all (x, y, z).
The condition (2) ensures stability of the matching in the sense that no pair of

unmatched agents would both prefer to leave their current partners andmatch together.
If (2) failed, so thatU (x)+V (y) < u(x, y, z)+v(x, y, z) for some unmatched buyer–
seller–good triple (x, y, z) [that is, (x, y, z) /∈ spt (γ )], then buyer x and seller y would

2 The support of γ is the smallest closed set spt (γ ) ⊂ X × Y × Z with full mass, γ (spt (γ )) = 1.
3 In contrast to the strict hedonic problem, one cannot hope for a market clearing pricing function p(z)
which is independent of x and y here; it is possible that the same good may be exchanged between different
pairs of buyers and seller for different prices.

123



398 B. Pass

be incentivized to exchange good z for a price p such that

V (y) − v(x, y, z) < p < u(x, y, z) − U (x),

resulting in increased payoffs Ū (x) := u(x, y, z) − p > U (x) and V̄ (y) :=
v(x, y, z) + p > V (y) for both x and y.

Finally, we turn our attention to purity of matchings. There are several relevant
notions of purity here, corresponding to various relationships between buyers, sellers,
and goods.

Definition 1 Amatching γ is called buyer–seller pure if its projection γXY onto X ×Y
is concentrated on a graph over X ; that is, if there exists a function FY : X → Y such
that γXY = (I d, FY )#μ. We say γ is buyer–good pure if its projection γX Z onto X × Z
is concentrated on a graph over X ; that is, if there exists a function FZ : X → Z such
that γX Z = (I d, FZ )#μ.

We will call γ buyer–(seller, good) pure (or simply pure) if it is both buyer–
seller and buyer–good pure, which means that γ is concentrated on a graph over X .
In other words, there exist functions FY : X → Y and FZ : X → Z such that
γ = (I d, FY , FZ )#μ.

Note that one could analogously define several other notions of purity (seller–buyer,
good–seller, etc). The economic interpretation of, for instance, buyer–seller purity is
that there is no randomness in each buyer x’s choices of the seller y = FY (x) he works
with; buyers of the same type will (almost) always buy goods from sellers of the same
type.

One of our main contributions in this paper is to identify a condition on the surplus
that ensures full, buyer–(seller, good) purity; as we will see, the same condition will
guarantee uniqueness of the stable matching as well.

2.1 Variational interpretation

Much like the classical matching and hedonic problems, the problem of finding sta-
ble matchings in our setting has a variational formulation. Consider the problem of
maximizing ∫

X×Y×Z
s(x, y, z)dγ (x, y, z) (3)

over the set ΓXY Z (μ, ν) of all matchings of μ and ν (that is, maximizing the total
surplus of all agents).

Theorem 1 A matching γ is a stable matching if and only if it is optimal in (3).

This result is well known in the classical matching case of Gretsky et al. (1992),
when the surplus s (and hence thematchingmeasures γ as well) depends only on x and
y. For general hybrid surplus functions, s(x, y, z), the result is proven in the discrete
case by Dupuy et al. (2015). The proof here requires no new ideas but is included in
an “Appendix” in the interest of completeness.

By standard arguments, Theorem 1 implies existence of a stable matching.
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Interpolating between matching and hedonic pricing models 399

Corollary 1 There exists at least one stable matching γ .

Proof The proof is by continuity and compactness and is completely standard.
Continuity of s immediately implies continuity of

γ �→
∫

X×Y×Z
s(x, y, z)dγ (x, y, z)

with respect to weak convergence of measures. The Riesz–Markov theorem identifies
the dual of the set C(X × Y × Z) of continuous functions on X × Y × Z with the set
M(X × Y × Z) of regular Borel measures on X × Y × Z , with norm given by total
variation (which is total mass, for positive measures). The Banach–Alaoglu theorem
then asserts that the closed unit ball inM(X ×Y × Z) is compact. The set ΓXY Z (μ, ν)

is clearly a weakly closed subset of this unit ball, and therefore is itself compact. The
existence of a maximizer of (3) over the set ΓXY Z (μ, ν), and hence a stable matching
by Theorem 1, then follows immediately. �	

2.2 Connection to tripartite matching

Problem (3) is closely related to a tripartite matching problem (also known, in the
mathematical literature, as the multi-marginal optimal transport problem), where in
addition to prescribing the distributions of agents μ on X , ν on Y , one fixes the
distribution α on Z .4 Finding a stable matching in this problem is equivalent to the
following maximization:

T (μ, ν, α) := max
γ∈ΓXY Z (μ,ν,α)

∫
X×Y×Z

s(x, y, z)dγ (x, y, z) (4)

where the maximum is over the set ΓXY Z (μ, ν, α) of positive measures on X ×
Y × Z whose marginals areμ, ν and α. The underlying relationship between tripartite
matching and our present problem is that the variational problem (3) (and therefore the
equivalent hybrid matching-hedonic problem) is equivalent to maximizing T (μ, ν, α)

over the set of all probability measures α on Z .
There is a growing mathematical and economic literature on tripartite (or, more

generally, multipartite) matching, which will be useful in what follows, as some of
the results there can be translated to the present setting. In particular, an immediate
application is an upper bound on the dimension on the support of the stable matching,
which is presented in the next section. In addition, conditions ensuring purity and
uniqueness in (4) have been identified by Kim and Pass (2014). In a subsequent
section, we use this as a guide to develop a similar condition for problem (3); our
condition here is somewhat weaker than the one of Kim and Pass (2014), as we do not

4 In these tripartite matching problems, the variables are typically interpreted differently; economically,
they model problems where three agents are required to form a match (think, for example, of firms hiring
simultaneously both CEOS and CFOS, drawn from separate distributions). The distributions of all three
types of agents (firms, CEOs and CFOs) are then known, and finding a stable match is equivalent to
maximizing (4) [see Carlier and Ekeland (2010)].

123



400 B. Pass

require purity in (4) for every choice of α; we require it only for those which maximize
α �→ T (μ, ν, α).

3 Dimension of the support of matching measures

Even when the conditions for purity and uniqueness developed in the next section fail,
there are results known about the local structure of the optimizer in (4); as any stable
matching γ maximizes (4), taking α to be its z marginal, these results immediately
apply to stable matchings as well.

More specifically, for a C2 surplus function, the theorem below provides a bound
on the Hausdorff dimension of the support of γ in terms of the off-diagonal part of
the Hessian of s. Consider the symmetric (nx + ny + nz) × (nx + ny + nz) matrix

G :=
⎡
⎣

0 D2
xys D2

xzs
D2

yx s 0 D2
yzs

D2
zx s D2

zys 0

⎤
⎦

where the three diagonal 0 blocks are nx × nx , ny × ny and nz × nz , respectively,

D2
xys :=

(
∂2s

∂xi ∂y j

)
i j
is the nx × ny matrix of mixed second-order partial derivatives

with respect to the components of x and y, and the other nonzero blocks are defined
similarly.

Recall that the signature (λ+, λ−, λ0) of a symmetric N × N matrix is an ordered
triple representing the numbers λ+, λ− and λ0 = N − λ+ − λ− of positive, negative
and zero eigenvalues, respectively.

Theorem 2 Assume that s ∈ C2(X × Y × Z) and that at some point (x0, y0.z0) ∈
X × Y × Z, the signature of G is (λ+, λ−, nx + ny + nz − λ+ − λ−). Then, there is
a neighborhood U of (x0, y0, z0) in X × Y × Z such that spt (γ ) ∩ U is contained in
a Lipschitz submanifold of X × Y × Z of dimension nx + ny + nz − λ−.

