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Abstract Many questions of interest in economics can be stated in terms of monotone
comparative statics: If a parameter of a constrained optimization problem increases,
when does its solution increase as well. We characterize monotone comparative statics
in different directions in finite-dimensional Euclidean space by extending the mono-
tonicity theorem of Milgrom and Shannon (Econometrica 62(1):157–180, 1994) to
constraint sets ordered in Quah (Econometrica 75(2):401–431, 2007)’s set order. Our
characterizations are ordinal and retain the same flavor as their counterparts in the
standard theory, showing new connections to the standard theory and presenting new
results. The results are highlighted with several applications (in consumer theory,
producer theory, and game theory) which were previously outside the scope of the
standard theory of monotone comparative statics.
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558 A.-C. Barthel, T. Sabarwal

1 Introduction

In economics and game theory, we are frequently interested in how solutions to a
constrained optimization problem change when the environment changes. In many
cases, the question of interest can be stated in terms ofmonotone comparative statics: If
a parameter of the constrained optimization problem increases, when does its solution
increase as well. For example, if a consumer’s wealth (or purchasing power) goes up,
when does her demand for a particular good go up (the case of a normal good)? Or,
if a firm is competing as an oligopoly in multiple markets by producing differentiated
products, if plant size increases, when does its output in a given market increase? Or,
in the case of a polluting technology, if technological innovation increases, when will
pollution abatement and output of the firm both go up? And so on.

We present results that apply to these types of questions. Consider the standard
framework of monotone comparative statics. Let X be a set, f : X → R, and A, B
be subsets of X ordered by some relation, A � B. When is it true that A � B ⇒
argmaxA f � argmaxB f ? Intuitively, when is argmaxA f increasing in A? Or, more
generally, f : X × T → R, where T is a partially ordered set. When is it true that
A � B and t � t ′ ⇒ argmaxA f (·, t) � argmaxB f (·, t ′)? Intuitively, when is
argmaxA f (·, t) increasing in (A, t)?

Milgrom and Shannon (1994) show that when X is a lattice1 and � is the standard
lattice set order, denoted �lso, argmaxA f (·, t) is increasing in (A, t) in the standard
lattice set order, if, and only if, for every t ∈ T , f (·, t) is quasisupermodular on
X and f satisfies single crossing property on X × T .2 There are several appealing
features of such lattice-theoretic monotone comparative statics results. For example,
the sets X and A are not required to be convex and can be finite, the objective func-
tion f is not required to be differentiable or continuous, and the results apply even
when there are multiple solutions to the optimization problem. Moreover, the notion
of quasisupermodularity has a nice economic intuition in terms of complementarities:
When X is a product space, when one component variable increases, the “marginal”
benefit of another component variable goes up. Some of this standard theory is devel-
oped in Topkis (1978), Topkis (1979), LiCalzi and Veinott (1992), Veinott (1992), and
Milgrom and Shannon (1994). For a development with partially ordered sets, confer
Smithson (1971). These ideas have had many applications in economic theory and
game theory, including developing the theory of supermodular games, submodular
games, aggregative games, and comparing equilibria.3

1 Recall that a lattice is a partially ordered set in which every two points have a supremum and an infimum.
For example, RN is a lattice, with the standard product partial order.
2 Recall: A �lso B, if for every a ∈ A, b ∈ B, a ∧ b ∈ A and a ∨ b ∈ B. Moreover, f : X → R

is quasisupermodular, if for every a, b ∈ X , f (a) ≥ (>) f (a ∧ b) �⇒ f (a ∨ b) ≥ (>) f (b), and
f : X × T → R satisfies single crossing property on X × T , if for every a, b ∈ X with a � b and for every
t, t ′ ∈ T with t ′ � t , f (a, t) ≥ (>) f (b, t) ⇒ f (a, t ′) ≥ (>) f (b, t ′).
3 Some of this can be seen in Bulow et al. (1985), Vives (1990), Milgrom and Roberts (1990), Zhou
(1994), Amir (1996), Amir and Lambson (2000), Echenique (2002), Echenique (2004), Heikkilä and Reffett
(2006), Zimper (2007), Roy and Sabarwal (2008, 2010, 2012), Quah and Strulovici (2009), Jensen (2010),
Balbus et al. (2014), Monaco and Sabarwal (2016), Amir and Lazzati (2016), Reynolds and Rietzke (2017),
Cosandier et al. (2017), and others.
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Directional monotone comparative statics 559

A limitation of these results is that they do not apply to some basic economic
problems in which constraint sets are not ordered in the standard lattice set order.
For example, consider the standard budget set in consumer theory: B(p, w) ={
x ∈ R

N+ | p · x ≤ w
}
, where p ∈ R

N , p � 0 is a price system, and wealth is
w > 0. As is well known, for w < w′, B(p, w) ��lso B(p, w′), and therefore, the
standard lattice-based monotone comparative statics results cannot be applied directly
to the theory of demand.

Quah (2007) develops monotone comparative statics results to include such prob-
lems. He considers f : X → R, where X is a convex sublattice of R

N , and
i ∈ {1, . . . , N } is a direction in R

N . His techniques include new binary relations,
denoted �λ

i ,∇λ
i , a new set order, termed Ci -flexible set order, and a new notion of

Ci -quasisupermodular function.4 In particular, if w < w′, then B(p, w) is lower than
B(p, w′) in the Ci -flexible set order. A main result is: argmaxA f is increasing in
A in the Ci -flexible set order, if, and only if, f is Ci -quasisupermodular. Moreover, a
sufficient condition for f to be Ci -quasisupermodular is that f is supermodular and
i-concave.5

Quah (2007) uses some assumptions that are less typical in the standard theory of
monotone comparative statics. The domain, X , of the objective function is assumed
to be convex. This rules out discrete spaces; in particular, finite games and cases
where consumption of some goods is more naturally modeled as discrete, for exam-
ple, automobiles and homes. Moreover, the notion of Ci -quasisupermodular function
uses the binary relations �λ

i ,∇λ
i and convexity of domain in important ways, and it is

less transparent than standard assumptions of quasisupermodularity and single cross-
ing property. Furthermore, the binary relations �λ

i ,∇λ
i have some counter-intuitive

properties—they are non-commutative and their outcomes are not necessarily com-
parable in the underlying order in R

N . Finally, the framework does not include
parameterized objective functions, which rules out cases involving the effect of actions
of others on a given agent’s payoff, for example, cases with public goods, externali-
ties from other consumers or producers, and more generally, game theoretic strategic
effects based on actions of other players.

The framework in this paper includes both parameterized objective functions and
budget-type constraint sets and in this sense is an extension of Milgrom and Shannon
(1994) to Quah (2007)’s set order. The basic setup is as follows. Consider a sublattice
X of RN , T a partially ordered set, f : X × T → R, and a direction i ∈ {1, . . . , N }.
A main result is: argmaxA f (·, t) is increasing in (A, t) in the i-directional set order,
if, and only if, for every t ∈ T , f (·, t) is i-quasisupermodular and satisfies i-single
crossing property on X , and f satisfies basic i-single crossing property on X × T .
These terms are defined more concretely in the next section, but intuitively, increase
in the i-directional set order formalizes the idea of increase in the i th direction in
R

N . In our characterization, X is not required to be convex and there is no use of the
binary relations �λ

i ,∇λ
i . The framework allows for parameter effects in the objective

4 Formal definitions are presented in “Appendix A”.
5 Intuitively, i-concave requires concavity in every direction u, where u is a vector with ui = 0.
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560 A.-C. Barthel, T. Sabarwal

function. Thenewproperties i-quasisupermodular, i-single crossing, andbasic i-single
crossing retain the same flavor as their counterparts in the standard theory ofmonotone
comparative statics. The i-directional set order is a reformulation of Quah’s Ci -flexible
set order to align more closely with the spirit of monotone methods, and this helps
subsume results in Quah (2007).

Our main result is explored in several directions. It is extended to apply to all direc-
tions i , it is specialized to consider comparative statics with respect to A only or to
t only, and the ordinal nature of the properties allows for increasing transformations
of the objective function to also respect the same characterization. Sufficient condi-
tions are explored as well. In particular, Quah’s sufficient conditions of supermodular
and i-concave remain sufficient in the more general setting here. Furthermore, the
characterization here has a natural formulation in terms of cardinal assumptions: i-
supermodular and i-increasing differences, and in turn, this has a new and natural
formulation in terms of differential conditions using directional derivatives.

Including parameters in the objective function and allowing for more general con-
straint sets allows our results to apply to cases where standard results in monotone
comparative statics are inapplicable.

In consumer theory,we replicate and extendQuah (2007)’s result on normal demand
with finitely many divisible goods to allow for up to two discrete goods and more
general utility functions. Moreover, we present a new application for parameterized
utility functions, using a Stone–Geary-type utility function.

In game theory, we examine a multi-market oligopoly with capacity constraints in
which we may conduct monotone comparative statics simultaneously with respect to
competitor output and capacity constraint.We also show how amodel of auctions with
bidding constraints can be analyzed using the results here.

We also show how our results may provide unifying tools for seemingly different
applied work. As one example, we show that in a model of emissions standards such
as those in Montero (2002) and in Bruneau (2004), a main result that technological
innovation can simultaneously increase both pollution abatement and output can be
derived by an easy calculation based on our method. As another example, we show
that in a discrete choice model of labor supply such as that in Hoynes (1996), our
results make it easy to show that both hours worked and leisure hours increase with
the overall time constraint and that optimal labor supply depends positively on wage
rate and negatively on non-labor income.

The paper proceeds as follows. Section 2 formalizes the constrained optimization
problem, the set orders, and properties on objective function. Section 3 presents the
main results and corollaries on directional monotone comparative statics. The main
results are explored further in subsections formalizing sufficient conditions and differ-
ential conditions. Section 4presents several applications of themain results. “Appendix
A” presents some connections to Quah (2007), and “Appendix B” includes details of
some proofs.

123



Directional monotone comparative statics 561

2 Constrained optimization

Recall that a lattice6 is a partially ordered set in which every two elements, a and
b, have a supremum in the set, denoted a ∨ b, and an infimum in the set, denoted
a ∧ b. The supremum and infimum operations are with respect to the partial order.
In this paper, we work with finite-dimensional Euclidean space, represented by R

N .
This is a lattice in the standard product order on R

N , denoted, as usual, by ≤,7 and
in this order, for a, b ∈ R

N , a ∧ b = (min {a1, b1} , . . . ,min {aN , bN }) and a ∨ b =
(max {a1, b1} , . . . ,max {aN , bN }). A subset X of a lattice is a sublattice, if for every
a and b in X , their supremum in the overall lattice, a ∨ b, is in X , and their infimum
in the overall lattice, a ∧ b, is in X .

Let X be a sublattice ofRN , (T,�) be a partially ordered set, f : X×T → R, A be
a subset of X , and consider the constrained maximization problem maxA f (·, t). We
are interested in how argmaxA f (·, t) changes with (A, t). As the set of maximizers
is not necessarily a singleton, this involves a comparison of sets.

