
Econ Theory (2018) 66:627–679
https://doi.org/10.1007/s00199-017-1082-8

RESEARCH ARTICLE

Bubbly Markov equilibria

Martin Barbie1 · Marten Hillebrand2

Received: 8 March 2016 / Accepted: 6 October 2017 / Published online: 23 October 2017
© Springer-Verlag GmbH Germany 2017

Abstract Bubbly Markov equilibria (BME) are recursive equilibria on the natural
state space which admit a non-trivial bubble. The present paper studies the existence
and properties of BME in a general class of overlapping generations economies with
capital accumulation and stochastic production shocks. Using monotone methods, we
develop a general approach to construct Markov equilibria and provide necessary and
sufficient conditions for these equilibria to be bubbly. Our main result shows that a
BME exists whenever the bubbleless equilibrium is Pareto inefficient due to either
overaccumulation of capital or inefficient risk sharing between generations.

Keywords Asset bubbles · Stochastic OLG · Production · Markov equilibria · Pareto
optimality

JEL Classification C62 · D51 · E32

1 Introduction

A bubble is an intrinsically worthless asset which trades at a positive price such as fiat
money or a bondwith infinitematurity that never pays any dividends. Bubbly equilibria
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in which bubbles occur as an equilibrium outcome in the presence of rational investors
only exist if the equilibrium price system satisfies certain conditions. If investors are
infinite-lived, these conditions can only hold if there are frictions such as borrowing
constraints. In models with overlapping generations of investors, however, bubbles
can occur even in the absence of such frictions which makes this class an attractive
framework to study the existence and properties of bubbly equilibria.

The general contribution of this paper is to conduct such a study in a stochastic
overlapping generations model with production. To our knowledge, we are the first
to offer a comprehensive study of this type. Specifically, we state explicit conditions
for the existence of bubbly equilibria in terms of the pricing kernel and provide a
recursive method to construct them. Our main existence condition takes the form of
an inefficiency property of the bubbleless equilibrium which recovers several existing
results in the literature as special cases.

The emergence of a bubble in our setup has two important macroeconomic effects.
First, it affects the formation of capital by providing an alternative investment oppor-
tunity to investors. Second, it creates an additional insurance possibility which affects
the risk sharing arrangements among consumers. With these features, our setup
encompasses previous studies of bubbly equilibria in OLG models for the case of
a deterministic production economy as studied in Tirole (1985) or Bose and Ray
(1993) as well as stochastic models with pure exchange as in Manuelli (1990), Aiya-
gari and Peled (1991), or Magill and Quinzii (2003). By construction, these studies
neglect either the investment or the risk sharing effect of bubbles. In this sense, our
framework contains these models as special cases and we will discuss which role the
previous existence results play in our extended setup.

The stochastic OLGmodel with production has been studied inWang (1993, 1994)
and, more recently, in Morand and Reffett (2007), McGovern et al. (2013), and Hille-
brand (2014). These studies focus on a particular class of equilibria in which the
equilibrium variables are determined by time-invariant mappings on the minimal or
‘natural’ state space. Following Kübler and Polemarchakis (2004), such equilibria will
be called Markov equilibria (ME) in this paper.

All results on the existence and properties of ME in Wang (1993, 1994) and the
aforementioned and related papers are derived under the assumption that capital is the
only asset available to consumers. This excludes the existence of a bubbly asset from
the outset. However, as bubbly equilibria can potentially emerge in these economies
without any change in fundamentals or the behavioral characteristics of agents, any
characterization of the set of equilibria and their properties remains incomplete unless
bubbly equilibria are also taken into account. Filling this gap is therefore the main
contribution relative to Wang (1993) and similar studies of ME. Extending the termi-
nology from Kübler and Polemarchakis (2004), we call a ME which admits a bubble a
bubbly Markov equilibrium (BME). Identifying conditions under which a BME exists
and characterizing its properties are the general objectives of this paper.

The first part of our analysis lays out a general method to construct potentially bub-
bly ME. This sets the stage to establish a general existence theorem for BME in the
second part. A first major obstacle to construct ME in our setup is that the pointwise
methods employed in Wang (1993) are no longer applicable. For this reason, our con-
struction is based on monotone methods from functional analysis similar to Coleman
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Bubbly Markov equilibria 629

(1991, 2000), or Greenwood and Huffman (1995). This approach was successfully
applied in Morand and Reffett (2007) to study bubbleless ME, and we will show how
it can be extended to study BME as well. The method to be developed is also con-
structive and can directly be employed to compute BME numerically in applications
of our results.

The goal of the second part is to provide necessary and sufficient conditions under
which the ME constructed is bubbly. Our main result shows that this is the case
whenever the bubbleless equilibrium is Pareto inefficient. Such an inefficiency can
be the result of dynamic inefficiency due to overaccumulation of capital as studied
in Zilcha (1990) but may also be the result of inefficient intertemporal risk sharing
between generations (see Barbie et al. 2007 for details). In such cases, a bubbly asset
can bewelfare improving by permitting state-contingent transfers between generations
that otherwise would not be possible.1

The welfare concept employed in this paper is that of interim or conditional Pareto
optimality which evaluates each consumer’s utility conditional on the state at birth (see
Demange 2002 for an exploration of different optimality concepts for stochastic OLG
models). In our model with time-additive utility and two-period lived consumers, this
implies that utility from first period consumption is evaluated ex post, i.e., after the
current state is observed, while utility from second period consumption is evaluated
in expected terms, i.e., before the state in this period is observed. This asymmetry is
a key to obtain a welfare improvement by state-dependent transfers which change the
risk structure of first and second period consumption.

A crucial difference to the deterministic result in Tirole (1985) is therefore that
bubbles can emerge in stochastic economies which are dynamically efficient but suf-
fer from inefficient risk sharing. While this result may sound intuitive, it requires
new methods and proofs inherently different from those used in deterministic stud-
ies or stochastic exchange economies.2 Thus, our paper also offers a methodological
contribution.

One of the major challenges to establish our existence result is that it requires a
workable criterion to determine when an equilibrium allocation is Pareto inefficient.
Building on the results from Chattopadhyay and Gottardi (1999), a complete charac-
terization of Pareto optimality in stochastic OLG production economies is provided
in Barbie et al. (2007). The criterion employed in our paper essentially combines their
results with the recursive formulations of Pareto optimality/suboptimality developed
in Barbie and Kaul (2015) who provided dominant root-type criteria necessary and
sufficient for inefficiency in a stationary exchange economy with continuous state
space. Similar criteria for efficiency/inefficiency are derived in Demange and Laroque
(2000). By exploiting certain monotonicity properties, our framework allows us to
extend the results in Barbie and Kaul (2015) and Demange and Laroque (2000) and

1 This holds even thoughmarkets in our model are sequentially complete in that equilibria can be supported
by a complete set of state-contingent claims (Arrowsecurities) as inBarbie et al. (2007).Along the bubbleless
equilibrium, however, these claims are not traded between generations, while the presence of a bubbly asset
allows for such intergenerational trades.
2 Formally, this is because investments in capital and the bubbly asset being imperfect substitutes in our
framework give rise to two Euler equations, while there is only one such equation in the deterministic or
pure exchange case.
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offer a complete characterization of inefficiency under a standard condition (Feller
continuity) on the endogenous transition probability on the natural state space.

Based on this criterion, we establish our existence result by constructing a sequence
of economies with a dividend-paying asset whose dividends converge to zero.3 Each
such economy is known to have only efficient ME. Under some additional restrictions,
the limitingME of the benchmark economywith zero dividends is also efficient. Thus,
a BME necessarily exists whenever the bubbleless equilibrium is known to be Pareto
inefficient.

We expect our existence result to havemany promising and interesting applications.
One such application concerns the sustainability of government debt which is rolled
over indefinitely between any two successive generations and is formally equivalent
to a bubble. The sustainability of debt in the deterministic case was first analyzed in
Diamond (1965). In the stochastic case,Ball et al. (1998) argued that, roughly speaking,
rollover is possible when debt offers a riskless return lower than the growth rate of the
economy. Our characterization which is based on the pricing kernel of the economy
offers a clean theoretical foundation of this argument and permits to extend it to debt
returns with a general stochastic structure. Further, our construction of BME provides
an algorithm for explicitly determining sustainable debt policies and the optimal risk
indexation of debt returns. These findings could also be valuable for applied studies,
e.g., in the current discussion about sustainable debt levels, low interest rates and
secular stagnation. Further potential applications, e.g., in the context of social security
systems as studied in Gottardi and Kübler (2011) are discussed below.

Bubbles can also emerge in models with heterogeneous, infinitely lived households
in the presence of borrowing constraints which are self-enforcing. A recent paper
representative of this literature is Hellwig and Lorenzoni (2009). They show that if
borrowing constraints are positive and sustainable, they behave like a bubble in the
sense that the resulting equilibrium allocation is the same as in an economy with
unbacked public debt (see Theorem 2 in Hellwig and Lorenzoni 2009). Similar to the
OLG literature, bubbles in their model can only occur if equilibrium interest rates are
sufficiently low (see their Proposition 3).

Afinal large and growing branch of the literature studies the existence and properties
of bubbly equilibria in the presence of financial frictions. Representatives of this
literature are Farhi and Tirole (2012), Martin and Ventura (2012), and, more recently,
Ikeda and Phan (2016) or Miao et al. (2016). In the present paper, we choose not
to include such frictions for at least three reasons. First, we would like to retain the
deterministic case studied in Tirole (1985) as a natural reference point for our existence
conditions. Second, as explained above, we will formulate our existence conditions
in terms of the welfare properties of the bubbleless equilibrium based on criteria
which are well understood only in the frictionless case. Third, an important reason
for introducing frictions in the first place was to explain the emergence of bubbles in
dynamically efficient economies. Thus, an important contribution of our paper to the
literature with frictions is that bubbles can emerge in dynamically efficient economies
even in the absence of such frictions.

3 The idea of taking the limit of an economy with positive dividends to obtain bubbly equilibria was also
used in Barbie and Kaul (2015) and Aiyagari and Peled (1991).
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Bubbly Markov equilibria 631

The paper is organized as follows. Section 2 introduces the model and defines the
concept of a Markov equilibrium. Section 3 develops a general approach to construct
these equilibria. Section 4 contains themain resultswhich state necessary and sufficient
conditions under which the ME constructed is bubbly. Section 5 concludes; technical
proofs and derivations are relegated to Mathematical Appendices A and B.

2 The model

This section introduces the structure and assumptions of the basicmodel and formalizes
the concept of a Markov equilibrium which will be at the core of the subsequent
analysis.

2.1 Production sector

The production side is represented by a unit mass continuum of perfectly competitive
firmswhich operate a linear homogeneous technology to produce an all-purpose output
commodity using capital and labor as inputs. In addition, production in period t is
subjected to an exogenous aggregate random production shock θt > 0. At equilibrium,
labor supply will be constant and normalized to unity. Given the shock, the intensive
form production function f : R+ −→ R+ determines production output yt in period
t from the existing stock of capital kt ≥ 0 as

yt = θt f (kt ).

As inWang (1993), shocks are i.i.d. over time with (marginal) distribution ν supported
on the compact set Θ ⊂ R++. Let θmin denote the minimal and θmax the maximal
realization of the shock. The formal arguments in Sect. 4 assume that Θ is a finite
set. The process {θt }t≥0 induces a probability space (�,F ,P) on which all random
variables are defined and afiltration {Ft }t≥0 such that θt isFt -measurable. Throughout,
the notion of an adapted stochastic process {ξt }t≥0 refers to this filtration and implies
that each ξt can depend only on randomvariables θn , n ≤ t .Moreover,Et [·] := E[·|Ft ]
is the conditional expectations operator.

The following restrictions on f are standard and will be imposed throughout the
paper.

Assumption 1 The map f : R+ −→ R+ is C2 with derivatives f ′′ < 0 < f ′
and limk→0 f ′(k) = ∞. Moreover, there exists an upper bound k̄ > 0 such that
θmax f (k) < k whenever k > k̄.

The previous restrictions ensure that f is strictly increasing, strictly concave, and
satisfies the so-called left-side Inada condition of an infinite capital return at zero. The
final restriction excludes unbounded growth and ensures that any feasible allocation
of capital, output, and consumption in our model is uniformly bounded.

Market clearing and profit maximizing behavior imply that the equilibrium wage
wt and capital return rt are determined by the capital stock kt > 0 and the shock as
θt ∈ Θ as
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632 M. Barbie, M. Hillebrand

wt = W (kt , θt ) := θt
[
f (kt ) − kt f

′(kt )
]

(1a)

rt = R(kt , θt ) := θt f
′(kt ). (1b)

Economically, Eqs. (1a) and (1b) equate the prices of labor and capital to their
marginal product in production which also implies that equilibrium profits are zero.

2.2 Consumption sector

The consumption sector consists of overlapping generations of consumers who live
for two periods. For simplicity, there is no population growth and the size of each
generation is normalized to unity. Young consumers earn income from supplying one
unit of labor inelastically to the labor market, while old consumers earn the proceeds
on their investments made during the previous period.

To transfer income to the second period of life, there are two investment possibilities
available to a young consumer in period t . First, she can invest in capital to earn the
uncertain capital return rt+1 in the next period per unit invested at time t . Second, she
can invest in assets given by retradable shares of a fruit tree (Lucas tree) which pay
a constant non-random dividend d ≥ 0 in each period. Let pt ≥ 0 denote the asset
price per share in period t ≥ 0. The total supply of shares is normalized to unity.

A young consumer in period t observes her labor income wt > 0 and the buying
price of shares pt ≥ 0 while taking the selling price pt+1 ≥ 0 and the capital return
rt+1 > 0 as given random variables in her decision. The consumer chooses the desired
investments in capital s and in shares z tomaximize expected lifetime utility. Assuming
an additive von Neumann–Morgenstern utility function U (cy, co) = u(cy) + v(co)
over lifetime consumption, the decision problem reads:

max
z,s

{
u(wt − z pt − s) + Et

[
v
(
z (pt+1 + d) + s rt+1

)]∣∣

s ≥ 0, z ≥ 0, z pt + s ≤ wt

}
. (2)

Throughout, we impose the following standard restrictions on the utility functions.

Assumption 2 Both g ∈ {u, v} are C2 with derivatives satisfying g′′ < 0 < g′ and
limc→0 g′(c) = ∞. Moreover, second period utility satisfies the following property
(U ) : c|v′′(c)| ≤ v′(c) for all c ∈]0, cmax].4

The previous restrictions imply that utility functions in both periods are strictly
increasing and concave and their boundary behavior excludes equilibrium allocations
with zero consumption in any period of life. Furthermore, property (U) confines risk
aversion of second period utility to the unit interval which is again a standard although
more restrictive condition also imposed in Magill and Quinzii (2003), Morand and
Reffett (2007) or McGovern et al. (2013). In deterministic models such as Galor and

4 Here, cmax is a suitable upper bound for equilibrium consumption. It can formally be obtained if capital
is restricted to the bounded state space defined below.
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Ryder (1989), it ensures that savings are an increasing function of the expected capital
return.

Capital investment st in period t determines the capital stock kt+1 of the following
period. Combining this with the first-order conditions of the decision problem (2), one
obtains the following Euler equations which must hold in each period t at equilibrium:

u′(wt − pt − kt+1) = Et
[
rt+1v

′(pt+1 + d + kt+1rt+1)
]

(3a)

u′(wt − pt − kt+1)pt = Et
[
(pt+1 + d)v′(pt+1 + d + kt+1rt+1)

]
. (3b)

Some resultswill require an additional joint restriction on the production technology
f and second period utility v. To introduce this restriction, let Eφ(z) := | zφ′(z)

φ(z) |, z ∈ R

the (absolute) elasticity of a differentiable function φ 	= 0. Using this notation, define

Emax
v′ := sup

{
Ev′(c)| c ∈]0, cmax]

}
(4a)

Emin
v′ := inf

{
Ev′(c)| c ∈]0, cmax]

}
. (4b)

The values in (4) define upper and lower bounds on risk aversion Ev′(c) = c|v′′(c)|
v′(c) .

The following assumption uses these values to obtain a lower bound on the elasticity
of f ′.

Assumption 3 The production technology f and second period utility v satisfy the
joint restriction

E f ′(k) ≥ Emax
v′ − Emin

v′

1 + Emax
v′ − Emin

v′
(5)

for all k ∈ K =]0, kmax] with kmax to be determined below and Emax
v′ and Emin

v′ by (4).

Unlike Assumptions 1 and 2, Assumption 3 is a non-standard restriction which will
be needed for the monotone methods employed in this paper. Essentially, condition (5)
imposes a uniform lower bound on the curvature of the function f measured by E f ′
which increases with the range of risk aversion Emax

v′ − Emin
v′ . It holds automatically if

v′ displays constant relative risk aversion in which case Emax
v′ = Emin

v′ , an assumption
widely used in applied macroeconomic models. Further, since 0 ≤ Emax

v′ − Emin
v′ ≤

Emax
v′ ≤ 1 due to Assumption 2, the r.h.s. in (5) is uniformly bounded from above

by 1
2 . Thus, (5) holds for any production technology with E f ′ uniformly bounded

from below by 1
2 . An example is the Cobb–Douglas case f (k) = kα with capital

elasticity 0 < α ≤ 1
2 which is a standard restriction imposed in virtually any empirical

application. These observations reveal that Assumption 3 can be satisfied by restricting
either the production or the consumer side of the economy. Also note that we do not
impose an upper bound on E f ′ . Thus, we completely avoid the restrictive capital
income monotonicity condition E f ′ ≤ 1 which is often imposed in the literature,
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cf. Wang (1993), Hauenschild (2002), and others. Finally, we remark that we could
further relax Assumption 3 if some restrictions on the distribution ν were imposed. In
this paper, we decided not to impose such restrictions.

2.3 Markov equilibria (ME)

The dividend payment d ≥ 0 will be a key parameter in our analysis. For a given
value d ≥ 0, the economy is summarized by the list Ed = 〈u, v, f, ν, d〉 plus initial
conditions for capital k0 > 0 and the shock θ0 ∈ Θ . Specifically, we refer to the
economy E := E0 in which dividend payments are zero as the benchmark economy in
our framework. Note that E essentially corresponds to the economy studied in Wang
(1993).

The following definition is standard and provides themost general notion of equilib-
rium which reconciles market clearing and optimal behavior of all market participants
with rational, self-confirming expectations of consumers.