The result is known for optimizers of (4) (Pass 2011, 2012), and that result imme-
diately implies this one. Note that the dimension nx + ny + nz − λ− is the number
of nonnegative eigenvalues of G; in fact, if spt (γ ) is a differentiable manifold at
(x0, y0, z0), then vT Gv ≥ 0 for any v in the tangent space of spt (γ ) (Pass 2011,
2012). It is worth noting that, unlike the purity results in the subsequent section, this
theorem does not require any regularity assumptions on the marginals μ and ν.

The following proposition, also established by Pass (2011), asserts that when the
dimensions are all equal, the signature can be determined from the symmetric part of
the product D2

zys[D2
xys]−1D2

xzs.

Proposition 1 If nx = ny = nz =: n, and the matrices D2
xys, D2

xzs and D2
yzs are all

invertible, then the signature of G is given by (λ+, λ−, λ0) = (n + r−, n + r+, n −
r− − r+) where r+ (respectively r−) is the number of positive (respectively negative)
eigenvalues of the n × n symmetric matrix

D2
zys[D2

xys]−1D2
xzs + D2

zx s[D2
yx s]−1D2

yzs.
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In particular, if nx = ny = nz = 1 and ∂2s
∂z∂y [ ∂2s

∂x∂y ]−1 ∂2s
∂x∂z > 0, then (r+, r−) =

(1, 0) in the proposition above and so the proposition together with Theorem 2 assert
that any stable matching is concentrated on a 1-dimensional Lipschitz submanifold;
that is, a curve. We will see later on that for an absolutely continuous μ, the same
condition ensures purity and uniqueness.

In higher (but still equal) dimensions, the situation is more subtle. For a bilinear
surplus function s(x, y, z) = xT Ay + xT Bz + yT Cz + f (x) + g(y) + h(z), as in
Example 2 below, the condition

D2
zys[D2

xys]−1D2
xzs + D2

zx s[D2
yx s]−1D2

yzs = CT A−1B + BT (AT )−1C > 0,

together with absolute continuity of μ implies purity (see Example 2), but for more
general forms of s, one can have solutions which concentrate on n dimensional sets
but are not pure. Consider, for example, the surplus on R

2 × R
2 × R

2 studied by
Moameni and Pass (2017)

s(x, y, z) = ex1+y1 cos(x2 − y2) + ex1+z1 cos(x2 − z2) + ey1+z1 cos(z2 − y2)

− e2x1 − e2y1 − e2z1 .

For this surplus, a straightforward calculation Moameni and Pass (2017) verifies that
the product D2

zys[D2
xys]−1D2

xzs + D2
zx s[D2

yx s]−1D2
yzs is a scalar multiple of the iden-

tity, and the results above then imply that the signature of G is (2, 4, 0). Every stable
matching for this surplus therefore concentrates on sets of no more than 2 dimensions.

However, stable matchings may not be pure. It is straightforward to check that
s(x, y, z) ≤ 0 for all (x, y, z), with equality on the set

(x, y, z) ∈ S = {(x, y, z) : x1 = y1 = z1 and x2 − y2 = 2hπ, x2 − z2 = 2lπ

for some integers h, l}.

It follows that any γ concentrated on S is stable (we can take U = V = 0 as the
payoff functions). This set is two dimensional, as predicted by the calculations above,
but not concentrated on a graph, and so the matching is not pure.

4 Conditions for purity and uniqueness

Wenow turn our attention to the purity and uniqueness of stablematchings. For the sake
of comparison,wefirst recall knownpurity and uniqueness results for the simpler, strict
matching and hedonic problems. The twist or generalized Spence–Mirrlees condition
plays a fundamental role in that setting:

Definition 2 Given a differentiable function, say s(x, y), of two variables, we say u
is x − y twisted if for each x ∈ X , the mapping

y �→ Dx s(x, y)
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402 B. Pass

is injective. Here, Dx represents the gradient of s with respect to the x variable.
We will use the same terminology for functions of several variables, when all but

one are held fixed. That is, we say s(x, y, z) is x − z twisted if for each x ∈ X, y ∈ Y ,
the mapping

z �→ Dx s(x, y, z)

is injective.

4.1 Classical matching and hedonic problems

We first review a purity result in the straight matching case, s = s(x, y).

Theorem 3 (Matching problems) Assume that u = u(x, y) and v = v(x, y) depend
only on x and y. Assume that μ is absolutely continuous with respect to Lebesgue
measure and s(x, y) = u(x, y) + v(x, y) is x − y twisted. Then, any stable matching
is buyer–seller pure and its projection γXY onto X × Y is uniquely determined; that
is, if γ and γ̄ are stable matchings, γXY = γ̄XY .

This result iswell known; a proof can be found in thework ofChiappori et al. (2010).
Indeed, in the mathematics literature, comparable results regarding the equivalent
optimal transport problem were established, in various levels of generality, by Brenier
(1987), Gangbo (1995), Levin (1999), Gangbo and McCann (1996) and Caffarelli
(1996).

Note that in our terminology, stable matchings are measures on X ×Y × Z , whereas
in the literature the strict matching problem is usually formulated instead in terms of
measures on X × Y , as the good z plays no role in the surplus function. In our
formulation, we would not have full uniqueness; any measure on X × Y × Z , whose
projection onto X ×Y is γXY is a stablematching, as both agents x and y are indifferent
to the superfluous good z.

We now turn to the fully hedonic case, where agents’ preferences u = u(x, z) and
v = v(y, z) depend on goods but not on their partners.

Theorem 4 (Hedonic problems) Assume that agents’ preferences u = u(x, z) and
v = v(y, z) depend only on (x, z) and (y, z), respectively, and that μ is absolutely
continuous with respect to Lebesgue measure. Then:

1. If u is x − z twisted, the stable matching is buyer–good pure and it’s projection
γX Z onto X × Z is uniquely determined.

2. If in addition, v is z − y twisted, and, for each fixed x, y, every maximum of the
mapping z �→ u(x, z) + v(y, z) over Z occurs on the interior of Z, the stable
matching measure is buyer–(seller, good) pure and unique.

The proof of part 1 can be found in the work of Ekeland (2005), while the proof of
the second assertion requires a minor additional argument.

Proof (of assertion 2) Using part 1), we have the existence of a unique map FZ :
X → Z such that, for γ almost every (x, y, z), z = FZ (x). Now, by a result of
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Interpolating between matching and hedonic pricing models 403

Chiappori et al. (2010), we also have for γ almost every (x, y, z) that z maximizes
z′ �→ u(x, z′) + v(y, z′), so that

Dzu(x, z) = −Dzv(y, z)

or
Dzu(x, FZ (x)) = −Dzv(y, FZ (x)). (5)

The z − y twist condition then ensures that there is only one y satisfying this equation.
That is, y =: FY (x) is uniquely determined by x ; i.e., the matching is pure. Therefore,
the stable matching γ takes the form γ = (I d, FY , FZ )#μ, and as FZ is unique by
part 1, and FY is uniquely determined from (5) by FZ , γ is unique. �	

4.2 Fully mixed problems

Our condition for purity and uniqueness will require a couple of definitions. The first
is borrowed from Kim and Pass (2014).

Definition 3 (Splitting sets) For a fixed x ∈ X , a set Sx ⊂ Y × Z is a splitting set at
x if there exist functions V (y) and W (z) such that

s(x, y, z) ≤ V (y) + W (z)

with equality whenever (y, z) ∈ Sx .

The particular case when W (z) = 0 in the above definition is especially relevant
for this paper:

Definition 4 (z-trivial splitting sets) For a fixed x ∈ X , a set Sx ⊂ Y × Z is a z-trivial
splitting set at x if there exists a function V (y) such that

s(x, y, z) ≤ V (y)

with equality whenever (y, z) ∈ Sx .