2.1 Set orders

There are several set orders on subsets of a lattice (confer Topkis 1998). Two of the
more common ones are as follows. Consider a sublattice X of RN , and subsets A and
B of X . A is lower than B in the standard lattice set order, denoted A �lso B, if for
every a ∈ A, b ∈ B, it follows that a ∧ b ∈ A and a ∨ b ∈ B. A is lower than B
in the weak set order, denoted A �wso B, if for every a ∈ A, there is b ∈ B such
that a ≤ b, and for every b ∈ B, there is a ∈ A such that a ≤ b.8 Moreover, another
set order is of interest when we are considering increases in a particular component
of vectors: For i ∈ {1, 2, . . . , N }, A is lower than B in the i-weak set order, denoted
A �wso

i B, if for every a ∈ A, there is b ∈ B such that ai ≤ bi , and for every
b ∈ B, there is a ∈ A such that ai ≤ bi . As is well known and easy to check:
A �lso B �⇒ A �wso B �⇒ A �wso

i B.
The standard results in monotone comparative statics typically use the standard

lattice set order, but that order cannot compare some of the constraint sets of interest
here, and therefore, to expand comparability of sets, we work with the following
weakenings of the standard lattice set order. Let X be a sublattice of RN , A and B be
subsets of X , and i ∈ {1, 2, . . . , N }. A is lower than B in the i-directional set order,
denoted, A �dso

i B, if for every a ∈ A and b ∈ B with ai > bi , there is v = s(b−a∧b)
for some s ∈ [0, 1] such that a + v ∈ B and b − v ∈ A.9 In this definition, notice
that the vector v satisfies v ≥ 0, and therefore, a ≤ a + v and b − v ≤ b. Moreover,

6 This paper uses standard lattice terminology. See, for example, Topkis (1998).
7 For a, b ∈ R

N , a ≤ b means that for every i = 1, . . . , N , ai ≤ bi .
8 In all the set orders considered here, when convenient, we may say A is lower than B equivalently as B
is higher than A.
9 The i-directional set order is a reformulation of the Ci -flexible set order in Quah (2007). The definition
here retains the spirit of monotone methods, does not require X to be convex, and there is no use of the
operators �λ

i , ∇λ
i . Comparisons to Quah (2007) are presented in “Appendix A”.
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Fig. 1 i-Directional set order

when a ≥ b, this condition is the same as for the lattice set order, and therefore, a
non-trivial application of this order is when ai > bi and a �≥ b. Figure 1 shows this
idea graphically. For intuition, we can consider the two-good discretized consumption
space, and budget-type sets given by the green and the purple lines. For these sets to
be ranked in the 1-directional set order, for each a in the lower set and b in the higher
set with a1 > b1, there is v = s(b − a ∧ b) such that a + v is in the higher set and
b − v is in the lower set.

Similarly, say that A is lower than B in the directional set order, denoted A �dso B,
if for every i ∈ {1, 2, . . . , N }, A is lower than B in the i-directional set order.

Proposition 1 Let X be a sublattice of RN and A, B be non-empty subsets of X.

(1) A �lso B ⇒ A �dso
i B ⇒ A �wso

i B, for each i ∈ {1, 2, . . . , N }, and
(2) A �lso B ⇒ A �dso B ⇒ A �wso B.

Proof Theproof of (1) is similar to that of (2). To prove (2), supposefirst that A �lso B.
Fix i ∈ {1, 2, . . . , N }, a ∈ A, and b ∈ B with ai > bi . Let s = 1. Then b − v =
b− 1(b− a ∧ b) = a ∧ b ∈ A and a + v = a + 1(a ∨ b− a) = a ∨ b ∈ B. Thus, for
every i ∈ {1, 2, . . . , N }, A �dso

i B, whence A �dso B. Now suppose A �dso B. Fix
a ∈ A. As B is non-empty, let b ∈ B. If a ≤ b, then we are done. Otherwise, there is
i such that ai > bi . In this case, there is v = s(b − a ∧ b) for some s ∈ [0, 1] such
that a + v ∈ B. Moreover, v ≥ 0 implies a ≤ a + v. The proof is similar for the other
case: b ∈ B implies there is a ∈ A such that a ≤ b. ��

As shown in this proposition, the i-directional set order is weaker than the standard
lattice set order and stronger than the i-weak set order. Similarly, the directional set
order is weaker than the standard lattice set order and stronger than the weak set order.
One benefit of the i-directional set order is that it can order budget sets for different
levels of wealth, whereas the standard lattice set order cannot.
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Directional monotone comparative statics 563

Example 1-1 (Walrasian budget sets) Let X = R
N+ , N ≥ 2, p � 0, and w > 0. The

Walrasian budget set at (p, w) is givenby B(p, w) = {
x ∈ R

N+ | p · x ≤ w
}
.Weknow

that in the standard lattice set order when w < w′, B(p, w) ��lso B(p, w′), but these
budget sets are comparable in the directional set order: w < w′ �⇒ B(p, w) �dso

B(p, w′), as follows. Fix i ∈ {1, 2, . . . , N }, a ∈ B(p, w) and b ∈ B(p, w′) with
ai > bi . If p · (a ∨ b) ≤ w′, let s = 1, and therefore, v = b − a ∧ b. In this
case, b − v = a ∧ b ∈ B(p, w), and a + v = a ∨ b ∈ B(p, w′). Moreover, if
p · b ≤ w, let s = 0, and so, v = 0. In this case, b − v = b ∈ B(p, w), and

a + v = a ∈ B(p, w′). In the other cases, let s ∈
[

p·b−w
p·(b−a∧b) ,

w′−p·a
p·(b−a∧b)

]
⊂ [0, 1],

and therefore, v = s(b − a ∧ b). In this case, p · (b − v) ≤ w and p · (a + v) ≤ w′.
Consequently, a + v ∈ B(p, w′) and b − v ∈ B(p, w), as desired.
Example 1-2 (Two-good discretized Walrasian budget sets) In the two-good case,
the directional set order can be used to order budget sets with discrete consumption.
Consider twogoods, each consumed in integer amounts. Let X = Z

2+, p = (p1, p2) �
0, and w > 0. The (discretized) Walrasian budget set at (p, w) is given by B(p, w) ={
x ∈ Z

2+ | p · x ≤ w
}
. Consider w < w′ and suppose p1 divides w′ − w and p2

divides w′ − w. In this case, w < w′ �⇒ B(p, w) �dso B(p, w′), as follows. Fix
i = 1. Let a ∈ B(p, w) and b ∈ B(p, w′)with a1 > b1. As above, if p · (a∨b) ≤ w′,
let s = 1, and if p · b ≤ w, let s = 0. Notice that these cases include the case where
a ≥ b. So suppose a1 > b1 and a2 �≥ b2. Then b − a ∧ b = (0, b2 − a2) > 0, and
p · (b − a ∧ b) = p2(b2 − a2). Let s = w′−w

p·(b−a∧b) = w′−w
p2(b2−a2)

and v = s(b − a ∧ b).

Notice that b−v = (b1, b2−s(b2−a2) = (b1, b2− w′−w
p2

) ∈ Z
2+, because p2 divides

w′ − w. Thus B(p, w) �dso
1 B(p, w′). Similarly, B(p, w) �dso

2 B(p, w′), whence
B(p, w) �dso B(p, w′).

When there are three or more discrete goods, the discretized Walrasian budget set
is not necessarily comparable in the directional set order. Consider X = Z

3+, p =
(1, 1, 1), w = 1, w′ = 2, and B(p, w) = {x ∈ Z

3+ | p · x ≤ 1} and B(p, w′) = {x ∈
Z
3+ | p · x ≤ 2}. Let i = 1, a = (1, 0, 0) ∈ B(p, w), and b = (0, 1, 1) ∈ B(p, w′).

Then a1 > b1, and for s ∈ [0, 1] consider v = s(b−a∧b). It is easy to check that for
s = 0, b− v /∈ B(p, w), for s = 1, a + v /∈ B(p, w′), and for s ∈ (0, 1), b− v /∈ Z

3+.
Thus, B(p, w) ��dso

1 B(p, w′).
This does not imply that other sets in higher dimensions are not comparable in the

directional set order. For example, consider A={(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
and B = {(0, 2, 0), (1, 1, 0), (0, 1, 1), (1, 1, 1)}. In this case, A ��lso B, because for
a = (1, 0, 0) and b = (0, 2, 0), a ∨ b = (1, 2, 0) /∈ B. But it is easy to check that for
i = 1, 2, 3, A �dso

i B, and therefore, A �dso B.
Moreover, it is easy to see that examples 1-1 and 1-2 can be combined to show that

Walrasian budget sets are comparable in the case of finitely many goods, at most two
of which are discrete.

Additional classes of sets comparable in the i-directional set order can be derived
in a manner analogous to Quah (2007). One such class is presented in “Appendix B”.
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Fig. 2 i-Single crossing
property on X

2.2 Objective function

Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N }. The function f
is i-quasisupermodular on X , if for every a, b ∈ X with ai > bi , f (a) ≥ (>)

f (a ∧ b) �⇒ f (a ∨ b) ≥ (>) f (b). In this definition, notice that when a ≥ b, these
conditions are satisfied trivially. Therefore, non-trivial application of this definition
is when ai > bi and a �≥ b. The intuition is the same as in the standard notion of a
quasisupermodular function. In other words, if the trade-off between a and a ∧ b is
favorable (in the sense that f (a) ≥ f (a ∧ b) or f (a) > f (a ∧ b)), then the trade-off
remains favorable at a ∨ b and b, in the same sense. Indeed, recall the definition of
a quasisupermodular function: f is quasisupermodular on X , if for every a, b ∈ X
f (a) ≥ (>) f (a ∧ b) �⇒ f (a ∨ b) ≥ (>) f (b). It is easy to check that for every i ,
f is i-quasisupermodular on X , if, and only if, f is quasisupermodular on X .
Another useful property is the following. Let X be a sublattice ofRN , f : X → R,

and i ∈ {1, 2, . . . , N }. The function f satisfies i-single crossing property on X , if
for every a, b ∈ X with ai > bi , and for every v ∈ {s(b − a ∧ b) | s ∈ R, s ≥ 0}
such that a + v, b + v ∈ X , f (a) ≥ (>) f (b) �⇒ f (a + v) ≥ (>) f (b + v). In this
definition, notice that v ≥ 0, and vi = 0. Moreover, when a ≥ b, these conditions are
satisfied trivially. Therefore, non-trivial application of this property is when ai > bi
and a �≥ b. Figure 2 presents a graphical idea.
Notice that the black arrow is (b−a∧b) and the red arrow is (translated) s(b−a∧b).
Intuitively, this property says that if the trade-off between a and b is initially favorable
(in the sense that f (a) ≥ f (b) or f (a) > f (b)), then it remains favorable when we
move in the direction b − a ∧ b. This intuition is similar to that of the standard single
crossing property. In particular, as v = s(b − a ∧ b) satisfies v ≥ 0 and vi = 0,
we may reformulate i-single crossing property as follows: for every a, b ∈ X with
ai > bi , and for every v ∈ {s(b − a ∧ b) | s ≥ 0} such that a + v, b + v ∈ X ,
f (ai , a−i ) ≥ (>) f (bi , b−i ) �⇒ f (ai , a−i + v−i ) ≥ (>) f (bi , b−i + v−i ). This
reformulation captures the flavor of the standard single crossing property as follows.
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Directional monotone comparative statics 565

For a, b with ai > bi , if f (ai , a−i ) ≥ (>) f (bi , b−i ), then when we increase a−i and
b−i by a nonnegative v−i = [s(b−a∧b)]−i , the trade-off remains favorable. Similarly,
f satisfies directional single crossing property on X , if for every i ∈ {1, 2, . . . , N },
f satisfies i-single crossing property on X .
In order to consider parameterized objective functions, let X be a sublattice of

R
N , (T,�) be a partially ordered set, f : X × T → R, and i ∈ {1, 2, . . . , N }. The

function f satisfies basic i-single crossing property on X × T , if for every a, b ∈ X
with ai > bi , and for every t, t ′ ∈ T with t ′ � t , f (a, t) ≥ (>) f (b, t) �⇒ f (a, t ′) ≥
(>) f (b, t ′).10 The function f satisfies basic directional single crossing property on
X × T , if for every i ∈ {1, 2, . . . , N }, f satisfies basic i-single crossing property
on X × T . For convenience of reference, the word “basic” is used in basic i-single
crossing property on X×T to distinguish this definition from that for i-single crossing
property on X . It is easy to check that if f satisfies basic directional single crossing
property on X × T , then f satisfies (standard) single crossing property in (x; t).11

3 Directional monotone comparative statics

Some of the main results in this paper concern conditions on f that yield monotone
comparative statics, formalized as follows. Let X be a sublattice of RN , (T,�) be a
partially ordered set, f : X×T → R, and i ∈ {1, 2, . . . , N }. The function f satisfies i-
directionalmonotone comparative statics on X×T , if for every A, B subset of X , and
for every t, t ′ in T , A �dso

i B and t � t ′ �⇒ argmaxA f (·, t) �dso
i argmaxB f (·, t ′).

In other words, f satisfies i-directional monotone comparative statics formalizes the
idea that argmaxA f (·, t) is increasing in (A, t) in the i-directional set order. Similarly,
f satisfies directional monotone comparative statics on X × T , if for every i ∈
{1, 2, . . . , N }, f satisfies i-directional monotone comparative statics on X × T . With
these, we have the following results.

3.1 Main results

Theorem 1 Let X be a sublattice of RN , (T,�) be a partially ordered set, f : X ×
T → R, and i ∈ {1, 2, . . . , N }. The following are equivalent.

