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Abstract Condorcet domains are sets of linear orderswith the property that, whenever
the preferences of all voters of a society belong to this set, their majority relation
has no cycles. We observe that, without loss of generality, every such domain can
be assumed to be closed in the sense that it contains the majority relation of every
profile with an odd number of voters whose preferences belong to this domain. We
show that every closed Condorcet domain can be endowed with the structure of a
median graph and that, conversely, every median graph is associated with a closed
Condorcet domain (in general, not uniquely). Condorcet domains that have linear
graphs (chains) associated with them are exactly the preference domains with the
classical single-crossing property. As a corollary, we obtain that a domain with the
so-called ‘representative voter property’ is either a single-crossing domain or a very
special domain containing exactly four different preference orders whose associated
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median graph is a 4-cycle. Maximality of a Condorcet domain imposes additional
restrictions on the associated median graph.We prove that among all trees only (some)
chains can be associated graphs of maximal Condorcet domains, and we characterize
those single-crossing domains which are maximal Condorcet domains. Finally, using
the characterization of Nehring and Puppe (J Econ Theory 135:269–305, 2007) of
monotone Arrovian aggregation, we show that any closed Condorcet domain admits
a rich class of strategy-proof social choice functions.

Keywords Social choice ·Condorcet domains ·Acyclic sets of linear orders ·Median
graphs · Single-crossing property · Distributive lattice · Arrovian aggregation ·
Strategy-proofness · Intermediate preferences

JEL Classification D71 · C72

1 Introduction

The problem of finding and characterizing preference domains on which pairwise
majority voting never admits cycles—the so-called Condorcet domains—has a long
history in social choice theory. In their seminal contributions, Black (1948) and Arrow
(1951) noticed that the domain of all linear preference orders that are single-peaked
with respect to some underlying linear spectrum forms a Condorcet domain. Later, Sen
(1966) provided a characterization of Condorcet domains in terms of the well-known
condition of value restriction. Since this early work some progress has been made in
understanding the structure ofCondorcet domains; seeAbello (1991, 2004), Chameni-
Nembua (1989), Danilov et al. (2012), Danilov and Koshevoy (2013), Fishburn (1997,
2002) and Galambos and Reiner (2008) for important contributions, and Monjardet
(2009) for an excellent survey. However, with the exception of Danilov and Koshevoy
(2013), the bulk of the results established in the literature pertains only to the special
case of connected domains.1 The analysis of Danilov and Koshevoy (2013), on the
other hand, is confined to the case of ‘normal’ Condorcet domains that contain at least
one pair of completely reversed orders.

The present paper provides a unifying general approach by establishing a close
connection between Condorcet domains and median graphs (see a comprehensive
survey about these in Klavzar andMulder 1999) on the one hand, and the well-studied
class of single-crossing domains on the other hand; see Roberts (1977), Gans and
Smart (1996) and Saporiti (2009), among others.

First, we observe that if a Condorcet domain of linear preference orders admits
a profile with an odd number of voters whose (transitive) majority relation does not
belong to this domain, then we can add this majority relation to the Condorcet domain
and obtain a larger Condorcet domain. We may thus assume without loss of generality
that Condorcet domains are closed in the sense that pairwise majority voting among

1 A domain is called connected if every order in the domain can be reached from every other order in the
domain by a path within the domain such that at each step only two neighboring alternatives are switched.
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an odd number of individuals always yields an order within the given domain. In
particular, all maximal Condorcet domains are necessarily closed.

The concept of betweenness, introduced for linear orders by Kemeny (1959), plays
amajor role in our analysis. An order is between two orders, or intermediate, if it agrees
with all binary comparisons on which the two linear orders agree (see also Kemeny
and Snell 1960; Grandmont 1978). This allows us to associate a graph to any domain
of linear orders by connecting two linear orders of this domain by an edge and calling
them ‘neighbors’ if there are no other linear orders in this domain that are between
them.

We show that (i) every closed Condorcet domain on a finite set of alternatives
equipped with the neighborhood relation is isomorphic to a median graph,2 and (ii)
for every finite median graph there exists a set of alternatives and a closed Condorcet
domain whose associated graph is isomorphic to the given median graph. Importantly,
the median graph corresponding to a Condorcet domain is not always a subgraph of
the permutohedron, which is the graph associated with the universal domain of all
strict linear orders (see Sect. 3 below for detailed explanation).3

Our analysis is related to prior work by Nehring and Puppe (2007) and Demange
(2012). Nehring and Puppe (2007) introduce a general notion of a median space and
demonstrate its usefulness in aggregation theory. Since a closed Condorcet domain is
a particular case of a median space, their results have immediate implications for our
present analysis, and we comment on the relation to their work in more detail below.
Demange (2012) starts with an exogenously given connected graph and assigns linear
orders to its vertices so that, for any pair of orders, the intermediate orders (inKemeny’s
sense) are exactly those that lie on a shortest path in the given graph. She then proves
that the domain of all these orders is a closed Condorcet domain if the given graph
is a median graph. An important consequence of our results is that this procedure of
constructing Condorcet domains is in fact universal, i.e., for every closed Condorcet
domain there is an associated median graph with respect to which the domain satisfies
the intermediateness property.

The close connection between Condorcet domains and median graphs established
here allows one to apply results from the theory of median graphs to shed further
light on the structure of Condorcet domains. For instance, as a simple corollary of
our analysis we obtain that all closed Condorcet domains that contain two completely
reversed linear orders are distributive lattices. This fact was first established for con-
nected maximal Condorcet domains by Chameni-Nembua (1989) and Abello (1991),
and then for all maximal Condorcet domains by Danilov and Koshevoy (2013) who
used a different technique. Here we show this for the much larger class of all closed
(but not necessarily maximal) Condorcet domains.

While all median graphs give rise to closed Condorcet domains, not all of them
correspond to a maximal Condorcet domain. It turns out that in fact certain types of

2 A graph is called a median graph if, for any triple of vertices, there exists a unique vertex that lies on a
shortest path between every pair from the given triple.
3 The permutohedron was defined in Guilbaud and Rosenstiehl (1963) as a polytope. It can also be viewed
as a graph in which two vertices are neighbors if they are joined by an edge (which is the 1-skeleton of that
polytope). Monjardet (2009) calls it permutoèdre graph.
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median graphs never enable maximality of the respective Condorcet domains. In par-
ticular, we prove that among all trees only (some) chains are associated with maximal
Condorcet domains.

Condorcet domains, whose median graphs are chains, have been studied quite
extensively in economics under the name of single-crossing domains. They are char-
acterized by the single-crossing propertywhich stipulates that the orders of the domain
can be arranged in a chain so that, for any ordered pair of alternatives, the set of all
orders that rank one alternative strictly above the other form an interval in this chain.
It is well known that single-crossing domains have the representative voter property
(cf. Rothstein 1991), i.e., in any profilewith an odd number of voterswhose preferences
belong to the given domain there is one voter whose preference order coincides with
the majority relation. We show here that the representative voter property essentially
characterizes the class of single-crossing domains.4

Amaximal single-crossing domainmust obviously contain two completely reversed
orders. Interestingly, not all maximal single-crossing domains are maximal Condorcet
domains, i.e., typically it is possible to add further preference orders to a maximal
single-crossing domain without generating cycles in the majority relation of any pro-
file. Here, we provide a simple necessary and sufficient condition of when a maximal
single-crossing domain is also a maximal Condorcet domain. The condition requires
that the ‘switched’ pairs of alternatives associated with any two consecutive orders of
the domain have one element in common.

As noted above, every closed Condorcet domain is a median space in the sense of
Nehring and Puppe (2007). It thus follows from their results that closed Condorcet
domains not only enable pairwise majority voting as a consistent aggregation method
but in fact admit a wide range of further aggregation rules satisfying Arrow’s indepen-
dence condition.We adapt their characterization of all monotoneArrovian aggregators
to the case of Condorcet domains of linear orders and show that every monotone Arro-
vian aggregator on a closed Condorcet domain induces a strategy-proof social choice
function on the same domain. For each Condorcet domain, we thus obtain a rich class
of strategy-proof voting rules, of which the rules identified by Saporiti (2009) for
single-crossing domains are special cases.

The remainder of the paper is organized as follows. In the following Sect. 2, we
introduce the concept of a Condorcet domain and observe some of its fundamen-
tal properties. In particular, we show that closed Condorcet domains are exactly the
domains such that any triple of linear orders from the domain admits a ‘median’
order within the domain. Section 3 introduces median graphs and states our main
result establishing the correspondence between closed Condorcet domains andmedian
graphs. Section 4 provides the characterization of single-crossing domains and dis-
cusses aweaker version of the single-crossing property, namely single-crossingness on
trees. Section 5 addresses maximality of Condorcet domains, an issue that has already
received attention in the literature (cf. Monjardet 2009). In particular, we prove that
trees different from chains are never associated with maximal Condorcet domains, and
we characterize the chains (i.e., single-crossing domains) that correspond to maximal

4 The only exceptions are the domainswith exactly four elements such that the associated graph is a 4-cycle;
these also satisfy the representative voter property.
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Condorcet domains. Any maximal single-crossing domain necessarily contains two
completely reversed orders; this does not hold for all maximal Condorcet domains
as we show by means of an example. In Sect. 6, we adapt the characterization of all
monotone Arrovian aggregators obtained in Nehring and Puppe (2007) to the case of
(closed) Condorcet domains and show how it induces a large class of strategy-proof
social choice functions on any such domain. An appendix briefly reviews the theory
of geometric interval operators (see, e.g., van de Vel 1993) and contains the proof of
the central Lemma 3.1 using the so-called triangle condition introduced by Bandelt
and Chepoi (1996).

2 Condorcet domains and median domains

In this section, we show that the domains that are closed under taking themajority rela-
tion for all profiles with an odd number of voters are precisely the domains that admit
a median order for any triple of its elements where the median order is defined relative
to the Kemeny betweenness relation.Most of the results in this section are not original.
In Theorem 1 we gather a number of classical characterizations of Condorcet domains
(Monjardet 2009), and Theorem 2 can be derived from the analysis in Nehring and
Puppe (2007) who investigated a more general class of median spaces. Nevertheless,
we believe that our exposition and the short proof of the fundamental characterization
result, Theorem 2 below, will help to clarify and unify several different approaches in
the literature.