Definition 1 Given initial values k0 > 0 and θ0 ∈ Θ , a sequential equilibrium (SE)
of Ed is an adapted stochastic process

{
wt , rt , pt , kt+1

}
t≥0 which satisfies (1a, 1b)

and (3a, 3b) for all t ≥ 0.

Using the consumers’ budget constraints, the equilibrium consumption processes
are given by cyt = wt − pt − kt+1 and cot = ktrt + pt + d = θt f (kt ) + d − cyt − kt+1
for all t ≥ 0.

In this paper, we focus on a particular class of equilibria where all equilibrium
variables are determined by time-invariant functions of some state variable xt which
takes values in the state space X. In the literature, such equilibria are called recursive
equilibria (RE).We confine ourselves to a particular class of recursive equilibria where
the state variable is xt = (kt , θt ). The underlying state space X is called the natural
state space. Note that the factor price mappingsW and R from (1a, 1b) already satisfy
this property. Following the terminology of Kübler and Polemarchakis (2004), RE on
the natural state space are called Markov equilibria (ME). In the following definition,
X ⊂ R++ × Θ is a non-empty Borel set which will be constructed explicitly in the
next section.

Definition 2 A SE of Ed is called a Markov equilibrium (ME) on X if there exists
measurable mappings KE

d : X −→ R++ and PE
d : X −→ R+ such that kt+1 =

KE
d (kt , θt ) and pt = PE

d (kt , θt ) for all t ≥ 0 and all x0 = (k0, θ0) ∈ X.

A primary goal of this paper is to study ME (KE, PE) of the benchmark economy
E = E0 where dividend payments are zero (we will occasionally drop the subscript
if d = 0). In particular, we ask whether such equilibria admit a bubble, i.e., can be
supported by a nonzero asset price process. Extending the previous terminology, we
refer to aMEwhich admits a bubble as a bubblyMarkov equilibrium (BME). Formally,
we have

Definition 3 A ME (KE, PE) of E is called bubbly if PE 	= 0 and bubbleless if
PE = 0.
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Below we show that any BME satisfies PE > 0, i.e., the price of the bubbly asset
is everywhere positive. Note that by adding the Euler equations (3a, 3b), one could
also re-interpret the bubbly asset as a bubble on capital, i.e., a deviation from its
fundamental value rather than being a separate asset. Intuitively, one can imagine that
the firm issues a combined asset which subsumes both investment in capital and the
bubble. In this way, we can attach a bubble to any existing asset by adding its price to
the fundamental price of the asset.

In addition to their theoretical appeal, bubbly ME have several important applica-
tions and admit various alternative interpretations. One such application concerns the
sustainability and optimal risk structure of governmental debt. Suppose in each period
t , a government issues one-period bonds with unit price and (risk-indexed) return
r∗
t+1 to finance its current debt bt > 0. Then, the process {bt }t≥0 which evolves as
bt+1 = r∗

t+1bt is formally equivalent to a bubble in our previous framework. Exploiting
this equivalence, the value PE(xt ) defines the maximum level of debt that is sustain-
able if the current fundamental state is xt ∈ X. Further, the optimal risk structure of
the return offered in period t needed to sustain this maximum level is determined by
the random variable

r∗
t+1 := R∗(xt , ·) = PE

(
KE(xt ), ·

)

PE(xt )
. (6)

The existence of a BME is therefore equivalent to a positive equilibrium level of debt
that can be sustained without further stabilization such as taxation. Also note that (6)
would permit to explicitly compute the Arrow–Debreu prices of risk at equilibrium.

An alternative interpretation of a BME is that of a monetary equilibrium in which
a fixed quantity M > 0 of fiat money is exchanged between successive generations.
In this case, the price pt > 0 corresponds to real money balances in period t .

One can also interpret a BME as an equilibrium with a social security system in
which pt > 0 represents the transfers from young to old consumers in period t ≥ 0.
A particular appealing feature that follows from the Euler equation (3b) is that such a
system is time-consistent in the sense that no generation has an incentive to change it
(see Hillebrand 2011 for an application of this concept). Thus, a BME directly implies
the existence of a time-consistent social security system.

In the following section we show that the properties of the (unique) bubbleless ME
of E are key to construct the state spaceX associated with anyME of Ed where d ≥ 0.

2.4 Restricting the state space

It is shown in Hillebrand (2014) that property (U) from Assumption 1 is already
sufficient for the benchmark economy E to possess a unique bubbleless ME. In this
case, the equilibrium mappings are given by PE

0 ≡ 0 and KE
0 = K0 ◦ W where

K0 : R++ −→ R++ determines the unique solution k = K0(w) to the implicit
condition

G0(k, w) := u′(w − k) − Eν

[
R(k, ·)v′ (kR(k, ·))] = 0. (7)
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Note that the implicit function theorem implies that K0 is C1, strictly increasing, and
0 < K0(w) < w for all w > 0. The capital process along the bubbleless ME evolves
as

kt+1 = KE
0 (kt , θt ) = K0 ◦ W (kt , θt ). (8)

Equation (8) is precisely the representation of equilibrium studied in Wang (1993). To
rule out degenerate cases in which capital converges to zero with positive probability,
he imposes the additional restriction limk↘0 ∂k KE

0 (k, θmin) > 1, cf. Theorem 4.3 in
Wang (1993). It ensures existence of a lower bound k > 0 such that KE(k, θ) > k for
all θ ∈ Θ whenever k ≤ k. For most of the following analysis, however, it suffices to
work with a weaker condition which only excludes that capital converges to zero with
probability one. Only later will the stronger requirement ofWang (1993) be necessary.

Before introducing such restrictions formally, a crucial observation is that the bub-
bleless ME is fully described by the map K0 defined on the one-dimensional set
W ⊂ R++ of equilibrium wages. We will show in the next section that the same struc-
ture obtains in the bubbly case and also along any ME of Ed , d > 0. In each case, the
equilibrium mappings in Definition 2 take the form PE

d = Pd ◦W and KE
d = Kd ◦W

with Pd and Kd defined on W. Thus, any ME is completely described by mappings
defined on a one-dimensional setWwhich we will refer to as the reduced state space.
For this reason, the pair (Pd , Kd) will also be referred to as a ME of Ed .

It will be convenient to impose restrictions on the reduced state spaceW rather than
X directly. For this reason, we state the aforementioned boundary properties in terms
of the wage process along the bubbleless equilibrium which evolves as

wt+1 = WE
0 (wt , θt+1) := W (K0(wt ), θt+1) . (9)

Mathematically, this representation of the equilibrium dynamics is equivalent to (8).
The following assumption rules out that the wage process (9) converges to zero with
probability one.

Assumption 4 The mapWE
0 defined in (9) satisfies lim infw↘0 WE

0 (w, θmax)/w > 1.

Assumption 4 does not seem too restrictive, as it essentially excludes only economies
for which capital converges to zero with probability one. In our view, such economies
are not very interesting for the primary objective of this paper to study bubbly equi-
libria.

Assumptions 1 and 4 together with continuity of WE
0 ensure that the set of fixed

points of WE
0 (·, θmax) is non-empty and compact. Thus, defining

wmax := min
{
w > 0

∣∣
∣w = WE

0 (w, θmax)
}

(10)

allows us to use W :=]0, wmax] as the reduced state space. Note that W is self-
supporting in the sense that w ∈ W implies WE

0 (w, θ) ∈ W for all θ ∈ Θ . Further,
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WE
0 (·, θmax) haswmax as its unique fixed point which is globally asymptotically stable

onW.5

Setting kmax := K0(wmax) and K =]0, kmax] permits to define X := K× Θ as the
natural state space from Definition 2 along the bubbleless ME. In the next section, we
show that these choices for W and X extend to the bubbly case and any ME of Ed if
d > 0. Thus, a major advantage of Assumption 4 is that it permits a bounded state
space.

Some results of Sect. 4 will even require thatW andX can be chosen compact along
the bubbleless ME. In such cases, the following stronger restriction is imposed which
rules out that the wage process (9) converges to zero even with positive probability.

Assumption 5 There exists w > 0 such that WE
0 (w, θmin) > w for all w ≤ w with

WE
0 defined in (9).

Assumption 5 ensures thatWE
0 (·, θmin)has at least one positive fixedpoint.Defining

wmin := min
{
w > 0

∣∣∣w = WE
0 (w, θmin)

}
(11)

ensures thatW := [wmin, wmax] is a compact self-supporting set for the dynamics (9).
While this would also permit to choose the state spaceX compact along the bubbleless
ME, these choices extend neither to the bubbly case nor to a ME of Ed if d > 0.

A direct implication of Assumption 5 is lim infw↘0 WE
0 (w, θmin)/w ≥ 1, which

is mathematically essentially equivalent to (although slightly weaker than) the condi-
tion in Wang (1993) discussed above. Further, since shocks in (9) are multiplicative,
Assumption 5 implies Assumption 4 whenever θmax > θmin.

A potential problem with both Assumptions 4 and 5 is that they refer to derived
objects and are not stated in terms of the primitives of the model. For this reason, we
present two additional results which state restrictions on the primitives under which
the stronger Assumption 5 holds. These restrictions should also be easy to verify
in any numerical or empirical application of the model. As they are sufficient but
not necessary, we will continue to work with Assumptions 4 and 5 in the following
analysis.

Lemma 1 In addition to Assumptions 1 and 2, let the following conditions hold:

(a) lim inf
k↘0

W (k, θmin)

k
> 1 (b) lim inf

k↘0

Eν[R(k, ·)v′(kR(k, ·))]
u′(W (k, θmin) − k)

> 1.

Then, Assumption 5 is satisfied.

Condition (a) is necessary for Assumption 5, as it excludes a poverty trap in which
capital would converge to zero under the minimal shock θmin, independently of any
restriction on preferences. A sufficient restriction under which (a) holds is the so-
called strengthened Inada (SI) condition limk↘0 k f ′′(k) = ∞ introduced in Galor and

5 This uniqueness property will be important to obtain several results including Theorem 1. Otherwise, we
could have defined wmax in (10) to be the maximum fixed point of WE

0 (·, θmax).
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Ryder (1989). Note that this condition is implied by the left-side Inada condition from
Assumption 1 whenever E f ′ is bounded away from zero. Thus, it holds automatically
under our Assumption 3 whenever there is some variation in risk aversion of second

period utility. As limk↘0 f ′(k) = ∞, condition (b) requires that Eν

[
idΘ(·)v′(kR(k,·))
u′(W (k,θmin)−k)

]

is either bounded below or at least does not converge to zero ‘too fast’ as capital
converges to zero [here, idΘ(·) is the identity map on Θ]. As θ �→ θv′(θ f ′(k)k) is
non-decreasing due to Ev′ ≤ 1, a sufficient condition for (b) is therefore

lim inf
k↘0

v′ (kR(k, θmin))

u′ (W (k, θmin) − k)
> 0 (12)

which is similar to the existence conditions in Li and Lin (2012) for the deterministic
case.

An alternative restriction to enforce (a) is the so-called non-vanishing labor share
(NLS) condition lim infk↘0

f (k)
k f ′(k) > 1 which is generally stronger and implies SI

whenever f (0) = 0.6 TheNLScondition is again satisfied if E f ′ is bounded away from
zero. Importantly, in the special case often studied in the literaturewhere v(c) = βu(c)
for some discount factor β > 0, NLS combined with Assumptions 1 and 2 also implies
(12) and, therefore, condition (b). The same is true if instead f (0) > 0 which holds,
e.g., with CES production and an elasticity of substitution larger than one. As we did
not find these last results in the literature, we state them in the following lemma.7

Lemma 2 Under Assumptions 1 and 2, suppose lim infk↘0
f (k)

k f ′(k) > 1. Then, condi-
tion (a) from Lemma 1 holds. Moreover, if either v(c) = βu(c) for all c ∈]0, cmax] or
f (0) > 0, then (b) is also satisfied.

3 Constructing Markov equilibria

The pointwise construction of ME employed in Wang (1993) and the previous section
is available only in the bubbleless case. For this reason, the following sections develop
a more general approach which is based on methods from functional analysis similar
to Morand and Reffett (2007). It is shown in Hillebrand (2014) that this approach
is equivalent to the pointwise construction in Wang (1993) in the bubbleless case.
Our method permits to construct ME of the general class of economies Ed , d ≥ 0
introduced in the previous section. Identifying conditions under which the solution
obtained for d = 0 defines a bubbly ME of the benchmark economy E then becomes
a separate issue to be explored in Sect. 4.

6 To see this, suppose f (0) = 0. Then, by L’Hopital’s rule, limk↘0
f (k)

k f ′(k) = limk↘0
1

1−E f ′ (k)
. The

condition thus requires limk↘0 E f ′ (k) > 0. As limk↘0 f ′(k) = ∞, this can only hold under SI.
7 For the deterministic OLG growth model, Konishi and Perera-Tallo (1997) established existence of a
non-trivial steady-state equilibrium when NLS holds and lifetime utility is homothetic, see their Corollary
1 on p. 535. These restrictions are somewhat similar to those of Lemma 2 for the present stochastic case.

123



Bubbly Markov equilibria 639

The following sections throughout impose Assumptions 1, 2, and 4. Using the
results fromSect. 2.4, definewmax as in (10) and the reduced state spaceW =]0, wmax],
kmax := K0(wmax) by (7), K =]0, kmax], and the natural state space X = K × Θ .

3.1 Defining an operator Td

Given d ≥ 0, the following analysis aims to construct ME of Ed as fixed points of
an operator Td defined on some suitably chosen function space G . To restrict the
class of candidate equilibrium functions G , a first and crucial observation is that the
current state xt = (kt , θt ) enters the Euler equations (3a, 3b) only through the wage
wt = W (xt ).8 Therefore, we conjecture that, similar to the bubbleless equilibrium,
the mappings from Definition 2 can be written as KE

d = Kd ◦ W and PE
d = Pd ◦ W

where Kd : W −→ K and Pd : W −→ R+. Under this hypothesis, the problem of
determining a ME is equivalent to determining the two functions (Kd , Pd) consistent
with the Euler equations (3a, 3b). Moreover, we will show below that any solution Pd
uniquely determines the associated capital function Kd . Thus, we are essentially left
to determine the function Pd . We restrict our search for this solution to the function
space

G :=
⎧
⎨

⎩
P : W −→ R+

∣
∣∣∣∣∣

P is continuous
w �→ P(w) is weakly increasing
w �→ w − P(w) is weakly increasing

⎫
⎬

⎭
. (13)

The space G is endowed with the usual pointwise ordering, i.e., P1 ≥ P2 (P1 > P2)
iff P1(w) ≥ P2(w) (P1(w) > P2(w)) for all w ∈ W.

The previous insights greatly simplify the construction of ME because they permit
to reduce the problem of determining two functions (PE

d , KE
d ) both defined on X to

finding a single function Pd defined on the one-dimensional space W. In the sequel
we will construct Pd as a fixed point of some operator Td defined on G . The additional
monotonicity restrictions in (13) will be necessary for this operator to be well defined.

Let d ≥ 0 be arbitrary but fixed. The key ingredient to construct the operator Td
is the Euler equations (3a, 3b). The idea is as follows: At some fixed point in time,
suppose next period’s asset price is determined by some function P ∈ G of next
period’s wage. Then, for any current statew ∈ W, the current asset price p and capital
investment k must solve the Euler equations (3a, 3b). Given P ∈ G and some fixed
w ∈ W, let

H1(k, p;w, P, d) : = u′(w − p − k)

−Eν

[
R(k, ·)v′(P(W (k, ·)) + d + kR(k, ·))] (14a)

8 This property rests crucially on the i.i.d. structure of the shock process. While this will simplify the
subsequent construction of ME considerably, we expect the underlying principle along with most of the
results to carry over to more general classes of economies including correlated production shocks. Clearly,
in this case the function space G consists of mappings defined on X rather than W.
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H2(k, p;w, P, d) : = u′(w − p − k)p

−Eν

[
(P(W (k, ·)) + d)v′(P(W (k, ·)) + d + kR(k, ·))]

(14b)

which are defined for all 0 < k < kmax and p ≥ 0 such that k + p < w. Then, for any
fixed w̃ ∈ W, the problem is to determine k̃ ∈ K, and p̃ ≥ 0 such that k̃+ p̃ < w̃ and

H1
(
k̃, p̃; w̃, P, d

)
= H2

(
k̃, p̃; w̃, P, d

)
= 0. (15)

First, consider the problem (15) for d = 0. For this case, we have the following
result.

Lemma 3 Let Assumptions 1, 2, and 4 be satisfied and suppose d = 0. Then, for any
P ∈ G and w̃ ∈ W, there is a unique solution p̃ ≥ 0 and k̃ ∈ K to (15).

Lemma 3 permits to define functions T P : W −→ R+ and KP : W −→ R++
which determine the unique solution to (15) if d = 0, i.e., T P(w̃) := p̃ and KP (w̃) :=
k̃ for each w̃ ∈ W. This induces an operator T onG which associates with any function
P ∈ G the new function T (P) := T P . We also denote by K• the operator on G which
assigns to P ∈ G the function KP .9

The following result shows that T maps G into itself and establishes several addi-
tional properties. Here, the additional restriction (5) from Assumption 3 is needed to
ensure that T maps monotonic functions to monotonic functions.

Lemma 4 In addition to Assumptions 1, 2, and 4, let Assumption 3 hold. Then, T :
G −→ G . Further, for each P ∈ G the following holds:

(i) T (P) < idW, P > 0 implies T (P) > 0, while P = 0 implies T (P) = 0.
(ii) KP is continuous and increasing, KP ≤ K0 < idW and P > 0 implies KP < K0.

In a second step, consider now the problem (15) ford > 0.Observe that this problem
is identical to the case where d = 0 if P is replaced by the function P̂ = P + d, i.e.,
P̂(w) := P(w) + d for all w ∈ W. Clearly, P ∈ G implies P + d ∈ G for all d ≥ 0.
Thus, define for each fixed d ≥ 0 the operator Td on G as

Td(P) = T (P + d). (16)

Then, by Lemmas 3 and 4, for each P ∈ G , w̃ ∈ W and fixed d ≥ 0, the unique
solution to (15) is given by p̃ = Td P(w̃) and k̃ = KP+d(w̃). In particular, T0 = T .
The relation (16) shows that Td inherits all properties derived above for T . In particular,
Td maps G into itself and Td(P) < idW for all P ∈ G .