(1) f satisfies i-directional monotone comparative statics on X × T .
(2) For every t ∈ T , f (·, t) is i -quasisupermodular and satisfies i-single crossing

property on X, and f satisfies basic i-single crossing property on X × T .

Proof Suppose first that (2) holds. Let A �dso
i B and t � t ′. Let a ∈ argmaxA f (·, t),

b ∈ argmaxB f (·, t ′), and ai > bi . Then there is v = s(b−a∧b) for some s ∈ [0, 1]
such that a + v ∈ B and b − v ∈ A.

10 Notice that this is a strong property, but as shown in the characterization in the main theorem, this is
necessary and sufficient for i-directional monotone comparative statics, as defined.
11 For every a, b ∈ X with a ≥ b and for every t, t ′ ∈ T with t ′ � t , f (a, t) ≥ (>) f (b, t) �⇒ f (a, t ′) ≥
(>) f (b, t ′).
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As case 1, suppose s = 1. Then a ∧ b = b − b + a ∧ b = b − v ∈ A, and
a ∨ b = a + s(a ∨ b − a) = a + v ∈ B. As a ∈ argmaxA f (·, t), it follows that
f (a, t) ≥ f (a ∧ b, t), and then i-quasisupermodularity on X implies f (a ∨ b, t) ≥
f (b, t), and then basic i-single crossing property on X × T implies f (a ∨ b, t ′) ≥
f (b, t ′). As b ∈ argmaxB f (·, t ′), it follows that a + v = a ∨ b ∈ argmaxB f (·, t ′).
Therefore, f (a ∨ b, t ′) = f (b, t ′). In particular, f (a ∨ b, t ′) �> f (b, t ′), and again i-
quasisupermodularity implies f (a, t ′) �> f (a∧b, t ′), and then basic i-single crossing
property on X×T implies f (a, t) �> f (a∧b, t). Consequently, f (a, t) ≤ f (a∧b, t),
and it follows that b − v = a ∧ b ∈ argmaxA f (·, t).

As case 2, suppose s < 1. Then a ∈ argmaxA f (·, t) and b−v ∈ A imply f (a, t) ≥
f (b−v, t).Moreover, when looking at the i th component, ai > bi ≥ (b−v)i , because
v = s(b − a ∧ b) ≥ 0. Applying i-single crossing property on X to a and b − v,
with the directional vector w = s

1−s [(b − v) − a ∧ (b − v)] implies f (a + w, t) ≥
f (b − v + w, t). Notice that v = s(b − a ∧ b) = s [(b − v) − a ∧ b] + sv =
s [(b − v) − a ∧ (b − v)]+sv, and therefore, v = s

1−s [(b − v) − a ∧ (b − v)] = w.
In other words, f (a + v, t) ≥ f (b, t), and then basic i-single crossing property on
X × T implies f (a + v, t ′) ≥ f (b, t ′), whence a + v ∈ argmaxB f (·, t ′). Thus,
f (a+v, t ′) = f (b, t ′), whence f (a+v, t ′) �> f (b, t ′), or equivalently, f (a+w, t ′) �>
f (b−v+w, t ′) and then using i-single crossing property on X , f (a, t ′) �> f (b−v, t ′),
and then using basic i-single crossing property on X×T , f (a, t) �> f (b−v, t). Thus,
b − v ∈ argmaxA f (·, t), as desired.

In the other direction, suppose f satisfies i-directional monotone comparative stat-
ics on X × T . Let’s first see that for every t , f (·, t) is i-quasisupermodular on X . Fix
t , and a, b with ai > bi . Form the sets A = {a, a ∧ b} and B = {b, a ∨ b}. Notice that
A �dso

i B. (Consider a ∈ A and b ∈ B. Let v = b − a ∧ b. Then a + v = a ∨ b ∈ B
and b−v = a∧b ∈ A. The other cases are satisfied vacuously, because in those cases
the i th component of the element from A is not greater than the i th component of the
element from B.)

Suppose f (a, t) ≥ f (a∧b, t). Then a ∈ argmaxA f (·, t). Suppose to the contrary
that f (a ∨ b, t) < f (b, t). Then argmaxB f (·, t) = {b}. Applying f satisfies i-
directional monotone comparative statics to (A, t) and (B, t), there is s ∈ [0, 1] such
thata+s(a∨b−a) ∈ argmaxB f (·, t) = {b}. But the i th component ofa + s(a∨b−a)

is ai which is strictly greater than bi , a contradiction. Therefore, f (a∨b, t) ≥ f (b, t),
as desired.

Now suppose f (a, t) > f (a ∧ b, t). Then {a} = argmaxA f (·, t). Suppose to
the contrary that f (a ∨ b, t) ≤ f (b, t). Then b ∈ argmaxB f (·, t). By i-directional
monotone comparative statics, there is s ∈ [0, 1] such that b − s(b − a ∧ b) ∈
argmaxA f (·, t) = {a}. But the i th component of b − s(b − a ∧ b) is bi which is
strictly less than ai , a contradiction. Therefore, f (a ∨ b, t) > f (b, t), as desired.

Let’s now check that for every t , f (·, t) satisfies i-single crossing property on X . Fix
t , and a, b ∈ X with ai > bi . Fix v = s(b−a∧b)with s ≥ 0 such that a+v, b+v ∈ X .
Before we proceed further, consider the following calculations. Let y = b+v, and let
u = y−a∧ y = a∨ y−a. Notice that u = y−a∧ y = y−a∧b = (1+s)(b−a∧b).
This implies that v = s(b − a ∧ b) = s

1+s u. Let s
′ = s

1+s ∈ [0, 1) and write v = s′u.
In particular, y − s′(y − a ∧ y) = y − v, and a + s′(a ∨ y − a) = a + v. Now
let A = {a, y − v} and B = {y, a + v}. Then A �dso

i B, because for a ∈ A, and
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y ∈ B, there is s′ ∈ [0, 1], as above such that a + s′(a ∨ y − a) = a + v ∈ B and
y − s′(y − a ∧ y) = y − v ∈ A. The other comparisons are vacuously true, because
when considering the i th components, (y − v)i ≤ yi = bi < ai ≤ (a + v)i .

Suppose f (a, t) ≥ f (b, t) = f (y − v, t). Then a ∈ argmaxA f (·, t). Suppose to
the contrary that f (a+v, t) < f (b+v, t) = f (y, t). Then {y} = argmaxB f (·, t). As
f satisfies i-directionalmonotone comparative statics on X×T , there is ŝ ∈ [0, 1] such
that a + ŝ(a ∨ y − a) ∈ argmaxB f (·, t) = {y}. But considering the i th components,
(a + ŝ(a ∨ y − a))i = ai > bi = yi , a contradiction. Thus f (a + v, t) ≥ f (b+ v, t),
as desired.

Now suppose f (a, t) > f (b, t) = f (y − v, t). Then {a} = argmaxA f (·, t).
Suppose to the contrary that f (a + v, t) ≤ f (b + v, t) = f (y, t). Then y ∈
argmaxB f (·, t). As f satisfies i-directional monotone comparative statics, there is
ŝ ∈ [0, 1] such that y − ŝ(y − a ∧ y) ∈ argmaxA f (·, t) = {a}. But considering
the i th components, (y − ŝ(y − a ∧ y))i = yi = bi < ai , a contradiction. Thus
f (a + v, t) > f (b + v, t), as desired.
Finally, let’s check that f satisfies basic i-single crossing property in X × T .

Fix a, b with ai > bi , and fix t ′ � t . Let A = {a, b}. Then A �dso
i A. Suppose

f (a, t) ≥ f (b, t). Then a ∈ argmaxA f (·, t). As f satisfies i-directional monotone
comparative statics on X × T , there is s ∈ [0, 1] such that a + v = a + s(b − a ∧
b) ∈ argmaxA f (·, t ′). Notice that (a + s(b − a ∧ b))i = ai > bi , and therefore,
a + v = a, whence f (a, t ′) ≥ f (b, t ′). Now suppose f (a, t) > f (b, t). Then
{a} = argmaxA f (·, t). Suppose to the contrary that f (a, t ′) ≤ f (b, t ′). Then b ∈
argmaxA f (·, t ′). By i-directional monotone comparative statics, there is s ∈ [0, 1]
such that b − v = b − s(b − a ∧ b) ∈ argmaxA f (·, t) = {a}, a contradiction. Thus,
f (a, t ′) > f (b, t ′). ��
This proof uses the same framework as in Milgrom and Shannon (1994). It shows
how their approach can be used to extend Quah (2007) without using the additional
apparatus in Quah (2007). Some implications of this theorem are formalized in the
following corollaries.

Corollary 1 Let X be a sublattice of RN , (T,�) be a partially ordered set, and
f : X × T → R. The following are equivalent.

(1) f satisfies directional monotone comparative statics on X × T .
(2) For every t ∈ T , f (·, t) is quasisupermodular and satisfies directional single

crossing property on X, and f satisfies basic directional single crossing property
on X × T .

Proof For this equivalence, notice that f satisfies directional monotone comparative
statics on X×T means that for every i ∈ {1, 2, . . . , N }, f satisfies i-directionalmono-
tone comparative statics on X ×T , which is equivalent to, for every i ∈ {1, 2, . . . , N },
for every t ∈ T , f (·, t) is i-quasisupermodular and satisfies i-single crossing property
on X , and f satisfies basic i-single crossing property on X × T , and this is equivalent
to (2). ��
Corollary 2 Let X be a sublattice of RN , (T,�) be a partially ordered set, f :
X × T → R, and i ∈ {1, . . . , N }.
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(1) If f satisfies i-directional monotone comparative statics on X × T , then

A �dso
i B and t � t ′ ⇒ argmaxA f (·, t) �wso

i argmaxB f (·, t ′).
(2) If f satisfies directional monotone comparative statics on X × T , then

A �dso B and t � t ′ ⇒ argmaxA f (·, t) �wso argmaxB f (·, t ′).

Proof Statement (1) follows from relations between i-directional set order and
i-weak lattice set order (proposition 1). For statement (2), suppose f satisfies
directional monotone comparative statics on X × T . Consider A �dso B and
t � t ′. Then for every i ∈ {1, 2, . . . , N }, A �dso

i B, and by the theorem,
for every i ∈ {1, 2, . . . , N }, argmaxA f (·, t) �dso

i argmaxB f (·, t ′), whence
argmaxA f (·, t) �dso argmaxB f (·, t ′), and consequently, argmaxA f (·, t) �wso

argmaxB f (·, t ′). ��

In other words, under (1), f satisfies i-directional monotone comparative statics
on X × T implies that when A �dso

i B and t � t ′, then no matter which maximizer
of f (·, t) we take from A, we can find a maximizer of f (·, t ′) from B that is larger in
the i th component, and symmetrically, no matter which maximizer of f (·, t ′) we take
from B, we can find amaximizer of f (·, t) from A that is smaller in the i th component.
In particular, when the set of maximizers is a singleton, we conclude that the solution
to the optimization problem is increasing in the i th component, in the standard order
in the real numbers.12

Similarly, f satisfies directional monotone comparative statics on X × T implies
that when A �dso B and t � t ′, then no matter which maximizer of f (·, t) we take
from A, we can find a larger maximizer of f (·, t ′) from B, and symmetrically, no
matter which maximizer of f (·, t ′) we take from B, we can find a smaller maximizer
of f (·, t) from A. In particular, when the set of maximizers is a singleton, we conclude
that the solution to the optimization problem is increasing in the standard vector order
in RN .

These results are useful to exhibit monotone increasing selections. Of course, in
the case of unique maximizers, the corollary above provides increasing selections. To
consider the case of multiple maximizers, let πi : RN → R be the i th projection. Let
O(A, t) = argmaxA f (·, t) be the non-empty and compact13 set of maximizers (or
optimizers) at (A, t) and consider a selection (A, t) �→ x(A, t) ∈ O(A, t). A selection
x(A, t) is an i-directional monotone selection, if for every A �dso

i B and t � t ′,
πi (x(A, t)) ≤ πi (x(B, t ′)). Extremal selections are defined as follows. For (A, t),
let xi (A, t) = inf πi (O(A, t)) ∈ πi (O(A, t)) and let xi (A, t) = supπi (O(A, t)) ∈
πi (O(A, t)). These are well defined, because O(A, t) is compact and the projection
is continuous. The i-upper extremal selection is defined by (any) x(A, t) ∈ O(A, t)

12 Notice that the results here are different from Spence–Mirrlees-type conditions, as discussed inMilgrom
and Shannon (1994). Those results use path-connected indifference sets and additional assumptions about
richly parameterized families of functions, neither of which is assumed here.
13 This is guaranteedwhen the constraint set is compact and the objective function is upper semi-continuous,
as usual.
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such that πi (x(A, t)) = xi (A, t) and the i -lower extremal selection is defined by (any)
x(A, t) ∈ O(A, t) such that πi (x(A, t)) = xi (A, t).