2.1 Condorcet domains

Consider a finite set of alternatives X and the set R(X) of all (strict) linear orders
(i.e., complete, transitive and antisymmetric binary relations) on X which we will
refer to as the universal domain. Any subset D ⊆ R(X) will be called a domain of
preferences or simply a domain. A profile ρ = (R1, . . . , Rn) over D is an element
of the Cartesian productDn for some number n ∈ N of ‘voters’, where the linear order
Ri represents the preferences of the i th voter over the alternatives from X . A profile
with an odd number of voters will simply be referred to as an odd profile. Frequently,
wewill denote linear orders simply by listing the alternatives in the order of decreasing
preference, e.g., a linear order that ranks a first, b second, c third, etc., is denoted by
abc . . ..

The majority relation associated with a profile ρ is the binary relation Pmaj
ρ on X

such that x Pmaj
ρ y if and only if more than half of the voters rank x above y. Note

that, according to this definition, the majority relation is asymmetric and, for any
odd profile ρ and any two distinct alternatives x, y ∈ X , we have either x Pmaj

ρ y or

y Pmaj
ρ x . An asymmetric binary relation P is acyclic if there does not exist a subset

{x1, . . . , xm} ⊆ X such that x1Px2, x2Px3, . . . , xm−1Pxm and xm Px1. The class of
all domains D ⊆ R(X) such that, for all n, the majority relation associated with any
profile ρ ∈ Dn is acyclic has received significant attention in the literature, see the
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survey of Monjardet (2009) and the references therein. In the following, we will refer
to any such domain as a Condorcet domain.5

The following result prepares the ground for our analysis, providing some well-
known characterizations of Condorcet domains (cf. Monjardet 2009, p. 142). In
particular, condition (d) below is Sen’s (1966) ‘value restriction’; condition (e) has
been introduced by Ward (1965) as the ‘absence of a Latin square’ (in other terminol-
ogy, it requires the absence of a ‘Condorcet cycle’; cf. de Condorcet 1785).

Theorem 1 Let X be finite, and let D ⊆ R(X) be a domain. The following statements
are equivalent:

(a) Domain D is a Condorcet domain.
(b) For every profile over D, the corresponding majority relation is a strict partial

order (i.e., transitive and asymmetric binary relation).
(c) For every odd profile over D, the corresponding majority relation is a linear

order, i.e., an element of R(X).
(d) For every triple x, y, z ∈ X of pairwise distinct alternatives, there exists one

element in {x, y, z} that is either never ranked first, or never ranked second, or
never ranked third in all restrictions of the orders in D to the set {x, y, z}.

(e) For no triple R1, R2, R3 ∈ D, and no triple x, y, z ∈ X of pairwise distinct
alternatives one has x R1y R1z, y R2z R2x and z R3x R3y simultaneously.

We will say that a Condorcet domain D is closed if the majority relation corre-
sponding to any odd profile over D is again an element of D, and we will say that
a Condorcet domain D is maximal if no Condorcet domain (over the same set of
alternatives) is a proper superset of D. The following simple observation will be very
useful.

Lemma 2.1 Let D be a Condorcet domain and R ∈ R(X) be the majority relation
corresponding to an odd profile over D. Then D ∪ {R} is again a Condorcet domain.
In particular, every Condorcet domain is contained in a closed Condorcet domain.

Proof By Theorem 1(e), it suffices to show that D ∪ {R} does not admit three
orders R1, R2, R3 and three elements x, y, z ∈ X such that x R1y R1z, y R2z R2x and
z R3x R3y. Assume on the contrary that it does; then, evidently, not all three orders
R1, R2, R3 belong to D. Thus, one of them, say R3, is the majority relation of an odd
profile ρ ∈ Dn , i.e., R3 = R. Consider the profile ρ′ = (n R1, n R2, ρ) ∈ D3n that
consists of n voters having the order R1, n voters having the order R2 and the n voters
of the profile ρ. Then the voters of the subprofile (n R1, n R2) will unanimously prefer
y to z, which forces the majority relation Pmaj

ρ′ corresponding to ρ′ to have the same
ranking of y and z. At the same time, the voters of this subprofile are evenly split in the
ranking of any other pair of alternatives from {x, y, z}. Hence, the majority relation
Pmaj

ρ′ yields the cycle z Pmaj
ρ′ x Pmaj

ρ′ y Pmaj
ρ′ z, in contradiction to the assumption that D

is a Condorcet domain. ��
This observation allows us to concentrate our attention on closed Condorcet

domains without loss of generality, and we do so for the rest of the paper. Note,

5 Fishburn (1997) calls them acyclic sets of linear orders.
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in particular, that by Lemma 2.1 all maximal Condorcet domains are closed. The
converse does not hold. For instance, all domains consisting of exactly two different
orders are closed Condorcet domains; but these are never maximal Condorcet domains
if |X | ≥ 3. Another simple example is the following.

Example 1 (A closed but not maximal Condorcet domain). Consider on X = {a, b, c}
the domainD = {abc, bca, cba}. By Theorem 1(d),D is a closed Condorcet domain.
Indeed, consider any odd profile on D: (i) if more than half of the voters have the
preference order abc, that order evidently coincides with the majority relation; (ii)
similarly, if more than half of the voters have the preference order cba, that order
evidently coincides with the majority relation; (iii) in all other cases the majority
relation coincides with the ‘middle’ order bca.

However,D is not a maximal Condorcet domain, sinceD∪{bac} is also Condorcet
domain (indeed, a maximal one).

2.2 Betweenness and median domains

The universal domain R(X) can be endowed with the ternary relation of ‘Kemeny
betweenness’ (Kemeny 1959). According to it, an order Q is between orders R and
R′ if Q ⊇ R ∩ R′, i.e., Q agrees with all binary comparisons on which R and R′
agree.6 The set of all orders that are between R and R′ is called the interval spanned
by R and R′ and is denoted by [R, R′].

Given every triple of elements R1, R2, R3 ∈ R(X), an order Rmed = Rmed(R1, R2,

R3) ∈ R(X) is called the median order corresponding to R1, R2, R3 if

Rmed ∈ [R1, R2] ∩ [R1, R3] ∩ [R2, R3].

Proposition 2.1 The median order of a triple R1, R2, R3 ∈ R(X), if it exists, is
unique.

Proof If a triple R1, R2, R3 admits two different median orders, say R and R′, these
must differ on the ranking of at least one pair of alternatives. Suppose they disagree on
the ranking of x and y. In this case, not all three orders of the triple agree on the ranking
of x versus y. Hence, exactly two of them, say R1 and R2, must agree on the ranking
of x versus y; but then, either R or R′ is not between R1 and R2, a contradiction. ��

A domain D ⊆ R(X) is called a median domain if every triple of elements in D
admits a median order inD. Evidently, not every subset ofR(X) is a median domain;
for instance, the universal domain R(X) itself is not a median domain whenever
|X | ≥ 3. This can be verified by considering any three orders of the form R1 =
. . . a . . . b . . . c . . . , R2 = . . . b . . . c . . . a . . ., and R3 = . . . c . . . a . . . b . . .. Since any
linear order R in [R1, R3] has a Rb, any linear order R in [R1, R2] has bRc, and any

6 Some authors such as, e.g., Grandmont (1978) and Demange (2012) refer to orders that are between two
others in this sense as ‘intermediate’ orders.

123



292 C. Puppe, A. Slinko

linear order R in [R2, R3] has cRa, we obtain [R1, R2] ∩ [R1, R3] ∩ [R2, R3] = ∅
due to the transitivity requirement. Prominent examples of median domains include
the well-studied single-crossing domains.

Example 2 (Classical single-crossing domains). There are several equivalent descrip-
tions of single-crossing domains (see, e.g., Gans and Smart 1996; Saporiti 2009).
The following will be useful for our purpose. A domain D ⊆ R(X) is said to
have the single-crossing property if D can be linearly ordered, say according to
R1 > R2 > · · · > Rm , so that, for all pairs x, y of distinct elements of X , the sets
{R j ∈ D | x R j y} and {R j ∈ D | y R j x} are connected in the order >. Thus, for each
pair x, y of distinct elements, there is exactly one ‘cut-off’ order Rk such that either (i)
x R j y for all j ≤ k and y R j x for all j > k, or (ii) y R j x for all j ≤ k and x R j y for all
j > k. Domains with the single-crossing property are referred to as single-crossing
domains. It is easily verified that, for any triple with Ri > R j > Rk the median
order exists and coincides with the ‘middle’ order, i.e., Rmed(Ri , R j , Rk) = R j . Note
that both the domain D = {abc, bca, cba} and the augmented domain D ∪ {bac}
considered in Example 1 are single-crossing domains.

The close connection between Condorcet domains and median domains to be
established in Theorem 2 below stems from the following simple but fundamental
observation (cf. Nehring and Puppe 2007, Sect. 4).

Observation. A triple R1, R2, R3 ∈ R(X) admits a median order if and only if the
majority relation of the profile ρ = (R1, R2, R3) is acyclic, in which case the median
order Rmed(R1, R2, R3) and the majority relation of ρ coincide.

Proof If the majority relation Pmaj
ρ is acyclic, and hence is an element of R(X), it

belongs to each interval [Ri , R j ] for all distinct i, j ∈ {1, 2, 3}. Indeed, if both Ri and
R j rank x higher than y, then so does the majority relation. Conversely, if R is the
median of the triple R1, R2, R3, then for any pair x, y ∈ X , at least two orders from
this triple agree on ranking of x and y. Then R must agree with them; hence, it is the
majority relation for the profile ρ = (R1, R2, R3). ��
Corollary 2.1 Any closed Condorcet domain is a median domain.

Proof Suppose D is a closed Condorcet domain, and let R1, R2, R3 be any triple of
orders fromD. Themajority relation R corresponding to the profile (R1, R2, R3) ∈ D3

by Theorem 1(c) is an element of R(X), and by the assumed closedness it is in fact
an element of D. By the preceding observation, R is the median order of the triple
R1, R2, R3. ��

A subset C ⊆ D of a domain D ⊆ R(X) will be called convex in D if C contains
with any pair R, R′ ∈ C all orderings of D that are between R and R′, that is, C is
convex in D if

{R, R′} ⊆ C ⇒ ([R, R′] ∩ D) ⊆ C.

A family F of subsets of a set is said to have the Helly property if the sets in any
subfamilyF′ ⊆ F have a non-empty intersection whenever their pairwise intersections
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are non-empty, i.e., if C ∩ C′ �= ∅ for each pair C, C′ ∈ F
′ implies ∩F

′ �= ∅. For us
this property will be important when F is the set of all subsets of a domainD ⊆ R(X)

that are convex in D.