It is clear that any z-trivial splitting set is a splitting set. The role of z-trivial splitting
sets in the matching problem (3) is fairly transparent; for a given buyer x , the collec-
tion of all seller-contract pairs (y, z) achieving equality in (2) (and hence potentially
matchingwith x in equilibrium) is a z-trivial splitting set at x . As was observed byKim
and Pass (2014), splitting sets play a similar role in the tripartite matching problem
(4).

Remark 1 It is worth noting that Sx is a z-trivial splitting set at x if and only if z̄
maximizes z �→ s(x, ȳ, z) for each (ȳ, z̄) ∈ Sx .

Definition 5 (Twist on splitting sets) A differentiable surplus s(x, y, z) is twisted on
splitting sets [or (TSS) for short], if whenever Sx ⊆ Y × Z is a splitting set at x and
p ∈ R

nx , there is at most one (y, z) ∈ Sx such that

p = Dx s(x, y, z).
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Kim and Pass (2014) showed that the (TSS) condition implies purity in the multi-
agent matching model (4). Here, we introduce a variant, replacing splitting sets with
z-trivial splitting sets, whichwill play an analogous role in (3) and the relatedmatching
problem.

Definition 6 (Twist on z-trivial splitting sets) A differentiable surplus s(x, y, z) is
twisted on z-trivial splitting sets [or (TzSS) for short], if whenever Sx ⊆ Y × Z is a
z-trivial splitting set at x and p ∈ R

nx , there is at most one (y, z) ∈ Sx such that

p = Dx s(x, y, z).

We are now ready to state our main theoretical result on the purity of matchings.

Theorem 5 Suppose s is twisted on z-trivial splitting sets, and μ is absolutely con-
tinuous with respect to Lebesgue measure. Then any stable matching γ is pure.

The proof of this result is fairly standard; it involves applying the envelope theorem
with respect to x on the equality set in (2) to equate the gradients of U and s (with
respect to x), and then using the (TzSS) condition to infer the resulting equation can
have only one solution. There is one technical difficulty, which is also standard in
problems of this type; the payoff function U (x) may not be differentiable. We use a
(well known) convexification trick to get around this, replacingU with a Lipschitz (and
hence differentiable almost everywhere, by Rademacher’s theorem) payoff function,
Ū . The proof can be found in “Appendix”.

A standard argument now implies uniqueness of the stable matching.

Corollary 2 Under the conditions in the preceding theorem, the stable matching is
unique.

Proof Suppose γ and γ̄ are stable matchings; by Theorem 5, we know that both γ

and γ̄ are pure, γ = (I d, F)#μ and γ̄ = (I d, F̄)#μ for F, F̄ : X �→ Y × Z , and,
by Theorem 1, both are also maximizers of (3). It is then easy to see that γ1/2 :=
1
2 [γ + γ̄ ] ∈ ΓXY Z (μ, ν). It is therefore also optimal in (3), as the functional is linear.
By Theorem 5 again, γ1/2 too must then be supported on the graph of some function;
on the other hand, it is clear that it is supported on the union of the graphs of F and
F̄ , which then implies that F(x) = F̄(x) almost everywhere, and so γ = γ̄ , yielding
uniqueness.

As any z-trivial splitting set is a splitting set [one needs only to take W (z) = 0
in the definition], any surplus which is twisted on splitting sets is twisted on z-trivial
splitting sets. Therefore, we also have the following Corollary:

Corollary 3 Suppose s is twisted on splitting sets, and μ is absolutely continuous
with respect to Lebesgue measure. Then, the stable matching γ is unique and pure.

The preceding corollary is potentially useful, as several examples of surplus func-
tions satisfying the twist on splitting sets condition are known, as well as general
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sufficient differential conditions ensuring it (Kim and Pass 2014; Pass 2015). Some
of these will be discussed in Sect. 6.

Remark 2 (Uniqueness is the absence of purity) In our arguments above, uniqueness
of the stable matching is derived as a consequence of purity. It is natural to ask whether
there are conditions under which the stable matching is unique, but not pure. In the
two marginal optimal transport setting, corresponding to the classical stable matching
problem, a fair bit of researchhas beendevoted to this question, and conditions ensuring
uniqueness but not purity have been developed by Chiappori et al. (2010), McCann
and Rifford (2016) and Ahmad et al. (2011).

Relatively little is known about the corresponding question in multi-marginal opti-
mal transport. Joint work with Moameni identifies certain specialized conditions on
s which can sometimes be used to deduce uniqueness of solutions to multi-marginal
problem (Moameni and Pass 2017, Theorem 4.1, Examples 4.2 and 4.4), and these can
use to construct unique, nonpure examples in the hybrid matching-hedonic problem
in the same way.

Finding more general sufficient conditions for uniqueness of solutions to multi-
marginal optimal transport problems is an interesting, but seemingly quite challenging,
open problem. Somewhat surprisingly, this question is easier to address for the hybrid-
matching-hedonic problem.Wewill see in the next section (Corollary 5) that conditions
from the classical matching problem can be used to derive corresponding conditions
for the hybrid problem.

4.3 Other notions of purity

In this paper, we have mostly focused on buyer–(seller, good) purity; as noted above,
one can define other notions of purity, and ask under which conditions they hold. As
the roles of buyer x and seller y are completely symmetric in our model, it follows
immediately that interchanging the roles of x and y in the twist on z-trivial splitting
sets condition yields a condition under which any equilibrium is seller–(buyer, good)
pure. We also note that two distinct, appropriate relaxations of the (TzSS) condition
will individually imply buyer–seller or buyer–good purity, but not full buyer–(seller,
good) purity. For instance, if we require that whenever Sx is a z-trivial splitting set at
x , (y, z), (ỹ, z̃) ∈ Sx , and Dx s(x, y, z) = Dx s(x, ỹ, z̃), we must have y = ỹ, then
any stable matching must be buyer–seller pure. The proof of this is almost identical
to the proof of Theorem 5.

Turning our attention to matchings which concentrate on graphs over z, we note the
following, known result on good–(buyer, seller) purity for strictly hedonic problems.

Proposition 2 For a strictly hedonic surplus, s(x, y) = u(x, z) + v(y, z)

1. If u is z − x twisted, then any stable matching is good–buyer pure.
2. If v is z − y twisted then any stable matching is good–seller pure.
3. Consequently, it u is z − x twisted and v z − y twisted, the stable matching is

good–(buyer, seller) pure.
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A proof of this result (in fact, of a more general version), can be found in work of
(Pass 2015, Proposition 2.3.4.2).5 The proof, however, relies on the hedonic form of
s in a crucial way, and it is not clear whether a version of the result can be extended
to hybrid models.

5 Reformulation as a bipartite matching problem

Here, we provide a different, but equivalent, formulation of the problem, following
Chiappori et al. (2010), as a binary matching, or two marginal optimal transport,
problem. We define the reduced surplus by:

s̄(x, y) = max
z∈Z

[u(x, y, z) + v(x, y, z)]. (6)

The meaning of s̄(x, y) is clear; it expresses the maximum joint surplus (among all
possible contracts) that can be generated by the partnership of x and y. The classical
two marginal optimal transport problem is to maximize

∫
X×Y

s̄(x, y)dσ(x, y) (7)

over the set ΓXY (μ, ν) of probability measures on X × Y with X (respectively Y )
marginal μ (respectively ν). This optimization problem is equivalent to the classical
strict stable matching problem under transferable utility, with surplus s̄ (Gretsky et al.
1992; Chiappori et al. 2010).