Corollary 3 Let X be a sublattice of RN , (T,�) be a partially ordered set, f :
X ×T → R, and i ∈ {1, . . . , N }. Suppose for every (A, t),O(A, t) is non-empty and
compact.
If f satisfies i-directional monotone comparative statics, then the i-upper and i-lower
extremal selections are both i-directional monotone selections.

Proof Consider the case for the i-upper extremal selection, x(A, t), the other case
being similar. Suppose A �dso

i B and t � t ′. Then x(A, t) ∈ O(A, t) is
such that πi (x(A, t)) = supπi (O(A, t)) = xi (A, t). By i-directional monotone
comparative statics, there is x ′ ∈ O(B, t ′) such that xi (A, t) ≤ x ′

i . Moreover,
x ′
i ≤ supπi (O(B, t ′)) = xi (B, t ′), yielding πi (x(A, t)) = xi (A, t) ≤ xi (B, t ′) =

πi (x(B, t ′)). ��
The technique in this corollary is not directly applicable to show monotone selec-

tions in all directions simultaneously. The main limitation is that the set of maximizers
is not necessarily a complete sublattice; in general, supO(A, t) /∈ O(A, t).14 In this
case, using theorem 1 and induction, monotone selections in the partial order on R

N

can still be exhibited for monotone sequences of parameters, say (An, tn)∞n=0 with
m ≤ n ⇒ Am �dso An and tm � tn , and more generally, using transfinite induction,
for chains of parameters indexed by a well-ordered set.

The framework in theorem 1 can be specialized naturally to the case of non-
parameterized objective functions. Let X be a sublattice of RN , f : X → R, and
i ∈ {1, 2, . . . , N }. The function f satisfies i-directional monotone comparative stat-
ics on X , if for every A, B subset of X , A �dso

i B �⇒ argmaxA f �dso
i argmaxB f .

In other words, f satisfies i-directional monotone comparative statics on X formalizes
the idea that argmaxA f (·) is increasing in A in the i-directional set order.

Corollary 4 Let X be a sublattice of RN , f : X → R, and i ∈ {1, . . . , N }. The
following are equivalent.

(1) f satisfies i-directional monotone comparative statics on X
(2) f is i -quasisupermodular and satisfies i-single crossing property on X

Proof Apply theorem with singleton T = {t}. ��
Similarly, say that f satisfies directional monotone comparative statics on X , if

for every i ∈ {1, 2, . . . , N }, f satisfies i-directional monotone comparative statics on
X . It follows immediately that f satisfies directional monotone comparative statics
on X , if, and only if, f is quasisupermodular and satisfies directional single crossing
property on X .

When X is a convex sublattice ofRN , the corresponding result inQuah (2007) shows
that f satisfies i-directional monotone comparative statics on X , if, and only if, f is
Ci -quasisupermodular. This yields the equivalence that f is Ci -quasisupermodular, if,

14 Requirements of this type also arise in, for example, Smithson (1971).
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and only if, f is i-quasisupermodular and satisfies i-single crossing property on X .15

For completeness, a direct proof of this equivalence is provided in the appendix.
Theorem 1 can be used to inquire separately about comparative statics with respect

to the parameter in the objective function, holding fixed the constraint set. In this case,
the condition i-single crossing property on X may be dropped, as follows.

Corollary 5 Let X be a sublattice of RN , A be a subset of X, (T,�) be a partially
ordered set, f : X × T → R, and i ∈ {1, 2, . . . , N }.
If f is i -quasisupermodular on X and satisfies basic i-single crossing property on
X × T , then t � t ′ �⇒ argmaxA f (·, t) �dso

i argmaxA f (·, t ′).
Proof Follow the proof in the corresponding direction in theorem 1, setting s = 0 and
note that i-directional set order is reflexive. ��

In this corollary, A is an arbitrary subset of X . Therefore, under the conditions
in this corollary, for an arbitrary constraint set A, as long as the set of maximizers
is non-empty, i-directional monotone comparative statics holds with respect to the
parameter.16

Finally, the ordinal nature of the conditions in theorem 1 implies that i-directional
(and directional) monotone comparative statics property is preserved under increasing
transformations of the objective function. This is useful in applications.

Corollary 6 Let X be a sublattice of RN , (T,�) be a partially ordered set, f, g :
X × T → R, and i ∈ {1, 2, . . . , N }. Suppose g is a strictly increasing transformation
of f .17

f satisfies i-directional (respectively, directional) monotone comparative statics on
X × T , if, and only if, g satisfies i-directional (respectively, directional) monotone
comparative statics on X × T .

Proof If f satisfies i-directional monotone comparative statics on X × T , then f is
i-quasisupermodular and satisfies i-single crossing property on X , and satisfies basic
i-single crossing property on X × T . As these properties are ordinal, g satisfies these
as well, and another application of the theorem yields the result. The other direction is
similar. Moreover, the proof for directional monotone comparative statics is similar.

��

3.2 Sufficient conditions

Quah (2007) shows that when X is a convex sublattice (a sublattice that is also a
convex set) of RN , if f : X → R is supermodular and i-concave, then argmaxA f is
increasing in A in the Ci -flexible set order. In particular, if f is supermodular and con-
cave, then this condition is satisfied for every i . This is useful, because supermodular
and concave are conditions that are easy to check.

15 A similar characterization follows for f is C-quasisupermodular.
16 Of course, if the set of maximizers is empty, i-directional monotone comparative statics holds trivially.
17 That is, there is strictly increasing h : R → R such that g = h ◦ f , as usual.
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We show that these conditions are also sufficient for f to satisfy i-single cross-
ing property on X . Therefore, we can use the same conditions here, apply them to
some additional potentially discrete problems, and extend them naturally to include
parameterized objective functions, as follows.

Let X be a sublattice of RN , f : X → R, and u ∈ R
N , u �= 0. The function f is

(relatively) concave in direction u, if for every a ∈ X , the function f (a + su), when
viewed as a real-valued function of a real variable s, is a concave function relative to
its domain in the real numbers. It is easy to check that f is (relatively) concave on
X ,18 if, and only if, for every u ∈ R

N , u �= 0, f is (relatively) concave in direction u.
For i ∈ {1, 2, . . . , N }, f is (relatively) i-concave on X , if for every u ∈ R

N\{0}
with ui = 0, f is (relatively) concave in direction u, and f is (relatively) directionally
concave on X , if for every i ∈ {1, 2, . . . , N }, f is (relatively) i-concave on X . Notice
that if f is (relatively) concave on X , then f is directionally concave on X .

Theorem 2 Let X be a sublattice of RN , (T,�) be a partially ordered set, f : X ×
T → R, and i ∈ {1, 2, . . . , N }.
If for every t ∈ T , f (·, t) is i -supermodular and (relatively) i-concave on X, and
f satisfies basic i-single crossing property on X × T , then f satisfies i-directional
monotone comparative statics on X × T .

Proof Suppose for every t ∈ T , f (·, t) is i-supermodular and (relatively) i-concave
on X , and f satisfies basic i-single crossing property on X ×T . It is sufficient to show
that for every t ∈ T , f (·, t) satisfies i-single crossing property on X and then invoke
theorem 1. To do so, fix t ∈ T , a, b ∈ X with ai > bi , and v = s(b − a ∧ b) with
s ≥ 0 such that a + v, b + v ∈ X .

Consider the following computations. Let b′ = b+v, a′ = a+v and u = a∨b′−a′.
It is easy to check that (a ∨ b′) − v = a ∨ (b + v) − v = a ∨ b, and therefore,
u = a ∨ b − a = b − a ∧ b. Consequently, v = su. Moreover, notice that ui = 0 and
a ∨ b′ = a′ + u = a + (1 + s)u.

Now, i-concavity in direction u implies that f (a′, t) − f (a ∨ b′, t) = f (a ∨ b′ −
u, t) − f (a ∨ b′, t) ≥ f (a ∨ b′ − u − su, t) − f (a ∨ b′ − su, t) = f (a, t) − f (a ∨
b, t), and i-supermodularity implies f (a ∨ b′, t) − f (b′, t) ≥ f (a ∨ b, t) − f (b, t).
Consequently, f (a′, t)− f (b′, t) = f (a′, t)− f (a∨b′, t)+ f (a∨b′, t)− f (b′, t) ≥
f (a, t) − f (a ∨ b, t) + f (a ∨ b, t) − f (b, t) = f (a, t) − f (b, t). It follows that
f (a, t) ≥ (>) f (b, t) ⇒ f (a′, t) ≥ (>) f (b′, t), as desired. ��
The corollaries below follow immediately.

Corollary 7 Let X be a sublattice of RN , (T,�) be a partially ordered set, and
f : X × T → R.
If for every t ∈ T , f (·, t) is supermodular and (relatively) directionally concave on
X, and f satisfies basic directional single crossing property on X×T , then f satisfies
directional monotone comparative statics on X × T .

18 With the standard definition, f (αx + (1 − α)y) ≥ α f (x) + (1 − α) f (y), with α ∈ [0, 1] and with the
quantifier “relative” applied to mean the points are in the domain of f , as usual.
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Proof The hypothesis implies that for every i ∈ {1, . . . , N }, for every t ∈ T , f (·, t) is
i-supermodular and (relatively) i-concave on X , and f satisfies basic i-single crossing
property on X × T , and the theorem then shows that for every i ∈ {1, . . . , N }, f
satisfies i-directional monotone comparative statics on X × T , as desired. ��
Corollary 8 Let X be a sublattice of RN and f : X → R.

(1) If f is i -supermodular and (relatively) i-concave on X, then f satisfies i-
directional monotone comparative statics on X.

(2) If f is supermodular and (relatively) directionally concave on X, then f satisfies
directional monotone comparative statics on X.

(3) If f is supermodular and (relatively) concave on X, then f satisfies directional
monotone comparative statics on X.

Proof Apply the previous theorem with singleton T = {t}. ��
Moreover, corollary 5 implies that in each of these sufficient conditions, if g is

a strictly increasing transformation of f , then g also satisfies the corresponding i-
directional (or directional) monotone comparative statics.

3.3 Differential conditions

An appealing feature of the single crossing properties defined here is that they are
closely aligned to their counterparts in the standard theory. In particular, they pos-
sess natural extensions to cardinal properties and can also be formulated in terms of
differential conditions in a manner similar to the standard case.

Consider the following cardinal property naturally suggested by the i-single cross-
ing property on X . Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N }.
The function f satisfies i-increasing differences on X , if for every a, b ∈ X with
ai > bi , and for every v ∈ {s(b − a ∧ b) | s ≥ 0} such that a + v, b + v ∈ X ,
f (a) − f (b) ≤ f (a + v) − f (b + v). As earlier, when a ≥ b, v = 0, and this con-
dition is satisfied trivially. Non-trivial application of this definition is when ai > bi
and a �≥ b. Similarly, f satisfies directional increasing differences on X , if for every
i ∈ {1, 2, . . . , N }, f satisfies i-increasing differences on X . It is easy to check that if
f satisfies i-increasing differences on X , then f satisfies i-single crossing property
on X , and it follows immediately that if f satisfies directional increasing differences
on X , then f satisfies directional single crossing property on X .

Recall that in the standard theory, f satisfies (standard) increasing differences on
R

N , if, and only if, f satisfies increasing differences for every pair of component
indices i, j with i �= j . Thus, f satisfies increasing differences on R

N , if, and only
if, f is supermodular. Moreover, assuming differentiability, f is supermodular, if,

and only if, every pair of cross partials is nonnegative (for every i �= j, ∂2 f
∂xi ∂x j

≥ 0).
The notion of i-increasing differences can be characterized similarly, using directional
derivatives, as follows.

Notice that for u ∈ R
N , if we let a = b+ u, then b− a ∧ b = (b− a)+ = (−u)+.