Proposition 2.2 (Helly property and median domains) A domain D is a median
domain if and only if it has the Helly property for the family of all subsets that are
convex in D.

Proof Let D be median domain and F be a family of subsets that are convex in D
with pairwise non-empty intersection. We proceed by induction over m = |F|. If
m = 2, there is nothing to prove, thus let m = 3, i.e., F = {C1, C2, C3}. Choose any
triple of orders R1 ∈ C1 ∩ C2, R2 ∈ C2 ∩ C3 and R3 ∈ C3 ∩ C1 and consider the
median order R = Rmed(R1, R2, R3) ∈ D. By convexity in D of the sets C1, C2, C3
we have R ∈ C1 ∩ C2 ∩ C3 which, in particular, shows that ∩F is non-empty. Now
consider F = {C1, . . . , Cm} with m > 3 elements and assume that the assertion holds
for all families with less than m elements. Then, the family {C1, C2, C3 ∩ · · · ∩ Cm}
constitutes a family of three convex subsets with pairwise non-empty intersections.
By the preceding argument, we thus have ∩F �= ∅.

Conversely, consider a domain D such that any family of convex subsets in D has
the Helly property. Consider any three orders R1, R2, R3 ∈ D. Since, evidently, all
intervals are convex in D, the Helly property applied to [R1, R2] ∩ D, [R1, R3] ∩
D, [R2, R3] ∩ D implies the existence of a median. ��

For any domain D and any pair x, y ∈ X of alternatives, denote by VD
xy the set of

orders in D that rank x above y, i.e.,

VD
xy := {R ∈ D | x Ry}.

Note that, for all distinct x, y ∈ X , the sets VD
xy and VD

yx form a partition of D. Also

observe that the sets of the form VD
xy are convex in D for all pairs x, y ∈ X . We will

now use the Helly property applied to this family to show that every median domain
is a closed Condorcet domain. The following is the main result of this section.

Theorem 2 The classes of median domains and closed Condorcet domains coincide,
i.e., a domain is a median domain if and only if it is a closed Condorcet domain.

Proof In the light of Corollary 2.1, it suffices to show that every median domain is
a closed Condorcet domain. Thus, let D be a median domain and consider an odd
profile ρ = (R1, . . . , Rn) ∈ Dn . For any two alternatives x, y ∈ X , let Uxy = {Ri |
x Ri y}, and observe that obviously, Uxy ⊆ VD

xy . Let z, w also be alternatives in X , not

necessarily distinct from x and y. If x Pmaj
ρ y and z Pmaj

ρ w, then Uxy ∩ Uzw �= ∅ and
hence VD

xy ∩ VD
zw �= ∅. By Proposition 2.2 we have

⋂

x,y∈X : x Pmaj
ρ y

VD
xy �= ∅,

hence there is a linear order in D which coincides with the majority relation of ρ. ��
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Relation to Nehring and Puppe (2007). We conclude this section by commenting on
the relation to the work of Nehring and Puppe (2007). They introduce the notion of a
median (property) space and show, amongother things, that these are exactly the spaces
on which issue-wise majority voting with an odd number of voters is consistent (see
their Corollary 5). Closed Condorcet domains are special cases of median domains
in which issue-wise majority voting amounts to pairwise majority voting between
alternatives and consistency amounts to transitivity. Theorem 2 can thus be derived
from their results, and in fact the Helly property is implicit in their analysis.

3 Closed Condorcet domains and median graphs

The close relation between the majority relation and the median operator in closed
Condorcet domains established inTheorem2 suggests that there exists a corresponding
relation between closed Condorcet domains and median graphs.7 The details of this
connection are worked out in this section. We start in Sect. 3.1 with some basic facts
about median graphs. In Sect. 3.2 we observe that every domain naturally induces a
graph, and we prove that the graph associated with every median domain—hence by
Theorem 2 also with every closed Condorcet domain—is a median graph. In Sect. 3.3
we show that, conversely, for every median graph one can construct a (non-unique)
median domain whose associated graph is isomorphic to the given graph.

3.1 Median graphs

Let � = (V, E) be a connected graph with V as the set of vertices and E as the set of
edges.8 The distance d(u, v) between two vertices u, v ∈ V is the smallest number
of edges that a path connecting u and v may contain. While the distance is uniquely
defined, there may be several shortest paths from u to v. We say that a vertex w is
geodesically between the vertices u and v if w lies on a shortest path that connects
u and v or, equivalently, if d(u, v) = d(u, w) + d(w, v). A (geodesically) convex
set in a graph � = (V, E) is a subset C ⊆ V such that for any two vertices u, v ∈ C
all vertices on every shortest path between u and v in � lie in C . A connected graph
� = (V, E) is called a median graph if, for any three vertices u, v, w ∈ V , there is
a unique vertex med(u, v, w) ∈ V which lies simultaneously on some shortest paths
from u to v, from u to w and from v to w.

To characterize the structure of an arbitrary median graph, we recall the concept of
convex expansion. For any two subsets S, T ⊆ V of the set of vertices of the graph �,
let E(S, T ) ⊆ E denote the set of edges that connect vertices in S and vertices in T .

Definition 1 Let � = (V, E) be a graph. Let W1, W2 ⊂ V be two subsets with a non-
empty intersectionW1∩W2 �= ∅ such thatW1∪W2 = V and E(W1\W2, W2\W1) = ∅.
The expansion of � with respect to W1 and W2 is the graph �′ constructed as follows:

7 The term ‘median graph’ was coined by Nebeský (1971); for a comprehensive survey on median graphs
see Klavzar and Mulder (1999).
8 All graphs considered in this paper are undirected.
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Fig. 1 Convex expansion of a median graph

• each vertex v ∈ W1 ∩ W2 is replaced by two vertices v1, v2 joined by an edge;
• v1 is joined to all the neighbors of v in W1\W2 and v2 is joined to all the neighbors
of v in W2\W1;

• if v,w ∈ W1 ∩ W2 and vw ∈ E , then v1 is joined to w1 and v2 is joined to w2;
• if v,w ∈ W1\W2 or if v,w ∈ W2\W1, they will be joined by an edge in �′ if and
only if they were joined in �; if v ∈ W1\W2 and w ∈ W2\W1, they remain not
joined in �′.

If W1 and W2 are (geodesically) convex, then �′ will be called a convex expansion
of �.

Example 3 (Convex expansion). In the graph � shown on the left of Fig. 1 we set
W1 = {a, b, c, d} and W2 = {c, d, e, f }. These are convex and their intersection
W1 ∩ W2 = {c, d} is not empty. On the right we see the graph �′ obtained by the
convex expansion of � with respect to W1 and W2.

The following important theorem about median graphs is due to Mulder (1978).

Theorem 3 (Mulder’s convex expansion theorem) A graph is median if and only if it
can be obtained from a trivial one-vertex graph by repeated convex expansions.

3.2 Every closed Condorcet domain induces a median graph

Aswe already said in the introduction,with every domainD ⊆ R(X) one can associate
a graph�D onD as follows. Two distinct orders R, R′ ∈ D are said to be neighbors in
D, or simplyD-neighbors, if [R, R′]∩D = {R, R′}. Define�D to be the (undirected)
graph on D that connects each pair of D-neighbors by an edge. We say that �D is the
associated graph ofD. We recall that the graph associated with the universal domain
R(X) is called the permutohedron. Note that the graph �D is always connected, i.e.,
any two orders inD are connected by a path in�D .Moreover, any twoR(X)-neighbors
R, R′ are alwaysD-neighbors whenever R, R′ ∈ D. However, twoD-neighbors need
not be R(X)-neighbors, so, if D �= R(X), the associated graph �D need not be a
subgraph of the permutohedron, i.e., not every edge of �D is necessarily also an edge
of �R(X). If it is, the domain D is called connected .9

9 Since connectedness of a domain is thus not the same as connectedness of the associated graph, the
terminology might be a bit confusing. But it is widely accepted in the literature (Monjardet 2009).
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Fig. 2 Two single-crossing domains on {a, b, c} with their associated graphs

Fig. 3 Three domains on {a, b, c} with their associated graphs

We will now define another concept of betweenness, different from the Kemeny
one. For any D ⊆ R(X), the order Q ∈ D is �D-geodesically between the orders
R, R′ ∈ D if Q lies on a shortest �D-path that connects R and R′.

As a first example, consider Fig. 2 which depicts two single-crossing domains on
the set X = {a, b, c} with their corresponding graphs. The domain on the left isD1 =
{abc, acb, cab, cba}, the domain on the right is D2 = {abc, bac, bca, cba}. Note
that the permutohedron is given by the entire 6-cycle, and that the graphs associated
with the two single-crossing domains are linear subgraphs of the permutohedron. In
particular, both domains are connected and the Kemeny betweenness relation on D1
and D2 translates into the geodesic betweenness of their associated graphs.

It is important to note that for an arbitrary domain D both of these properties
may not be true: neither is �D in general a subgraph of �R(X), nor do the Kemeny
betweenness on D and the geodesic betweenness on �D correspond to each other.
To illustrate this, consider the three domains with their associated graphs depicted
in Fig. 3. Evidently, none of the three graphs is a subgraph of the permutohedron;
hence, none of the corresponding domains is connected. As is easily verified, the
domain {abc, acb, cba, bca} on the left of Fig. 3 is a median domain, but the two
other domains are not; for instance, the domain {abc, cab, cba, bca} in the middle of
Fig. 3 contains a cyclic triple of orders abc, bca and cab, and the 5-element domain
{acb, cab, cba, bca, bac} on the right of Fig. 3 contains the cyclic triple acb, cba and
bac.
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In case of the domain on the left-hand side, the Kemeny betweenness onD and the
geodesic betweenness on the associated graph �D agree. By contrast, for the domain
in the middle we have abc /∈ [cab, bca] but evidently abc is geodesically between
the orders cab and bca in the associated graph. On the other hand, in this example
the Kemeny betweenness implies geodesic betweenness. But this also does not hold
in general, as the domain on the right of Fig. 3 shows: here, both orders cab and cba
are elements of [acb, bca], but neither of them is geodesically between acb and bca.

For any domain D ⊆ R(X), we now have two betweenness relations on D: the
Kemeny betweenness and the geodesic betweenness in the associated graph �D. We
will show that in important cases they coincide, in which case for all R, R′, Q ∈ D,
we have

Q ∈ [R, R′] ⇔ Q is �D-geodesically between R and R′. (3.1)

The following lemma is central to our approach. It states that the Kemeny betweenness
on a domain coincides with the geodesic betweenness of its associated graph for three
natural classes of domains: (i) median domains, (ii) connected domains, and (iii)
domains for which the associated graph is acyclic.