3.2 Monotonicity properties of Td

We conjecture—and prove in the next subsection—that a fixed point of Td , i.e., a
function P∗

d ∈ G such that P∗
d = Td P∗

d together with the induced capital function

9 As KP yields the solution K0 defined by (7) for P ≡ 0, this notation is consistent with Sect. 2.4.
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K ∗
d = KP∗

d +d define a ME of Ed . In this regard, the last result from Lemma 4 implies
K ∗
d ≤ K0 with the latter defined by (7). This property permits to employW =]0, wmax]

as the reduced state space and X = K × Θ as the natural state space along any ME.
Our ultimate goal in this paper is to prove the existence of aBMEwhich corresponds

to a non-trivial fixed point P∗
0 > 0 of T . Unfortunately, however, Lemma 4 already

showed that the trivial solution P = 0 is always a fixed point of T , so a mere existence
result will not help. Instead, wewill explicitly construct fixed points as pointwise limits
of sequences of function. The method is similar to the one developed in Greenwood
and Huffman (1995), see also Morand and Reffett (2003, 2007).

A key property for this construction to be successful is that Td be monotonic which
by (16) is equivalent to monotonicity of T which we will consider first. A major
obstacle to establish this property globally on G is that the methods from differential
calculus including the implicit function theorem are not available for all functions in
G . To remedy this problem, we will temporarily restrict ourselves (respectively T ) to
the smaller set

G ′ :=
{
P ∈ G | P is C1

}
(17)

of continuously differentiable functions in G . Observe that G ′ still contains the trivial
solution P ≡ 0. The next result shows that T maps G ′ into itself.

Lemma 5 Under the hypotheses of Lemma 4, P ∈ G ′ implies T P ∈ G ′.

The following result now establishes the monotonicity of T on G ′ which will turn
out to be sufficient to apply the construction principle below. In addition, we show
that K• is strictly decreasing on G ′ which resembles the usual crowding-out effect of
assets.

Lemma 6 Let Assumptions 1, 2, and 4 hold. Then, T is monotonically increasing on
G ′, i.e., for any P0, P1 ∈ G ′, P1 ≥ P0 implies T (P1) ≥ T (P0) and P1 > P0 implies
T (P1) > T (P0). Moreover, K• is monotonically decreasing on G ′.

It follows directly from (16) that the operator Td inherits again all previous proper-
ties from T . In particular, Td is monotonic on G ′ and maps this subclass into itself. In
addition, themap d �→ Td ismonotonic in the sense that d1 ≥ d0 implies Td1 P ≥ Td0 P
for all P ∈ G ′. For later reference, we state these properties formally in the next result.

Corollary 1 Under thehypotheses of Lemma6, Td satisfies the followingmonotonicity
properties:

(i) For all d ∈ R+ and P0, P1 ∈ G ′: P1 ≥ (>)P0 implies Td P1 ≥ (>)Td P0.
(ii) For all P ∈ G ′ and d0, d1 ∈ R+: d1 ≥ (>)d0 implies Td1 P ≥ (>)Td0 P.

3.3 Constructing ME as fixed points of Td

Let d ≥ 0 be arbitrary but fixed. We are now in a position to construct ME of Ed as
fixed points of Td . Form ∈ N, let Tm

d denote them-fold composition of Td with itself,
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642 M. Barbie, M. Hillebrand

i.e., Tm
d = Td ◦ Tm−1

d . As Td P = T (P + d) < idW for all P ∈ G by Lemma 4, the
identity map idW ∈ G ′ defines a natural upper bound for any fixed point of Td . Thus,
define the sequence of functions (Pm

d )m≥0 recursively by setting P0
d ≡ P0 := idW and

Pm
d := Td(P

m−1
d ) = Tm

d P0. By Lemma 5, this sequence is well defined and Pm
d ∈ G ′

for all m ≥ 0. Further, P1
d < P0

d implies Pm+1
d < Pm

d for all m ≥ 0 by monotonicity
of Td , i.e., (Pm

d )m≥0 is strictly decreasing. Thus, the pointwise limit

P∗
d (w) := lim

m→∞ Pm
d (w) = lim

m→∞ Tm
d P0(w) (18)

is well defined for all w ∈ W as (Pm
d (w))m≥0 is a strictly decreasing sequence of

real numbers bounded by zero. We show that the limiting function satisfies P∗
d ∈ G .

For each m ≥ 1, Pm
d ∈ G implies that w �→ Pm

d (w) and w �→ w − Pm
d (w),

w ∈ W are both increasing. Thus, for any 0 < w1 < w2 ≤ wmax the inequalities
Pm
d (w1) ≤ Pm

d (w2) and w1 − Pm
d (w1) ≤ w2 − Pm

d (w2) being true for all m ≥ 1
also hold in the limit and imply that P∗

d inherits the previous monotonicity properties.
Using an argument developed and proved in (Morand and Reffett 2003, p.1369), these
properties already imply continuity of P∗

d . Thus, P
∗
d ∈ G . Note, however, that we

cannot be certain that P∗
d ∈ G ′.

The previous findings lead to the following main result.

Theorem 1 Let Assumptions 1, 2, 3, and 4 hold. Then, for each d ≥ 0 the functions
P∗
d defined in (18) and K ∗

d := KP∗
d +d satisfy the following:

(i) P∗
d is a fixed point of Td which satisfies P∗

d > 0 for d > 0 and either P∗
0 > 0 or

P∗
0 = 0 if d = 0. Moreover, d > d ′ ≥ 0 implies P∗

d ≥ P∗
d ′ and K ∗

d < K ∗
d ′ .

(ii) Both mappings P∗
d and K ∗

d are continuous and increasing.
(iii) KE

d := K ∗
d ◦ W and PE

d := P∗
d ◦ W is a ME of Ed on X = K × Θ .

Theorem 1 shows that our algorithm delivers a unique ME for each d ≥ 0 with
asset prices being strictly positive whenever d > 0. Moreover, (i) shows that these
prices increase with dividend payments, which is certainly what one would expect.
Further, higher asset prices and dividends reduce capital formation, which is the usual
crowding-out effect. Intuitively, consumers form less capital when asset pay-offs in
the second period are higher. Assertion (ii) shows that both capital and asset prices
increase with first period income, i.e., higher income increases investment in both
capital and assets.

For d = 0, the previous construction also delivers a unique ME (K ∗
0 , P∗

0 ) of E .
However, it may be the case that P∗

0 = 0 . Clearly, this would imply K ∗
0 = K0

defined by (7) which yields precisely the bubbleless equilibrium studied in Sect. 2.4.
Therefore, the main question to be answered in the remainder of the paper is when
does P∗

0 > 0 hold?
Before exploring this question in the next section, we present an alternative way to

construct the ME from Theorem 1 for the benchmark economy E . The proof of our
main existence result will be based on this construction. The idea is to obtain theME of
E as the limit of ME of dividend economies Ed as d goes to zero. Formally, let (dn)n≥1
be a decreasing sequence of dividends such that dn ≥ 0 for all n and limn→∞ dn = 0.
By Theorem 1, for each n ≥ 1 the functions P∗

dn
defined by (18) and K ∗

dn
= KP∗

dn
+dn
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define a ME of Edn . The following result shows that the sequence of ME constructed
in this fashion indeed converges (pointwise) to the ME of E defined by Theorem 1.

Lemma 7 For any positive dividend sequence (dn)n≥1 converging monotonically to
zero, the induced sequence of ME (K ∗

dn
, P∗

dn
)n≥1 from Theorem 1 converges pointwise

to (K ∗
0 , P∗

0 ).

4 Existence of bubbly Markov equilibria

In this section we establish necessary and sufficient conditions under which the ME
(K ∗

0 , P∗
0 ) constructed in Theorem 1 is bubbly, i.e., P∗

0 > 0. Our main result stated
as Theorem 2 below shows that this is the case whenever the bubbleless equilibrium
derived in Sect. 2.4 is Pareto inefficient. As the proof requires that the (reduced) state
space can be chosen compact along this equilibrium, the following sections replace
our previous Assumption 4 by the stronger Assumption 5. In addition, the formal
arguments in the proofs of Lemma 8 and Theorem 2 below assume that the shock
space Θ is finite without explicit notice. These restrictions allow us to directly use
the characterization of Pareto inefficiency along with Proposition 4 from Barbie et al.
(2007). While we are confident that an extension of these results to infinite shock
spaces would, in principle, be possible and could be obtained along the lines of the
proof of Proposition 1 in Barbie and Kaul (2015), we decided to restrict ourselves here
to results that are already available. All other arguments and proofs in this section are
formulated and hold also for the general case where Θ is an interval.

In this section, define wmax by (10) and wmin by (11). As a notational convention,
a superscript ∗ identifies functions associated with the ME constructed in Theorem 1.

4.1 Pareto efficiency, dynamic efficiency, and risk sharing

Our concept of Pareto optimality corresponds to Interim Pareto Optimality (IPO) as
defined and studied, for example, in Demange and Laroque (2000) or Conditional
Pareto Optimality (CPO) as in Chattopadhyay and Gottardi (1999). The following
definition formalizes this concept for the class of economies Ed defined above for a
fixed value d ≥ 0. To identify and distinguish the potential sources of Pareto ineffi-
ciency below, we also introduce the concept of dynamic efficiency as studied in Zilcha
(1990) and others.

Definition 4 (i) Given x0 = (k0, θ0) ∈ X, a feasible allocation of Ed is an adapted
stochastic process a = {kt+1, c

y
t , c

o
t }t≥0 with values in R

3+ which satisfies the
resource constraint

kt+1 + cyt + cot = f (kt , θt ) + d

for all t ≥ 0. The set of feasible allocations of Ed is denoted Ad(x0).
(ii) Allocation a ∈ Ad(x0) (Pareto) dominates allocation ã ∈ Ad(x0) if co0 ≥ c̃o0 and

ut := Et
[
u(cyt ) + v(cot+1)

] ≥ Et
[
u(c̃yt ) + v(c̃ot+1)

] =: ũt
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for all t ≥ 0 and for some t ≥ 0 there exists a non-empty set A ∈ Ft such that
ut (ω) > ũt (ω) for all ω ∈ A.

(iii) Allocation a ∈ Ad(x0) is called Pareto optimal or efficient if it is not dominated
by any other allocation in Ad(x0). Otherwise, it is called inefficient.

(iv) Allocation a ∈ Ad(x0) is called dynamically efficient if there is no other alloca-
tion ã ∈ Ad(x0) such that

ct := θt f (kt ) − kt+1 ≤ θt f (k̃t ) − k̃t+1 =: c̃t

for all t ≥ 0 and for some t ≥ 0 there exists a non-empty set A ∈ Ft such that
ct (ω) < c̃t (ω) for all ω ∈ A. Otherwise, it is called dynamically inefficient.

For the class of stochastic OLG economies with production studied in this paper,
there are two potential reasons why equilibrium allocations may be Pareto inefficient.
The first one is dynamic inefficiency corresponding to an overaccumulation of capital.
This concept was originally introduced in Cass (1972) for the deterministic case and
extended to the stochastic case by Zilcha (1990). If an allocation is dynamically inef-
ficient, a small reduction in initial capital formation leads to a Pareto improvement
by increasing aggregate consumption in all future periods and under any possible
path of shocks. If an allocation is dynamically inefficient, the introduction of a bub-
bly asset offers an alternative investment opportunity to consumers which induces an
additional income transfer from young to old consumers and may be Pareto improving
by crowding-out capital investment. For the deterministic case, this is the result from
Tirole (1985).

A complete characterization of dynamic inefficiency of feasible allocations is pos-
sible based on the process of capital returns {θt f ′(kt )}t≥0 supporting the allocation,
cf. Zilcha (1990). Intuitively, it requires these returns to be smaller than unity ‘suf-
ficiently often’ along any possible path of shocks which generalizes the well-known
deterministic results.

A second source of inefficiency arises from potentially inefficient risk sharing
between generations. In such cases, a Pareto improvement can be accomplished by
redistributing aggregate incomebetween young and old consumers via state-dependent
transfers. A bubbly asset which accomplishes this can be seen as a form of govern-
ment debt with state-dependent return rolledover indefinitely generalizing the basic
idea of Samuelson (1958). In a stochastic world, however, the conditions under which
such a rollover is possible depend not only on the absolute level of intergenerational
transfers but also on their relative size in different states of the world. Therefore, a
bubbly asset not only redistributes resources between young and old consumers, but
also changes the stochastic structure of their incomes. If the latter increases utility of
each generation, we call this an improvement in risk sharing.

Intuitively, a bubbly asset can improve risk sharing by allowing for state-contingent
transfers that otherwise would not be possible. For example, along the bubbleless equi-
librium studied in Sect. 2.4, the risk towhich consumption in the first and second period
of life is exposed is exclusively determined by the risk structure of wages and capital
returns. In our model, due to the multiplicative structure of shocks in (1), consumption
of both generations in each period is perfectly correlated. Introducing a bubbly asset
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with a return imperfectly correlated with the return on capital (e.g., offering a riskless
return) allows to change the risk structure of first and second period consumption
which may increase utility of each generation. In fact, this positive effect may over-
compensate the crowding-out effect of the bubble and lead to a Pareto improvement
even if the initial allocation is dynamically efficient. In Sect. 4.5we present an example
where the bubbleless equilibrium is dynamically efficient but Pareto inefficient due to
inefficient risk sharing in this sense. The relation between the previous concepts for
competitive equilibrium allocations has also been examined in Barbie et al. (2007).

A characterization of Pareto inefficiency cannot be merely based on capital returns
supporting the allocation but must take into account how each generation is willing
to substitute incomes today and tomorrow in different states of the world. Based on
this idea, the first part of this chapter uses the pricing kernel to obtain a complete
characterization of Pareto inefficiency for equilibrium allocations defined recursively
on the natural state space. Our main result in Theorem 2 below then establishes that
the benchmark economy E = E0 has a BME whenever the bubbleless equilibrium
allocation is Pareto inefficient. Stating this result formally requires the concept of a
Markovian equilibrium allocation which is introduced in the next section.

4.2 Markovian equilibrium allocations (MEA)

For fixed d ≥ 0, identify a ME of Ed with the mappings (K , P) on W =]0, wmax]
constructed as in the previous sections (here and in the sequel we drop the subscript
d when convenient). We seek to derive the induced mappings which determine the
consumption process along aME. It will be convenient to define thesemappings on the
reduced state spaceW rather than X and to identify the state at time t by wt . For this
reason, we fix the realization of the initial shock θ0 ∈ Θ10 and define the consumption
mappings associated with a ME (K , P) as

Cy : W −→ R++, Cy(w) := w − K (w) − P(w)

Co : W×Θ −→ R++, Co(w, θ) := P (W (K (w), θ)) + d + K (w)R (K (w), θ) .

(19)

We call the triple A = (K ,Cy,Co) a Markovian equilibrium allocation (MEA). The
pricing kernel associated with A is defined as the map mA : W × Θ −→ R++,

mA(w, θ) := v′ (Co(w, θ))

u′ (Cy(w))
. (20)

For each w0 ∈ W, a MEA determines a unique feasible allocation aE(w0) ∈ Ad(x0)
where kt+1 = K (wt ), c

y
t = Cy(wt ), cot+1 = Co(wt , θt+1) = Co(wt , wt+1/

W (K (wt ), 1) for t ≥ 0, while old-age consumption co0 in t = 0 follows from the

10 This restriction is necessary because initial old-age consumption co0 can, in general, not be written as
a function of w0 but requires knowledge of the full initial state x0. If θ0 is fixed, there is a one-to-one
correspondence between w0 and the initial state x0 and the process {xt }t≥0 can fully be recovered from
{wt }t≥0 as kt = K (wt−1) and θt = wt/W (kt , 1) for t ≥ 1.
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aggregate resource constraint. Consequently, we adopt the following notions of effi-
ciency/inefficiency for MEA.11

Definition 5 A MEA A = (K ,Cy,Co) is called

(i) efficient/inefficient at w0 ∈ W if aE(w0) is efficient/inefficient.
(ii) efficient/inefficient on W ⊂ W if A is efficient/inefficient at all w0 ∈ W.
(iii) efficient/inefficient if it is efficient/inefficient at each w0 ∈ W.12

The previous formulation permits consumption and capital along the ME to be
expressed as functions of the (reduced) state process {wt }t≥0. Given w0 ∈ W, the
statistical evolution of this process is determined by a time-invariant transition proba-
bility Q (see ‘Appendix B’ for details). Therefore, the lifetime utility ut of generation
t from Definition 4 (ii) also depends exclusively on the state wt . Combining results
from Barbie et al. (2007) and Barbie and Kaul (2015), these properties will allow us
to characterize the (in-)efficiency of MEA in terms of mappings defined on a one-
dimensional state space which greatly simplifies this characterization. To obtain these
results, the following additional restrictions on MEA will be employed.

Definition 6 Let A = (K ,Cy,C0) be a MEA defined as above.

(i) We call A continuous if the mappings K , Cy , and Co are all continuous.
(ii) We call a subset of the form W = [w,wmax] ⊂ W a stable set and w > 0 a

lower bound (of A) if w ∈ W implies W (K (w), θ) ∈ W for all θ ∈ Θ .
(iii) We call A bounded, if for each w0 ∈ W there is some stable set W containing

w0.

The existence of a stable set excludes cases where the state variable converges to
zero under some unfavorable sequence of shocks. A stable set can always be chosen
as a compact state space because states in this set stay in it under any realization of
shocks.

For each d ≥ 0, denote by A∗
d = (K ∗

d ,Cy,∗
d ,Co∗

d ) theMEA associated with theME
(K ∗

d , P∗
d ) from Theorem 1. Further, let A0 = (K0,C

y
0 ,Co

0 ) be the MEA associated
with the bubbleless ME of E derived in Sect. 2.4. That is, K0 is defined by (7),
Cy
0 (w) := w − K0(w), and Co

0 (w, θ) := K0(w)R(K0(w), θ) for all w ∈ W and
θ ∈ Θ . Note that A∗

0 coincides with A0 if and only if (K ∗
0 , P∗

0 ) is bubbleless, i.e.,
P∗
0 = 0. This observation will play a key role in the next section. Also observe that

A0 and each A∗
d are continuous by the results from Sect. 2.4 and Theorem 1(ii) and

that A0 is bounded under the additional restriction from Assumption 5.

4.3 A general existence theorem

We are now in a position to state our main existence result in the following theorem.

Theorem 2 Let Assumptions 1, 2, 3, and 5 hold. If A0 is inefficient, then (K ∗
0 , P∗

0 )

defines a BME of E , i.e., P∗
0 > 0.