For each x, y, choose z̄(x, y) ∈ argmaxz[u(x, y, z) + v(x, y, z)]; note that z̄ then
defines a function z̄ : X × Y → Z . Due to compactness, one can choose this selection
to be Borel measurable.

Proposition 3 Suppose a measure σ is optimal in (7). Then (I d, I d, z̄)#σ is optimal
for (3). Conversely, if γ is optimal in (3), then γXY = (PXY )#γ is optimal in (7),
where PXY (x, y, z) = (x, y).

The proof of this result is almost identical to the proof of the analogous result of
Chiappori et al. (2010) and can be found in “Appendix”.

As the well-known generalized Spence–Mirrlees condition on s̄ is known to imply
purity and uniqueness of maximizers in (7), it is natural to look for conditions on
s which ensure it. We show that the twist on z-trivial sets for s is equivalent to the
classical generalized Spence–Mirrlees condition on s̄ (under an extra condition on
s). Note that this, combined with the preceding proposition and Theorem 3 yields an
alternative proof of the buyer–seller aspects of the purity and uniqueness results in the
last section (that is, buyer–seller purity and uniqueness of γXY ).

5 We note that when − u and − v are proportional to the squared distance on either X, Y, Z ⊆ R
n or a

Riemannian manifold, the third marginal γZ of the matching measure γ coincides with the displacement
interpolant of μ and ν, and the purity follows from the Mather Shortening lemma [see Theorem 8.5 in the
book of Villani (2009) or Lemma 5.3 of Cordero-Erausquin et al. (2001)]; the proof of Pass (2015) relies
on the same ideas.
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Theorem 6 Assume that both s and s̄ are everywhere differentiable with respect to
x. If s satisfies the twist on z-trivial splitting sets condition, then s̄ satisfies the twist
condition.

Conversely, assume that s is x − z twisted. Then, if s̄ satisfies the twist condition,
s satisfies the twist on z-trivial splitting sets condition.

The proof is relegated to an “Appendix”.

Remark 3 From inspection of the proof, it is clear that in fact slightly more is true.
If we assume that s̄ is twisted, but remove the x − z twist assumption on s, the

argument in the proof of the second implication still yields that if (y0, z0) and (y1, z1)
are in any splitting set Sx at x , and Dx s(x, y0, z0) = Dx s(x, y1, z1) then y0 = y1
(although possibly z0 = z1). This then implies that any stable matching is buyer–seller
pure, and that its projection onto X × Y is uniquely determined (as can also be proven
using the twistedness of s̄ in combination with Theorem 3).

Remark 4 If s is either Lipschitz or semi-convex, one can showby a standard argument
that s̄ is also Lipschitz or semi-convex, respectively, and it is well known that functions
satisfying either one of these criteria are differentiable almost everywhere. In fact, a
version of the twist condition implying purity and uniqueness can be formulated under
either of these assumptions (in place of everywhere differentiability) (Chiappori et al.
2010), and our proof in “Appendix” adapts easily to this setting. It follows that one can
remove the assumption of differentiability on s̄ in the preceding theorem; we present
the version with the differentiability assumption on s̄ here for simplicity.

Proposition 3 also has the following immediate corollary relating uniqueness of
solutions to problems (3) and (7).

Corollary 4 The solution γ to (3) is unique if and only if the solution to σ (7) is
unique and, for σ almost every (x, y), z �→ s(x, y, z) has a unique maximizer.

The subtwist condition on s̄(x, y) = s(x, y, z̄(x, y)), introduced byChiappori et al.
(2010), requires that for each fixed y0 and y1, the function

x �→ s̄(x, y0) − s(x, y1)

has no critical points, except for possibly one global maximum and one global min-
imum (note that having no critical points at all is equivalent to the twist condition).
This condition implies that solutions to (7) are unique, but not necessarily pure [in
fact, solutions concentrate on sets with a certain special structure—see Theorem 5.1
of Ahmad et al. (2011) and Theorem 3 of Chiappori et al. (2010)]. Combined with the
preceding Corollary, this yields a condition under which solutions to (3) are unique,
but not necessarily pure.

Corollary 5 Assume that for each (x, y) ∈ X × Y , z �→ s(x, y, z) has a unique
maximizer, z̄(x, y) ∈ Z, and that s(x, y, z̄(x, y)) satisfies the subtwist condition.
Then, the solution γ to (3) is unique.

Proof As s̄(x, y) = s(x, y, z̄(x, y)) is subtwisted by assumption, the solution to (7)
is unique. Corollary 4 then implies uniqueness of the solution to (3). �	
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6 Examples

While the twist on z-trivial splitting sets condition looks complicated, it is possible to
verify it on several classes of examples. We present here three types of examples:

1. Examples satisfying themore restrictive twist on splitting sets condition (and hence
the twist on z-trivial splitting sets condition introduced here aswell).Awide variety
of examples of this type are already known in the mathematical literature.

2. Examples violating the twist on splitting sets condition, but satisfying twist on
z-trivial splitting sets.

3. An example violating twist on z-trivial splitting sets, together with an explicit
nonpure stable matching.

6.1 Surpluses satisfying twist on splitting sets

As mentioned above, a variety of examples satisfying the twist on splitting sets condi-
tion (and therefore also the twist on z-trivial splitting sets condition), as well as general
differential conditions on s which imply them, are known (Kim and Pass 2014). As the
differential conditions are somewhat complicated, we do not state them here; instead,
we present a couple of examples which seem potentially relevant in economics

Example 1 (One dimensional problems) Suppose X, Y, Z ⊂ R are all real inter-
vals. Then, s is twisted on splitting sets provided the compatibility condition,
∂2s

∂x∂y [ ∂2s
∂z∂y ]−1 ∂2s

∂z∂x > 0, holds for all (x, y, z) ∈ X × Y × Z . In particular, this holds
when s is supermodular in each pair of its arguments.

The next example is similar to themodel of Tinbergen (1956), augmented to include
direct buyer–seller interactions.

Example 2 (Bilinear utilities) Suppose X, Y, Z ⊂ R
n are convex and

s(x, y, z) = xT Ay + xT Bz + yT Cz + f (x) + g(y) + h(z)

for nonsingular n×n matrices A, B andC . Then, s is twisted on splitting sets provided
the symmetric matrix CT A−1B + BT (AT )−1C is positive definite.

Note that the positive definiteness assumption on CT A−1B + BT (AT )−1C forces
each of the matrices A, B and C to be invertible. Proofs of the (TSS) property for the
surplus functions in both of the examples in this subsection can be found in joint work
with Kim (Kim and Pass 2014).

Remark 5 As we will see below, the sufficient conditions for purity and uniqueness
considered here (twist on splitting sets) are substantially stronger than the twist on
z-trivial splitting sets, and so, when studying purity and uniqueness in the hybrid
matching-hedonic model, the motivation for considering the multi-marginal coupling
between buyers, sellers and (prescribed) goods and the related twist on splitting sets
condition may seem questionable. However, there are at least two concrete advantages
to doing so.
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First, the twist on splitting sets condition is often easier to check. For instance, in
one dimension, the compatibility condition in Example 1 is essentially equivalent to
twist on splitting sets and hence is an easy to check sufficient condition for twist on
z-trivial splitting sets; if compatibility fails, twist on z-trivial splitting sets may still
hold, but establishing this typically requires more delicate arguments.

Secondly, the twist on splitting sets condition has some flexibility not shared by the
twist on z-trivial splitting sets; namely, if s(x, y, z) is twisted on splitting sets, then
so is s(x, y, z) + F(z) for any function z. This fact may make it easier to check on
certain examples.