Lemma 3.1 The Kemeny betweenness on a domain D ⊆ R(X) coincides with the
geodesic betweenness of the associated graph �D, if one of the following conditions
is satisfied:

(i) D is a median domain,
(ii) D is connected,

(iii) �D is acyclic (i.e., a tree).

The proof of this lemma is provided in the appendix and invokes a general result
on ‘geometric interval operators’ satisfying the so-called triangle condition due to
Bandelt and Chepoi (1996).

From Theorem 2 and Lemma 3.1(i), we immediately obtain the central result of
this section.

Theorem 4 The associated graph �D of any closed Condorcet domain D is a median
graph. Moreover, the Kemeny betweenness relation on D coincides with the geodesic
betweenness on �D.

We again stress that not all median domains are connected, as exemplified by the
domain on the left-hand-side of Fig. 3. It is also worth noting that Lemma 3.1 does not
imply thatD is a median domain whenever the associated graph �D is median graph.
A counterexample is the domain D in the middle of Fig. 3, which is not a median
domain despite the fact that its graph �D is a median graph. However, we have the
following corollary.

Corollary 3.1 Let D ⊆ R(X) be a connected domain. Then, D is a median domain
if and only if the associated graph �D is a median graph.

Proof The associated graph of anymedian domain is amedian graph byLemma 3.1(i).
Conversely, if D is connected, the geodesic median of any triple of vertices with
respect to �D is also the median with respect to the Kemeny betweenness in D by
Lemma 3.1(ii). Thus, if �D is a median graph, D is a median domain. ��
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As another important corollary of our analysis, we obtain that all closed Condorcet
domains that contain two completely reversed orders have the structure of a distributive
lattice. Say that two orders R, R ∈ R(X) are completely reversed if R∩R = {(x, x) |
x ∈ X}, i.e., if R and R agree on the ranking of no pair of distinct alternatives.

Corollary 3.2 Let D be a closed Condorcet domain. If D contains at least two com-
pletely reversed orders, then it is a distributive lattice.

Proof ByTheorem4, the graph�D associatedwithD is amedian graph. Let R, R ∈ D
be two completely reversed orders, and define the join and meet operations on D by
R ∨ R′ := Rmed(R, R, R′) and R ∧ R′ := Rmed(R, R, R′), respectively. It is easy
(though tedious) to verify that with these operations the space D has the structure of
a distributive lattice. Another way to prove the corollary is by invoking a well-known
result by Avann (1961) which states that a median graph is (the covering graph of) a
distributive lattice if and only if it contains two vertices, say 1 and 0, such that every
vertex is on a shortest path connecting 1 and 0. If one takes 1 to be R and 0 to be R, it
is easily seen using Lemma 3.1(i) that �D satisfies all premises of Avann’s result. ��
Remark Chameni-Nembua (1989) and Abello (1991) have shown that all maximal
and connected Condorcet domains that contain at least two completely reversed orders
have the structure of a distributive lattice. This result was generalized by Danilov and
Koshevoy (2013) who showed that the connectedness is in fact not needed for the
conclusion. Corollary 3.2 further generalizes this by showing that the condition of
maximality can be substantially weakened to the condition of closedness. In fact, even
without the closedness condition, one would still obtain that every Condorcet domain
that contains two completely reversed orders can be embedded in a distributive lattice.
On the other hand, the condition that the domain contain at least one pair of completely
reversedorders cannot bedropped (an example illustrating this is given inFig. 8 below).

3.3 Every median graph is associated with a closed Condorcet domain

Is every median graph induced by some closed Condorcet domain? The following
result gives an affirmative answer. Interestingly, we will see later in Sect. 5, that the
answer becomes negative if we insist on maximality of the Condorcet domain, i.e.,
there exist median graphs that cannot be associated with any maximal Condorcet
domain.

Theorem 5 For every (finite) median graph � = (V, E) there exists a closed Con-
dorcet domain D ⊆ R(Y ) on a finite set of alternatives Y with |Y | ≤ |V | such that
�D is isomorphic to �.

Proof We apply Mulder’s theorem (Theorem 3). Since the statement is true for the
trivial graph consisting of a single vertex, arguing by induction, we assume that the
statement is true for all median graphs with k vertices or less. Let �′ = (V ′, E ′) be
a median graph with |V ′| = k + 1. By Mulder’s theorem �′ is a convex expansion
of some median graph � = (V, E) relative to convex subsets W1 and W2, where
|V | = � ≤ k. By induction there exists a closed Condorcet domain D ⊆ R(X) with
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|X | ≤ k such that �D is isomorphic to � with the mapping R : v �→ Rv associating a
linear order Rv ∈ D to a vertex v ∈ V .

To obtain a new domainD′ such that �D′ is isomorphic to �′, we clone an arbitrary
alternative x ∈ X and introduce a clone10 y /∈ X of x and denote X ′ = X ∪ {y}. The
mapping R′ : v �→ R′

v that associates any vertex v ∈ �′ to a linear order R′
v over X ′

will be constructed as follows. If v is a vertex of W1\W2, to obtain R′
v we replace x

with xy in Rv , placing x higher than y, and to obtain R′
u for u ∈ W2\W1 we replace

x by yx in Ru , placing y higher than x . Let v now be in W1 ∩ W2. In the convex
expansion this vertex is split into v1 and v2. To obtain R′

v1
we clone the linear order

Rv replacing x by xy and to obtain R′
v2

we clone the same linear order Rv replacing x
by yx . The number of alternatives has increased by one only, so it is not greater than
|V ′| = � + 1 ≤ k + 1.

To prove that �D′ is isomorphic to �′ we must prove that R′
u and R′

v are neighbors
in �D′ if and only if u, v ∈ V ′ are neighbors in �′.

First, we need to show that there is no edge between R′
u and R′

v if v ∈ W1\W2 and
u ∈ W2\W1 since u and v are not neighbors in �′. This follows from the fact that u
and v were not neighbors in � and hence Ru and Rv were not neighbors in �D. Hence
there was a linear order Rw ∈ [Ru, Rv] between them. In D′ this linear order will be
cloned to R′

w and, no matter how we place x and y there, we obtain R′
w ∈ [R′

u, R′
v]

since R′
u and R′

v disagree on x and y. Hence R′
u and R′

v are not neighbors in �D′ as
well. Secondly, we have to check that R′

v1
and R′

v2
are linked by an edge since v1 and

v2 are neighbors in �′. This holds because these orders differ in the ranking of just one
pair of alternatives, namely x and y; hence, they are neighbors in �D′ . Ifw ∈ W1∩W2
was a neighbor of v ∈ W1\W2 in �, then w1 is a neighbor of v in �′ but w2 is not. We
then have that Rw is a neighbor of Rv in �D. Then R′

w1 will obviously be a neighbor
of R′

v in �D′ while R′
w2 will not be a neighbor of R′

v in �D′ since R′
w1 will be between

them. The remaining cases are considered similarly.
To complete the induction step, we need to prove that D′ is a closed Condorcet

domain. Let D′ = V ′
xy ∪ V ′

yx be a partition of D′ into subsets of linear orders where
x is preferred to y and y is preferred to x , respectively. Using Theorem 2, we prove
thatD′ is a median domain. Consider a triple R′

u, R′
v and R′

w, where u, v, w ∈ X , and
denote by Ru, Rv and Rw these linear orders ‘decloned,’ i.e., obtained by the removal
of y in R′

u, R′
v and R′

w, respectively.Without loss of generality, we assume that R′
u and

R′
v belong toV ′

xy . This means both u and v belong to W1. Let Rz = Rmed(Ru, Rv, Rw)

be the median of Ru, Rv and Rw in �D. Since W1 is convex and �D is isomorphic
to �, we have z ∈ W1 and hence R′

z will have x above y. In this case R′
z will be the

median of R′
u, R′

v and R′
w. ��

Among other things, Clearwater et al. (2015) showed that for a star-graph Sk on k
vertices the smallest cardinality of the set X for which there exists a closed Condorcet
domain D ⊂ R(X) with �D isomorphic to Sk is exactly k. Thus, in Theorem 5 the
restriction |Y | ≤ |V | cannot be strengthened.

10 We say that x and y are clones if they are neighbors in any linear order in the domain, cf. Elkind et al.
(2011, 2012).
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Relation toDemange (2012).We conclude this section by commenting on the relation
to Demange (2012). She introduces profiles of preferences that are parametrized by a
median graph and derives the acyclicity of the majority relation from the requirement
of intermediateness (cf. Grandmont 1978) of preferences. Specifically, she considers a
median graph with set of vertices V (identified with the set of voters), and a collection
{Rv ∈ R(X) : v ∈ V } of linear orders and assumes that, for all v, v′, u ∈ V , the
following condition is satisfied:

Ru ∈ [Rv, Rv′ ] whenever u is on a shortest path between v and v′. (3.2)

Lemma 3.1(i) above shows that, for every median domain D, the intermediateness
condition (3.2) is always satisfied with respect to the geodesic betweenness of the
underlying graph�D. Thus, Theorem 4 above implies that in fact all closed Condorcet
domains are of the kind considered by Demange and demonstrates the existence of
a ‘canonical parametrization’ of these domains (namely by the induced graph �D).
Finally, Demange (2012) takes both the (median) graph and the corresponding profile
as given.We show that this does not impose any restriction on the graph since, by The-
orem 5, for every median graph there exists a domain satisfying the intermediateness
requirement (3.2).11

4 Characterizing and generalizing the single-crossing property

4.1 The representative voter property

A representative voter for a given profile of linear orders is a voter, present in this
profile, whose preference coincides with the majority relation of the profile. We say
that a domainD has the representative voter property if any odd profile composed of
linear orders from D admits a representative voter. The representative voter property
is a very simple way to guarantee consistency of pairwise majority voting since, if
the majority relation coincides with the preference order of one voter, all rationality
requirements on preferences are automatically transferred from individual preferences
to the collective preference.

In this subsection, we prove that the single-crossing domains (cf. Example 2 above)
are exactly the median domains whose associated graphs are chains. From this, we
obtain that—with the exception of the Condorcet domains associated with the 4-cycle
graph—the single-crossing domains are the domains that have the representative voter
property.

Proposition 4.1 A domain D ⊆ R(X) has the single-crossing property if and only if
its associated graph �D is a chain.