Say that a function f : X → R satisfies i-increasing differences (u) on X , if for every
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Fig. 3 Cross partial directional
derivatives

b ∈ X, u ∈ R
N with ui > 0, for every s ≥ 0, such that b + u, b + s(−u)+, b + u +

s(−u)+ ∈ X , f (b + u) − f (b) ≤ f (b + u + s(−u)+) − f (b + s(−u)+). Notice
that for u ≥ 0, (−u)+ = 0, and this condition is satisfied trivially. Therefore, non-
trivial application of this definition is when ui > 0 and u �≥ 0. It is easy to check
that f satisfies i-increasing differences on X , if, and only if, f satisfies i-increasing
differences (u) on X . This recasts i-increasing differences in terms of differences in
f based on changes in direction u (where ui > 0). Figure 3 presents the graphical
intuition.

The graphical intuition suggests a potential “cross partial” characterization based
on directions u and (−u)+. This is achieved as follows. Let X be a sublattice of RN ,
f : X → R, and i ∈ {1, 2, . . . , N }. Say that f satisfies i-increasing differences (*)
on X , if for every b ∈ X, u ∈ R

N with ui > 0, and for every σ ≥ 0, f (b + σu +
s(−u)+) − f (b + s(−u)+) is (weakly) increasing in s. As earlier, we consider only
points b + σu + s(−u)+, b + s(−u)+ ∈ X . As shown in “Appendix B”, f satisfies
i-increasing differences (u) on X , if, and only if, f satisfies i-increasing differences
(*) on X .

These formulations show that i-increasing differences on X is equivalent to i-
increasing differences (*) on X . A benefit of this equivalence is that the condition
i-increasing differences (*) on X has the same mathematical structure as the one used
to show that a supermodular function can be characterized by the sign of its cross
partials (confer Topkis 1978). The only difference is that this definition uses a more
general vector u whereas supermodularity uses the basis vectors. This connection can
be seen more clearly as follows.

Recall the definition of a directional derivative. Let X be an open set in RN , b ∈ X
and u ∈ R

N , and suppose f : X → R is continuously differentiable. The directional
derivative of f at b in the direction u is Du f (b) = limσ→0

f (b+σu)− f (b)
σ

. Recall from
the standard theory of supermodular functions (confer Topkis 1978, page 310, for the
submodular case) that if ui is the i th basis vector, then a function f is supermodular
on X (assuming X is an open set and a sublattice in RN , and f is twice continuously
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differentiable), if, and only if, for all b ∈ X , for all i, j ∈ {1, 2, . . . , N } with i �= j ,
and for all σ ≥ 0, f (b + σui ) − f (b) is (weakly) increasing in the j th component
(that is, in direction u j ). This is equivalent to: for all b ∈ X , for all j �= i , Dui f (b)
is (weakly) increasing in the j th component (that is, in direction u j ), which is further
equivalent to: for all b ∈ X , for all j �= i , Du j Dui f (b) ≥ 0. Using the same logic
yields the following result.

Proposition 2 Let X be an open set and a sublattice of RN , f : X → R be twice
continuously differentiable, and i ∈ {1, 2, . . . , N }. The following are equivalent.

(1) f satisfies i-increasing differences on X.
(2) For every b ∈ X, u ∈ R

N with ui > 0, D(−u)+ Du f (b) ≥ 0.

Proof We know that f satisfies i-increasing differences on X ⇐⇒ f satisfies i-
increasing differences (*) on X . In other words, (1) is equivalent to: for every b ∈
X, u ∈ R

N with ui > 0, and for every σ ≥ 0, f (b+σu+ s(−u)+)− f (b+ s(−u)+)

is (weakly) increasing in s (that is, in the direction (−u)+). Using the fundamental
theorem of calculus, this is equivalent to: ∀b ∈ X,∀u ∈ R

N with ui > 0, Du f (b +
s(−u)+) is (weakly) increasing in s (that is, in direction (−u)+). This, in turn, is
equivalent to ∀b ∈ X,∀u ∈ R

N with ui > 0, D(−u)+ Du f (b) ≥ 0. ��
The second statement can be given a convenient name in terms of nonnegative

cross derivatives, as follows. Let X be an open set and a sublattice of RN , f : X →
R be twice continuously differentiable, and i ∈ {1, 2, . . . , N }. The function f has
nonnegative i-cross derivative property on X , if for every b ∈ X, u ∈ R

N with ui > 0,
D(−u)+ Du f (b) ≥ 0, and f has nonnegative directional cross derivative property on
X , if for every i ∈ {1, 2, . . . , N }, f has nonnegative i-cross derivative property on X .
This proposition shows that i-increasing differences on X is equivalent to nonnegative
i-cross derivative property on X , and it follows immediately thatdirectional increasing
differences on X is equivalent to nonnegative directional cross derivative property on
X .

Similarly, consider the following cardinal property naturally suggested by the basic
i-single crossing property on X ×T . Let X be a sublattice ofRN , (T,�) be a partially
ordered set, f : X × T → R, and i ∈ {1, 2, . . . , N }. The function f satisfies basic
i-increasing differences on X × T , if for every a, b ∈ X with ai > bi , and for every
t, t ′ ∈ T with t � t ′, f (a, t) − f (b, t) ≤ f (a, t ′) − f (b, t ′). The function f satisfies
basic directional increasing differences on X × T , if for every i ∈ {1, 2, . . . , N },
f satisfies basic i-increasing differences on X × T . As earlier, it is easy to check
that if f satisfies basic i-increasing differences on X × T , then f satisfies basic i-
single crossing property on X ×T , and it follows immediately that if f satisfies basic
directional increasing differences on X × T , then f satisfies basic directional single
crossing property on X × T . The following result now obtains easily.

Proposition 3 Let X be an open set and a sublattice of RN , T be an open subset of
R

M, f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N }.
The following are equivalent.

(1) f satisfies basic i-increasing differences on X × T .
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(2) For every b ∈ X, u ∈ R
N with ui > 0, Dt Du f (b, t) ≥ 0.

Proof It is easy to check that f satisfies basic i-increasing differences on X × T ⇐⇒
for every b ∈ X, u ∈ R

N with ui > 0, f (b + u, t) − f (b, t) is (weakly) increasing
in t . This is equivalent to: ∀b ∈ X,∀u ∈ R

N with ui > 0, Du f (b, t) is (weakly)
increasing in t , and this is further equivalent to: ∀b ∈ X,∀u ∈ R

N with ui > 0,
Dt Du f (b, t) ≥ 0. ��

The second statement can be given a convenient name in terms of nonnegative cross
derivatives, as follows. Let X be an open set and a sublattice ofRN , T be an open subset
of RM , f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N }.
The function f has nonnegative basic i-cross derivative property on X × T , if for
every b ∈ X, u ∈ R

N with ui > 0, Dt Du f (b, t) ≥ 0, and f has nonnegative basic
directional cross derivative property on X × T , if for every i ∈ {1, 2, . . . , N }, f
has nonnegative basic i-cross derivative property on X . The above proposition shows
that basic i-increasing differences on X × T is equivalent to nonnegative basic i-
cross derivative property on X × T , and it follows immediately that basic directional
increasing differences on X × T is equivalent to basic nonnegative directional cross
derivative property on X × T . We have the following result.

Theorem 3 Let X be an open set and a sublattice of RN , T be an open subset of
R

M, f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N }. If
for every t ∈ T , f (·, t) is i -supermodular19 and has nonnegative i-cross derivative
property on X, and f has nonnegative basic i-cross derivative property on X × T ,
then f satisfies i-directional monotone comparative statics on X × T .

Proof The hypothesis in this statement, combinedwith the propositions above, implies
that f satisfies basic i-single crossing property on X×T , and for every t ∈ T , f (·, t) is
i-quasisupermodular and satisfies i-single crossing property on X , and the conclusion
follows from an application of theorem 1. ��

It follows immediately that if for every t ∈ T , f (·, t) is supermodular and has
nonnegative directional cross derivative property on X , and f has nonnegative basic
directional cross derivative property on X × T , then f satisfies directional monotone
comparative statics on X × T .

The following corollaries help specialize this theorem to the case of comparative
statics with respect to A or to t separately.

Corollary 9 Let X be an open set and a sublattice of RN , f : X → R is twice
continuously differentiable, and i ∈ {1, 2, . . . , N }.
If f is i -supermodular and has nonnegative i-cross derivative property on X, then f
satisfies i-directional monotone comparative statics on X.

Proof Apply the theorem with singleton T = {t}. ��

19 For every a, b ∈ X with ai > bi , f (a, t) − f (a ∧ b, t) ≤ f (a ∨ b, t) − f (b, t).
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This corollary implies immediately that if f is supermodular and has nonnegative
directional cross derivative property on X , then f satisfies directional monotone
comparative statics on X .

In order to understand more concretely the nonnegative i-cross derivative property
on X , let’s compute D(−u)+ Du f (b). For convenience, we use subscripts for partial

derivatives. Notice that Du f (b) = ∑N
j=1 f j (b)u j , where f j (b) ≡ ∂ f

∂x j
(b) and u j is

the j th component of u. Therefore,

D(−u)+ Du f (b) =
N∑

k=1

N∑

j=1

fk, j (b)u j (−u)+,k .

Here fk, j (b) is the k, j th cross partial of f evaluated at b, u j is the j th component of
u, and (−u)+,k is the kth component of (−u)+. This is easier to understand if we let
L = {� | u� < 0}. In this case,

(−u)+,k =
{−uk if k ∈ L , and

0 if k /∈ L ,

and therefore,

D(−u)+ Du f (b) =
N∑

k=1

N∑

j=1

fk, j (b)u j (−u)+,k

=
∑

k∈L

N∑

j=1

fk, j (b)u j (−uk)

=
∑

k∈L

∑

j /∈L
fk, j (b)u j (−uk) +

∑

k∈L

∑

j∈L
fk, j (b)u j (−uk)

=
∑

k∈L

∑

j /∈L
fk, j (b)u j (−uk) −

∑

k∈L

∑

j∈L
fk, j (b)(−u j )(−uk)

=
∑

k∈L

∑

j /∈L
fk, j (b)u j (−uk) −

[
w′

L D2 fL(b) wL

]
,

where fL is the restriction of f to the components in L , D2 fL(b) is the second
derivative of fL evaluated at b, wL is the restriction of (−u)+ to L , and w′

L is the
transpose of wL .

Notice that for k ∈ L , −uk > 0 and for j /∈ L , u j ≥ 0. In this case, the sign
of the term fk, j (b)u j (−uk) is determined by the sign of the cross partial fk, j (b).
Similarly, for k ∈ L , −uk > 0 and for j ∈ L , u j < 0. In this case, the sign of
the term fk, j (b)u j (−uk) is determined by the sign of − fk, j (b). In particular, if f
is supermodular, then the first term,

∑
k∈L

∑
j /∈L fk, j (b)u j (−uk) ≥ 0. Moreover, if

f is concave in direction (−u)+, then the matrix of second derivatives is negative
semidefinite, and therefore, the second term, − [

w′
L D2 fL(b) wL

] ≥ 0.

123



Directional monotone comparative statics 577

Corollary 10 Let X be an open set and a sublattice of RN , T be an open subset of
R

M, f : X × T → R be twice continuously differentiable, and i ∈ {1, 2, . . . , N }.
If for every t ∈ T , f (·, t) is i -supermodular on X, and f has nonnegative basic i-cross
derivative property on X × T , then f satisfies i-directional monotone comparative
statics on X × T .

Proof The conditions in this statement imply that for every t ∈ T , f (·, t) is i-
quasisupermodular on X , and f satisfies basic i-single crossing property on X × T ,
and the conclusion follows from an application of corollary 4. ��

In order to understand more concretely the nonnegative basic i-cross deriva-
tive property on X × T , let’s compute Dt Du f (b, t). Recall that Du f (b, t) =∑N

j=1 fx j (b, t)u j , where fx j (b, t) ≡ ∂ f
∂x j

(b, t) and u j is the j th component of u.
Therefore,

Dt Du f (b, t) =
⎡

⎣
N∑

j=1

ft1,x j (b, t)u j , · · · ,

N∑

j=1

ftM ,x j (b, t)u j

⎤

⎦ ,

where ftm ,xn (b, t) ≡ ∂2 f
∂tm∂xn

(b, t), for m = 1, . . . , M , n = 1, . . . , N . This may be
written in standard matrix form as

Dt Du f (b, t) =
⎡

⎢
⎣

ft1,x1(b, t) · · · ft1,xN (b, t)
...