11 An analogous terminology is adopted in the case of dynamic (in-) efficiency of a MEA.
12 Under the additional restrictions from Lemma 8 (ii) below, the efficiency properties of A become to
some extent independent of the initial state w0.
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Bubbly Markov equilibria 647

The intuition behind the proof of Theorem 2 is straightforward. Consider a mono-
tonic sequence of strictly positive dividend payments (dn)n≥1 which converges to
zero. For each n ≥ 1, construct the ME (K ∗

dn
, P∗

dn
) of Edn as in Theorem 1 and denote

by A∗
dn

the induced MEA defined as above. It is well known that each A∗
dn
, being

an equilibrium allocation of an economy with a dividend-paying asset, is efficient.
Intuitively, one would expect that this efficiency also holds in the limit such that the
sequence (A∗

dn
)n≥1 cannot converge to A0 if A0 is inefficient. Thus, A0 	= A∗

0 which

is only possible if P∗
0 > 0, i.e., (K ∗

0 , P∗
0 ) is bubbly.13

We preface the proof of Theorem 2 by the following three lemmata. The first result
is a sort of unit root condition, which is used in OLG models with finitely many
states to characterize the Pareto optimality of stationary competitive equilibria. The
proof of part (i) is an adaption of the results from Barbie et al. (2007) and Barbie
and Kaul (2015). Part (ii) goes beyond the previous results and provides together with
Lemma 9 and Lemma 10 a complete characterization of inefficiency. This part makes
use of our monotonicity assumptions to obtain the more general result. The proofs are
relegated to ‘Appendix B.’ Also note the similarity of (21) below to the conditions for
inefficiency in Demange and Laroque (2000) or Magill and Quinzii (2003).

Lemma 8 Let A = (K ,Cy,Co) be a bounded and continuous MEA and define mA

as in (20).

(i) If A is inefficient, there is an upper-semicontinuous function η : W −→]0, 1]
such that

Eν [η(W (K (w), ·))mA(w, ·)] > η(w) for all w ∈ W. (21)

(ii) If mA is increasing, then η in (i) can be chosen continuous. Moreover, if A is
inefficient at some w0 ∈ W, it is also inefficient for all w′

0 ≥ w0.

Let m0 := mA0 be the pricing kernel associated with the bubbleless allocation
A0. Our next result ensures that η in (21) can be chosen continuous whenever A0 is
inefficient.

Lemma 9 If Assumptions 1, 2, 3, and 4 hold, then m0 is increasing.

Finally, we have the following sufficient condition for inefficiency. This condition
also appears as part of Theorem 1 of Barbie and Kaul (2015) and as Theorem 1 in
Demange and Laroque (2000). The proof we give here is similar to the ones given in
these papers.

Lemma 10 Let A = (K ,Cy,Co) be continuous and W be a stable set of A. If a
continuous function η : W −→]0, 1] satisfies (21) for all w ∈ W, then A is inefficient
onW.

We are now in a position to prove Theorem 2 in five steps.

13 The same kind of argument is used in Barbie and Kaul (2015), going back to the basic idea in Aiyagari
and Peled (1991), for the case of an exchange economy, where instead of the monotonicity methods applied
here Schauder’s fixed point theorem is used. Since in our framework in addition the capital stock adjusts as
an endogenous variable, the analysis becomes more complicated than under pure exchange.
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648 M. Barbie, M. Hillebrand

Step 1 Let w0 ∈ W be arbitrary and W = WA0 = [w,wmax] be a stable set of
A0 containing w0 such that W (K0(w), θmin)/w > 1. Assumption 5 ensures
that such a set exists. By hypothesis, A0 is inefficient at w0. Thus, invoking
Lemmas 8 and 9, there exists a continuous function η : W →]0, 1] such that
for all w ∈ W:

Eν

[
η(W (K0(w), ·))m0(w, ·)] > η(w). (22)

Step 2 Define the sequence (dn)n≥1 as dn := d̄/n for n ≥ 1 with d̄ > 0 specified
below. For each n ≥ 1, let (K ∗

dn
, P∗

dn
) be the ME of Edn from Theorem 1 and

define the inducedMEA A∗
dn

= (K ∗
dn

,Cy∗
dn

,Co∗
dn

) as in Sect. 4.2. By Lemma 7,
the sequence (K ∗

dn
, P∗

dn
)n≥1 converges pointwise to the ME (K ∗

0 , P∗
0 ) of E

which satisfies either P∗
0 = 0 or P∗

0 > 0. We will show that the first case
is impossible under the hypotheses of the theorem. Thus, with the aim of
obtaining a contradiction, the remainder assumes P∗

0 = 0which implies K ∗
0 =

K0. Then, the sequence (A∗
dn

)n≥1 converges pointwise to A0 = (K0,C
y
0 ,Co

0 )

defined above. Further, the sequence (mn)n≥1 of pricing kernels mn := mA∗
dn

associated with A∗
dn

defined in (20) converges pointwise to m0 = mA0 .

Step 3 We choose d̄ > 0 such that W = [w,wmax] is stable for each A∗
dn
. Since

(K ∗
dn

)n≥1 is increasing by Theorem 1(i), it suffices to specify d̄ such that W
is stable for A∗

d1
. As δ := W (K0(w), θmin)/w > 1 and K ∗

d1
= K ∗̄

d
con-

verges pointwise to K0 for d̄↘0 due to Lemma 7, choosing d̄ > 0 small
ensures W (K ∗̄

d
(w), θmin)/w > 1. Then, w ≥ w implies W (K ∗

dn
(w), θ) ≥

W (K ∗
d1

(w), θmin) ≥ W (K ∗
d1

(w), θmin) > w, i.e.,W is stable for A∗
dn
.

Step 4 Standard arguments imply that each A∗
dn

is efficient onW. To see this, define
for n ≥ 1 the continuous function R∗

n(w, θ) := (P∗
dn

(W (K ∗
dn

(w), θ)) +
dn)/P∗

dn
(w) which satisfies Eν

[
mn(w, ·)R∗

n(w, ·)] = 1 for all w ∈ W. Thus,
R∗
n is a return in the sense of Barbie et al. (2007), cf. their Eq. (5). For all

N > 0 and w0 ∈ W, monotonicity of P∗
dn

implies �N
t=1R

∗
n(wt−1, θt ) ≥

P∗
dn

(wN )/P∗
dn

(w0) ≥ P∗
dn

(w)/P∗
dn

(wmax) =: M for any realization of shocks
θ1, . . . , θN where wt = W (K ∗

dn
(wt−1), θt ). Note that M is independent of N

and the shocks. Using Proposition 4(a) in Barbie et al. (2007), this implies
that A∗

dn
is interim Pareto efficient on W.14

Step 5 Combining the previous result with Lemma 10 shows that for each n ≥ 1
there exists some wn ∈ W such that

Eν

[
η(W (K ∗

dn (wn), ·))mn(wn, ·)
] ≤ η(wn). (23)

14 The result that economies with a dividend-paying asset have efficient equilibria is well known and
can also be proved by defining state-contingent claims prices and showing that the value of the aggregate
endowment is finite (due to the presence of dividends). Efficiency of the equilibrium allocation then follows
along the lines of the standard proof of the first welfare theorem.
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Bubbly Markov equilibria 649

Since W is compact, the sequence (wn)n≥1 contains a subsequence converg-
ing to some w∗ ∈ W. Denote this sequence again by (wn)n≥1. Clearly,
limn→∞ η(wn) = η(w∗) by continuity of η. We would like to show that
for all θ ∈ Θ

lim
n→∞ η

(
W

(
K ∗
dn (wn), θ

))
mn(wn, θ) = η

(
W (K0(w

∗), θ)
)
m0

(
w∗, θ

)
. (24)

Since all functions in (24) are continuous, it suffices to show that limn→∞ P∗
dn

(wn) = 0 and limn→∞ K ∗
dn

(wn) = K0(w
∗). We have that limn→∞ sup{P∗

dn
(w) | w ∈ W} = 0 by Theorem A in Buchanan and Hildebrandt (1908)15,
which immediately gives the result for P∗

dn
. Also by Theorem A in Buchanan

and Hildebrandt (1908), (K ∗
dn

)n≥1 being a sequence of strictly monotonic

functions converges uniformly to K0 on the compact interval W. Combined
with continuity of K0, for any δ > 0 there exists n0 such that n > n0 implies

|K ∗
dn (wn) − K0(w

∗)| ≤ |K ∗
dn (wn) − K0(wn)| + |K0(wn) − K0(w

∗)| < δ.

This proves (24). Further,η is bounded as a continuous function on the compact
set W, while 0 < mn(wn, θ) < v′(Kd̄(w)R(K0(wmax), θmin))/u′(wmax) for
each θ ∈ Θ . Thus, by the Lebesgue-dominated convergence theorem, (23)
and (24) imply

Eν

[
η(W (K0(w

∗), ·))m0(w
∗, ·)] ≤ η(w∗). (25)

But this contradicts (22) and proves the claim that P∗
0 > 0.

The previous construction also suggests that the limiting MEA A∗
0 associated with

the BME (K ∗
0 , P∗

0 ) is efficient. Clearly, if A∗
0 is bounded, this follows immediately

from the same arguments used in Step 4. We thus have the following result.

Proposition 1 If the limiting allocation A∗
0 associated with the BME (K ∗

0 , P∗
0 ) con-

structed above is bounded, then it is efficient.

Unfortunately, however, boundedness of A∗
0 is not guaranteed even if the bubbleless

equilibrium satisfies Assumption 5.
Under the hypotheses of Theorem 2, suppose the shock process is non-degenerate,

i.e., θmin < θmax or, equivalently,wmin < wmax defined by (10) and (11). Then, for any
initial value w0 ∈ W, the dynamics (9) takes values in the ergodic set [wmin, wmax]
after finitely many periods with positive probability. In this case, global inefficiency
of A0 is equivalent to inefficiency on the ergodic set which by Lemma 8(ii) and 9 is
equivalent to A0 being inefficient at wmin. Thus, we obtain the following existence
result as a corollary to Theorem 2.

15 Their result states the simple, but in our analysis very useful fact that if a sequence of monotonic real-
valued functions fn defined on the interval [a, b] with a < b converges pointwise to a continuous function
f on [a, b], then f is also monotonic and convergence is uniform.

123



650 M. Barbie, M. Hillebrand

Corollary 2 Let Assumptions 1, 2, 3, and 5 hold. Ifwmin < wmax and A0 is inefficient
at wmin, then (K ∗

0 , P∗
0 ) is a BME of E , i.e., P∗

0 > 0.

4.4 Conditions for inefficiency of A0

In this section we provide necessary and sufficient conditions for A0 to be inefficient
as required in Theorem 1 which are simple and easy to verify. As in the previous
section, we impose the stronger Assumption 5 and define wmax by (10) and wmin by
(11).

Define the bubbleless MEA A0 = (K0,C
y
0 ,Co

0 ) as before. The pricing kernel
m0 = mA0 defined in (20) induces a map M : W −→ R++,

M(w) := Eν

[
m0(w, ·)]. (26)

Economically, the value 1/M(w) can be interpreted as the riskless return in state
w ∈ W. Using (7) and the definition (20) of m0, M can equivalently be written as

M(w) = Eν

[
v′ (Co

0 (w, ·))]

Eν

[
R (K0(w), ·) v′ (Co

0 (w, ·))] , w ∈ W. (27)

The representation in (27) reveals directly thatM is continuously differentiable and sat-
isfies 0 ≤ M(w) ≤ 1/R(K0(w); θmin) for allw. The latter implies limw↘0 M(w) = 0.

Our first result states a simple sufficient condition under which A0 is inefficient.
Note that the additional restriction from Assumption 3 is not required here.

Lemma 11 Let Assumptions 1, 2, and 5 hold and define M as in (26). If M(w) > 1
for all w ∈ [wmin, wmax], then A0 is inefficient.

Proof We construct a continuous function η :]0, wmax] −→ R++ which satisfies
(22) for all w ∈ W. By Lemma 10, this implies inefficiency of A0 on any stable set
[w,wmax] which implies inefficiency on W.

Defining WE
0 as in (9), note that WE

0 (·; θmin) is strictly increasing and, therefore,
invertible on its range. Denote the inverse byΛ. By continuity of M , there exists δ > 0
such that M(w) > 1 for all w ∈ [wmin − δ,wmax]. Construct a sequence (wn)n≥0 by
setting w0 := wmin − δ and wn := Λ(wn−1) = Λn(w0) for n ≥ 1. Note that (wn)n≥0
is strictly decreasing and, due to Assumption 5, converges to zero.

Now construct η as follows. For w ∈ [w0, wmax], let η(w) ≡ 1. Then,

Eν

[
η
(
WE

0 (w, ·)
)
m0(w, ·)

]
= M(w) > 1 = η(w)

for all w ∈ [w0, wmax]. Second, for w ∈ [w1, w0[ let η(w) := M(w)/M(w0). Then,

Eν

[
η
(
WE

0 (w, ·)
)
m0(w, ·)

]
= M(w) > M(w)/M(w0) = η(w)
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for all w ∈ [w1, w0[. Now proceed inductively for n ≥ 1 by defining for w ∈
[wn, wn−1[

η(w) := Eν

[
η
(
WE

0 (w, ·)
)
m0(w, ·)

]
/M(w0).

By construction, η is a continuous function which satisfies (22). Since [w0, wmax] ∪
(∪n≥1[wn, wn−1[) =]0, wmax], the construction covers the entire interval W. ��

A partial converse to Lemma 11 is the following result.

Lemma 12 Let Assumptions 1, 2, and 5 hold. If A0 is inefficient, then M(w) > 1 for
at least one w ∈ [wmin, wmax].

Proof By contradiction, suppose A0 is inefficient but M(w) ≤ 1 for all w ∈
[wmin, wmax]. By Lemma 8, there is an upper-semicontinuous function η : W −→
R++ such that

Eν

[
η
(
WE

0 (w, ·)
)
m0(w, ·)

]
> η(w)

for all w ∈ [wmin, wmax]. By Theorem 2.43 in (Aliprantis and Border 2007, p. 44), η
attains a maximum on any compact set and the set of maximizers is compact. Letw∗ ∈
[wmin, wmax] be a value for which η(w∗) = ηmax := max{η(w) | w ∈ [wmin, wmax]}.
Then,

Eν

[
η
(
WE

0 (w∗, ·)
)
m0(w

∗, ·)
]

≤ ηmaxEν

[
m0(w

∗, ·)] = ηmaxM(w∗) ≤ ηmax = η(w∗)

which is a contradiction. ��

The previous conditions take an even simpler form under the additional restriction
from Assumption 3. In this case, monotonicity of m0 due to Lemma 9 implies that M
is strictly increasing. Combining Lemmas 11 and 12 then yields the following result.

Theorem 3 Under Assumptions 1, 2, 3, and 5, the following holds:

(i) If M(wmin) > 1, then A0 is inefficient.
(ii) If A0 is inefficient, then M(wmax) > 1.

In the deterministic case where wmin = wmax, the two conditions from Theorem 3
reduce to M(wmin) > 1 which is equivalent to a capital return R̄ < 1 at the bubbleless
steady state. This is precisely the condition in Tirole (1985) which is sufficient and
necessary in the deterministic case. In the present stochastic case, the conditionM > 1
requires an ‘average’ capital return less than unity on the ergodic set [wmin, wmax].

123



652 M. Barbie, M. Hillebrand

4.5 Two example economies

The following examples illustrate the construction ofMEofE developed in Sect. 3 and
the previous conditions under which the ME is bubbly. The first example permits to
compute all solutions explicitly and also demonstrates that the conditionM(wmin) > 1
fromTheorem3 is not necessary for aBME to exist. The second example illustrates our
main result that a BME can exist in dynamically efficient economies by constructing
an economy in which the bubbleless equilibrium suffers from inefficient risk sharing.

Example 1 Let f (k) = kα , 0 < α < 1, u(c) = log(c), and v(c) = βu(c),β > 0. This
parameterization is widely studied in the literature, cf. Michel andWigniolle (2003) or
Demange and Laroque (2000). Rangazas and Russell (2005) provided a detailed dis-
cussion on the (dynamic) efficiency properties of the bubbleless equilibrium allocation
in this case.

One verifies directly thatAssumptions 1, 2, and 3 hold and the factor pricemappings
(1) take the form

W (k, θ) = θ(1 − α)kα (28a)

R(k, θ) = θαkα−1. (28b)

The mapping K0 associated with the bubbleless ME of E defined by (7) computes
explicitly as K0(w) = β

1+β
w such that WE

0 defined in (9) takes the form

WE
0 (w, θ) = θ(1 − α)

(
β

1 + β
w

)α

. (29)

Direct computations reveal thatWE
0 (·, θmax) has a unique non-trivial fixed point given

by wmax = [(1− α)θmax (β/(1 + β))α] 1
1−α which is stable. Further, WE

0 (·, θmin) also

has a unique fixed point wmin = [(1 − α)θmin (β/(1 + β))α] 1
1−α and Assumption 5

is satisfied. For later reference, let kmax := K0(wmax) denote the maximum capital
stock and Rmax := R(kmax, θmax) the associated capital return under the high shock.

Again, these values can be obtained explicitly as kmax =
[

β
1+β

(1 − α)θmax

] 1
1−α

and

Rmax = 1+β
β

α
1−α

.
Applying the construction principle from Sect. 3.3, let P0 = idW and consider

the sequence (Pn)n≥0 defined as Pn = T (Pn−1), n ≥ 1. As P(w) = δw implies
T P(w) = [Rmax + δ

1+β
β

]−1P(w) for w ∈ W, the operator T maps linear functions
onto linear functions. Thus, each Pn is linear and can be computed explicitly as

Pn(w) = w

Rn
max + 1+β

β

∑n−1
m=0 R

m
max

, n ≥ 0.
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For each w ∈ W, the limit P∗
0 defined in (18) is given by

P∗
0 (w) =

{(
β

1+β
− α

1−α

)
w if Rmax < 1

0 otherwise.
(30)

Thus, in this example, the ME constructed is bubbly, if and only if Rmax < 1 which
is equivalent to A0 being Pareto inefficient. To relate this result to the condition in
Theorem 3(ii), consider the function M defined in (27) which can be computed as

M(w) = Eν

[
(R(K0(w), ·))−1

]
. (31)

Direct computations reveal that M(wmax) = 1
Rmax

Eν[θmax/idΘ(·)] and M(wmin) =
1

Rmax
Eν[θmin/idΘ(·)]. As Eν[θmax/idΘ(·)] > 1, Rmax < 1 implies M(wmax) > 1. On

the other hand, one can easily choose a distribution ν such that Eν[θmin/idΘ(·)] <

Rmax < 1. In this case, the fixed point (30) satisfies P∗
0 > 0 and E has a BME but

M(wmin) < 1.
In the previous example, the bubble is a linear function of the wage and, therefore,

possesses the same risk structure as capital investment since shocks are multiplicative.
That is, the returns on capital and the bubble asset are perfectly correlated. In such
cases, it seems intuitively clear that the bubble cannot enhance risk sharing between
generations and can induce a Pareto improvement only if the bubbleless equilibrium
allocation is dynamically inefficient. This suspicion is correct. In fact, dynamic inef-
ficiency and Pareto inefficiency of the bubbleless MEA A0 are equivalent in this
example.16

Example 2 The second example constructs an economy in which the bubbleless equi-
librium allocation A0 suffers from inefficient risk sharing, i.e., is dynamically efficient
but Pareto inefficient. Thus, by Theorem 2, the ME constructed as above is bubbly,
i.e., P∗

0 > 0.