Proof It is easily seen that, if D = {R1, . . . , Rm} is single-crossing with respect to
the linear order R1 > R2 > · · · > Rm , then the interval [Ri , R j ] for i < j consists of

11 In contrast to the present analysis, Demange (2012) also considers the generalization to weak orders.
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linear orders Ri , Ri+1, . . . , R j . Hence, the graph �D is given by the chain connecting
R j and R j+1 by an edge for all j = 1, . . . , m − 1.

Conversely, suppose that D = {R1, . . . , Rm} is such that the associated graph �D
is a chain, say the one that connects R j with R j+1 by an edge for all j = 1, . . . , m −1.
We show that D is single-crossing with respect to the linear order R1 > R2 > · · · >

Rm . By Lemma 3.1(iii), the geodesic betweenness in �D agrees with the Kemeny
betweenness of D as a subset ofR(X), hence, if Rh, Rl ∈ D with l > h are such that
x Rh y and x Rl y, then we also have x R j y for all j ∈ {h, . . . , l} and all x, y ∈ X . This
implies that D has the single-crossing property relative to the specified order. ��

Rothstein (1991) proved the sufficiency of the single-crossing property for the
validity of the representative voter property. The following result shows that the single-
crossing property is in fact ‘almost’ necessary.

Theorem 6 Let D ⊆ R(X) be a domain of linear orders on X. Then, D has the
representative voter property if and only if D is either a single-crossing domain, or
D is a closed Condorcet domain with exactly four elements such that the associated
graph �D is a 4-cycle.

Proof Suppose thatD has the representative voter property. Evidently, in this caseD is
a closed Condorcet domain. By Theorem 4, the associated graph�D is median, and by
Lemma 3.1(i) the geodesic betweenness in �D agrees with the Kemeny betweenness
onD. We will show that all vertices of�D have degree at most 2.12 Suppose by way of
contradiction, that�D contains a vertex, say R, of degree at least 3.Consider anyprofile
ρ = (R1, R2, R3) consisting of three distinct neighbors of R. The majority relation
corresponding to ρ is the median Rmed(R1, R2, R3). Since the median graph �D does
not have 3-cycles, Ri and R j cannot be neighbors for all distinct i, j ∈ {1, 2, 3}, hence
Rmed(R1, R2, R3) = R. Since R is not an element of {R1, R2, R3} the representative
voter property is violated, a contradiction. Since �D is always connected (as a graph),
the absence of vertices of degree 3 or more implies that �D is either a cycle or a chain.
It is well known that among all cycles, only 4-cycles are a median graphs.13 On the
other hand, if�D is a chain, thenD has the single-crossing property by Proposition 4.1.

To prove the converse, suppose first that D is a single-crossing domain. Then �D
is a chain by Proposition 4.1 and, evidently, the preference of the median voter in
any odd profile coincides with the corresponding majority relation; this is Rothstein’s
theorem (Rothstein 1991). On the other hand, consider any odd profile over a domainD
such that the induced graph is a 4-cycle. In that case, the representative voter property
holds trivially if the profile contains all four different orders; if it contains at most three
different orders, the representative voter property follows as in the case of a chain with
at most three elements. ��

12 In a graph without loops, the degree of a vertex is the number of edges incident to the vertex, see Diestel
(2005).
13 Clearly, a 3-cycle is not a median graph. Moreover, for any k ≥ 5, one can find three vertices v1, v2, v3
on a k-cycle such that the three shortest paths between any pair from v1, v2, v3 cover the entire cycle; this
implies that no vertex can simultaneously lie on all three shortest paths, i.e., that the triple v1, v2, v3 does
not admit a median.
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4.2 Generalizing the single-crossing property to trees

The classical single-crossing property (Mirrlees 1971; Gans and Smart 1996) naturally
generalizes to trees. We rephrase the definition suggested by Kung (2015) and Clear-
water et al. (2015) as follows.

Definition 2 A domain D ⊆ R(X) is single-crossing with respect to the tree
T = (V, E) if |D| = |V | and the linear orders of D can be parametrized by the
vertices of T so that the intermediateness condition (3.2) is satisfied. Moreover, we
say that a domain is generalized single-crossing if it is single-crossing with respect
to some tree.

As is easily verified, a domain D is generalized single-crossing if and only if its
associated graph �D is a tree. Indeed, if a domain D is single-crossing with respect
to the tree T , then �D = T . Conversely, if �D is a tree, then by Lemma 3.1(iii),
the preferences of D are intermediate on �D so D is generalized single-crossing. In
particular, every generalized single-crossing domain is a closed Condorcet domain by
Lemma 3.1(iii) (cf. Demange 2012; Clearwater et al. 2015).

To justify our terminology of ‘generalized single-crossingness,’ let D ⊆ R(X) be
a generalized single-crossing domain and suppose not all orders in D agree on the
ranking of x, y ∈ X , then the sets VD

xy := {R ∈ D | x Ry} and VD
yx := {R ∈ D | y Rx}

are both non-empty. In the tree �D, there will be a unique edge Q R such that Q ∈ VD
xy

and R ∈ VD
yx ; moreover, both sets VD

xy and VD
yx are convex, and VD

xy ∪ VD
yx = D.

Example 4 (The single-crossing property on a tree). Consider domain D on the set
{a, b, c, d} consisting of four orders: R̂ = abcd, R1 = acbd, R2 = abdc, and R3 =
bacd. As is easily seen, D is a closed Condorcet domain. The associated graph �D
connects R̂ with each of the other three orders by an edge and the graph has no other
edges (cf. Fig. 4). Thus, �D is a tree and R̂ is the median order of any triple of distinct
elements of D.

The following result characterizes the single-crossing property and its generaliza-
tion to trees directly in terms of the structure of the underlying domain, i.e., without
explicit reference to the associated graph.

Proposition 4.2 (a) A domain D has the single-crossing property with respect to
some linear order on D if and only if, for all x, y, z, w ∈ X such that each of the sets

Fig. 4 A generalized
single-crossing domain
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VD
xy,VD

yx ,VD
zw, and VD

wz is non-empty, we have:

VD
xy ⊆ VD

zw or VD
xy ⊆ VD

wz . (4.1)

(b) Let |X | ≥ 4 and F = {VD
xy | x, y ∈ X}. A domain D has the generalized

single-crossing property if and only if F has the Helly property and, for all distinct
x, y, z, w ∈ X, at least one of the following four sets is empty:

VD
xy ∩ VD

zw, VD
xy ∩ VD

wz, VD
yx ∩ VD

zw, VD
yx ∩ VD

wz . (4.2)

Proof (a) Evidently, every single-crossing domain satisfies (4.1). To prove the con-
verse, we notice that this condition allows one to order the family of all sets of the form
VD

xy so that, for an appropriate sequence of pairs of alternatives (a1, b1), . . . , (am, bm),

VD
a1b1 ⊆ VD

a2b2 ⊆ · · · ⊆ VD
am bm

and VD
b1a1 ⊇ VD

b2a2 ⊇ · · · ⊇ VD
bmam

.

It is now easily verified that D has the single-crossing property with respect to any
linear order of the members of D which lists the elements of VD

a1b1
first, then the

elements of VD
a2b2

\VD
a1b1

second, and further lists elements of VD
a j b j

\VD
a j−1b j−1

after

listing VD
a j−1b j−1

.
(b) Suppose that D has the generalized single-crossing property. Then, �D is a

tree. By Lemma 3.1(iii), the betweenness on D coincides with the induced geodesic
betweenness on�D . In particular,D is amedian domain, and as such satisfies theHelly
property for convex sets, and all elements of F are convex. To verify (4.2), assume by
contradiction that

P ∈ VD
xy ∩ VD

zw, Q ∈ VD
xy ∩ VD

wz, R ∈ VD
yx ∩ VD

zw, S ∈ VD
yx ∩ VD

wz,

for P, Q, R, S ∈ D. Consider a shortest path between P and R and a shortest path
between Q and S. The first path lies entirely in VD

zw and the second one lies entirely
in VD

wz ; in particular, they do not intersect. But on each of them there is a switch from
xy to yx , and thus there exist two pairs of neighboring orders such that one of them
is in VD

xy and the other one in VD
yx . This contradicts the generalized single-crossing

property.
Conversely, suppose that a domain D satisfies the Helly property and condition

(4.2). Proposition 2.2 then implies thatD is a median domain; hence by Lemma 3.1(i),
the betweenness in D coincides with the geodesic betweenness in �D. By (4.2), �D
is acyclic, hence a tree, which implies the generalized single-crossing property, as
desired. ��

5 Maximal Condorcet domains revisited

The problem of characterizing maximal Condorcet domains has received consider-
able attention in the literature. Since every maximal Condorcet domain is closed, our
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Fig. 5 A connected maximum Condorcet domain on {a, b, c, d}

analysis allows one to address this problem by studying the structure of the associated
median graph. In particular, we will show that if the median graph associated with
a maximal domain is acyclic, then it must, in fact, be a chain, i.e., among all trees
only chains can be associated with maximal Condorcet domains. On the other hand,
it is well known that single-crossing domains are in general not maximal Condorcet
domains (see, e.g., Monjardet 2009). However, occasionally this happens, and we
provide a simple necessary and sufficient condition for a single-crossing domain to
be a maximal Condorcet domain. Finally, we demonstrate by means of an example
that even though the induced median graph of a maximal Condorcet domain is never
a tree different from a chain, it does not need to have the structure of a distributive
lattice either (in view of Corollary 3.2 above, such maximal Condorcet domain cannot
contain two completely reversed orders).

If X has three elements, all maximal Condorcet domains have four elements and are
either of the type shown in Fig. 2 (connected and single-crossing) or of the type shown
to the left of Fig. 3 (not connected and cyclic). If |X | > 3, not all maximal Condorcet
domains on X have the same cardinality. Call a domain amaximum Condorcet domain
on X if it achieves the largest cardinality amongallCondorcet domains on X . Evidently,
every maximum Condorcet domain is also maximal (and therefore closed), but not
vice versa. If X has four elements, the cardinality of a maximum Condorcet domain
is known to be nine, see Fig. 5 for a domain attaining this number.