...

ftM ,x1(b, t) · · · ftM ,xN (b, t)

⎤

⎥
⎦

⎡

⎢
⎣

u1
...

uN

⎤

⎥
⎦ .

A useful sufficient condition for nonnegative basic i-cross derivative property on
X × T is the following. Let X be an open set and a sublattice of RN , T be an
open subset of RM , f : X × T → R be twice continuously differentiable, and
i ∈ {1, 2, . . . , N }. If for some subset M ′ of {1, . . . , M}, ftm ,xi (b, t) ≥ 0 for m ∈
M ′, and ftm ,x j (b, t) = 0 otherwise, then f has nonnegative basic i-cross derivative
property on X × T . To see that this is true, fix u ∈ R

N with ui > 0, and notice
that the mth component of Dt Du f (b, t) is ftm ,xi (b, t)ui ≥ 0 for m ∈ M ′ and zero
otherwise. This condition retains the flavor of standard increasing differences in (x; t)
by working with nonnegative cross partials, and it is useful in applications, as detailed
in the next section.

4 Examples

The usefulness of these results is highlighted with several applications in consumer
theory, producer theory, and game theory, including applications to consumer demand,
theory of competition, environmental emissions standards, labor-leisure decisionswith
discrete choices, and auctions.
Example 2 (Consumer demand) Consider a consumption space X that is a sublattice
of RL+, a partially ordered parameter space (T,�), a utility function u : X × T → R
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and a subset A of X , and consider the utility maximization problem, maxA u(·, t).
When utility is continuous on X and A is a non-empty compact set, this problem has
a solution, termed consumer demand. Let’s denote it by D(A, t) = argmaxA u(·, t).
Theorem 1 provides conditions characterizing when D(A, t) is increasing in (A, t)
in the i-directional set order and in the directional set order. Some special cases are
notable.
Example 2-1 (Normal Walrasian demand) Let’s first replicate and extend the result on
normal demand in Quah (2007), where parameters in the utility function are excluded.
Let the consumption space be X = R

L+ or X = R
L++, a price vector p ∈ R

L++,
wealth w > 0, and let B(p, w) = {x ∈ X | p · x ≤ w} be the Walrasian budget set
and let D(p, w) = argmaxB(p,w) u(·) be Walrasian demand. We know that w ≤
w′ ⇒ (∀i) B(p, w) �dso

i B(p, w′). Say that demand for good i is normal, if w ≤
w′ ⇒ D(p, w) �dso

i D(p, w′). In this setting, the result on sufficient conditions
implies that if u is i-supermodular and i-concave, then Walrasian demand for good i
is normal, and if u is supermodular and directionally concave, thenWalrasian demand
for all goods is normal, replicating the result in Quah (2007). Moreover, corollary 5
implies that strictly increasing transformations of u yield the same conclusions. This
implies, for example, that standard cases such as general Cobb-Douglas preferences,20

constant elasticity of substitution, and taking logarithms of standard preferences are all
admissible. Furthermore, we can go beyondQuah (2007) to allow for up to two discrete
goods (confer the conditions in example 1-2) and obtain the same result. This can be
helpful in applied work, which may need to assume only one or two discrete goods.
Example 2-2 (Law of demand) Our techniques may be used to provide a direct deriva-
tion of a version of the law of demand. For each good i , say that good i satisfies law of
demand, if p′

i < pi ⇒ D(p, w) �dso
i D(p′, w), where, p′ is the price system formed

by replacing pi in p by p′
i > 0. This formalizes the statement that when price of good

i goes down, demand for good i goes up.
Wecan show thatwhenprice of good i goes down, theWalrasianbudget set increases

in the i-directional set order: p′
i < pi ⇒ B(p, w) �dso

i B(p′, w). Fix a ∈ B(p, w),
b ∈ B(p′, w) with ai > bi . As case 1, suppose p′ · (a∨b) ≤ w. In this case, let s = 1
and so, v = b−a∧b. Then p · (b−v) ≤ p ·a ≤ w and p′ · (a+v) = p′ ·a∨b ≤ w.
As case 2, suppose p · b ≤ w. In this case, let s = 0, and so, v = 0. This implies
that p · (b − v) ≤ w and p′ · (a + v) ≤ p · a ≤ w. In the remaining cases, suppose
p′ · (a∨ b) > w and p · b > w. Notice that w−p′·a

p′·(b−a∧b) = w−p′·a
p′·(a∨b)−p′·a ≤ 1 by the first

condition, and p·b−w
p·(b−a∧b) ≥ 0 by the second condition. Moreover, p · (b − a ∧ b) =

p′ · (b − a ∧ b), because p and p′ differ only in the i th component and b − a ∧ b is
zero in the i th component. Furthermore,

p · b + p′ · a = pibi + p−i · b−i + p′
i ai + p−i · a−i

≤ pibi + w − p′
i bi + p′

i ai + w − piai
< w + w,

20 We don’t need the restriction that the sum of all-but-one of the exponential parameters is less than or
equal to 1, as mentioned in Quah (2007), p. 406, footnote 7.
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where the strict inequality follows from (pi − p′
i )(bi −ai ) < 0. Consequently, p ·b−

w < w − p′ · a. Let s ∈
[

p·b−w
p·(b−a∧b) ,

w−p′·a
p′·(b−a∧b)

]
⊂ [0, 1], and let v = s(b − a ∧ b).

Then p′ ·(a+v) ≤ p′ ·a+ w−p′·a
p′·(b−a∧b) [p′ ·(b−a∧b)] = w, whence a+v ∈ B(p′, w),

and p · (b − v) ≤ p · b − p·b−w
p·(b−a∧b) [p · (b − a ∧ b)] = w, whence b − v ∈ B(p, w).

Using theorem 1, it now follows that good i satisfies the law of demand, if utility is i-
quasisupermodular and satisfies i-single crossing property.21 Notably, this derivation
is in terms of ordinal conditions on the utility function, it does not impose differentiable
(or continuous) utility, it does not rely on any computation of income and substitution
effects, it does not posit new orders on the consumption space, and it is valid when
demand is multi-valued. Moreover, theorem 2 implies that if u is i-supermodular and
i-concave, then good i satisfies law of demand. In particular, if u is supermodular and
concave, then every good satisfies the law of demand.
Example 2-3 (Stone–Geary utility)Newapplications can be consideredwhen the utility
function has parameters.22 Corollary 4 implies that if u is i-quasisupermodular and sat-
isfies basic i-single crossing property on X×T , then t � t ′ �⇒ argmaxA u(·, t) �dso

i
argmaxA u(·, t ′). Notably, A can be an arbitrary subset of RL . This can be seen con-
cretely with a Stone–Geary-type utility function.

Consider consumption space X = R
L+ or X = R

L++, a bundle b ∈ R
L+, and

utility given by u(x, b) = 	
L
j=1(x j + b j )

α j , where α j > 0 for all j . The bundle
b is sometimes viewed as a survival bundle available as an outside option, perhaps
through a government program, or through a soup kitchen, or through a charity, and so
on, although other interpretations are available.23 Theoretically, it is a parameter in the
utility function. Notice that for each b, u(·, b) is quasisupermodular and quasiconcave.
Moreover, when b = 0, Stone–Geary specializes to Cobb-Douglas preferences.24

In order to use derivatives, let a ∈ R
L−−, and write u(x, a) = 	

L
j=1(x j − a j )

α j ,
where α j > 0 for all j , and consider the monotonic transformation, v(x, a) =
∑L

j=1 α j log(x j − a j ). Then for each a ∈ R
L−−, v(·, a) is supermodular and con-

cave on X . Moreover, for fixed i ∈ {1, . . . , L}, and for every u ∈ R
L with ui > 0,

Duv(x, a) = ∑L
j=1

α j
x j−a j

u j and therefore, Dai Duv(x, a) = αi
(xi−ai )2

ui > 0. Conse-
quently, v satisfies basic i single crossing property on X ×R−−, where R−− indexes
ai . By theorem 3, v (and u) satisfies i-directional monotone comparative statics on
X × R−−. In particular, when ai goes up (and as long as the corresponding budget
sets (weakly) increase in the i-directional set order), demand for good i goes up.

21 In general, price effects have been hard to accommodate using monotone methods. Antoniadu (2007)
and Mirman and Ruble (2008) develop some results using a different approach that is more specialized.
Of course, we may invoke Quah (2007) as well and then standard consumer theory that shows that normal
goods satisfy the law of demand. This example documents a direct derivation.
22 Recall that Quah (2007)’s framework does not include parameterized objective functions, and Milgrom
and Shannon (1994)’s framework does not include budget-type constraint sets. Our framework includes
both.
23 For example, in models of charitable giving, bmay be viewed as a consumer’s or donor’s intrinsic benefit
from donation, as in Harbaugh (1998).
24 As earlier, there is no restriction that the sum of all-but-one α j is less than or equal to 1.
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In terms of the original problem with nonnegative b, this implies that when a
component of the survival bundle is increased, a consumer’s optimal response is to
decrease the same component of her demand. This is consistent with results in public
economics on the effect of more generous social welfare options. It follows here
from an easy calculation on the objective function and is valid for an arbitrarily fixed
compact budget set, and therefore, includes piece-wise linear and other non-Walrasian
budget sets common in applications.
Example 3 (Multi-market competition) Parameters in the payoff function arise natu-
rally in game theory models and many games may naturally have a budget set-type
trade-off among feasible strategies. Our results may apply to such models.
Example 3-1 (A two markets, multiple firms case) Let’s first consider a concrete two-
market, multiple-firm game with capacity (or budget) type constraints. Consider a
firm that is competing in two markets; market 1 is imperfectly competitive, say, an
oligopoly, and market 2 is perfectly competitive. (For example, the firm might pro-
duce a generic product for the competitive market and a differentiated version to have
some market power.) Suppose the firm’s profits are given by 	(x1, y; x2, . . . , xM ) =
	1(x1, x2, . . . , xM ) + p · y − c(y), where 	1 is the firm’s profit in market 1, which
has M ≥ 2 firms, and p · y − c(y) is its profit in market 2. The firm’s choice
variables are (x1, y) ∈ R

2+. Suppose the actions of other firms in market 1 are com-

plementary to the actions of the firm; that is, ∂2	1
∂x j ∂x1

≥ 0, for j = 2, . . . , M . (For
example, this follows if market 1 competition is of a standard differentiated Bertrand
variety. It could also follow if there are production externalities or network external-
ities in market 1.) The firm’s problem is to maxA 	(x1, y; x2, . . . , xM ). It is easy
to check that 	 is supermodular in (x1, y). In order to check that 	 has the basic
1-single crossing property in (x1, y; x2, . . . , xM ), observe that for u with u1 > 0,

Dx−1Du	(x1, y; x−1) = [ ∂2	1
∂x2∂x1

u1, . . . ,
∂2	1

∂xM∂x1
u1] ≥ 0. Therefore, when competi-

tor action goes up, firm 1’s best response in market 1 goes up as well. Notably, this
result holds for arbitrary constraint set A.

We can also inquire about comparative statics with respect to A. For motivation,
supposemarket 1 is subject to production or network externalities. (For example, when
other firms produce more, a given firm’s marginal cost goes down, either because of
a direct upstream or downstream production externality or an indirect one, perhaps
through the availability of more skilled labor, more efficient supply chains, and so on.)
In other words, suppose x1 is the firm’s production in market 1, and suppose again

that ∂2	1
∂x j ∂x1

≥ 0 for j = 2, . . . , M . The firm faces a capacity constraint for producing
both outputs, A(k) = {(x1, y) | x1 + y ≤ k}. This can be generalized by considering
A(k) = {(x1, y) | α1x1 + α2y ≤ k}, where α1 and α2 are arbitrary positive constants,
perhaps indexing different production requirements. (For example, it may be that some
more factory space is needed to produce a unit of the differentiated good, as compared
to the competitive good, and the “weighted” output is constrained by the “base” plant
size of k units.) Consider the firm’s problem: maxA(k) 	(x1, y; x2, . . . , xM ). For fixed
A(k), we still have the earlier result that the firm’s supply in market 1 is (weakly)
increasing with respect to supply of other firms. Moreover, the framework here allows
us to inquire about the effects of an increase in plant capacity simultaneously with
an increase in other firm actions. To do so, we need to check for x1-concavity of 	.
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This holds when the cost function in the competitive market, c(y) is convex (which
follows from concave production technology). In this case, (k, x−1) ≤ (k′, x ′−1) ⇒
argmaxA(k) 	(x1, y; x−1) �dso

1 argmaxA(k′) 	(x1, y; x ′−1).
25

We can also inquire aboutmonotone comparative statics for the competitivemarket.
Notice that ∂2	

∂p∂y = 1, and therefore, an increase in the competitive price increases out-
put in the competitive market, regardless of the constraint set. Moreover, y-concavity
of	 follows from convex cost in market 1 (again, following from concave production
technology) and concave total revenue function in market 1 (which follows if demand
is linear, and also if demand has constant elasticity less than or equal to 1, which
includes Cobb-Douglas preferences).
Example 3-2 (General case) The two-market example generalizes to multiple markets
and multiple firms. Consider a firm producing outputs in N ≥ 2 markets, with profit
in market i given by 	i (xi , ti ), where xi ∈ R+ is the firm’s output in market i , and
ti ∈ R

Mi is a vector of parameters for market i , including choices of other firms in
market i .