We maintain the assumption of Cobb–Douglas production f (k) = kα from the
previous example such that factor prices are again determined by (28). The utility
functions u and v are chosen as u(c) = c1−σ −1

1−σ
and v(c) = βu(c) for some β > 0

where σ > 0 quantifies relative risk aversion. For σ = 1we recover the economy from
the previous example. Under the additional restriction σ ≤ 1 needed for property (U)
to hold, all Assumptions 1, 2, and 3 are satisfied. Moreover, since f satisfies the NLS
property limk↘0

f (k)
k f ′(k) = 1

α
> 1 and v(c) = βu(c), an application of Lemma 4 shows

thatAssumption 5 is also satisfied.Hence, the valueswmax andwmin from (10) and (11)

16 To see this formally, let qt := ∏t
s=1 rs for each t ≥ 0. Using the particular form of factor prices (28)

and that kt+1 = β
1+β

wt for each t ≥ 0, one verifies by induction that qt = Rt
maxwt/w0. Now suppose

Rmax ≥ 1. Then,
∑∞

t=0 qt = ∞ for any shock path (θt )t≥0 which by Proposition 4(a) in Barbie et al.
(2007) implies Pareto efficiency. Conversely, suppose Rmax < 1. Since shocks and wages are uniformly
bounded above and away from zero, one obtains

∑∞
t=0 qt < ∞ for any shock path which implies dynamic

inefficiency as shown in Zilcha (1990). Using the same parameterization, the last result is also derived in
Rangazas and Russell (2005) who do not, however, consider Pareto (in-) efficiency.
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are well defined. As before, denote the associated capital stocks as kmax := K0(wmax)

and kmin := K0(wmin) with K0 defined implicitly by (7).
As in the previous example, the wage dynamics (9) or, equivalently, the capital

dynamics (8) possess a unique non-trivial fixed point k̄θ > 0 for any fixed θ ∈ Θ

which is globally asymptotically stable. To see this, note that any fixed point of the
capital dynamics (8) solves k̄ = KE

0 (k̄, θ) which is equivalent to G(k̄,W (k̄, θ)) = 0
with G defined as in (7). Using (28) and the particular form of the utility functions,
the latter condition can equivalently be written as

G̃(k̄) := k̄1−α
(
θ(1 − α) − k̄1−α

)−σ − βα1−σ
Eν

[
idΘ(·)1−σ

]
= 0.

Since G̃ is a strictly increasing function, this proves uniqueness of the fixed points.
Thus, both mappings KE

0 (·, θ) andWE
0 (·, θ) possess unique fixed points k̄θ and w̄θ :=

W (k̄θ , θ) for each θ ∈ Θ which are globally stable onK respectivelyW. This implies
that under a constant shock path θt ≡ θ , the equilibrium sequences of capital and
wages defined by (8) and (9) converge to k̄θ and w̄θ for any initial values k0 ∈ K and
w0 ∈ W.

Equipped with these preparations, we now choose a particular set of parameter
values such that the bubbleless ME is dynamically efficient but Pareto inefficient,
i.e., suffers from inefficient risk sharing. The specification is as follows. There are
two shocks Θ = {θmin, θmax} with associated probabilities νmin := ν({θmin}) and
νmax := ν({θmax}). Specifically, we choose the following parameter values:

θmin = 3

2
, θmax = 9

5
, νmin = 9

10
, νmax = 1

10
, α = 3

10
. (32)

Thus, there is a low probability for the favorable shock to occur. The value adopted
for the production elasticity α is consistent with most empirical applications.

We now specify target values for the fixed points kmin := k̄θmin and kmax := k̄θmax

of the capital dynamics under the low and high shock, respectively. Using (28) and
the young consumer’s budget constraint, we then infer the associated values for wages
wmin = W (kmin, θmin), wmax = W (kmax, θmax) and first period consumption cmin :=
wmin − kmin and cmax := wmax − kmax at the respective fixed points. The values we
use are

kmin = 1/3, wmin ≈ 0.7552, cmin ≈ 0.4219 (33)

kmax = 2/5, wmax ≈ 0.9572, cmax ≈ 0.5572. (34)

Wenowdetermine the parameter valuesσ andβ such that the target value kmin is indeed
a fixed point of the capital dynamics (8) under the low shock and kmax a fixed point
of (8) under the high shock, i.e., kmin = KE

0 (kmin, θmin) and kmax = KE
0 (kmax, θmax).

Defining the map G as in (7), these conditions are equivalent to G(kmin, wmin) = 0 =
G(kmax, wmax) which, under the present parameterization, take the form

c−σ
mink

1−α(1−σ)
min = α1−σ βEν

[
idΘ(·)1−σ

]
= c−σ

maxk
1−α(1−σ)
max . (35)
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Given the parameter values from (32) and the target values from (33), conditions (35)
can uniquely be solved to obtain

σ ∗ = (1 − α) log(kmax/kmin)

log(cmax/cmin) − α log(kmax/kmin)
≈ 0.5710 (36a)

β∗ = c−σ ∗
min k1−α(1−σ ∗)

min

α1−σ ∗
Eν

[
idΘ(·)1−σ ∗] ≈ 0.8782. (36b)

Thus, for the parameter choices defined in (32) and (36), the values kmin and kmax are
fixed points of the capital dynamics (8), while wmin and wmax are fixed points of the
wage dynamics (9). Moreover, since all these fixed points are unique, [kmin, kmax] and
[wmin, wmax] are the unique minimal stable sets of the capital and wage dynamics.

We now claim that the MEA A0 is dynamically efficient, i.e., for any w0 ∈ W, the
allocation aE0 (w0) is dynamically efficient. To see this, we can apply the generalized
Cass criterion developed in Zilcha (1990) (see also Rangazas and Russell 2005 and
Barbie and Kaul 2009). According to this criterion, a sufficient condition for dynamic
efficiency is R(k, θmax) > 1 for all k ∈]0, kmax] or, equivalently, R(kmax, θmax) > 1.
Thismaybeviewedas ageneralizationof thewell-knowndeterministic result requiring
a steady-state return R̄ > 1. Using the values from (32) and (33) in (28b) gives

R(kmax, θmax) = θmaxαk
α−1
max = 9

5

3

10

(
2

5

)− 7
10 ≈ 1.02554 > 1. (37)

The intuition why (37) implies dynamic efficiency is as follows. Dynamic inefficiency
would require aggregate consumption to increase under any possible realization of
shocks which is possible only if the capital return is (asymptotically) less than unity.
Thus, it suffices to find a particular path for which this is not possible to prove dynamic
efficiency. In the present case, consider the constant shock path where θt = θmax for
all t ≥ 0. In this case, the induced equilibrium sequence of capital converges to the
maximum fixed point kmax which has a capital return R(kmax, θmax) > 1. Thus, an
initial reduction in capital formation in fact reduces aggregate consumption along any
path where the shock θmax occurs ‘sufficiently often.’ Intuitively, capital productivity
in the good state is always high enough such that aggregate consumption cannot be
increased in each period and under any shock path. Hence, one cannot Pareto improve
the bubbleless equilibrium allocation by simply crowding-out capital investment.

We also claim that A0 is Pareto inefficient, i.e., aE0 (w0) is inefficient for allw0 ∈ W.
Invoking Theorem 3, it suffices to show that M(wmin) > 1 with M defined as in (27).
Under the present specification of v and f , this function takes the form

M(w) = K0(w)1−α

α

Eν

[
idΘ(·)−σ

]

Eν

[
idΘ(·)1−σ

] . (38)
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Using K0(wmin) = kmin = 1
3 together with the parameter values from (32) and (36)

gives

M(wmin) = k1−α
min

α

νminθ
−σ
min + νmaxθ

−σ
max

νminθ
1−σ
min + νmaxθ

1−σ
max

= 10 · 3−0.7

3

9(1.5)−0.571 + (1.8)−0.571

9(1.5)1−0.571 + (1.8)1−0.571
≈ 1.012 > 1.

Thus, even though A0 does not suffer from capital overaccumulation, a BME exists
and can be constructed by following the principle devised above. Unlike the solution
from Example 1, however, this solution cannot be obtained in closed form. However,
one can show that operator T now maps linear function to nonlinear functions which
implies that the fixed point P∗

0 will be a nonlinear function of the wage and, therefore,
of the shock θ . Thus, a potential Pareto improvement can occur by improving the way
in which production risk is shared via young and old generations through trading of
the bubble. Note that if this is the case, aggregate consumption will at least among
some shock paths be lower due to the crowding-out effect of bubbles and the dynamic
efficiency of the bubbleless equilibrium. However, if the BME constitutes a Pareto
improvement, this effect is overcompensated by the improvement in risk sharing.

To further understand the nature of inefficient risk sharing and how a bubbly asset
with an appropriate risk structure can potentially lead to a Pareto improvement, it is
instructive to study how feasible transfers with different risk structures affect the utility
of different generations in this example. Consider first a transfer payment from young
to old consumers which has exactly the same risk structure as capital investment, i.e.,
is perfectly correlated with the shock θt . To ensure feasibility of the scheme in each
state w ∈ W, suppose the transfer is a constant fraction τ ≥ 0 of the wage chosen
sufficiently small. Since shocks in (1) are multiplicative, transfers and capital returns
are perfectly correlated and the utility of a young consumer with wage w depending
on τ is

U (w; τ) = u(w − K0(w) − τw)

+Eν [v (τW (K0(w), ·) + K0(w)R(K0(w), ·))] . (39)

To evaluate the potential welfare effects of introducing this transfer scheme, con-
sider the derivative ∂τU (w; τ) evaluated at τ = 0. Using the Euler equation (7) and
exploiting that shocks are multiplicative give

∂τU (w; 0) = V (w)w/θmaxEν

[
idΘ(·)v′ (K0(w)R(K0(w), ·))] (40)

where V (w) := W (K0(w), θmax)/w − R(K0(w), θmax) determines the sign of the
derivative. Since K0(wmax) = kmax, W (kmax, θmax) = wmax and R(kmax, θmax) > 1,
it follows directly that V (w) < 0 for w sufficiently close to wmax. But this implies
that the previous transfer scheme does not lead to a Pareto improvement: Under the
constant path θt ≡ θmax, the economy converges to wmax for any initial condition and
any generation with income w close to wmax will be worse-off. Note that the negative
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effect arises from R(kmax, θmax) > 1 which is exactly what makes this economy
dynamically efficient. The intuition is therefore that transfers which are perfectly
correlated with capital returns cannot improve risk sharing and, therefore, do not lead
to a Pareto improvement.

As a second case, consider a transfer scheme which is not perfectly correlated with
the capital return. Specifically, suppose that transfers from young to old consumers
are state- and time-independent and given by some constant τ̄ ≥ 0 chosen sufficiently
small. As a consequence, capital returns and transfers are uncorrelated and the utility
of a consumer born with wage w depending on τ̄ is

U (w; τ̄ ) = u (w − K0(w) − τ̄ ) + Eν [v (τ̄ + K0(w)R (K0(w), ·))] . (41)

Exploiting again the Euler equation (7), the marginal change in utility is

∂τ̄U (w; 0) = u′ (w − K0(w)) (M(w) − 1) (42)

where the function M is defined as in (27) and given by (38). Recall that M(wmin) > 1
in this example which implies M(w) > 1 for allw ≥ wmin and that the state dynamics
(9) converge to the set [wmin, wmax] under any realization of shocks. Thus, the previ-
ous transfer scheme can induce a Pareto improvement when introduced once the wage
exceeds the critical level wcrit at which M(wcrit) = 1. The intuition is that transfers
redistribute incomes from young to old across different states in a clever way which
increases utility even if capital formation remains unchanged and an increase in aggre-
gate consumption is not possible. It is precisely this effect we call an ‘improvement in
risk sharing.’ The function η in Lemmas 8–10 formalizes the idea that finding transfers
with the right risk structure characterizes a Pareto improvement in our economy.

4.6 Dynamics along a BME

Suppose the ME (K ∗
0 , P∗

0 ) of E constructed in Theorem 1 is bubbly, i.e., P∗
0 > 0.

We seek to deduce several qualitative properties of the equilibrium dynamics along a
BME.

Given the initial state x0 = (k0, θ0) ∈ X, all equilibrium variables can be expressed
as continuous functions of the equilibrium wage process {wt }t≥0 which evolves as

wt+1 = WE (wt , θt+1) := W
(
K ∗
0 (wt ), θt+1

)
. (43)

It will again be convenient to study (43) rather than the mathematically equivalent
capital dynamics generated by KE = K ∗

0 ◦ W .
As P∗

0 > 0 implies K ∗
0 < K0, a first observation is thatWE < WE

0 where the latter
is defined in (9). Thus, the sequence generated by (43) is bounded by the wage process
(9) along the bubbleless equilibrium under any path of the shock process {θt }t≥0.

A second observation that follows from the Euler equations (3a, 3b) is that in each
period the return on the bubbly asset must (weakly) exceed the capital return (1b) in
at least one future state. Thus, for each w ∈ W there exists some θ ′ ∈ Θ such that
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P∗
0

(
WE(w, θ ′)

)

P∗
0 (w)

≥ R
(
K ∗
0 (w), θ ′) . (44)

As limw→0 R(K ∗
0 (w), θ ′) = ∞ for all θ ′ ∈ Θ and the left side in (44) is increasing

in the shock, there exists a lower bound w′ > 0 such that R(K ∗
0 (w), θmin) > 1 and

P∗
0 (WE(w, θmax)) > P∗

0 (w) for all w ≤ w′. Thus, by monotonicity of P∗
0

WE(w, θmax) > w (45)

for allw ≤ w′. AsWE(wmax, θmax) < WE
0 (wmax, θmax) = wmax, (45) also shows that

WE(·, θmax) has at least one stable fixed point which lies in the interval ]w′, wmax[. In
fact, since θmax belongs to the support of ν, (45) and continuity of WE imply that for
each w ≤ w′ there exists a measurable set Θw ⊂ Θ of positive measure ν(Θw) > 0
such that WE(w, θ) > w holds for all θ ∈ Θw. Thus, defining p∗ := P∗

0 (w′), one
observes that the bubbly asset price process {pt }t≥0 along the BME is persistent in the
sense that whenever pt < p∗ there is a positive probability that pt+n > p∗ for some
finite n ≥ 1.

An open question is whether this last result can be strengthened in the sense that
pt < p∗ implies pt+n > p∗ for some finite n ≥ 1 with probability one. Essentially,
this holds when the wage dynamics (43) admits a uniform lower bound w′ > 0 such
that WE(w, θ) > w for all θ ∈ Θ whenever w ≤ w′. Example 1 from Sect. 4.5
satisfies this condition. If such a lower bound exists, the bubble price processes and in
fact all equilibrium variables remain bounded away from zero with probability one.
Clearly, Assumption 5 is a necessary precondition for this to hold, but is it sufficient?
This question becomes particularly relevant for studying the existence of stationary
distributions associated with the state process defined by (43) which we leave for
future research.

4.7 Stochastically bursting bubbles

By construction, the bubble along a BME never bursts. Asset bubbles which have a
constant probability of bursting in each periodwerefirst studied inWeil (1987) using an
otherwise deterministic framework similar to Tirole (1985). It is now straightforward
to modify the previous setting along these lines to study ME with bursting bubbles in
our setup as well.

Setting d = 0, suppose that in each period t , there is a constant exogenous proba-
bility for the bubble to burst in the following period. Thus, the future selling price of
the bubbly asset in period t is pt+1 with some probability q and zero otherwise. Under
this modification, the equilibrium mappings (14a) and (14b) now take the following
form (with q replacing the dividend parameter d = 0)

H1(k, p;w, P, q) = u′(w − p − k) − qEν

[
R(k, ·)v′ (P (W (k, ·)) + kR(k, ·))]

− (1 − q)Eν

[
R(k, ·)v′ (kR(k, ·))] (46a)
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H2(k, p;w, P, q) = u′(w − p − k)p

− qEν

[
(P (W (k, ·))) v′ (P (W (k, ·)) + kR(k, ·))] . (46b)

The case studied in the previous sections is recovered by setting q = 1.
It seems now straightforward to repeat the entire analysis of Sect. 3 based on (46a)

and (46b) rather than (14a) and (14b) and construct such modified Markov equilibria
for q < 1 as fixed points of some operator Tq : G −→ G defined by (46a) and (46b) in
the exact same fashion as before. As establishing the rather technical Lemmas 2.1–2.4
for the case q < 1 seems quite tedious, we choose not to work through this case here.

We will, however, show that our existence result derived above for q = 1 does not
necessarily imply the existence of a BME for any q < 1. To show this, we focus on
the first example discussed in Sect. 4.5 where f (k) = kα , 0 < α < 1, u(c) = log(c),
and v(c) = βu(c), β > 0. Clearly, the bubbleless equilibrium is exactly the same as
before and is inefficient if and only if Rmax = 1+β

β
α

1−α
< 1.

Applying the construction principle from Sect. 3.3 for Tq , set P0 = idW and
consider the sequence (Pn)n≥0 defined as Pn = Tq(Pn−1), n ≥ 1. In this example,
the operator Tq again maps linear functions onto linear functions and can be derived
explicitly. One verifies that P(w) = δw, δ ≥ 0 implies Tq P(w) = [Rmax/q +
δ
1+β
βq ]−1P(w) for w ∈ W. Thus, each Pn is linear and can be computed explicitly as

Pn(w) = w

(Rmax/q)n + 1+β
βq

∑n−1
m=0(Rmax/q)m

, n ≥ 0.