The domain shown in Fig. 5 consists of the following nine orders on {a, b, c, d}:
abcd, abdc, bacd, badc, bdac, bdca, dbac, dbca, dcba. Note that this domain is
connected. Indeed, most of the known general results about the size and the struc-
ture of maximal Condorcet domains pertain to connected Condorcet domains; for
instance, the domains described in Abello (1991), Chameni-Nembua (1989), Danilov
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Fig. 6 A non-connected maximal Condorcet domain on {a, b, c, d}

et al. (2012) and Galambos and Reiner (2008) are all connected. However, not all max-
imal Condorcet domains are connected, as we have already seen above. Figure 6 shows
amaximal Condorcet domain with 8 elements on {a, b, c, d} that is not connected (and
not maximum); in fact, it belongs to the class of the so-called ‘symmetric’ Condorcet
domains studied in Danilov and Koshevoy (2013); a domain is called symmetric if it
contains with any order also its completely reversed order.

All examples of maximal Condorcet domains that we have given so far are either
single-crossing domains, or their associated graph contains at least one 4-cycle.14 As
we will see, this is a general feature of all maximal Condorcet domains. To show this,
we need to do some preliminary work.

Lemma 5.1 Suppose D is a generalized single-crossing domain and Q R is an edge
in �D. Suppose that P ∈ [Q, R] is different from Q and R (thus P /∈ D). Then
D′ = D ∪ {P} is also a generalized single-crossing domain and, in particular, D is
not a maximal Condorcet domain.

Proof We add P to the graph splitting the edge Q R, placing P in the middle. The new
graph will be still a tree and the preferences ofD′ = D∪{P}will be intermediate with
respect to this tree, hence generalized single-crossing. In particular, D′ = D ∪ {P} is
a median domain and hence a closed Condorcet domain by Theorem 2. ��

14 It is well known that every median graph that is not a tree contains at least one 4-cycle; this can be
verified as in Footnote 13 above. Note that median graphs can contain also larger cycles. For instance,
Fig. 6 shows a domain that admits a 6-cycle; it is a maximal non-connected Condorcet domain consisting
of the orders abcd, abdc, bacd, badc, cdab, cdba, dcab, and dcba. But these larger cycles can never be
‘minimal’ (in an appropriate sense); every minimal cycle of any median graph is a 4-cycle.
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Wenote that the lemma is specific to generalized single-crossing domains, i.e., when
�D is a tree; if �D is a rectangle, the corresponding statement would not hold as the
right-hand side of Fig. 3 shows.

Corollary 5.1 Any maximal generalized single-crossing domain on X is connected,
i.e., is a subgraph of the permutohedron.

Now we can prove the first of the two main results of this section.

Theorem 7 Let D be a maximal Condorcet domain. If �D is a tree, it is, in fact, a
chain.

Proof Let D be a maximal Condorcet domain, and assume that �D is a tree but
not a chain. Then there exists a vertex R in �D of degree at least 3. Consider now
any three neighbors of R in �D, say R1, R2 and R3. Since, by Corollary 5.1, D is
connected, there are three distinct ordered pairs (xi , yi ), i = 1, 2, 3, of alternatives
such that Ri = R\{(xi , yi )} ∪ {(yi , xi )}. We will say that Ri is obtained from R
by switching the pair of adjacent alternatives (xi , yi ). Moreover, since in every pair
(xi , yi ), i = 1, 2, 3, the alternatives are adjacent in R, there must exist at least two
pairs that have no alternative in common, say {x1, y1} ∩ {x2, y2} = ∅.

Now let R′ be the order that coincides with R except that both pairs (x1, y1) and
(x2, y2) in R′ are switched, i.e., y1R′x1 and y2R′x2, and consider the domainD∪{R′}.
Since x1, y1 and x2, y2 are neighbors in each of the orders R, R1, R2, R′, for every
three alternatives {a, b, c} no new order among them appears in R′ which has not
yet occurred in R, R1, or R2. Hence, by Theorem 1(d), D ∪ {R′} is a Condorcet
domain. By the maximality of D, this implies R′ ∈ D. But in this case, the graph �D
evidently contains the 4-cycle {R, R1, R′, R2}, contradicting the assumed acyclicity
of �D. Hence, there cannot exist a vertex of degree 3 or larger, i.e., �D is a chain. ��

Figure 4 (cf. Example 4 above) illustrates the proof of Theorem 7: one easily verifies
that the order badc can be added to the depicted domain D, creating a 4-cycle in the
associated graph �D; in particular, D is not maximal.

As we will see some—but by far not all—maximal single-crossing domains
are also maximal Condorcet domains. Figure 5, however, shows instances of
non-maximality: the depicted maximal Condorcet domain contains four maxi-
mal single-crossing domains as proper subdomains; for instance, the seven orders
abcd, abdc, badc, bdac, bdca, dbca, dcba form a maximal chain, i.e., a maximal
single-crossing subdomain. The next result characterizes exactly when a maximal
single-crossing domain is also a maximal Condorcet domain.

To formulate the result, we need the following definitions. Let D ⊆ R(X) be a
maximal single-crossing domain and |X | = n. Then we know that the associated
graph �D is a line. By Corollary 5.1, it is a subgraph of the permutohedron. Let
us enumerate orders of D so that the edges of �D are R1R2, R2R3, . . . , Rm−1Rm .
Then the sequence 〈R1, . . . , Rm〉 will be called amaximal chain. Due to Lemma 5.1,
each edge Ri Ri+1 in �D has a unique switching pair of alternatives (xi , yi ) which
are adjacent in Ri . Due to the (standard) single-crossing condition, once switched
the pair is never switched back, so for a two-element subset of alternatives {x, y} we
cannot have both pairs (x, y) and (y, x) as switching pairs. Moreover, R1 and Rm are
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completely reversed. Indeed, if Rm is not R1, which is completely reversed R1, then
we can add R1 at the end of the sequence 〈R1, . . . , Rm〉 and add another vertex to our
graph in contradiction to maximality of D. Hence, m = (n−1)n

2 + 1, so, in particular,
all maximal chains are of the same length.

Without loss of generality, we may assume that X = {1, 2, . . . , n}, that R = R1 =
1 2 . . . n − 1 n and that R = Rm = n n − 1 . . . 2 1. Traveling along the maximal
chain 〈R1, . . . , Rm〉 from R in direction of R the alternatives in every 2-element sub-
set {x, y}, where x < y, switch exactly once from xy to yx . That is, for each pair
(x, y) ∈ X × X there exists exactly one edge R j R j+1 such that x R1y, . . . , x R j y
and y R j+1x, . . . , y Rm x . We say that this maximal chain satisfies the pairwise con-
catenation condition if the switching pairs corresponding to any two adjacent edges
have one alternative in common. Formally, a maximal chain 〈R1, . . . , Rm〉 with the
switching pairs (x j , y j ) of the edges R j R j+1, j = 1, . . . , m −1, satisfies the pairwise
concatenation condition if

{x j , y j } ∩ {x j+1, y j+1} �= ∅ (5.1)

for all j = 1, . . . , m − 1. Note that the intersection in (5.1) then has exactly one
element.We also note that the sequence of switching pairs (x1, y1), . . . , (xm−1, ym−1)

determines the maximal chain 〈R1, . . . , Rm〉 uniquely.
To illustrate the pairwise concatenation condition consider Fig. 7 which depicts a

single-crossing domain on X = {a, b, c, d} with m = 7. The maximal chain for this
domain is:

R1 = abcd, R2 = acbd, R3 = acdb, R4 = adcb, R5 = dacb, R6 = dcab,

R7 = dcba,

with the sequence of switching pairs (b, c), (b, d), (c, d), (a, d), (a, c), (a, b), which
obviously satisfies the pairwise concatenation condition.

We will now show that the pairwise concatenation condition is necessary and suf-
ficient for a maximal single-crossing domain to be a maximal Condorcet domain.15

Definition 3 (Galambos and Reiner 2008) Two maximal chains are equivalent if
their respective sequences of switching pairs can be transformed one to another by
swapping adjacent non-intersecting pairs.

It is easily verified that this notion indeed defines an equivalence relation on the class
of all maximal chains. To illustrate the definition, consider the maximum Condorcet
domainD on the set X = {a, b, c, d} depicted in Fig. 5 above. The following sequence
is one of its maximal chains:

C1 := 〈abcd, abdc, badc, bdac, dbac, dbca, dcba〉

15 As we learned after completion of the first version of the present paper, Bernard Monjardet found the
same condition in his unpublished lecture notes Monjardet (2007) (without proof there).
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Fig. 7 A maximal chain constituting a maximal Condorcet domain on {a, b, c, d}

with the corresponding sequence of switching pairs

(d, c), (a, b), (a, d), (b, d), (a, c), (b, c). (5.2)

If one swaps the first two pairs in this sequence, i.e., (d, c) and (a, c), one obtains the
sequence of switching pairs corresponding to the equivalent maximal chain:

C2 := 〈abcd, bacd, badc, bdac, dbac, dbca, dcba〉,

which is also contained in the maximum domain D. If in the sequence (5.2), one
switches the fourth and fifth pair, i.e., (b, d) and (a, c), one obtains another equivalent
maximal chain of D:

C3 := 〈abcd, abdc, badc, bdac, bdca, dbca, dcba〉.

Finally, if one switches both pairs in (5.2), first (d, c) against (a, b) and then (b, d)

against (a, c), one obtains the equivalent maximal chain:

C4 := 〈abcd, bacd, badc, bdac, bdca, dbca, dcba〉.

Evidently, the maximum Condorcet domain D is the union of the pairwise equivalent
maximal chains C1, C2, C3, C4 that it contains. The following result due to (Galambos
and Reiner 2008, Th. 2) shows that this is a general property of all maximal Condorcet
domains that contain at least one maximal chain.
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Theorem 8 (Galambos and Reiner 2008) Let D be a single-crossing domain and
let 〈R1, . . . , Rm〉 be its corresponding maximal chain. Then the maximal Condorcet
domain containing D consists of all linear orders of all maximal chains equivalent to
〈R1, . . . , Rm〉.

We can now state the second main result of this section.

Theorem 9 A maximal single-crossing domain D ⊆ R(X) is a maximal Condorcet
domain if and only if the maximal chain corresponding to D satisfies the pairwise
concatenation condition.