Consider first the case where total profit of the firm has the form 	(x; t) =∑N
i=1 	i (xi , ti ) and the firm’s problem is to maxA 	(x; t) for x in some constraint

set A. In this case, it is easy to check that 	 is supermodular in x = (x1, . . . , xN ).
Moreover, if we assume that each 	i (xi , ti ) is concave in xi (a typical assumption)

and satisfies basic i-single crossing property in (xi , ti ) (for example, if ∂2	i
∂ti, j ∂xi

≥ 0
for j = 1, . . . , Mi ; consistent with market i having strategic complementarities), then
conditions in theorem 1 are satisfied and we may conclude that for each i , A �dso

i A′
and ti ≤ t ′i implies argmaxA 	(x; ti , t−i ) �dso

i argmaxA′ 	(x; t ′i , t−i ).
In the more general case, we may consider more flexible trade-offs in profits across

markets. For example, consider a Cobb-Douglas type cross market trade-off, given by
	(x; t) = ×N

i=1	i (xi , ti )αi , where for each i , αi > 0.26 It is easy to check that 	 is
quasisupermodular in x , and if each 	i (xi , ti ) satisfies the same conditions as above
(concave in xi , and satisfies basic i-single crossing property in (xi , ti )), then conditions
for theorem 1 are satisfied and we have i-directional monotone comparative statics.

Similarly, consider the case of constant elasticity of substitution across markets,

given by 	(x; t) =
(∑N

i=1 	i (xi , ti )σ
) γ

σ
, with 0 < σ < 1 and γ > 0. It is easy

to check that 	 is quasisupermodular in x , and if each 	i (xi , ti ) satisfies the same
conditions as above (concave in xi , and satisfies basic i-single crossing property in
(xi , ti )), then conditions for theorem1 are satisfied andwehave i-directionalmonotone
comparative statics. This can be generalized further to allow for heterogeneity across

25 The same result holds for minimum production quotas; constraints sets of the form A(k) =
{(x1, y) | α1x1 + α2y ≥ k}, where α1 and α2 are arbitrary positive constants. In this case as well,
k ≤ k′ ⇒ A(k) �dso A(k′).
26 This would be consistent with weighting profits in different markets differently, such as when share-
holders prefer profits in particular industries relatively more than in others.
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industries, by using 	(x; t) =
(∑N

i=1 	i (xi , ti )σi
) γ

σ̄
, with 0 < σi < 1 for every i ,

σ̄ = 1
N

∑
σi is the average of σi , and γ > 0.27

A main insight is that in an industry with strategic complements, monotone com-
parative statics continues to hold simultaneously with competitor actions and cross
market capacity constraints, and in the presence of some classes of heterogeneous
trade-offs across industries. Such results are not accessible with the standard existing
results in the literature.
Example 4 (Emissions standards) Consider the emissions standards model in Montero
(2002) and Bruneau (2004). A firm is producing an output q ≥ 0 that causes pollution.
It is subject to an emissions ceiling e > 0 and can produce more by engaging in costly
abatement a ≥ 0. The firm’s payoff is given byπ(q, a; k) = p ·q−c(q)−kc(a). Here,
revenue is p ·q, cost of output, c(q) is assumed to be increasing and convex, as is cost
of abatement, c(a). The firm can consider technological progress k ≤ 1, measured as a
decrease in abatement cost to kc(a). It is easy to check that	 is supermodular in (q, a),
	 is concave, and technological innovation (decrease in k, or increase in −k) satisfies

∂2	
∂(−k)∂q = 0 and ∂2	

∂(−k)∂a ≥ 0. Therefore, an increase in technological innovation,

say (−k) ≤ (−k′) implies that argmaxA 	(q, a; k) �dso
a argmaxA 	(q, a; k′), for

arbitrary constraint set A. In particular, it holds for the emissions constraint set, A(e) =
{(q, a) | q − a = e}. Moreover, at optimum, an increase in a leads to an increase in
q, and therefore, an increase in technological innovation increases both abatement
and output. This main result in Montero (2002) and Bruneau (2004) can be seen here
from an easy calculation on the objective function.
Example 5 (Discrete labor supply) Recent models of labor supply frequently incor-
porate a discrete choice model, for example, Aaberge et al. (1995), van Soest (1995)
and Hoynes (1996). In order to work with integer data, these models consider integer
work-leisure choices. Let h denote hours worked and l denote hours of leisure. Given
total hours available T , the constraint set is B(T ) = {(h, l) ∈ Z+ ×Z+ | h + l ≤ T }.
Using example 1-2, it is easy to check that T ≤ T ′ ⇒ B(T ) �dso B(T ′). Prefer-
ences are given by u(wh + I, l) where w is wage rate and I is non-labor income,
both exogenously specified. Using our results, when preferences are supermodular
and concave, both hours worked and leisure hours are increasing in the time constraint
T , even in a discrete choice framework. In particular, for standard preferences such as
Cobb-Douglas, CES, and their increasing transformations, this result holds.Moreover,
consider the utility from Hoynes (1996), u(wh + I, l) = α1 ln(wh + I ) + α2 ln(l)
with α1, α2 > 0. In this case, the basic h-single crossing property holds for parameters
(w,−I ), because ∂2u

∂(−I )∂h = α1w

(wh+I )2
≥ 0, ∂2u

∂w∂h = α1 I
(wh+I )2

≥ 0, ∂2u
∂(−I )∂l = 0, and

∂2u
∂w∂l = 0. Consequently, optimal labor supply increases when either wage rate goes up
or non-labor income goes down. Notably, this result holds for discrete choices and for
an arbitrary compact constraint set, and therefore, includes piece-wise linear and other

27 The example shows that some standard formulations for considering trade-offs among profits in different
industries are admissible here. Of course, additional cases can be considered as well, but no doubt, arbitrary
profit functions will not work.
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non-Walrasian budget sets common in applications. This indicates new directions for
application of the results here.
Example 6 (Auctions with budget constraints) Another class of games with budget-
type constraints is auctions with bidding constraints. These are common in practice
(for example, ad auctions run by Google and Yahoo, Treasury auctions, and spectrum
or electricity auctions), but less widely studied in the auction theory literature (for
some examples, confer Rothkopf 1977; Palfrey 1980, and Dobzinski et al. 2012),
partly because the problem with bidding constraints (or budget constraints) is harder
to analyze. The results here can be applied in these cases as well.

Consider an auction of N ≥ 2 indivisible objects. There are I bidders, and bidder
i has exogenously specified valuations (vi,1, . . . , vi,N ) for the N objects, and can bid
(bi,1, . . . , bi,N ) subject to the resource constraint

Bi (Ti ) = {
bi = (bi,1, . . . , bi,N ) ≥ 0 | bi,1 + · · · + bi,N ≤ Ti

}
.

The probability that bidder i wins object n when bid profile for object n is
(b1,n, . . . , bI,n) is given by Fi,n(bi,n, b−i,n), where

∂Fi,n
∂bi,n

≥ 0. The expected payoff to
bidder i from winning object n is

ui,n(bi,n, b−i,n, vi,n)Fi,n(bi,n, b−i,n),

and as usual, the expected payoff from losing is normalized to 0. As usual, suppose
utility for object n is increasing in vi,n ( ∂ui,n

∂vi,n
≥ 0), and bids and valuations are com-

plementary ( ∂2ui,n
∂bi,n∂vi,n

≥ 0). To inquire into monotone comparative statics of optimal
bids with respect to valuations, let

Ui,n(bi,n, b−i,n, vi,n) = ui,n(bi,n, b−i,n, vi,n)Fi,n(bi,n, b−i,n)

denote bidder i’s expected payoff from object n and suppose it is concave in bi,n , for
every n.

As in the example ofmultiplemarkets andmultiple firms, wemay consider a variety
of aggregate payoffs, including additive payoffs,

Ui (bi , b−i , vi ) =
N∑

n=1

Ui,n(bi,n, b−i,n, vi,n),

payoffs with Cobb-Douglas form,

Ui (bi , b−i , vi ) = ×N
n=1Ui,n(bi,n, b−i,n, vi,n)

αn ,

where αn > 0, and payoffs with constant elasticity of substitution,

Ui (bi , b−i , vi ) =
(

N∑

n=1

Ui,n(bi,n, b−i,n, vi,n)
σ

) γ
σ

,
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with 0 < σ < 1 and γ > 0, and others. In all these cases, it can be checked that
Ui (bi , b−i , vi ) is quasisupermodular in bi , satisfies n-concavity, and satisfies basic n-
directional single crossing property for (bi,n, vi,n). From theorem 1, it follows that in
auctions with bidding constraints, optimal bid for object n increases with simultaneous
increases in its valuation and in bidding resources, and allowing for payoff linkages
across objects.28

5 Conclusion

This paper presents an extension of the theory of monotone comparative statics in dif-
ferent directions in finite-dimensional Euclidean space. The new notions of i-single
crossing property and basic i-single crossing property are similar in spirit to the single
crossing property in the standard theory of monotone comparative statics, both are
ordinal properties, and both can be naturally specialized to related cardinal and dif-
ferential properties. The results here use more standard assumptions on the objective
function, include parameters in the objective function, do not require the use of new
binary relations or convex domains, and subsume results in Quah (2007). The results
allow flexibility to explore comparative statics with respect to the constraint set, with
respect to parameters in the objective function, or both. Moreover, the results here
can be applied fruitfully to enhance the reach of existing results and to provide new
applications.

Appendix A: Relation to Quah (2007)

Quah (2007) uses different techniques based on new binary relations, denoted ∇λ
i

and �λ
i , and convex sets. Using these binary relations, he defines a new set order,

termed Ci -flexible set order, and a new notion of Ci -quasisupermodular function. Some
connections to these ideas are explored here.

Let X be a convex sublattice of RN (that is, X is a sublattice that is also a convex
set), and i ∈ {1, 2, . . . , N }. For a, b ∈ X and λ ∈ [0, 1], let

a�λ
i b =

{
a if ai ≤ bi
λb + (1 − λ)(a ∧ b) if ai > bi ,

and

a∇λ
i b =

{
b if ai ≤ bi
λa + (1 − λ)(a ∨ b) if ai > bi .

Figure 4 shows the graphical intuition.
When ai > bi , the set

{
a, a�λ

i b, a∇λ
i b, b

}
forms a “backward-bending” paral-

lelogram, as compared to the standard lattice theory rectangle formed by the set
{a, a ∧ b, a ∨ b, b}. The shape of this parallelogram varies with λ, ranging from the

28 Notably, no restrictions are placed on the effects of competitor bids on the payoffs of a given bidder. In
particular, this result applies when bids across bidders may be strategic complements, strategic substitutes,
or a mixture of the two. Moreover, the result allows for discrete bids for up to two objects, as described
earlier.

123



Directional monotone comparative statics 585

Fig. 4 Ci -Flexible set order

standard lattice theory rectangle when λ = 0 to the degenerate line segment formed
by {a, b} when λ = 1.

The binary operations �λ
i ,∇λ

i have some counter-intuitive properties when com-
pared to the standard lattice operations ∧,∨. For example, the relations �λ

i ,∇λ
i are

non-commutative: suppose N = 2, i = 1, consider a = (1, 0), b = (0, 1), and λ = 1
2 .