For each w ∈ W, the pointwise limit P∗
0 (w) := limn→∞ Pn(w) is given by

P∗
0 (w) =

{(
β

1+β
q − α

1−α

)
w if Rmax < q

0 otherwise.
(47)

Thus, in this example a BME with q < 1 exists if and only if Rmax < q. While this
restriction also requires inefficiency of the bubbleless equilibrium, the probability of
bursting 1 − q must, in addition, be sufficiently small. Essentially the same result is
obtained in Weil (1987) for a deterministic economy. We conjecture that a similar
conclusion also holds in the general case and that only stochastic bubbles which enjoy
a sufficiently high level of confidence can occur in Pareto inefficient economies.

5 Conclusions

This paper developed a general approach to construct potentially bubblyMarkov equi-
libria for a general class of frictionless OLG economies with stochastic production.
Our main result shows that a BME exists whenever the bubbleless equilibrium is inef-
ficient. This type of inefficiency can be the result of an overaccumulation of capital
but also due to inefficient risk sharing between consumers. The deterministic result of
Tirole (1985) therefore constitutes a special case of our existence theorem. Our exis-
tence result also completes the characterization of the equilibrium set for the class of
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economies studied in Wang (1993) and related papers by providing conditions under
which additional bubbly equilibria exist in these models.

To focus on this existence result and keep the technical part bearable, we delib-
erately limited the underlying class of economies to a setup with i.i.d. TFP shocks
and additive consumer utility. We believe that these restrictions are inessential and
easy to dispense with at a cost of a more complex structure and notation. Potential
extensions of the previous framework include non-additive utility, non-multiplicative
and correlated production shocks, and non-classical production technologies. Models
with these features were employed, for example, in Wang (1994), Morand and Ref-
fett (2007), McGovern et al. (2013), or Hillebrand (2014) to study the existence and
properties of bubbleless ME. Since all these papers rely on methods similar to those
employed in this paper, we believe that the previous construction of a BME should
be amendable to these extensions. This constitutes a first major objective of future
research.

In addition, several issues remain to be studied even within the framework of this
paper. For instance, anopenquestion is if the bubbly equilibrium is always efficient and,
related to that, whether it constitutes a Pareto improvement relative to the bubbleless
equilibrium. The characterization of Pareto optimality developed in Sect. 4 should
be key to answer these questions. Another avenue of future research is whether the
state dynamics along the BME converge to a stationary distribution on the endogenous
state space. Since our equilibrium mappings are all monotonic, we view the recent
results ofKamihigashi and Stachurski (2014) as tailor-made for studying the existence,
uniqueness, and stability of stationary distributions along a BME.
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AMathematical Appendix

A.1 Proof of Lemma 1

For convenience, define the numerator in (b) as D(k) := Eν[R(k, ·)v′(kR(k, ·))]
which, as shown in the proof of Lemma 3 below is strictly decreasing under property
(U) from Assumption 2. Conditions (a) and (b) permit to choose a lower bound k > 0
such that W (k, θmin) > k and H(k) := u′(W (k, θmin) − k) − D(k) < 0 for all
0 < k ≤ k. Now define w := W (k, θmin) and choose an arbitrary value ŵ ∈]0, w].
By monotonicity of W , there exists a unique k̂ ∈]0, k] such that W (k̂, θmin) = ŵ.
Then, H(k̂) < 0 and the properties of D and u′ permit to choose a unique k̂1 such that
k̂ < k̂1 < ŵ and u′(ŵ − k̂1) = D(k̂1) which is equivalent to k̂1 = K0(ŵ) defined by
(7). Then, by monotonicity of W (·, θmin),

ŵ = W
(
k̂, θmin

)
< W

(
k̂1, θmin

)
= W

(
K0(ŵ), θmin

) = WE
0

(
ŵ, θmin

)
.
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Since ŵ ∈]0, w] was arbitrary, this proves Assumption 5. ��

A.2 Proof of Lemma 2

By (1), f (k)
k f ′(k) = W (k,θmin)

kR(k,θmin)
+ 1. Thus, NLS implies lim infk↘0

W (k,θmin)
kR(k,θmin)

> 0. Using

this and the boundary behavior of R, we can choose values B̄ > 1 > b̄ > 0 and a
lower bound k1 > 0 such that R(k, θmin) > B̄

b̄
and W (k, θmin) > b̄R(k, θmin)k > B̄k

for all 0 < k ≤ k1. Clearly, this implies lim infk↘0
W (k,θmin)

k > B̄ and condition (a).

To establish (b), suppose first that u = β−1v. Note that lim infk↘0
W (k,θmin)
kR(k,θmin)

> 0 and

limk↘0
k

kR(k,θmin)
= 0 imply lim infk↘0

W (k,θmin)−k
kR(k,θmin)

> 0. Thus, there exists 0 < k2 ≤
k1 and b̄1 > 0 such that for all 0 < k ≤ k2 we have

W (k, θmin) − k ≥ b̄1kR(k, θmin). (A.1)

Suppose b̄1 ≥ 1. Then, u′(W (k, θmin) − k) ≤ u′(kR(k, θmin)) for all 0 < k ≤ k2
yields

lim inf
k↘0

v′ (kR (k, θmin))

u′ (W (k, θmin) − k)
≥ 1

β
> 0.

Second, suppose b̄1 < 1. From Assumption 2 (which holds for u = β−1v), we infer
that

b̄1u
′ (W (k, θmin) − k) ≤ u′ (b̄−1

1 (W (k, θmin) − k)
)

(A.2)

for all 0 < k ≤ k2. To see this, define for fixed c > 0 the map H(a) := av′(ac).
Then, H(1) = v′(c) and H ′(a) = v′(ac)+acv′′(ac) ≥ 0. Thus, H is non-decreasing
and H(a) ≥ H(1) for all a > 1. Setting c = W (k, θmin) − k and a = b̄−1

1 > 1, this
proves (A.2) which, combined with (A.1), gives

b̄1u
′ (W (k, θmin) − k) ≤ u′ (b̄−1

1 (W (k, θmin) − k)
)

≤ u′ (kR (k, θmin)) (A.3)

for all 0 < k ≤ k2 which implies

lim inf
k↘0

v′ (kR(k, θmin))

u′ (W (k, θmin) − k)
≥ b̄1

β
> 0.

Finally, let f (0) > 0.Then,NLS implies limk↘0 W (k, θmin) = θmin f (k)(1− k f ′(k)
f (k) ) >

0 and, therefore, limk↘0 u′(W (k, θmin) − k) > 0 in (12). As the numerator diverges,
this implies (b). ��
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A.3 Proof of Lemma 3

Let P ∈ G be given and w ∈ W be arbitrary but fixed. For each k ∈ K =]0, kmax]
and θ ∈ Θ , set c(k, θ) := P(W (k, θ)) + kR(k, θ). Define the functions

V (k) := Eν

[
P(W (k, ·))v′(c(k, ·))]

Eν

[
R(k, ·)v′(c(k, ·))] =: N (k)

D(k)
, k ∈ K (A.4)

and

S(k) := k + V (k) = Eν

[
c(k, ·)v′(c(k, ·))]

Eν

[
R(k, ·)v′(c(k, ·))] =: M(k)

D(k)
, k ∈ K. (A.5)

Since P is continuous, so are the mappings V , N , D, L , and S. The first part of the
proof establishes certain monotonicity properties and the boundary behavior of the
previously defined functions. First, we will show that D is strictly decreasing and
S is strictly increasing. Fixing an arbitrary interior point k ∈ K, it suffices to show
D(k + �) < D(k) and S(k + �) > S(k) for any 0 < � ≤ kmax − k. Since P and W
and are weakly increasing and v′ strictly decreasing,

D(k + �) ≤ D̃(�) := Eν

[
R(k + �, ·)v′(c̃(�, ·))] (A.6)

where c̃(�, θ) := P(W (k, θ)) + (k + �)R(k + �, θ). Likewise, property (U) from
Assumption 2 implies that the map a �→ (a+b)v′(a+b), a > 0 is weakly increasing
for any b ≥ 0. Therefore,

M(k + �) ≥ M̃(�) := Eν

[
c̃(�, ·)v′(c̃(�, ·))]. (A.7)

This and (A.6) combined show that

S(k + �) ≥ S̃(�) := M̃(�)

D̃(�)
. (A.8)

Since D̃(0) = D(k) and S̃(0) = S(k), it suffices to establish monotonicity of D̃ and
S̃. The major advantage is that, unlike L , D, and S, the maps L̃ , D̃, and S̃ are all
differentiable. Dropping arguments when convenient, the derivative of D̃ computes

D̃′(�) = − E f ′(k + �)

k + �
Eν

[
R(k + �, ·)(v′(·) − (k + �)R(k + �, ·)|v′′(·)|)

]

−Eν

[
R(k + �, ·)2|v′′(·)|] (A.9)

where we have used that ∂�c̃(�, θ) = R(k + �, θ)(1 − E f ′(k + �)). Property (U)
from Assumption (2) implies that the expectation in the first term is nonnegative and,
therefore, D̃′(�) < 0 andmonotonicity of D. By (A.8), the sign of S̃′ is determined by
H(�) := (k+�)

(
M̃ ′(�)D̃(�)− M̃(�)D̃′(�)

)
. Noting that M̃(�) ≥ (k+�)D̃(�)
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and using D̃′(�) < 0, it suffices to show that M̃ ′(�) > (k+�)D̃′(�). The derivative
of M̃ computes as

M̃ ′(�) = (
1 − E f ′(k + �)

)
Eν

[
R(k + �, ·)(v′(·) − c̃(�, ·)|v′′(·)|)

]
(A.10)

For brevity, define

A1(�) := Eν

[
R(k + �, ·)(v′(·) − c̃(�, ·)|v′′(·)|)

]

A2(�) := Eν

[
R(k + �, ·)(v′(·) − (k + �)R(k + �, ·)|v′′(·)|)

]
.

Note that property (U) from Assumption 2 implies 0 ≤ A1(�) ≤ A2(�). Further,
note from (A.9) that −(k + �)D̃′(�) > E f ′(k + �)A2(�). Using this property and
(A.10) gives the desired result

M̃ ′(�) − (k + �)D̃′(�) > A1(�) + E f ′(k + �) (A2(�) − A1(�)) > 0.

Since Θ is compact and k ≤ kmax, consumption c(k, θ) is uniformly bounded from
above (e.g., by cmax := P(wmax) + θmax f (kmax)) and so is M defined in (A.5) (e.g.,
by cmaxv

′(cmax)). The boundary conditions from Assumptions 1 and 2 then imply

lim
k↘0

D(k) = ∞. (A.11)

and 0 ≤ lim
k↘0

V (k) ≤ lim
k↘0

S(k) = lim
k↘0

M(k)

D(k)
= 0. (A.12)

Having established the properties necessary for the proof, define

G(k;w) := u′ (w − S(k)) − D(k). (A.13)

Then, the desired solution k̃ solves G(k̃;w) = 0. Observe that G(·;w) is a strictly
increasing function which follows from the monotonicity of S and D and u′. Thus, any
zero is necessarily unique. Also observe the boundary behavior limk↘0 G(k;w) =
−∞ due to (A.11). By continuity, it suffices to find a k < w such that G(k;w) ≥ 0.
Suppose P ≡ 0. Then, the solution is k̃ = k0 := K0(w) defined by (7) and p̃ = 0.
If P 	= 0, consider the following two cases. First, S(k0) ≥ w. Then, by (A.12) and
monotonicity and continuity of S, there exists a unique value 0 < k̂ ≤ k0 such that
S(k̂) = w which implies limk↗k̂ G(k;w) = ∞. Second, suppose S(k0) < w. Then,
limk↗k0 G(k;w) = u′(w − S(k0)) − D(k0) ≥ G0(k0;w) = 0 with G0 defined by
(7). Thus, in either case, there exists a solution 0 < k̃ ≤ k0 < w. Setting p̃ = V (k̃)
completes the proof. ��
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A.4 Proof of Lemma 4

Let P ∈ G be arbitrary. As shown in the previous proof, T P = V ◦ KP where V is
defined in (A.4) and, for w ∈ W, k = KP (w) is the unique solution to G(k;w) = 0
defined in (A.13). Clearly, KP is continuous. Note from (A.4) that T P ≥ 0, P > 0
implies T P > 0 and P = 0 implies T P = 0. As G in (A.13) is increasing in P and
V , KP ≤ K0 for all P with strict inequality if P > 0. By definition of KP and (A.13),
w > S(KP (w)) > V (KP (w)) = T P(w) for w ∈ W which proves T P < idW.

To show that w �→ w − T P(w) is (even strictly) increasing, let w ∈ W be an
arbitrary interior point and choose � > 0 such that w + � ∈ W. We show that
T P(w + �) < T P(w) + �. By contradiction, suppose T P(w + �) ≥ T P(w) + �.
Note that G defined in (A.13) is strictly decreasing in w and strictly increasing in k by
strict monotonicity of D and S. These properties imply that KP is strictly increasing
which gives KP (w + �) > KP (w). Further, as shown in the previous proof, the
function D defined in (A.5) is strictly decreasing which gives D(KP (w + �)) <

D(KP (w)). But by (A.13) and our hypothesis

D (KP (w + �)) = u′ (w + � − T P(w + �) − KP (w + �))

≥ u′ (w − T P(w) − KP (w + �))

> u′ (w − T P(w) − KP (w))

= D(KP (w))

which is a contradiction and proves that w �→ w − T P(w) is increasing.
Next, we show that T P is increasing. As T P = V ◦ KP and we have already shown
that KP is strictly increasing, it remains to show that V defined in (A.4) is increasing
as well. To avoid trivialities, assume in the remainder that P > 0. Adjusting the
arguments to the case where P ≥ 0 is straightforward. Let k ∈ K be an arbitrary but
fixed interior point. We show that V (k + �) ≥ V (k) for any 0 < � < kmax − k. By
property (U) from Assumption 2, the map a �→ av′(a + b), a > 0 is increasing for
any b ≥ 0. Thus, by monotonicity of P ◦ W the numerator in (A.4) satisfies

N (k + �) ≥ Ñ (�) := Eν

[
P(W (k, ·))v′(P(W, k, ·) + (k + �)R(k + �, ·))].

(A.14)

Furthermore, by Eq. (A.6), the denominator in (A.4) satisfies D(k + �) ≤ D̃(�).

Thus, defining Ṽ (�) := Ñ (�)

Ñ (�)
, we have V (k + �) ≥ Ṽ (�) and Ṽ (0) = V (k). It

therefore suffices to show that Ṽ is increasing. Observe that unlike V , Ṽ is C1 and,
by direct computation, the derivative satisfies Ṽ ′(�) ≥ 0, if and only if

A(�) := (k + �)2 Ñ ′(�)D̃(�) − (k + �)2 D̃′(�)Ñ (�) ≥ 0. (A.15)

To establish that A(�) ≥ 0, let 0 < � ≤ kmax − k be arbitrary but fixed and, for the
sake of brevity, define the nonnegative random variables
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X := (k + �)R(k + �, ·)|v′′(P(k, ·) + (k + �)R(k + �, ·))| 12 (A.16a)

Y := P(k, ·)|v′′(P(k, ·) + (k + �)R(k + �, ·))| 12 (A.16b)

both defined on the probability space (Θ,B(Θ), ν). Then, by direct computation
again, the derivative of Ñ defined in (A.14) can be expressed as

(k + �)Ñ ′(�) = −(1 − E f ′(k + �))Eν

[
XY

]
(A.17)

while the derivative of D̃ computed in (A.9) satisfies

− (k + �)2 D̃′(�) = E f ′(k + �)(k + �)D̃(�) + (1 − E f ′(k + �))Eν[X2].
(A.18)

Suppose E f ′(k + �) ≥ 1. Then, by (A.17) Ñ ′(�) ≥ 0 while, as shown in (A.9),
D̃′(�) < 0. Thus, all terms in (A.15) are positive implying A(�) > 0 in this case.
Therefore, the remainder assumes E f ′(k + �) < 1. Note from (4) that Ñ (�) ≥
Eν [Y 2+XY ]

Emax
v′ ≥ Eν [XY ]

Emax
v′ . Using this together with (A.17) and (A.18) in (A.19) gives

A(�) ≥ −(k + �)D̃(�)Eν

[
XY

]
(
1 − E f ′(k + �)

1 + Emax
v′

Emax
v′

)

+ B(�) (A.19)

where

B(�) := Eν[Y 2 + XY ]Eν[X2]
Emax

v′

(
1 − E f ′(k + �)

)
. (A.20)

By Hölder’s inequality [see Aliprantis and Border (2007, p. 463) for the special
case p = q = 2 implying 1

p + 1
q = 1], we have Eν

[
X2

]
Eν

[
Y 2

] ≥ (Eν

[
XY

]
)2

which implies Eν[Y 2 + XY ]Eν[X2] = Eν[Y 2]Eν[X2] + Eν[XY ]Eν[X2] ≥
Eν[XY ]Eν[X (Y + X)]. Further, using (A.16) and the bounds defined in (4) gives
Eν[X (X + Y )] ≥ Emin

v′ (k + �)D̃(�). Using both results in (A.20) gives

B(�) ≥ (k + �)D̃(�)Eν[XY ]Emin
v′

Emax
v′

(1 − E f ′(k + �)). (A.21)

Finally, using (A.21) in (A.19) gives the desired result

A(�) ≥ − (k + �)D̃(�)Eν

[
XY

]

Emax
v′

(
Emax

v′ − Emin
v′ − E f ′(k + �)(1 + Emax

v′ − Emin
v′

)

≥ 0
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where the last inequality follows from condition (5) in Assumption 3. This proves that
Ṽ is weakly increasing which implies the desired result V (k+�) ≥ Ṽ (�) ≥ Ṽ (0) =
V (k). Finally, adopting an argument used and proved in Morand and Reffett (2003,
p. 1360), monotonicity of T P and w �→ w − T P(w), w ∈ W imply continuity of
T P . ��

A.5 Proof of Lemma 5

Let P ∈ G ′ be arbitrary. We need to show that T P is C1. Since P is C1, so are the
mappings P̃ , S, D, and Ñ defined in (A.4) and (A.5) and G defined in (A.13). Recall
that for eachw ∈ W, KP determines the unique zero ofG(·;w). Since ∂kG(k;w) > 0,
KP is C1 by the implicit function theorem. Thus, T P = P̃ ◦ KP is C1 as well. ��

A.6 Proof of Lemma 6

Weonly prove the strict inequalities, as the proof of the weak inequalities is analogous.
Given P1, P0 ∈ G ′, suppose P1 > P0. For λ ∈ [0, 1], define Pλ := λP1 + (1− λ)P0.
Since G ′ is convex, Pλ ∈ G ′ and, using the monotonicity properties in (13), the
derivative satisfies 0 ≤ P ′

λ ≤ 1 for all λ. Moreover, the map λ �→ Pλ = P0 + λ�

where � := P1 − P0 > 0 is strictly increasing (with respect to the pointwise ordering
on G ).
Let w ∈ W be arbitrary but fixed. By Lemma 3 (and a slight abuse of notation), for
each λ ∈ [0, 1] there exists a unique pair (kλ, pλ) which solves H1(kλ, pλ;w, λ) =
H2(kλ, pλ;w, λ) = 0.Wewill now show that λ �→ kλ, λ ∈ [0, 1] is strictly decreasing
and λ �→ pλ, λ ∈ [0, 1] is strictly increasing. This implies p1 > p0 and k1 < k0 and
the claim.