Proof Let D be a maximal single-crossing domain and 〈R1, . . . , Rm〉 be the cor-
responding maximal chain. To verify the necessity of the pairwise concatenation
condition suppose, by contraposition, that for two consecutive switching pairs (x j , y j )

and (x j+1, y j+1) one has {x j , y j } ∩ {x j+1, y j+1} = ∅. Without loss of generality
assume that x j R j y j and y j R j+1x j , as well as x j+1R j+1y j+1 and y j+1R j+2x j+1.
Since {x j , y j }∩{x j+1, y j+1} = ∅, both pairs of alternatives (x j , y j ) and (x j+1, y j+1)

must be adjacent in all three orderings R j , R j+1, R j+2, respectively. In particular,
these three orders agree in the ranking of all pairs except for the two pairs (x j , y j ) and
(x j+1, y j+1), respectively. Consider the order R′ that has x j R′y j and y j+1R′x j+1
and agrees with each of R j , R j+1, R j+2 in the ranking of all other pairs. Clearly,
R′ /∈ D, but the restriction of R′ to any triple of distinct alternatives coincides with the
restriction of R j , R j+1, or R j+2 to this triple. Hence,D∪{R′} is a Condorcet domain
by Theorem 1(d), and thus D is not maximal. This demonstrates the necessity of the
pairwise concatenation condition.

The sufficiency of the pairwise concatenation condition follows from Theorem 8.
Indeed, it is easily seen that a maximal chain satisfying the pairwise concatenation
condition has no other maximal chain equivalent to it, i.e., it forms an equivalence
class of its own. By Theorem 8, the corresponding maximal single-crossing domain
is a maximal Condorcet domain. ��

Theorems 7 and 9 can be combined into the following single statement.16

Corollary 5.2 A domain D ⊆ R(X) is a maximal Condorcet domain such that �D
admits no cycles if and only if D is a maximal single-crossing domain satisfying the
pairwise concatenation condition.

In light of Theorem 7 and Corollary 3.2 above, a natural conjecture is that all
maximal Condorcet domains are distributive lattices. However, this turns out not to be
true, as the domain depicted in Fig. 8 shows. The domain consists of the following eight
orders: abcd, bacd, bcad, bcda, cbad, cbda, bdca, dbca. This Condorcet domain is
connected and maximal but not a distributive lattice; in view of Corollary 3.2 it clearly
cannot contain a pair of completely reversed orders.

It seems to be an interesting and worthwhile subject for future research to charac-
terize the class of median graphs that can arise as the associated graphs of maximal
Condorcet domains. However, this approach has to be complemented by other con-
siderations as well, since the graph alone does in general not contain information

16 We are grateful to an anonymous referee for pointing this out to us.
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Fig. 8 A maximal Condorcet domain with no pair of completely reversed orders

about maximality. For instance, we have already seen that chains may be the asso-
ciated graphs of maximal Condorcet domains only if their length is one greater than
a triangular number, i.e., 1

2 (n − 1)n + 1. Another example that illustrates this point
quite drastically is the 4-cycle. We have already seen above that even non-median
domains can induce a 4-cycle, albeit the betweenness structures of the domain and
the 4-cycle will not be the same (see the domain in the middle of Fig. 3). But even if
we insist on them being isomorphic, thus ensuring that the corresponding domain is
a closed Condorcet domain, the 4-cycle may or may not yield a maximal Condorcet
domain. For instance, all 4-cycles in Figs. 5, 6 and 8 evidently do not correspond to
maximal Condorcet domains since they form proper subdomains. But Fig. 9 shows
that the 4-cycle can also be the associated graph of a maximal Condorcet domain in
R({a, b, c, d}), namely the domain consisting of the orders adbc, bacd, cbda, dcab.
Such maximal Condorcet domain of size 4 can be found in R(X) for any cardinality
of X , as shown by Danilov and Koshevoy (2013).

6 Arrovian aggregation and strategy-proof social choice on median
preference domains

Closed Condorcet domains not only preclude intransitivities in pairwise majority
voting, they are also endowed with a large class of further aggregation rules satis-
fying Arrow’s independence condition. This follows from the analysis of Nehring
and Puppe (2007, 2010). Indeed, their main result entails a characterization of all
Arrovian aggregators on such domains under an additional monotonicity condition. In
the first subsection below, we apply their result to describe the class of all monotone
Arrovian aggregators on closedCondorcet domains. Themonotonicity condition plays

123



Condorcet domains, median graphs and the... 311

adcb

acdb

cadb

cabd

cbad

bcad

bcda

bdca

bdac

dbac

dabc

dacb

abcd

abdc

acbd

adbc

bacd

badc

cdba
cdabcbda

dbca

dcab
dcba

Fig. 9 A maximal Condorcet domain on {a, b, c, d} with four elements

then a crucial role in the construction of strategy-proof social choice functions on such
domains in the second subsection. There, we demonstrate that the anonymous strategy-
proof social choice functions identified by Moulin (1980) for single-peaked domains
and by Saporiti (2009) for single-crossing domains share a common structure which,
indeed, yields corresponding (anonymous, but also more generally, non-dictatorial)
strategy-proof social choice functions on all closed Condorcet domains.

6.1 Characterization of all Arrovian aggregators

Let N = {1, 2, . . . , n} be the set of voters. An aggregator on a domain D ⊆ R(X) is
a mapping f : Dn → D that assigns an order inD to each profile of individual orders
in D. The following conditions on aggregators have been extensively studied in the
literature.
Full Range. For all R ∈ D, there exist R1, . . . , Rn such that f (R1, . . . , Rn) = R.
Unanimity. For all R ∈ D, f (R, . . . , R) = R.
Independence. For all R1, . . . , Rn, R′

1, . . . , R′
n ∈ D and all pairs of distinct alter-

natives x, y ∈ X , if x Ry and, for all i ∈ N , [x Ri y ⇔ x R′
i y], then x R′y, where

R = f (R1, . . . , Rn) and R′ = f (R′
1, . . . , R′

n).
An aggregator is calledArrovian if it satisfies unanimity and independence. In what

follows, we will be concerned with Arrovian aggregators that satisfy in addition the
following monotonicity condition.
Monotonicity For all R1, . . . , Rn, R′

i ∈ D and all pairs of distinct alternatives
x, y, if x R′y and x Ri y, then x Ry, where R′ = f (R1, . . . , R′

i , . . . , Rn) and R =
f (R1, . . . , Ri , . . . , Rn).
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Themonotonicity condition can be rephrased as follows. An aggregator f ismono-
tone if and only if, for all Ri , R′

i ∈ D and all R−i ∈ Dn−1,

f (Ri , R−i ) ∈ [
Ri , f

(
R′

i , R−i
)]

. (6.1)

This has the following interpretation. Consider any pair of distinct alternatives a and
b, and suppose that a Ri b according to agent i’s true order Ri . Then, if agent i can force
the social order to rank a above b by submitting some order R′

i , the social order would
also rank a above b if agent i submitted his true preference Ri . In other words, no agent
can benefit in a pairwise comparison from any misrepresentation. The monotonicity
condition thus has a clear ‘non-manipulability’ flavor which we will further exploit.

The conjunction of independence and monotonicity is equivalent to the following
single condition.
Monotone Independence For all R1, . . . , Rn and for all pairs (x, y) of distinct alter-
natives x, y ∈ X , if x Ry, where R = f (R1, . . . , Rn) and [x Ri y ⇒ x R′

i y] for all
i ∈ N , then x R′y, where R′ = f (R′

1, . . . , R′
n).

Note also that under monotonicity, unanimity can be deduced from the full range
condition, i.e., from the assumption that the aggregator is onto.

For every pair (x, y) ∈ X × X of distinct alternatives, let Wxy be a non-empty
collection of non-empty subsets W ⊆ N of voters (the winning coalitions for x
against y ) satisfying

[
W ∈ Wxy and W ′ ⊇ W

] ⇒ W ′ ∈ Wxy . (6.2)

Definition 4 A collectionW = {Wab | (a, b) ∈ X × X, a �= b } is called a structure
of winning coalitions if, for all distinct pairs of alternatives (x, y) ∈ X × X ,

W ∈ Wxy ⇔ W c /∈ Wyx , (6.3)

where W c = N\W denotes the complement of the coalition W .

Note that condition (6.3) is equivalent to the following condition:

W ∈ Wxy ⇔ W ∩ W ′ �= ∅ for all W ′ ∈ Wyx .

Examples. There are numerous examples of structures of winning coalitions. The
simplest are the dictatorships which arise whenever there exists a voter i such that,
for all distinct pairs (x, y), a coalition W belongs to Wxy if and only if i ∈ W . More
generally, an oligarchy is characterized by the existence of a non-empty set M of
voters such that, for all distinct pairs (x, y), either (i) W ∈ Wxy ⇔ M ⊆ W , or (ii)
W ∈ Wyx ⇔ M ⊆ W . Note that, by (6.3), if (i) holds, then {i} ∈ Wyx for all i ∈ M ;
similarly, if (ii) holds, then {i} ∈ Wxy for all i ∈ M .

A structure of winning coalitions is anonymous if, for any fixed pair (x, y) ∈ X ×X ,
membership of a coalition W to Wxy depends only on the number of voters in W . A
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special case is pairwise majority votingwhich requires that for all pairs (x, y) ∈ X ×X
of distinct alternatives

W ∈ Wxy ⇔ |W | > n/2.

Note that this is jointly satisfiable with (6.3) only if n is odd.
Given a domain D ∈ R(X), a structure of winning coalitions is said to be order
preserving on D if, for every pair of distinct alternatives (x, y) ∈ X × X and every
pair of distinct alternatives (z, w) ∈ X × X ,

VD
xy ⊆ VD

zw ⇒ Wxy ⊆ Wzw. (6.4)

Observe that pairwise majority voting always defines an order preserving structure
of winning coalitions (since Wxy = Wzw for all distinct x, y and z, w in the case of
pairwise majority voting).

The following result is due to Nehring and Puppe (2007).

Proposition 6.1 LetD be a closed Condorcet domain and letW be any order preserv-
ing structure of winning coalitions onD. For all preference profiles (R1, . . . , Rn) ∈ Dn

there exists a unique order R∗ ∈ D such that, for every pair of distinct alternatives
(x, y) ∈ X × X

x R∗y ⇔ {i ∈ N | x Ri y} ∈ Wxy . (6.5)

The aggregator defined by (6.5) is a monotone Arrovian aggregator. Conversely, every
monotone Arrovian aggregator on D takes this form for some order preserving struc-
ture of winning coalitions W .

Proof The proof can be deduced from (Nehring and Puppe 2007, Prop. 3.4). For
the sake of the paper being self-contained, we reproduce the argument here, again
emphasizing the role of the Helly property on median domains as in the proof of
Theorem 2 above.