6.2 Surplus satisfying the twist on z-trivial splitting sets (but violating twist on
splitting sets)

The (TzSS) condition is strictly weaker than the (TSS) condition. We demonstrate
this here by presenting two examples which do not satisfy the twist on splitting sets
condition, but do satisfy the weaker variant, twist on z-trivial splitting sets.

Example 3 (Strictly hedonic utilities) Assume that the utilities of both consumers and
producers depend only on goods, u(x, y, z) = u(x, z) and v(x, y, z) = v(y, z), and
that for each fixed x and y, all maxima of the function z �→ u(x, z) + v(y, z) occur
on the interior of Z . Then x − z twistedness on u and z − y twistedness on v suffice to
ensure the twist on z-trivial splitting sets condition on s(x, y, z) = u(x, z) + v(y, z).

The proof of this assertion can be found in “Appendix”.

Remark 6 The conditions in Example 3 do not imply the twist on splitting sets condi-
tion, and as a result it is possible for the solution to the tripartite matching problem (4)
with surplus s(x, y, z) = u(x, z) + v(y, z) to be nonunique and nonpure. Suppose,
for example, α = δz0 is concentrated at a point. Then if a probability measure γ on
X × Y × Z is in ΓXY Z (μ, ν, α) (i.e., has marginals μ, ν and α) we have z = z0, γ
almost surely, so that

∫
X×Y×Z

s(x, y, z)dγ (x, y, z) =
∫

X×Y×Z
[u(x, z) + v(y, z)]dγ (x, y, z)

=
∫

X×Y×Z
[u(x, z0) + v(y, z0)]dγ (x, y, z)

=
∫

X
u(x, z0)dμ(x) +

∫
Y

v(y, z0)dν(y).

As the last expression does not depend on γ , any γ ∈ ΓXY Z (μ, ν, α) maximizes the
total surplus and is therefore stable.

We close this subsection by revisiting the Tinbergen (1956) type surplus functions
from Example 2. We show that the twist on z-trivial splitting sets holds in much
greater generality that the twist on splitting sets (although we specialize slightly here,
by replacing the general function h(z) with a concave quadratic zt Dz).
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Example 4 Suppose X, Y, Z ⊆ R
n are convex, and let

s(x, y, z) = xT Ay + xT Bz + yT Cz + zT Dz + f (x) + g(y),

with D + DT < 0. Then, s is twisted on z-trivial splitting sets provided C is invertible
and

B − A(CT )−1(D + DT )

is nonsingular.

Proof Given a z-trivial splitting set Sx at x , we note that if (y, z) ∈ Sx , maximality of
s(x, y, ·) at z (recall Remark 1) implies

0 = Dzs(x, y, z) = BT x + CT y + (D + DT )z,

so y = −(CT )−1[BT x + (D + DT )z]. For a given p, we will show that only one point
of the form (y, z) = (−(CT )−1[BT x + (D + DT )z], z) can satisfy the condition

p = Dx s(x, y, z) = Ay + Bz + D f (x) = A(−(CT )−1[BT x + (D + DT )z])
+ Bz + D f (x).

Indeed, the mapping

z �→ A(−(CT )−1[BT x + (D + DT )z]) + Bz + D f (x)

= −A(CT )−1BT x + [B − A(CT )−1(D + DT )]z + D f (x)

is affine and injective by assumption. This completes the proof. �	
Remark 7 In the model above, if A is also invertible, we have

B − A(CT )−1(D + DT ) = A(CT )−1[CT A−1B − (D + DT )].

If in addition, we have CT A−1B + BT (AT )−1C > 0, then the surplus is twisted on
splitting sets, according to Example 2. Twist on z-trivial splitting sets is much weaker,
requiring only invertibility of [CT A−1B − (D + DT )] rather than positivity of its
symmetric part, which is implied by the condition CT A−1B + BT (AT )−1C > 0 in
Example 2.

Furthermore, the matrices B and A in this example are not required to have full
rank; in particular, this model incorporates low dimensional buyer–seller interactions,
where preferences of buyers/sellers for their partners are dependent on only some of
their characteristics (for instance, if all the entries of A are 0 except the upper left-hand
corner A11, partners’ preferences depend only on the first characteristics, x1 and y1).
In its general form, the model interpolates between the strictly hedonic case, where
A = 0, and the case with strong, full dimensional interactions between buyers and
seller, when A has full rank.

123



Interpolating between matching and hedonic pricing models 411

6.3 A surplus violating twist on z-trivial splitting sets, and a nonpure solution

Here, we exhibit an example of a surplus violating the twist on z-trivial splitting sets
condition, and demonstrate explicitly that in this case, matching equilibria may not be
pure.

We let X, Y, Z be intervals in R; the consumers’ and sellers’ surplus are given
respectively by u(x, y, z) = xy+xz and v(x, y, z) = −yz−z2/2, so that s(x, y, z) =
xy+xz− yz−z2/2. It seems reasonable to interpret this surplus economically as a toy
model for the effects of ethical business practices. The variable x ∈ X will represent
the income of a consumer and z ∈ Z the quality of a good. Firms will be differentiated
according to a variable y ∈ Y which we may think of as reflecting the ethicality of
their business practices (as perceived by consumers); for example, firms with large
values of y may provide their workers with better working conditions. Consumers’
preferences then have two supermodular terms, reflecting separately their preferences
to buy higher quality goods and to purchase them from more ethical businesses (the
supermodularity of xy may be interpreted as consumers with more disposable income
having stronger preferences for ethically produced goods than their lower income
counterparts). Producers’ preferences are independent of consumers, but their costs
yz + z2/2 include a quadratic term in good quality and also a supermodular term
yz, meaning more ethical firms have higher marginal production costs (for instance,
producing a higher quality good may take more hours of labor than a lower quality
good—the resulting difference in cost will be higher for a firm paying higher wages).

Now note that for U (x) = x2
2 and V (y) = y2

2 , we have

s(x, y, z) − U (x) − V (y) = −|x − y − z|2
2

≤ 0 (8)

with equality when x = y + z. Then taking γ to be uniform measure on the set
X × Y × Z ∩ {x = y + z}, we immediately get that γ is a stable matching measure
for its marginals μ = (PX )#γ and ν = (PY )#γ , with payoff functions U and V . This
matching is certainly not pure; each consumer x is indifferent among a continuum of
choices of producers y.

We note that when consumer x and producer y match together, they exchange
product z = x − y, for price px,y,z = u(x, y, z) − U (x) = x(y + z) − x2/2 = x2/2.
A y varies, increasing favourability of the firm y to the consumer x is exactly offset
by the decreasing quality of the good z = x − y they exchange, and the price remains
constant.

Remark 8 By example (4), the surplus function s(x, y, z) = xy + xz − yz − az2 is
twisted on z-trivial splitting sets for any constant a other than a = 1

2 , indicating that
the previous example is highly nongeneric.

7 Conclusion

This paper studies a general hybrid matching-hedonic model where agents match
according to their preferences for both their partners and the good or contract they
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exchange. In contrast to strict matching and strict hedonic problems, these mixed
models do not seem to have received much theoretical attention yet, but are quite
natural in a variety of settings.

The hybrid problem has a natural connection with tripartite matching, or multi-
marginal optimal transport; specifically, being a stable matching in the hybrid model is
equivalent to solving a less constrained variant of the corresponding optimal transport
problem.This variational interpretation implies the existence of stablematchings under
quite general conditions. In addition, this observation, together with known results
on multi-marginal optimal transport, can be exploited to reveal information on the
structure of matching patterns. In particular, locally, the dimension of the support of
a stable matching measure is controlled in terms of the mixed second-order partial
derivatives of the surplus; this result holds without any conditions on the distributions
μ and ν of agents. In addition, if μ is absolutely continuous, the twist on splitting
sets condition is known to imply purity and uniqueness of stable matchings in multi-
marginal optimal transport and therefore immediately implies the same for the hybrid
problem. It can also be used as a guide to develop a weaker variant, twist on z-trivial
splitting sets, which implies purity and uniqueness in the hedonic-matching problem
but not in the more general tripartite matching problem.