Employing the same definitions and notation as in the proof of Lemma 3, write
cλ(k, θ) := Pλ(W (k, θ)) + kR(k, θ). Then, the pair (kλ, pλ) satisfies pλ = P̃(kλ, λ)

where

P̃(k, λ) := Eν

[
Pλ(W (k, ·))v′(cλ(k, ·)

)]

Eν

[
R(k, ·)v′(cλ(k, ·)

)] =: N (k, λ)

D(k, λ)
, k ∈ K, λ ∈ [0, 1]. (A.22)

Tocompute thepartial derivatives ofD and N , note that ∂kW (k, θ) = E f ′(k)R(k, θ) >

0 by (1a, 1b) which implies

∂kcλ(k, θ) = R(k, θ)
(
E f ′(k)P ′

λ(−) + 1 − E f ′(k)) ≥ −R(k, θ)E f ′(k). (A.23)

Taking the derivative of (A.22) one obtains, exploiting property (U) and suppressing
arguments when convenient
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∂k N (k, λ) = Eν

[
P ′

λ(·)E f ′(k)R(k, ·)v′(·) − Pλ(·)|v′′(·)|∂kcλ(k, ·)
]

(A.24)

∂λN (k, λ) = Eν

[
�(k, ·)(v′(·) − Pλ(W (k, ·))|v′′(·)|)] > 0 (A.25)

∂k D(k, λ) = −1

k
Eν

[
E f ′(k)R(k, ·)v′(·) + kR(k, ·)|v′′(·)|∂kcλ(k, ·)

]
(A.26)

∂λD(k, λ) = −Eν

[
�(k, ·)R(k, ·)|v′′(·)|] < 0 (A.27)

where �(k, θ) := P1(W (k, θ)) − P0(W (k, θ)) > 0 for all k ∈ K and θ ∈ Θ . Using
(A.23) and property (U) from Assumption 2 in (A.26), we infer that

∂k D(k, λ) < − E f ′(k)

k
Eν

[
R(k, ·)

(
v′(·) − kR(k, ·)|v′′(·)|

)]
≤ 0. (A.28)

We show that dkλ

dλ
< 0. As kλ is the unique solution to G(k, λ) := u′(w − k −

P̃(k, λ)) − D(k, λ) = 0, the implicit function theorem yields the derivative

dkλ

dλ
= −∂λG(k, λ)

∂kG(k, λ)

∣∣∣
k=kλ

= − |u′′(·)|∂λ P̃(kλ, λ) − ∂λD(kλ, λ)

|u′′(·)|
(
1 + ∂k P̃(kλ, λ)

)
− ∂k D(kλ, λ)

. (A.29)

As shown in the proof of Lemma 3, the map S(k, λ) := k + P̃(k, λ) is strictly
increasing in k and, therefore, satisfies ∂k S(k, λ) = 1 + ∂k P̃(k, λ) ≥ 0. Further,
combining (A.22) with (A.25) and (A.27) shows that ∂λ P̃(k, λ) > 0. This together
with (A.27) and (A.28) shows that all terms determining the fraction in (A.29) are
positive which gives dkλ

dλ
< 0.

Second, we show that dpλ

dλ
> 0. As pλ = P̃(kλ, λ) one obtains the derivative

dpλ

dλ
= ∂k P̃(kλ, λ)

dkλ

dλ
+ ∂λ P̃(kλ, λ). (A.30)

Using (A.29), the derivative (A.30) can equivalently be written as

dpλ

dλ
= |u′′(·)|∂λ P̃(kλ, λ) + Z(kλ, λ)

|u′′(·)|
(
1 + ∂k P̃(kλ, λ)

)
− ∂k D(kλ, λ)

(A.31)

where Z(k, λ) := ∂λD(k, λ)∂k P̃(k, λ) − ∂k D(k, λ)∂λ P̃(k, λ). By (A.26) and our
previous result, both the denominator and the first term in the numerator in (A.31)
are strictly positive. Hence, it suffices to show that M(kλ, λ) ≥ 0. Using the explicit
form of the derivatives ∂k P̃ and ∂λ P̃ computed from (A.22), this last expression can
be written as

Z(k, λ) = ∂λD(k, λ)∂k N (k, λ) − ∂k D(k, λ)∂λN (k, λ)

D(k, λ)
.
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Using property (U), (A.25), and (A.27) gives ∂λN (k, λ) ≥ −k∂λD(k, λ). Thus, it
suffices to show ∂k N (k, λ) + k∂k D(k, λ) ≤ 0. By (A.24) and (A.26), recalling that
0 ≤ P ′

λ ≤ 1,

−∂k N (k, λ) − k∂k D(k, λ)

= Eν

[(
1 − P ′

λ(·)
)
E ′

f (k)R(k, ·)v′(·) + cλ(k, ·)|v′′(·)|∂kcλ(k, ·)
]

> E ′
f (k)Eν

[(
1 − P ′

λ(·)
)
R(k, ·)(v′(·) − cλ(k, ·)|v′′(·)|)] ≥ 0

where the last inequality exploits (A.23). This proves Z(kλ, λ) > 0 and the claim. ��

A.7 Proof of Corollary 1

(i) Td P1 = T (P1 + d) ≥ T (P0 + d) = Td P0.
(ii) Td1 P = T (P + d1) ≥ T (P + d0) = Td0 P . ��

A.8 Proof of Theorem 1

(i) We show the fixed point property for d = 0. The proof for d > 0 is analogous. For
convenience, we drop the subscript d = 0 and denote the sequence (T n P0)n≥0 simply
as (Pn)n≥0 and its pointwise limit by P∗. Also, for the sake of brevity we abuse our
notation by writing P(k, θ) instead of P(W (k, θ)).

Let w ∈ W be arbitrary but fixed. As (Pn)n is a decreasing sequence of functions
in G ′, monotonicity of K• due to Lemma 6 implies that the sequence kn := KPn (w),
n ≥ 0 is strictly increasing and converges to some limit 0 < k∗ ≤ K0(w) ≤ kmax.
The claim will follow if we show that k∗ and p∗ := P∗(w) satisfy (15), i.e.,
H1(k∗, p∗;w, P∗, 0) = H2(k∗, p∗;w, P∗, 0) = 0. Uniqueness of the solution to
(15) then implies k∗ = KP∗(w).

Let θ ∈ [θmin, θmax] be arbitrary but fixed. We show that limn→∞ Pn(kn, θ) =
P∗(k∗, θ). As (Pn)n≥0 is a sequence of increasing functions which converges
pointwise to the continuous function P∗, convergence is uniform on W :=
[W (k0, θmin), wmax] ⊂ W by Theorem A in Buchanan & Hildebrandt (1908). Note
that W (kn, θ) ∈ W for n ≥ 0. Thus, for each δ > 0, there is n0 ≥ 0 such that
|Pn(kn, θ) − P∗(kn, θ)| < δ/2 for all n ≥ n0. Further, by continuity of W and P∗
there is n′

0 > 0 such that n ≥ n′
0 implies |P∗(kn, θ) − P∗(k∗, θ)| < δ/2. Combining

both insights, we have for all n ≥ max{n0, n′
0}:

|Pn(kn, θ) − P∗(k∗, θ)| ≤ |Pn(kn, θ) − P∗(kn, θ)| + |P∗(kn, θ) − P∗(k∗, θ)| < δ.

For θ ∈ [θmin, θmax], define the functions

φ1
n(θ) := R(kn, θ)v′ (Pn(kn, θ) + kn R(kn, θ))

φ2
n(θ) := Pn(kn, θ)v′ (Pn(kn, θ) + kn R(kn, θ)) .
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The previous result and continuity of v′ and R imply for each θ ∈ [θmin, θmax]

lim
n→∞ φ1

n(θ) = φ1∗(θ) := R(k∗, θ)v′ (P∗(k∗, θ) + k∗R(k∗, θ)
)

lim
n→∞ φ2

n(θ) = φ2∗(θ) := P∗(k∗, θ)v′ (P∗(k∗, θ) + k∗R(k∗, θ)
)
.

As φ1
n(θ) < R(k1, θmax)v

′(k1R(kmax, θmin)) and φ2
n(θ) < wmaxv

′(k1R(kmax, θmin))

for all n, the Lebesgue-dominated convergence theorem implies limn→∞ Eν[φi
n(·)] =

Eν[φi∗(·)], i = 1, 2. This, limn→∞ Pn(w) = p∗ and limn→∞ u′(w − Pn(w) − kn) =
u′(w − p∗ − k∗) imply that (15) is satisfied. Since w was arbitrary, P∗ is a fixed point
of T .

That d > 0 implies P∗
d > 0 follows directly from the Euler equations (14a, 14b)

resp. (15).
To prove the stated properties of P∗

0 , we show that P∗
0 (w) = 0 for some

w ∈ W implies P∗
0 (w) = 0 for all w ∈ W. Let w0 ∈ W be arbitrary

and suppose P∗
0 (w0) = 0. If w0 = wmax, the claim follows from monotonic-

ity of P∗
0 , so suppose w0 < wmax. By (14b) and (15), P∗

0 (w0) = 0 implies
P∗
0 (W (KP∗

0
(w0), θ)) = 0 ν–a.s. As θmax is contained in the support of ν, conti-

nuity of P∗
0 yields P∗

0 (W (K ∗
0 (w0), θmax)) = 0. Moreover, (14a) and (15) imply

K ∗
0 (w0) = K0(w0), the latter being defined by (7). Thus, under Assumption 4,

w1 := W (K ∗
0 (w0), θmax) satisfies w1 = W (K0(w0), θmax) > w0 and P∗

0 (w1) = 0.
Let w1 ≤ wn < wmax be any value for which P∗

0 (wn) = 0. Repeating the previous
argument shows that wn+1 := W (K ∗

0 (wn), θmax) = W (K0(wn), θmax) > wn and
P∗
0 (wn+1) = 0. Due to Assumption 4, the sequence (wn)n≥1 converges monotoni-

cally to wmax and P∗
0 (wn) = 0 for all n ≥ 1 implies P∗

0 (wmax) = 0 due to continuity
of P∗

0 .
The remaining inequalities follow as limits from the monotonicity of K• and T· due

to Lemma 6 and Corollary 1 which imply Pm
d > Pm

d ′ and KPm
d +d < KPm

d′ +d ′ for all m
which must (weakly) also hold in the limit. As for each w ∈ W, K ∗

d (w) is the unique
zero k ofGd(k;w) = u′(w−k−P∗

d (w))−Eν[R(k, ·)v′(P∗
d (W (k, ·))+d+kR(k, ·))]

which is strictly increasing in d, the second inequality even holds strictly.

(ii) Follows directly from P∗
d ∈ G as shown in the main text and Lemma 4(ii).

(iii) Follows directly from the previous results and Definitions 1 and 2. ��

A.9 Proof of Lemma 7

Let (dn)n≥0 be a sequence converging monotonically to zero. For each n ≥ 1, define
(Pm

dn
)m≥1 as P0 = idW and Pm

dn
= Tm

dn
P0 ∈ G ′ for m ≥ 1. This sequence is strictly

monotonic and converges pointwise to P∗
dn

∈ G defined in (18). It follows from
Theorem 1(i) that the sequence of limits (P∗

dn
)n≥1 is decreasing such that the limiting

function

P∗∗
0 (w) := lim

n→∞ P∗
dn (w) (A.32)
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is well defined for all w ∈ W. Denote by P∗
0 the limit in (18) for d = 0, i.e.,

P∗
0 (w) = lim

m→∞ Tm P0(w) (A.33)

for w ∈ W. We would like to show that P∗∗
0 = P∗

0 .
As Td is increasing in d by Corollary 1, Pm

dn
= Tm

dn
P0 ≥ Tm P0 = Pm

0 for all m
which implies P∗

dn
≥ P∗

0 for all n. Therefore, P∗∗
0 ≥ P∗

0 . We therefore need to show
P∗∗
0 ≤ P∗

0 .
Suppose dn = 0 for all n ≥ n0. In this case n ≥ n0 implies Pm

dn
= Tm

dn
P0 =

Tm P0 = Pm
0 for all m ≥ 1 and, therefore, P∗∗

0 = P∗
0 . The remainder of the proof

therefore assumes that the dividend sequence is strictly positive, i.e., dn > 0 for all n
and strictly decreasing.

We first show that P∗∗
0 in (A.32) is independent of the particular dividend sequence.

For i = 1, 2, let (din)n≥1 be a strictly positive sequence converging monotonically to
zero. Denote by P∗∗,i

0 the pointwise limit (A.32) induced by (din)n≥1. Now, for each
n ≥ 1 there exists k ≥ 0 such that d1n > d2n+m for all m ≥ k. By Theorem 1(i),

this implies P∗
d1n

≥ P∗
d2n+m

and, therefore, P∗
d1n

(w) ≥ limm→∞ P∗
d2n+m

(w) = P∗∗,2
0 (w)

for all w ∈ W. Since n was arbitrary, P∗∗,1
0 ≥ P∗∗,2

0 . Reversing the argument gives

P∗∗,2
0 ≥ P∗∗,1

0 .
We show that P > P∗∗

0 implies T P > P∗∗
0 for any P ∈ G ′. As P0 > P∗∗

0 and
P0 ∈ G ′, we then obtain by simple induction that Tm P0 > P∗∗

0 for allm which proves
P∗
0 ≥ P∗∗

0 .
Let P ∈ G ′ satisfy P > P∗∗

0 and ŵ ∈ W be arbitrary. We show T P(ŵ) >

P∗∗
0 (ŵ).17 Given ŵ, define the compact set Wŵ := [W (KP (ŵ), θmin), wmax] ⊂ W.

We will construct a function P̃ ∈ G ′ such that P > P̃ on Wŵ. Noting that only
the behavior of P and P̃ on the interval Wŵ is relevant to compute T P(ŵ) and
T P̃(ŵ), the same arguments as in the proof of Lemma 6 can then be used to show
T P(ŵ) > T P̃(ŵ).18

In order to construct such a P̃ , set δ := minw∈Wŵ
{P(w) − P∗∗

0 (w)} > 0. By
Theorem A in Buchanan and Hildebrandt (1908), there exists a d > 0 such that
‖P∗

d (w) − P∗∗
0 (w)‖∞ < δ

3 on Wŵ as P∗
d converges montonically to P∗∗

0 for d↘0
(here ‖ · ‖∞ denotes the supremum norm). By the same argument, there exists m ∈ N

such that ‖Tm
d P0(w) − P∗

d (w)‖∞ < δ
3 on Wŵ as (Tm

d P0)m≥0 converges pointwise
to P∗

d . Define P̃ := Tm
d P0 and note that ‖P̃ − P∗∗

0 ‖∞ < 2δ
3 on Wŵ. Further, P

∗∗
0 <

Tm+1
d̃

P0 < Td̃ ◦ Tm
d P0 on W for any 0 < d̃ < d. Thus, P∗∗

0 < Td̃ P̃ for any d̃ > 0

which implies P∗∗
0 ≤ T P̃ . This last result uses that

lim
n→∞ Tdn P(w) = T P(w)

17 If P∗∗
0 ∈ G ′, this follows trivially by monotonicity of T and the fixed point property T P∗∗

0 = P∗∗
0

which can be established as in the proof of Theorem 1. Unfortunately, however, we only know P∗∗
0 ∈ G .

18 Observe that any convex combination Pλ = λP + (1 − λ)P̃ lies between P and P̃ . Therefore, by
monotonicity of K•, W (KPλ

(ŵ), θ) ∈ Wŵ for all θ ∈ [θmin, θmax].
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for all P ∈ G ′, w ∈ W and any monotonic sequence (dn)n converging to zero.19

Combining these results we get T P(ŵ) > T P̃(ŵ) � P∗∗
0 (ŵ) for any ŵ ∈ W.

To show that limn→∞ K ∗
dn

(w) = K ∗
0 (w) for each w ∈ W, note that (K ∗

dn
(w))n is

increasing by Theorem 1(i) and converges to some limit k∗ ≤ K0(w). By the same
arguments used in the proof of Theorem 1(i), k∗ and p∗ := P∗

0 (w) satisfy the Euler
equations at P = P∗

0 and d = 0 which implies k∗ = KP∗
0
(w) by uniqueness of the

solution to (15). ��

B Efficiency and inefficiency of MEA

In this appendix, we review the recursive characterization of interim Pareto optimality
for stationary exchange economies obtained in Barbie and Kaul (2015) and adapt their
results to characterize the optimality of MEA in a stochastic production economy. As
large parts of the analysis holds almost unchanged and requires mainly notational
changes, we will frequently refer to Barbie and Kaul (2015) for the details and proofs
and just repeat the core facts. To adapt the results, we need the characterization of
interim optimality for production OLGmodels fromBarbie et al. (2007) who extended
the pure exchange case in Chattopadhyay and Gottardi (1999).