For any profile (R1, . . . , Rn) ∈ Dn , define a binary relation R∗ by (6.5). First,
we show that R∗ ∈ D. Consider distinct x, y ∈ X and distinct z, w ∈ X such that
x R∗y and z R∗w; we will show that VD

xy ∩ VD
zw �= ∅. By contradiction, suppose that

this does not hold, then we would obtain VD
xy ⊆ VD

wz , and in particular also {i ∈ N |
x Ri y} ⊆ {i ∈ N | wRi z}. At the same time, we would have Wxy ⊆ Wwz because
the structure of winning coalitions is order preserving. Thus, {i ∈ N | x Ri y} ∈ Wwz ,
hence also {i ∈ N | wRi z} ∈ Wwz . But the latter contradicts z R∗w using (6.3). Thus,
the collection of convex sets {VD

xy | x R∗y} has pairwise non-empty intersections. By
the Helly property for convex sets in any Condorcet domain (Proposition 2.2), we
obtain

⋂

{x R∗ y}
VD

xy �= ∅,

which means that R∗ is an element of D. Thus, (6.5) indeed defines a mapping from
Dn toD. It is easily verified that it is onto, monotone and independent, i.e., an Arrovian
aggregator.
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Conversely, let f be a monotone Arrovian aggregator. By the monotonicity and
independence conditions, it is easily seen that f can be defined in terms of a structure
of winning coalitions as in (6.5). We thus have only to verify that the corresponding
structure ofwinning coalitionsmust be order preserving. Thus, assume that, for distinct
(x, y) ∈ X × X and distinct (z, w) ∈ X × X , we have VD

xy ⊆ VD
zw, and W ∈ Wxy .

Then, if the profile (R1, . . . , Rn) is such that all voters in W prefer x to y, we must
have x Ry where R = f (R1, . . . , Rn). By assumption, all orders in D which rank x
above y must also rank z above w, hence z Rw. By independence, this holds for all
profiles in which the agents in W rank x above y, hence also z abovew, i.e., the agents
in W are also winning for z versus w. ��

6.2 Strategy-proof social choice

It iswell known that on domains onwhich pairwisemajority votingwith an oddnumber
of voters is transitive, choosing the Condorcet winner yields a strategy-proof social
choice function (see, e.g., Lemma 10.3 in Moulin 1988). In this final subsection, we
use Proposition 6.1 and Property (6.1) which is entailed by monotonicity to construct
a rich class of further strategy-proof social choice functions on any closed Condorcet
domain.

A social choice function F that maps every profile (R1, . . . , Rn) ∈ Dn to an
element F(R1, . . . , Rn) ∈ X is strategy-proof if, for all i ∈ N , all Ri , R′

i ∈ D and
all R−i ∈ Dn−1,

[F(Ri , R−i )]Ri
[
F

(
R′

i , R−i
)]

,

i.e., if no voter can benefit by misrepresenting her true preferences.
For each order R ∈ R(X) denote by τ(R) ∈ X the top-ranked element of R.

Let D ⊆ R(X) be any closed Condorcet domain, and consider any order preserving
structure of winning coalitionsW . For every profile (R1, . . . , Rn) ∈ Dn let RW ∈ D
be the unique order satisfying (6.5) for all distinct x, y ∈ X . Define a social choice
function FW : Dn → X by

FW (R1, . . . , Rn) = τ(RW ). (6.6)

Theorem 10 Let D ⊆ R(X) be any closed Condorcet domain. For every order pre-
serving structure of winning of coalitions W , the social choice function FW defined
by (6.6) is strategy-proof.

Proof By Proposition 6.1, the aggregator fW : Dn → D that maps any profile
(R1, . . . , Rn) to the social order RW according to (6.5) is a monotone Arrovian aggre-
gator; in particular, it satisfies (6.1). In other words, if we denote RW = fW (Ri , R−i )

and R′
W = fW (R′

i , R−i ), we have for all R1, . . . , Rn , all i , all R′
i , and all distinct

pairs of alternatives (x, y) ∈ X × X ,

[
x Ri y and x R′

W y
] ⇒ x RW y (6.7)
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This implies at once the strategy-proofness of FW , by contraposition. Indeed, suppose
that agent i could benefit by misreporting R′

i , i.e., suppose that τ(R′
W )Riτ(RW ),

where Ri is agent i’s true preference order. Then, since τ(R′
W ) is the top element

of the order R′
W we obtain from (6.7), τ(R′

W )RWτ(RW ). Since τ(RW ) is the top
element of RW this implies τ(R′

W ) = τ(RW ), i.e., the misrepresentation does not
change the chosen alternative. ��

In case of the classical single-crossing property, the anonymous social choice func-
tions defined by (6.6) are exactly the ones identified by Saporiti (2009). Thus, in this
special case, the class of anonymous social choice functions considered in Theorem 10
exhausts all anonymous strategy-proof social choice functions. It is an open and inter-
esting question whether this holds more generally on all closed Condorcet domains
(and whether the anonymity assumption is really necessary for this conclusion).

Appendix: Remaining proofs

Lemma 3.1 is proven using a result by Bandelt and Chepoi (1996). The statement of
this result requires some additional definitions, in particular the notion of a ‘geometric
interval operator,’ as follows. An interval operator on a (finite) set V is a mapping
that assigns to each pair (v,w) ∈ V × V a non-empty subset [v,w] ⊆ V , the interval
spanned by v and w, such that, for all v,w ∈ V, v ∈ [v,w] and [v,w] = [w, v]. An
interval operator is called geometric if it satisfies in addition the following properties
(cf. van de Vel 1993). For all t, u, v, w ∈ V ,

[v, v] = {v}, (A.1)

u ∈ [v,w] ⇒ [v, u] ⊆ [v,w], (A.2)

t, u ∈ [v,w]& t ∈ [v, u] ⇒ u ∈ [t, w]. (A.3)

A pair v,w is called an edge if v �= w and [v,w] = {v,w}. These edges form a
graph � on the vertex set V .

Lemma A.1 Consider a geometric interval operator on V , and let u ∈ [v,w]. Then,
there exist pairwise distinct t1, . . . , tm ∈ [v,w] such that t1 = v, tm = w, tk = u for
some k ∈ {1, . . . , m}, and such that

[t1, t2] ⊂ [t1, t3] ⊂ · · · ⊂ [t1, tm]

forms a maximal chain. In particular, the graph induced by a geometric interval
operator is connected.

Proof The existence of amaximal chain of the required form follows at once from con-
dition (A.2). The pairs tk tk+1 must form an edge for k = 1, . . . , m − 1 by maximality
of the chain. Thus, any two vertices are connected by a path. ��

An interval operator is called graphic if, for all u, v, w ∈ V, u ∈ [v,w] if and only
if u is geodesically between v and w in the induced graph �; note that this is exactly
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condition (3.1) in Lemma 3.1 above. An interval operator is said to satisfy the triangle
condition if, for all triples u, v, w ∈ V such that

[u, v] ∩ [v,w] = {v} and [v,w] ∩ [w, u] = {w} and [w, u] ∩ [u, v] = {u}, (A.4)

all three intervals are edgeswhenever one of them is.Observe that (A.4) can be satisfied
only if either all three elements u, v, w coincide, or are pairwise distinct. The following
result is due to (Bandelt and Chepoi 1996, Th. 1).

Proposition A.1 Any geometric interval operator satisfying the triangle condition is
graphic.

We want to apply Proposition A.1 to prove Lemma 3.1. In order to do so, we first
verify the geometricity of the natural interval operator induced by every subdomain
of orders.

Lemma A.2 For any domain D ⊆ R(X), the interval operator that assigns to every
pair R, R′ ∈ D the interval [R, R′] ∩ D is geometric.

Proof Properties (A.1) and (A.2) are easily verified. To verify the so-called ‘inver-
sion law’ (A.3), consider T, U, V, W ∈ D as required in the antecedent of (A.3).
Let x, y ∈ X be such that xT y and xW y. We have to show that then xU y. Since
x, y were arbitrarily chosen, this would imply U ∈ [T, W ], as desired. Assume, by
contradiction, that yU x ; then, we must have xV y since by assumption T ∈ [V, U ].
But this contradicts the assumption that U ∈ [V, W ]. ��

The following proof of Lemma 3.1 shows that the triangle condition is a powerful
sufficient condition for an interval operator to be graphic, since it is indeed satisfied
in all three cases considered in Lemma 3.1 (sometimes vacuously).

Proof of Lemma 3.1. (i) In case of a median domain, the triangle condition is vacu-
ously satisfied, since there can obviously be no triples of pairwise distinct elements
satisfying (A.4) by the median property. By Proposition A.1 the equivalence (3.1) is
satisfied for any median domain.

(ii) Next consider any connected domain D ⊆ R(X). There can exist triples sat-
isfying (A.4), but we shall show that in this case none of the three intervals can form
an edge; hence, the triangle condition is again satisfied. Thus, suppose that the three
pairwise distinct orders U, V, W ∈ D satisfy (A.4) and, by contradiction, that one
of the three intervals is an edge, say [U, V ] = {U, V }. Since D is connected, there
exists x, y ∈ X such that U and V differ only in the ranking of x versus y, say xU y
and yV x , while U and V agree in the ranking of all other pairs of alternatives. There
are two possibilities: either xW y or yW x . In the first case, we have U ∈ [V, W ]
and hence ([U, V ] ∩ [V, W ]) ⊇ {U, V }; in the second case, V ∈ [W, U ] and hence
([W, U ]∩ [U, V ]) ⊇ {U, V }. In both cases, we thus obtain a contradiction to assump-
tion (A.4). By Proposition A.1 the equivalence (3.1) is satisfied for D.

(iii) Finally, assume that D is such that �D is acyclic, i.e., a tree. As in part (i), we
show that there cannot exist triples satisfying (A.4) hence again the triangle condition
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is satisfied vacuously.17 Assume, by way of contradiction, that the pairwise distinct
orders U, V, W ∈ D satisfy (A.4). By Lemma A.1, there exists a path πU V in �D
connecting U and V that stays entirely in [U, V ]; in particular, πU V does not contain
W . Similarly, there exists a path πV W in �D connecting V and W and staying entirely
in [V, W ], and a path πWU connecting W and U and staying entirely in [W, U ]. But
then the union πU V ∪ πV W ∪ πWU forms a cycle, which contradicts the assumed
acyclicity of �D. Thus, again, by Proposition A.1 the equivalence (3.1) is satisfied for
the domain D. ��

Note that there do exist connected domains D and pairwise distinct orders
U, V, W ∈ D satisfying condition (A.4). Examples are all triples of orders on a
common 6-cycle with pairwise distance of two such as, for instance, abc, bca, cab in
Fig. 2, or abcd, bcad, cabd in Fig. 5.
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