Appendices

7.1 Appendix A Proofs

A.1 Proof of variational formulation: Theorem 1

The proof requires the following lemma, expressing a duality result for the linear
maximization (3).

Lemma 1

sup
γ∈ΓXY Z (μ,ν)

∫
X×Y×X

s(x, y, z)dγ (x, y, z) = inf
U,V

∫
X

U (x)dμ(x) +
∫

Y
V (y)dν(y)

(9)
where the infimum on the right-hand side is taken over the set of continuous functions
U ∈ C(X) and V ∈ C(Y ) satisfying U (x)+V (y) ≥ s(x, y, z) throughout X ×Y × Z.
Furthermore, the infimum on the right-hand side is attained.

We will refer to the minimization on the right-hand side as the dual problem to
(3). The lemma is a variant of the standard, optimal transport duality theorem, and it’s
proof is a straightforward adaptation of the proof of that result (Villani 2003, Theorem
1.3).

Proof The Riesz representation theorem implies that the dual of C(X × Y × Z) is the
set M(X × Y × Z) of signed regular Borel measures on X × Y × Z . We define the
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functionals F and G on C(X × Y × Z) by

F( f ) =
{
0 if f (x, y, z) ≥ s(x, y, z) for all (x, y, z)
+∞ otherwise

and

G( f ) =
{∫

X U (x)μ(x) + ∫
Y V (y)dν(y) if f (x, y, z) = U (x) + V (y)

+∞ otherwise.

Fenchel–Rockafellar duality [see, for example, Theorem 1.9 of Villani (2003)] then
asserts that

inf
f ∈C(X×Y×Z)

[F( f ) + G( f )] = sup
γ∈M(X×Y×Z)

[−F∗(−γ ) − G∗(γ )] (10)

where F∗ and G∗ are the Legendre–Fenchel transforms of F and G, respectively. It is
easy to check that the infimum above coincides with the infimum in (9). On the other
hand, we compute

F∗(−γ ) := sup
f ∈C(X×Y×Z)

[
−

∫
X×Y×Z

f (x, y, z)dγ − F( f )

]

= sup
f ∈C(X×Y×Z), f ≥s

−
∫

X×Y×Z
f (x, y, z)dγ

= − inf
f ∈C(X×Y×Z), f ≥s

∫
X×Y×Z

f (x, y, z)dγ.

Now, if γ is not a positive measure, the infimum above is clearly −∞, while if it is a
positive measure, the infimum is attained at f = s. So we have

F∗(−γ ) =
{− ∫

X×Y×Z s(x, y, z)dγ (x, y, z) if γ ≥ 0
+∞ otherwise.

Similarly,

G∗(γ ) := sup
f ∈C(X×Y×Z)

[∫
X×Y×Z

f (x, y, z)dγ − G( f )

]

= sup
(U,V )∈C(X)×C(Y )

[∫
X×Y×Z

[U (x) + V (y)]dγ (x, y, z) −
∫

X
U (x)dμ(x)

−
∫

Y
V (y)dν(y)

]

= sup
(U,V )∈C(X)×C(Y )

[∫
X

U (x)d(γX − μ)(x) +
∫

Y
V (y)d(γY − ν)(y)

]
,
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where γX = (PX )#γ and γY = (PY )#γ are the projections of γ onto X and Y ,
respectively. The integrals inside the supremum are clearly 0 for each choice of U, V
if γ has μ and ν as its X and Y marginals, respectively, and so the supremum is 0 in
this case. If the marginals of γ are not μ and ν, then the supremum is clearly +∞, so
we have

G∗(γ ) =
{
0 if γ has marginals μ and ν

+∞ otherwise.

Noting that, if γ is a signed measure, γ ∈ ΓXY Z (μ, ν) is equivalent to γ being
nonnegative and having μ and ν as it X and Y marginals, it is then straightforward to
see that the supremum in (10) is exactly the supremum in (9).

To obtain existence in the dual problem, note that for any U, V such that U (x) +
V (y) ≥ s(x, y, z), we have

U s(y) := sup
x,z

s(x, y, z) − U (x) ≤ V (y)

and then

U ss(x) := sup
y,z

s(x, y, z) − U s(y) ≤ U (x).

Now, as s is assumed Lipschitz, U s and U ss are Lipschitz with the same constant C ,
by a now classical argument of McCann (2001, Lemma 2). By shifting U s → U s + a
and U ss → U s − a, we may also assume that U s(x̄) = 0 for some fixed x̄ ; together
with the Lipschitz condition and compactness, this implies that |U s |, |U ss | ≤ K for
some fixed K .

Noting that we have U ss(x) + U s(y) ≥ s(x, y, z), and
∫

X U ss(x)dμ(x) +∫
Y U s(y)dν(y) ≤ ∫

X U (x)dμ(x) + ∫
Y V (y)dν(y), we may take the minimization

in the dual problem over functions which in addition to the constraint U (x)+ V (y) ≥
s(x, y, z) are Lipschitz with uniform constant C and bounded by the uniform constant
K . This set is compact with respect to uniform convergence, by the Arzela–Ascoli
theorem, which implies existence of a minimizer. �	

The preceding lemma can be used to prove Theorem 1; the solutions U and V to
the dual problem turn out to be exactly the payoff functions.

Proof Given a stable matching γ̄ on X ×Y × Z , and associated payoff functionsU (x)

and V (y), we integrate the inequality (2) against any other matching γ ∈ ΓXY Z (μ, ν)

to obtain

∫
X×Y×Z

s(x, y, z)dγ (x, y, z) ≤
∫

X×Y×Z
U (x) + V (y)dγ (x, y, z)

=
∫

X
U (x)dμ(x) +

∫
Y

V (y)dν(y). (11)
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On the other hand, the stability of γ̄ means that we have equality in (2) γ̄ almost
everywhere, so we have equality in the preceding argument when γ = γ̄ . This means
the stable matching γ̄ is optimal in (3).

On the other hand, if γ̄ solves (3), let U and V be solution to the dual problem,
guaranteed to exist by the lemma above. Then, we have s(x, y, z) ≤ U (x) + V (y)

everywhere by definition, and so

∫
X×Y×Z

s(x, y, z)dγ̄ (x, y, z) ≤
∫

X×Y×Z
U (x) + V (y)dγ̄ (x, y, z)

=
∫

X
U (x)dμ(x) +

∫
Y

V (y)dν(y).

However, the duality lemma states that we actually have equality,
∫

X×Y×Z s(x, y, z)d
γ̄ (x, y, z) = ∫

X U (x)dμ(x) + ∫
Y V (y)dν(y), which is possible only if s(x, y, z) =

U (x) + V (y), γ̄ almost everywhere. Thus, U and V are payoffs for γ̄ , and so γ̄ is
stable. �	

A.2 Proof the twist on z-trivial splitting sets implies purity: Theorem 5

Proof Let γ be a stable equilibrium and U, V the corresponding payoff functions. Let
S ⊆ X × Y × Z be the set where equality is attained in (2); as spt (γ ) ⊆ S, it suffices
to show that for μ almost all x , the set Sx := {(y, z) : (x, y, z) ∈ S} is a singleton.
Note that, as an immediate consequence of the definition, Sx is a z-trivial splitting set.