B.1 Notation and definitions

Let A = (K ,Cy,Co) be a continuous, bounded MEA defined as in Sect. 4.2 and
W = [w,wmax] be a stable set of A. Fixing the initial shock θ0 ∈ Θ permitsW to be
used as the state space which corresponds to the set S in Barbie and Kaul (2015). To
adapt our notation to their setup, note that any two successive states w and w′ permit
to recover the shock in the second period via θ ′ = w′/W (K (w), 1). Thus, define the
(modified) pricing kernel m : W × W −→ R++

m(w,w′) := v′ (Co(w,w′/W (K (w), 1))
)

u′(Cy(w))
. (B.1)

Denote byB(W) the Borel-σ algebra on W. As shocks are i.i.d., function K defines
a transition probability Q : W × B(W) −→ [0, 1],

Q(w,G) := ν({θ ∈ Θ |W (K (w), θ) ∈ G.}). (B.2)

Note that Q has the Feller property since the function W ◦ K is continuous. By the
change-of-variable formula, the inequality (21) can be written as

∫

W

η(w′)m(w,w′)Q(w, dw′) > η(w). (B.3)

19 To see this, fix w ∈ W and let pn := Tdn P(w) and kn := KP+dn (w). By Corollary 1 and mono-
tonicity of K•, these sequences converge monotonically to values p∗ ≥ 0 and k∗ > 0, respectively. As
Hi (kn , pn , w, P, dn) = 0 for all n and i = 1, 2, continuity of Hi implies Hi (k∗, p∗, w, P, 0) = 0.
Uniqueness of the solution to (15) implies p∗ = T P(w) and k∗ = KP (w).
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To adapt their formal arguments the remainder followsBarbie et al. (2007) by assuming
that the shock process is finite-valued, i.e., Θ = {θ1, . . . , θN }. Thus, if wt ∈ W is the
state in period t , there are N successive states wt+1 = W (K (wt ), θt+1). If w′ ∈ W is
a such a successor, we write w′ � wt . With this notation, an integral of the form (B.3)
can be written as

∑
w′�w η(w′)m(w,w′)Q(w,w′).

Given some initial state w0 ∈ W, denote by Wt (w0) the set of histories wt =
(w0, . . . , wt ) observed up to time t , i.e., wn � wn−1 for all n = 1, . . . , t . Further, let
W∞(w0) denote the set of all infinite histories w∞ = (w∞

t )t≥0, i.e., w∞
t � w∞

t−1 for
all t ≥ 1 and w∞

0 = w0. For any infinite path w∞ ∈ W∞(w0), denote by (w∞)t the
induced history up to time t ≥ 0 along this path, i.e., (w∞)t = (

w∞
0 , w∞

1 , . . . , w∞
t

) ∈
Wt (w0).
Similar to Chattopadhyay and Gottardi (1999), define for each wt ∈ Wt (w0) the set
weights20

U(wt ) =
⎧
⎨

⎩
λ(wt , w′) ∈ R+ | w′ � wt ,

∑

w′�wt

λ(wt , w′)Q(wt , w
′) = 1

⎫
⎬

⎭
.

Given somew0 ∈ W, define U∞ (w0) to be the family of weights λ∞ = (λ(wt , ·))t≥1
where wt ∈ Wt (w0) and λ(wt , ·) ∈ U(wt ) for all t .

B.2 Recursive characterization of inefficiency

Barbie et al. (2007) derived a condition for interim Pareto inefficiency in a stochastic
Diamond model. For a MEA A which satisfies the restrictions from Lemma 8, the
necessary part of this result can be stated as follows.

Lemma 13 If A = (K ,Cy,Co) is inefficient at w0 ∈ W, there exists a family of
weightsλ∞ ∈ U∞ (w0) and a constant C ≥ 0 such that for each pathw∞ ∈ W∞(w0)

∞∑

i=0

i∏

j=0

λ
(
(w∞) j , w∞

j+1

)

m
(
w∞

j , w∞
j+1

) ≤ C . (B.4)

As noted inBarbie andKaul (2015), the condition (B.4) can be restated as aminimax
problem. The max-part is taking the supremum over all possible paths, the min-part
is taking the infimum over all possible weights. For any w0 ∈ W, define the value
function

20 As explained in detail in Barbie and Kaul (2015), the definition of a weight given in Chattopadhyay
and Gottardi (1999) (and also in Barbie et al. 2007) is slightly different from here (and in Barbie and
Kaul 2015). Because Chattopadhyay and Gottardi (1999) used an abstract date-event tree setting without
objective probabilities, their definition is without probabilities, but equivalent to the one given here.

123



Bubbly Markov equilibria 673

J ∗ (w0) := inf
λ∞∈U∞(w0)

sup
w∞∈W∞(w0)

⎧
⎨

⎩
1 +

∞∑

i=0

i∏

j=0

λ
(
(w∞) j , w∞

j+1

)

m
(
w∞

j , w∞
j+1

)

⎫
⎬

⎭
. (B.5)

The next result follows immediately from Lemma 13 and (B.5).

Corollary 3 If A is inefficient at w0 ∈ W, then J ∗(w0) < ∞.

Following Barbie and Kaul (2015) we show that (B.5) defines a recursive structure
permitting J ∗ to be computed as a fixed point of some operator Z . For each w ∈ W,
denote the set of all stationary weights

U(w) =
{

λ(w,w′) ∈ R+ | w′ � w,
∑

w′�w

λ(w,w′)Q(w,w′) = 1

}

.

Define the operator Z which associates with any nonnegative extended real-valued
function J : W −→ R+ ∪ {+∞} the new function Z J defined for all w ∈ W as

Z J (w) := 1 + inf
λ(w,·)∈U(w)

sup
w′�w

{
λ
(
w,w′)

m (w,w′)
· J (w′)

}

. (B.6)

Note that Z is monotonic, i.e., J1 ≥ J2 implies Z J1 ≥ Z J2. The operator Z can now
be used to compute a value function that solves the functional Eq. (B.6). Construct
the sequence (Jn)n≥0 of functions Jn defined onW recursively by setting J0 ≡ 1 and
Jn = Z Jn−1 for n ≥ 1. For each w ∈ W, define the function

J∞ (w) := lim
n→∞ Jn(w). (B.7)

Note that the pointwise limit in (B.7) exists since the sequence (Jn)n≥0 is increasing.
We now have the following result. The proof is the same as the ones of Theorem 1 and
Proposition 2 in Barbie and Kaul (2015) (with the appropriate notational changes).

Lemma 14 The function J∞ defined in (B.7) is a fixed point of Z that coincides with
the value function J ∗ defined in (B.5), i.e., J∞ = Z J∞ = J ∗.

B.3 Proof of Lemma 8(i)

By Corollary 3, if A is inefficient then J ∗(w0) < ∞ for all w0 ∈ W. Set η(w) :=
1/J ∗(w) forw ∈ W. It follows from the same arguments as in the proofs of Proposition
4 and Theorem 2(a) in Barbie and Kaul (2015) that η is a strictly positive, upper-
semicontinuous function which takes values in the unit interval (since J ∗ > 1) and
satisfies (B.3) for allw ∈ W. As boundedness of A permits to choose the lower bound
w arbitrarily small, the previous construction of η can be extended to the entire interval
W =]0, wmax]. ��
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674 M. Barbie, M. Hillebrand

B.4 Proof of Lemma 8(ii)

In this section we present a new additional sufficient condition under which the
function η constructed as in the previous subsection is continuous, not just upper-
semicontinuous. We will then argue that this condition is satisfied if the kernel mA

exhibits the monotonicity property required in Lemma 8(ii). We have the following
result:

Lemma 15 Suppose J ∗ = J∞ defined in (B.7) is uniformly bounded onW, i.e., there
exists a constant M ≥ 0 such J ∗(w) ≤ M for all w ∈ W. Then, η = 1/J ∗ is
continuous.

Proof Construct the sequence (Jn)n≥0 as above by setting J0 ≡ 1 and Jn = Z Jn−1
for n ≥ 1. Recall that J1 > 1 = J0 and monotonicity of Z imply that (Jn)n≥0 is
strictly increasing, i.e., Jn > Jn−1 for all n ≥ 0. By Lemma 14, we know that the
pointwise limit J ∗ defined in (B.7) is a fixed point of Z . We will show that under
the hypotheses of Lemma 15, (Jn)n≥1 is a Cauchy sequence in the space of bounded
continuous functions onW. As this space is complete, the sequence must converge to
some bounded continuous function, which coincides with the pointwise limit J ∗.

First, we show that each Jn is of the form Jn(w) = 1+ c∗
n(w) for some continuous

function c∗
n : W −→ R+. Clearly, this holds trivially for n = 0 and c∗

0 ≡ 0. By
induction, suppose Jn−1(w) = 1 + c∗

n−1(w) for some n ≥ 1. For each w ∈ W and
w′ � w, define the function

λ∗
n(w,w′) := m(w,w′)

Jn−1(w′)
c∗
n(w) (B.8)

where c∗
n is chosen such that

∑
w′�w λ∗

n(w,w′)Q(w,w′) = 1 for all w ∈ W, i.e.,

c∗
n(w) :=

[
∑

w′�w

m(w,w′)
Jn−1(w′)

Q(w,w′)
]−1

. (B.9)

Note that λ∗
n is continuous and attains the infimum in (B.6). Hence,

Jn(w) = 1 + max
w′�w

λ∗
n(w,w′)
m(w,w′)

Jn−1(w
′) = 1 + c∗

n(w). (B.10)

As continuity of c∗
n−1 implies continuity of c∗

n , this proves that each Jn is continuous

and, therefore, bounded on the compact set W.
Defining λ∗

n by (B.8) for each n ≥ 1 we can now use the first equality in (B.10) to
expand Jn for all w0 ∈ W as
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Jn(w0) = 1 + max
w1�w0

λ∗
n(w0, w1)

m(w0, w1)

[
1 + max

w2�w1

λ∗
n−1(w1, w2)

m(w1, w2)
Jn−2(w2)

]

= 1 + max
w1�w0

λ∗
n(w0, w1)

m(w0, w1)

[
1 + max

w2�w1

λ∗
n−1(w1, w2)

m(w1, w2)

[
. . .

[
1 + max

wn�wn−1

λ∗
1(wn−1, wn)

m(wn−1, wn)

]
. . .

]]
. (B.11)

The final term in (B.11) satisfies 1 + maxwn�wn−1

λ∗
1(wn−1,wn)

m(wn−1,wn)
= J1(wn−1) = 1 +

c∗
1(wn−1).
Clearly, λ∗

n does not necessarily attain the infimum when defining Jn+1 by (B.6).
Therefore, for all w0 ∈ W, recalling that J1(w) = 1 + c∗

1(w)

Jn+1(w0) = 1 + max
w1�w0

λ∗
n+1(w0, w1)

m(w0, w1)
Jn(w1)

≤ 1 + max
w1�w0

λ∗
n(w0, w1)

m(w0, w1)
Jn(w1)

≤ 1 + max
w1�w0

λ∗
n(w0, w1)

m(w0, w1)

[
1 + max

w2�w1

λ∗
n−1(w1, w2)

m(w1, w2)

[
. . .

1 + max
wn−1�wn−2

λ∗
2(wn−2, wn−1)

m(wn−2, wn−1)

[

1 + max
wn�wn−1

λ∗
1(wn−1, wn)

m(wn−1, wn)

(
1 + c∗

1(wn)
)]

. . .

]]
. (B.12)

By elementary observations,21 the final term in (B.12) satisfies for any wn−2 ∈ W

max
wn−1�wn−2

λ∗
2(wn−2, wn−1)

m(wn−2, wn−1)

[
1 + max

wn�wn−1

λ∗
1(wn−1, wn)

m(wn−1, wn)

(
1 + c∗

1(wn)
)]

≤ max
wn−1�wn−2

λ∗
2(wn−2, wn−1)

m(wn−2, wn−1)

[
1 + max

wn�wn−1

λ∗
1(wn−1, wn)

m(wn−1, wn)

+ max
wn�wn−1

λ∗
1(wn−1, wn)

m(wn−1, wn)
c∗
1(wn)

]

≤ max
wn−1�wn−2

λ∗
2(wn−2, wn−1)

m(wn−2, wn−1)

[
1 + max

wn�wn−1

λ∗
1(wn−1, wn)

m(wn−1, wn)

]

+ max
wn−1�wn−2

λ∗
2(wn−2, wn−1)

m(wn−2, wn−1)
max

wn�wn−1

λ∗
1(wn−1, wn)

m(wn−1, wn)
c∗
1(wn).

21 These are maxx {A(x) + B(x)} ≤ maxx {A(x)} + maxx {B(x)} and maxx {A(x)}maxy∈G(x){B(y) +
C(y)} ≤ maxx {A(x)}maxy∈G(x){B(y)}+maxx {A(x)}maxy∈G(x){C(y)} for real-valued functions A, B,
C and some correspondence G.
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Solving (B.12) in this recursive fashion and using (B.11) we obtain for all n and
w0 ∈ W

Jn+1(w0) ≤ Jn(w0) + max
w1�w0

λ∗
n(w0, w1)

m(w0, w1)
· · · max

wn�wn−1

λ∗
1(wn−1, wn)

m(wn−1, wn)
c∗
1(wn).

(B.13)

Using (B.8) and (B.10) in (B.13) we obtain for all n ∈ N and w0 ∈ W

Jn+1(w0) − Jn(w0) � max
w1�w0

c∗
n(w0)

1 + c∗
n−1(w1)

× max
w2�w1

c∗
n−1(w1)

1 + c∗
n−2(w2)

. . . max
wn�wn−1

c∗
1(wn−1) · c∗

1(wn)

= c∗
n(w0) · max

w1�w0

c∗
n−1(w1)

1 + c∗
n−1(w1)

. . . max
wn−1�wn−2

c∗
1(wn−1)

1 + c∗
1(wn−1)

× max
wn�wn−1

c∗
1(wn).

Since M � J ∗(w) � Jn(w) = 1+ c∗
n(w) > c∗

n(w) for any w ∈ W and n ∈ N, we get

0 <Jn+1(w) − Jn(w) � M2 ·
(

M

1 + M

)n−1

for all w ∈ W. But this means that

‖Jn+1 − Jn‖∞ � B (β)n−1

where ‖ · ‖∞ is the supremum norm on the space of bounded continuous functions on
W and B > 0 and 0 < β < 1. By standard arguments, this implies

‖Jn+m − Jn‖∞ � Bβn−1 1

1 − β

for all n,m > 0 and so (Jn)n≥0 is a Cauchy sequence, as was to be shown. ��
Now suppose mA defined in (20) is monotonically increasing. We show that this

implies the hypothesis of Lemma 15. Using the change-of-variable formula in (B.9)
yields

1

c∗
n(w)

=
∑

w′�w

m(w,w′)
1 + c∗

n−1(w
′)
Q(w,w′) = Eν

[
mA(w, ·)

1 + c∗
n−1 (W (K (w), ·))

]

.

As the term to the far right is a strictly increasing functionwhenever c∗
n−1 is decreasing,

it follows by induction that each Jn(w) = 1 + c∗
n(w), w ∈ W is strictly decreasing

which implies Jn(w) ≤ Jn(w) for all n. Taking the limit gives J ∗(w) ≤ J ∗(w) for
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Bubbly Markov equilibria 677

all w ∈ W. Finally, if A is inefficient at w0, monotonicity of J ∗ implies J ∗(w′
0) ≤

J ∗(w0) < ∞ also for w0 ≥ w′
0, i.e., A is also inefficient for all w0 ≥ w′

0. ��

B.5 Proof of Lemma 9

For each w ∈ W and θ ∈ Θ , define Co
0 (w, θ) := K0(w)R(K0(w), θ) and m̃(w) :=

Eν[R(K0(w), ·)v′(Co
0 (w; ·))]. Using (7), the pricing kernel m0 can be written as

m0(w, θ) = v′ (Co
0 (w, θ)

)
/m̃(w).

Letw ∈ W and θ ∈ Θ be arbitrary but fixed and set c0 := Co
0 (w, θ) and k0 := K0(w).

Then, by direct computations ∂m0
∂w

(w, θ) = K ′
0(w)v′(c0)
k0m̃(w)

H(w) where

H(w) := E f ′(k0) + (1 − E f ′(k0))

×
(
Eν

[
R(k0, ·)C0(w, ·)|v′′ (C0(w, ·)) |]

m̃(w)
− Ev′(c0)

)

(B.14)

determines the sign of ∂m0
∂w

(w, θ). Using (4), we have 0 ≤ Emin
v′ ≤ Ev′(c0) ≤ Emax

v′ ≤
1 and

Emin
v′ m̃(w) ≤ Eν[R(k0, ·)C0(w, ·)|v′′(C0(w, ·))|] ≤ Emax

v′ m̃(w).

Using these bounds in (B.14), we obtain

H(w) ≥ E f ′(k0) + Emin
v′ − Emax

v′ − E f ′(k0)
(
Emax

v′ − Emin
v′

)
. (B.15)

As the r.h.s in (B.15) is nonnegative due to (5) in Assumption 3, the claim follows.
��

B.6 Proof of Lemma 10

AsbothCy andCo are continuous, strictly positive functions on their compact domains
W andW×Θ , respectively, we can choose α > 0 such that the ‘perturbed’ allocation
(K ,Cy

α,Co
α) defined as Cy

α(w) := Cy(w) − αη(w) and Co
α(w, θ) = Co(w, θ) +

αη(W (K (w), θ)) is strictly positive and feasible for all α ∈ [−α, α] and w ∈ W.
Thus, givenw ∈ W, the map h(α;w) := u(Cy

α(w))+Eν[v(Co
α(w, ·))] is well defined

and determines the utility of a generation born in state w ∈ W under the perturbation
α ∈ [−α, α].
We will determine α∗ > 0 such that h(α∗;w) − h(0;w) > 0 for all w ∈ W, i.e., the
perturbed allocation improves the utility of any generation. Let w ∈ W be fixed. As
h(·;w) is twice continuously differentiable on the open interval ] − α, α[, we have

h(α;w) − h(0;w) = h′(0;w)α + 1

2
h′′(ξ ;w)α2
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678 M. Barbie, M. Hillebrand

for 0 ≤ α ≤ α and some 0 < ξ < α that may depend on bothw and α. By hypothesis,

h′(0;w) = −u′ (Cy(w)
)
η(w) + Eν

[
v′ (Co(w, ·)) η (W (K (w, ·)))] > 0

for all w. Further, using the Lebesgue-dominated convergence theorem

h′′(ξ ;w) = u′′ (Cy
ξ (w)

)
(η(w))2 + Eν

[
v′′ (Co

ξ (w, ·)
)

(η (W (K (w), ·)))2
]

< 0.

By the Lebesgue-dominated convergence theorem again, both mappings w �→
h′(0;w) and (ξ ;w) �→ h′′(ξ ;w) are continuous on W and [0, α] × W, respectively.
Thus, there exist �1 > 0 and �2 < 0 such that h(α;w) − h(0;w) � �1α + �2α

2

for all w ∈ W and α ∈ [0, α]. Choosing α∗ > 0 sufficiently small therefore ensures
that h(α∗;w) > h(0;w) for all w ∈ W. ��
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