We first set V s(x) = sup(y,z)∈Y×Z s(x, y, z)− V (y). It is known that the fact that s
is Lipschitz in x implies that V s is in fact Lipschitz as well (McCann 2001), and hence
differentiable Lebesgue almost everywhere by Rademacher’s theorem. In addition,
for a fixed x , (2) implies s(x, y, z) − V (y) ≤ U (x) for every choice of (y, z), and so
taking supremum over (y, z) yields

V s(x) ≤ U (x).

Therefore, for all (x, y, z), we have the following string of inequalities

U (x) + V (y) ≥ V s(x) + V (y) ≥ s(x, y, z).

Furthermore, as thefirst and last terms are equal on S,wemust have equality throughout
this set; in particular,

V s(x) + V (y) = s(x, y, z)

on S. Now, for every x at which V s is differentiable, and y, z ∈ Sx , the envelope
theorem implies

DV s(x) = Dx s(x, y, z). (12)

However, as Sx is a z-trivial splitting set at x , the (T zSS) condition implies that
this uniquely determines y and z. That is, the splitting set Sx is a singleton. This
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holds for each x where V s is differentiable, which is Lebesgue almost every x , and
hence μ almost every x , by the absolute continuity of μ. For each such x , we define
(FY (x), FZ (x)) to be the unique (y, z) satisfying (12); γ is then concentrated on the
graph of (FY , FZ ), and is therefore pure. This completes the proof. �	

A.3 Proof of equivalence between the hybrid matching-hedonic problem and the
reduced matching problem: Proposition 3

Proof Let γ be a maximizer in (3) and set σ = γXY = (PXY )#γ . Then clearly
σ ∈ ΓXY (μ, ν); we will show that it maximizes (7). For any other σ̃ ∈ ΓXY (μ, ν),
set γ̃ = (I d, I d, z̄)#σ̃ and note that γ̃ ∈ ΓXY Z (μ, ν).

We have
∫

X×Y
s̄(x, y)dσ(x, y) =

∫
X×Y

s(x, y, z̄(x, y))dσ(x, y)

=
∫

X×Y×Z
s(x, y, z̄(x, y))dγ (x, y, z), as σ = (PXY )#γ

≥
∫

X×Y×Z
s(x, y, z)dγ (x, y, z),

≥
∫

X×Y×Z
s(x, y, z)dγ̃ (x, y, z), as γ maximizes (3)

=
∫

X×Y
s(x, y, z̄(x, y))dσ̃ (x, y) as γ̃ = (I d × I d × s̄)#σ̃

=
∫

X×Y
s̄(x, y)dσ̃ (x, y)

As σ̃ ∈ ΓXY (μ, ν) was arbitrary, it follows that σ is optimal in (7).
On the other hand, let σ be any maximizer in (7) and γ = (I d, I d, s̄)#σ . It is

clear that γ ∈ ΓXY Z (μ, ν); we need to show that it maximizes (3). For any other
γ̃ ∈ ΓXY Z (μ, ν), we set σ̃ = (PXY )#γ̃ and observe σ̃ ∈ ΓXY (μ, ν). We then have,
by reasoning similar to the above,

∫
X×Y×Z

s(x, y, z)dγ (x, y, z) =
∫

X×Y
s(x, y, z̄(x, y))dσ(x, y)

=
∫

X×Y
s̄(x, y)dσ(x, y)

≥
∫

X×Y
s̄(x, y)dσ̃ (x, y)

=
∫

X×Y
s(x, y, z̄(x, y))dσ̃ (x, y)

=
∫

X×Y×Z
s(x, y, z̄(x, y))dγ̃ (x, y, z)

≥
∫

X×Y×Z
s(x, y, z)dγ̃ (x, y, z).
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This yields optimality of γ in (3) and completes the proof. �	

A.4 Proof of equivalence between twistedness of s̄ and twistedness on z-trivial splitting
sets of s: Theorem 6

Proof First suppose s is twisted on z trivial splitting sets. Fix x , set V (y) = s̄(x, y)

and

Sx = {(y, z) : z ∈ argmax(s(x, y, z))}

Then Sx is a z-trivial splitting set for s at x , with splitting function V , as for any
y, z we have by definition

V (y) = s̄(x, y) ≥ s(x, y, z)

with equality whenever (y, z) ∈ Sx .
Now, choose y0, y1 satisfying

Dx s̄(x, y0) = Dx s̄(x, y1); (13)

we want to show y0 = y1. We can choose z0 ∈ argmaxz(s(x, y0, z)) and z1 ∈
argmaxz(s(x, y1, z)), so that (y0, z0), (y1, z1) ∈ Sx . By the envelope condition, we
have

Dx s̄(x, y0) = Dx s(x, y0, z0)

and

Dx s̄(x, y1) = Dx s(x, y1, z1)

Combined with (13), this implies that Dx s(x, y0, z0) = Dx s(x, y1, z1). As (y0, z0)
and (y1, z1) both belong to the z- trivial splitting set S, the twist on z-trivial splitting
sets hypothesis now implies (y0, z0) = (y1, z1); in particular, y0 = y1 as desired.

Conversely, assume s̄ is twisted, and suppose that (y0, z0), (y1, z1) ∈ Sx , where Sx

is a z-trivial splitting set at x , such that

Dx s(x, y0, z0) = Dx s(x, y1, z1); (14)

we need to show (y0, z0) = (y1, z1). Let V be the splitting function for Sx ; then

V (y0) ≥ s(x, y0, z)

for all z, with equality for z = z0. As the left-hand side is independent of z, this tells
us that z0 ∈ argmaxzs(x, y0, z) and so s̄(x, y0) = s(x, y0, z0). The envelope theorem
then yields

Dx s̄(x, y0) = Dx s(x, y0, z0).
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An identical argument implies

Dx s̄(x, y1) = Dx s(x, y1, z1)

and so we have Dx s̄(x, y0) = Dx s̄(x, y1). The twist condition then gives us y0 =
y1 =: y. It remains to verify that z0 = z1. To this end, note that (14) now becomes

Dx s(x, y, z0) = Dx s(x, y, z1)

and so the x − z twist condition implies z0 = z1, completing the proof. �	

A.5 Proof that strictly hedonic surpluses are twisted on z-trivial splitting sets: assertion
in Example 3

This result actually follows by combining Theorem 6 with a result of Pass (2013),
which asserts that the reduced surplus s̄ corresponding to a strictly hedonic surplus s
is twisted (under the assumptions in Example 3); however, we feel it is enlightening
to provide a direct proof as well.

Proof Let Sx be a z-trivial splitting set at x , with splitting function V (y). Assume
Dx s(x, y0, z0) = Dx s(x, y1, z1) for (y0, z0), (y1, z1) ∈ Sx ; we need to show
(y0, z0) = (y1, z1). Note that the form of s implies

Dx u(x, z0) = Dx s(x, y0, z0) = Dx s(x, y1, z1) = Dx u(x, z1);

the x − z twist condition on u then implies that z0 = z1.
It remains to show y0 = y1. Now, z �→ u(x, z) + v(y0, z) − V (y0) is maximized

at z = z0, and so its derivative vanishes there (note z ∈ Z0 by assumption):

Dzu(x, z0) + Dzv(y0, z0) = 0

or

Dzu(x, z0) = −Dzv(y0, z0)

Similarly,

Dzu(x, z1) = −Dzv(y1, z1),

which, as z0 = z1, combines with the above to yield Dzv(y0, z0) = Dzv(y1, z0). The
z − y twistedness of v then yields y0 = y1, which completes the proof. �	

References

Ahmad, N., Kim, H.K., McCann, R.J.: Optimal transportation, topology and uniqueness. Bull. Math. Sci.
1(1), 13–32 (2011). https://doi.org/10.1007/s13373-011-0002-7

123

https://doi.org/10.1007/s13373-011-0002-7


Interpolating between matching and hedonic pricing models 419

Becker, G.: A theory of marriage. Part I. J. Polit. Econ. 81, 813–846 (1973)
Brenier, Y.: Decomposition polaire et rearrangement monotone des champs de vecteurs. CR Acad. Sci. Pair

Ser. I Math. 305, 805–808 (1987)
Caffarelli, L.: Allocation maps with general cost functions. In: Partial Differential Equations and Applica-

tions, Lecture Notes in Pure and Applied Math, vol. 177, pp. 29–35. Dekker, New York (1996)
Carlier, G., Ekeland, I.: Matching for teams. Econ. Theory 42(2), 397–418 (2010). https://doi.org/10.1007/

s00199-008-0415-z
Chiappori, P.A., McCann, R., Nesheim, L.: Hedonic price equilibria, stable matching and optimal transport;

equivalence, topology and uniqueness. Econ. Theory 42(2), 317–354 (2010). https://doi.org/10.1007/
s00199-009-0455-z

Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality a
la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

Dupuy, A., Galichon, A., Zhao, L.: Migration in China: to work or to wed? Working paper. https://
feb.kuleuven.be/drc/Economics/misc/seminars/papers2015/Paper_Dupuy.pdf. Accessed 8 Jan 2017
(2015)

Ekeland, I.: An optimal matching problem. ESAIM Control Optim. Calc. Var. 11(1), 57–71 (2005)
Ekeland, I.: Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional

types. Econ. Theory 42(2), 275–315 (2010). https://doi.org/10.1007/s00199-008-0427-8
Galichon, A.: Optimal Transport Methods in Economics. Princeton University Press, Princeton (2016)
Gangbo, W.: Habilitation thesis, Universite de Metz. http://people.math.gatech.edu/~gangbo/publications/

habilitation.pdf. Accessed 8 Jan 2017 (1995)
Gangbo, W., McCann, R.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)
Gretsky, N., Ostroy, J., Zame, W.: The nonatomic assignment model. Econ. Theory 2(1), 103–127 (1992).

https://doi.org/10.1007/BF01213255
Kim, Y.H., Pass, B.: A general condition for Monge solutions in the multi-marginal optimal transport

problem. SIAM J. Math. Anal. 46, 1538–1550 (2014)
Levin,V.:Abstract cyclicalmonotonicity andMonge solutions for the generalMonge–Kantorovich problem.

Set-Valued Anal. 7(1), 7–32 (1999)
McCann, R.: Polar factorization ofmaps on Riemannianmanifolds. Geom. Funct. Anal. 11, 589–608 (2001)
McCann, R.J., Rifford, L.: The intrinsic dynamics of optimal transport. J l’École Polytech. Math. 3, 67–98

(2016). https://doi.org/10.5802/jep.29
Moameni, A., Pass, B.: Solutions to multi-marginal optimal transport problems concentrated on sev-

eral graphs. ESAIM Control Optim. Calc. Var. (2017). 23(2), 551–567 https://doi.org/10.1051/cocv/
2016003

Mourifie, I., Siow, A.: Cohabitation versus marriage: marriage matching with peer effects, working paper
(2014)

Pass, B.: Structural results on optimal transportation plans. Ph.D. thesis, University of Toronto. https://sites.
ualberta.ca/~pass/thesis.pdf. Accessed 8 Jan 2017 (2011)

Pass, B.: On the local structure of optimal measures in the multi-marginal optimal transportation problem.
Calc. Var. Partial Differ. Equ. 43, 529–536 (2012). https://doi.org/10.1007/s00526-011-0421-z

Pass, B.: Regularity properties of optimal transportation problems arising in hedonic pricingmodels. ESAIM
Control Optim. Calc. Var. 19(3), 668–678 (2013). https://doi.org/10.1051/cocv/2012027

Pass, B.: Multi-marginal optimal transport: theory and applications. ESAIM Math. Model. Numer. Anal.
49(6), 1771–1790 (2015). https://doi.org/10.1051/m2an/2015020

Rosen, S.: Hedonic prices and implicit markets: product differentiation in pure competition. J. Polit. Econ.
82(1), 34–55 (1974). http://www.jstor.org/stable/1830899

Rothschild, M., Stiglitz, J.: Equilibrium in competitive insurance markets: an essay on the economics of
imperfect information. Q. J. Econ. 90(4), 629–649 (1976)

Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkhäuser, Basel (2015)
Shapley, L., Shubik, M.: The assignment game i: the core. Int. J. Game Theory 1(1), 111–130 (1971).

https://doi.org/10.1007/BF01753437
Tinbergen, J.: On the theory of income distribution.Weltwirtschaftliches Archiv 77, 155–175 (1956). http://

www.jstor.org/stable/40435398
Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Math-

ematical Society, Providence (2003)
Villani, C.: Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften, vol. 338.

Springer, New York (2009)

123

https://doi.org/10.1007/s00199-008-0415-z
https://doi.org/10.1007/s00199-008-0415-z
https://doi.org/10.1007/s00199-009-0455-z
https://doi.org/10.1007/s00199-009-0455-z
https://feb.kuleuven.be/drc/Economics/misc/seminars/papers2015/Paper_Dupuy.pdf
https://feb.kuleuven.be/drc/Economics/misc/seminars/papers2015/Paper_Dupuy.pdf
https://doi.org/10.1007/s00199-008-0427-8
http://people.math.gatech.edu/~gangbo/publications/habilitation.pdf
http://people.math.gatech.edu/~gangbo/publications/habilitation.pdf
https://doi.org/10.1007/BF01213255
https://doi.org/10.5802/jep.29
https://doi.org/10.1051/cocv/2016003
https://doi.org/10.1051/cocv/2016003
https://sites.ualberta.ca/~pass/thesis.pdf
https://sites.ualberta.ca/~pass/thesis.pdf
https://doi.org/10.1007/s00526-011-0421-z
https://doi.org/10.1051/cocv/2012027
https://doi.org/10.1051/m2an/2015020
http://www.jstor.org/stable/1830899
https://doi.org/10.1007/BF01753437
http://www.jstor.org/stable/40435398
http://www.jstor.org/stable/40435398

	Interpolating between matching and hedonic pricing models
	Abstract
	1 Introduction
	2 The general model and basic properties
	2.1 Variational interpretation
	2.2 Connection to tripartite matching

	3 Dimension of the support of matching measures
	4 Conditions for purity and uniqueness
	4.1 Classical matching and hedonic problems
	4.2 Fully mixed problems
	4.3 Other notions of purity

	5 Reformulation as a bipartite matching problem
	6 Examples
	6.1 Surpluses satisfying twist on splitting sets
	6.2 Surplus satisfying the twist on z-trivial splitting sets (but violating twist on splitting sets)
	6.3 A surplus violating twist on z-trivial splitting sets, and a nonpure solution

	7 Conclusion
	Appendices
	7.1 Appendix A Proofs
	A.1 Proof of variational formulation: Theorem 1
	A.2 Proof the twist on z-trivial splitting sets implies purity: Theorem 5
	A.3 Proof of equivalence between the hybrid matching-hedonic problem and the reduced matching problem: Proposition 3
	A.4 Proof of equivalence between twistedness of bars and twistedness on z-trivial splitting sets of s: Theorem 6
	A.5 Proof that strictly hedonic surpluses are twisted on z-trivial splitting sets: assertion in Example 3


	References