Then a�λ
i b = 1

2b �= b = b�λ
i a, and a∇λ

i b = (1, 1
2 ) �= a = b∇λ

i a. Moreover, a�λ
i b

and a∇λ
i b are not necessarily comparable in the underlying lattice order: suppose

N = 2, i = 1, and consider a = (1, 1) and b = (2, 0). Then for every λ ∈ [0, 1],
a�λ

i b = a �≤ b = a∇λ
i b. It is easy to see that additional classes of examples of these

instances can be provided as well.
The binary relations �λ

i ,∇λ
i are used to define the Ci -flexible set order and the

notion of a Ci -quasisupermodular function, as follows.
Let X be a convex sublattice of RN and i ∈ {1, 2, . . . , N }. For subsets A, B of

X , A is lower than B in the Ci -flexible set order, denoted A �C
i B, if for every

a ∈ A, b ∈ B, there is λ ∈ [0, 1] such that a�λ
i b ∈ A and a∇λ

i b ∈ B. The Ci -flexible
set order is flexible in the sense that the choice of λ may vary for each a ∈ A and
b ∈ B, and therefore, the “backward bendedness” of the parallelogram may vary for
each a ∈ A and b ∈ B. On convex sublattices, the Ci -flexible set order is the same as
the i-directional set order, as shown next.

Proposition 4 Let X be a convex sublattice of RN , i ∈ {1, 2, . . . , N }, and A, B be
subsets of X. The following are equivalent.

(1) A is lower than B in the Ci -flexible set order (A �C
i B).

(2) A is lower than B in the i-directional set order (A �dso
i B).

Proof Suppose A �C
i B. Fix a ∈ A, b ∈ B, and suppose ai > bi . Let λ ∈ [0, 1]

be such that a�λ
i b ∈ A and a∇λ

i b ∈ B. Let t = 1 − λ ∈ [0, 1]. Then b − v =
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b− t (b−a∧b) = (1− t)b+ t (a∧b) = a�1−t
i b ∈ A, and a+v = a+ t (a∨b−a) =

(1 − t)a + t (a ∨ b) = a∇1−t
i b ∈ B, as desired.

In the other direction, suppose A �dso
i B. Fix a ∈ A, b ∈ B. Suppose ai ≤ bi . Then

a�1−t
i b = a ∈ A and a∇1−t

i b = b ∈ B, as desired. Suppose ai > bi . Let t ∈ [0, 1]
be such that v = t (b − a ∧ b) = t (a ∨ b − a) satisfies b − v ∈ A and a + v ∈ B.
Then for λ = 1 − t , a�λ

i b = (1 − t)b + t (a ∧ b) = b − t (b − a ∧ b) = b − v ∈ A,
and a∇λ

i b = (1 − t)a + t (a ∨ b) = a + t (a ∨ b − a) = a + v ∈ B, as desired. ��
The i-directional set order may be viewed as reformulating the Ci -flexible set order

to work more closely with monotone methods. In particular, i-directional set order
does not invoke the binary relations �λ

i ,∇λ
i , it does not require convex sets, and it

uses the standard properties of order and direction in R
N .

Let X be a convex sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N }. The
function f is Ci -quasisupermodular, if for every a, b ∈ X and for every λ ∈ [0, 1],
f (a) ≥ (>) f (a�λ

i b) ⇒ f (a∇λ
i b) ≥ (>) f (b). One of the main results in Quah

(2007) is the following: for every i ∈ {1, . . . , N }, argmaxA f is increasing in A in
the Ci -flexible set order, if, and only if, f is Ci -quasisupermodular.

Notice that the property Ci -quasisupermodular is symbolically similar to the notion
of a quasisupermodular function. Its interpretation is more complex for two reasons:
First, the use of the quantifier “for every λ ∈ [0, 1]” in the definition forces consid-
eration of the whole line segment joining a and a ∨ b and the whole line segment
joining a ∧ b and b, and essentially forces consideration of convex sets, and second,
the interpretive issues with using �λ

i ,∇λ
i carry over to this definition.

The use of the quantifier “for every λ ∈ [0, 1]” in this definition is required by the
Ci -flexible set order. This can be seen as follows. Suppose we consider weakening
the definition of f is Ci -quasisupermodular by requiring it to hold for only some
collection of λ ∈ [0, 1], as follows. Let X be a convex sublattice of RN , f : X → R,
i ∈ {1, 2, . . . , N }, and � be a non-empty subset of [0, 1]. The function f is (i,�)-
quasisupermodular, if for every x, y in X , and everyλ ∈ �, f (x) ≥ (>) f (x�λ

i y) ⇒
f (x∇λ

i y) ≥ (>) f (y). Notice that f is Ci -quasisupermodular is a special case of this
definition, when � = [0, 1].

In order to characterize the type of monotone comparative statics possible with
(i,�)-quasisupermodular functions, consider the following set order. Let X be a con-
vex sublattice of RN , i ∈ {1, 2, . . . , N }, and � be a non-empty subset of [0, 1]. For
subsets A, B of X , A is (i,�)-lower than B, denoted A ��

i B, if for every a ∈ A,
for every b ∈ B, there is λ ∈ � such that a�λ

i b ∈ A and a∇λ
i b ∈ B. Notice that A

is lower than B in the Ci -flexible set order is a special case of this definition, when
� = [0, 1]. Say that a function f : X → R has (i,�)-increasing property, if for
every A, B subset of X , A ��

i B �⇒ argmaxA f ��
i argmaxB f . We can prove the

following result.

Proposition 5 Let X be a convex sublattice of RN , f : X → R, i ∈ {1, 2, . . . , N },
and � be a non-empty subset of [0, 1].
f is (i,�)-quasisupermodular, if, and only if, f has (i,�)-increasing property.

Proof (⇒) Suppose f is (i,�)-quasisupermodular. Fix A ��
i B. Let a ∈ argmaxA f

and b ∈ argmaxB f . Notice that A �λ
i B implies that there is λ ∈ � such that
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a�λ
i b ∈ A and a∇λ

i b ∈ B. Fix this λ. Thus a ∈ argmaxA f �⇒ f (a) ≥
f (a�λ

i b) �⇒ f (a∇λ
i b) ≥ f (b), where the last implication follows from (i,�)-

quasisupermodularity of f . Moreover, as b ∈ argmaxB f , it follows that f (a∇λ
i b) =

f (b), whence a∇λ
i b ∈ argmaxB f . Furthermore, f (a∇λ

i b) = f (b) �⇒ f (a∇λ
i b) �>

f (b) �⇒ f (a) ≤ f (a�λ
i b), where the last implication follows from (i,�)-

quasisupermodularity of f . As a ∈ argmaxA f , it follows that f (a) = f (a�λ
i b),

whence a�λ
i b ∈ argmaxA f , as desired.

(⇐) Considering the contrapositive, suppose f is not (i,�)-quasisupermodular.
Then there existsλ ∈ �, and there exist a, b in X , such that either (1) f (a) ≥ f (a�λ

i b)
and f (a∇λ

i b) < f (b), or (2) f (a) > f (a�λ
i b) and f (a∇λ

i b) ≤ f (b). Notice that
in either case, it must be that ai > bi . Therefore, a∇λ

i b �= b, a�λ
i b �= a, and

a�λ
i b �= a∇λ

i b. Let C = {
a, a�λ

i b
}
and C ′ = {

b, a∇λ
i b

}
. Then C ��

i C ′. Suppose
(1) is true. Then a ∈ argmaxC f and b = argmaxC ′ f , but for every λ′ ∈ �, a∇λ′

i b /∈
argmaxC ′ f , because ai > bi implies that for every λ′ ∈ [0, 1], a∇λ′

i b �= b. Therefore,
f does not have (i,�)-increasing property (for C �λ

i C ′). Suppose (2) is true. Then
a = argmaxC f and b ∈ argmaxC ′ f , but for every λ′ ∈ �, a�λ′

i b /∈ argmaxC f ,

because ai > bi implies that for every λ′ ∈ [0, 1], a�λ′
i b �= b. Again, f does not have

(i,�)-increasing property. ��
The result inQuah (2007) is a special case of this result, when� = [0, 1]. The result

here shows that if we want to weaken the notion of a Ci -quasisupermodular function
by requiring the condition to hold for fewer λ, then we must make the comparability
of the set order more restrictive (that is, fewer sets can be ordered) by requiring less
flexibility in the choice of λ as well. To say this differently, if we want a monotone
comparative statics result applicable to a larger collection of constraint sets, we can
expand the collection of sets that can be ordered by allowing the greatest flexibility in
choosing λ, by setting� = [0, 1]. (This gives us the Ci -flexible set order.) In this case,
characterizing monotone comparative static requires imposing the strictest conditions
on the objective function by requiring � = [0, 1]. In particular, for every a and b, we
are forced to consider the whole line segment joining a and a ∨ b and the whole line
segment joining a ∧ b and b, and we are essentially forced to consider convex sets.

As mentioned in the text, corollaries to theorem 1 and the equivalence of i-
directional set order and Ci -flexible set order shows that on convex sublattices, a
Ci -quasisupermodular function is equivalent to a function that is i-quasisupermodular
and satisfies i-single crossing property on X . The following proposition shows this
directly. For convenience, a part of the proof is written as the lemmas below.

Lemma 1 For every a, b ∈ R
N with ai > bi , and for every λ ∈ [0, 1], a ∧ (a�λ

i b) =
a ∧ b.

Proof Fix a, b ∈ R
N with ai > bi , and fixλ ∈ [0, 1]. Fix index j = 1, . . . , N . As case

1, suppose a j ≤ b j . Then (a�λ
i b) j = λb j + (1−λ)(a∧b) j = λb j + (1−λ)a j ≥ a j ,

and therefore, (a ∧ (a�λ
i b)) j = a j = (a ∧ b) j . As case 2, suppose a j > b j . Then

(a�λ
i b) j = λb j + (1 − λ)(a ∧ b) j = b j = (a ∧ b) j , as desired. ��

Lemma 2 For every a, b ∈ R
N with ai > bi , and for every λ ∈ (0, 1]
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(1) b = a�λ
i b + 1−λ

λ
(a�λ

i b − a ∧ b), and
(2) a∇λ

i b = a + 1−λ
λ

(a�λ
i b − a ∧ b).

Proof Fix a, b ∈ R
N with ai > bi , and fix λ ∈ (0, 1]. In this case, a�λ

i b − a ∧ b =
λb + (1 − λ)(a ∧ b) − a ∧ b = λ(b − a ∧ b), and therefore, b − a�λ

i b = b − λb −
(1− λ)(a ∧ b) = (1− λ)(b − a ∧ b) = 1−λ

λ
(a�λ

i b − a ∧ b), showing (1). Similarly,
a ∨ b − a∇λ

i b = a ∨ b − λa − (1 − λ)(a ∨ b) = λ(a ∨ b − a) = λ(b − a ∧ b),
and therefore, a∇λ

i b − a = λa + (1 − λ)(a ∨ b) − a = (1 − λ)(a ∨ b − a) =
(1 − λ)(b − a ∧ b) = 1−λ

λ
(a�λ

i b − a ∧ b), showing (2). ��
Proposition 6 Let X be a convex sublattice of RN , f : X → R, and i ∈ {1, . . . , N }.
The following are equivalent.

1. f is Ci -quasisupermodular
2. f is i -quasisupermodular and satisfies i-single crossing property on X

Proof For (1) implies (2), to show i-single crossing property, fix x, y in X with yi <

xi , fix t ≥ 0, and let v = t (y − x ∧ y). Let z = y + v and u = z − x ∧ z. It
is easy to check that z − x ∧ z = z − x ∧ y, and therefore, u = z − x ∧ y =
y + t (y − x ∧ y) − x ∧ y = (1 + t)(y − x ∧ y). Notice also that u = x ∨ z − x .
Consequently, v = t (y − x ∧ y) = t

1+t (1 + t)(y − x ∧ y) = t
1+t u. Let λ =

1
1+t ∈ (0, 1]. Then v = (1 − λ)u, and this implies that y − x ∧ y = λu, because
z = y + v = y + (1 − λ)u = y + u − λu = y + z − x ∧ z − λu. Moreover, notice
that x�λ

i z = λz + (1 − λ)(x ∧ z) = x ∧ z + λ(z − x ∧ z) = x ∧ z + λu = y,
and that x∇λ

i z = λx + (1 − λ)(x ∨ z) = x ∨ z + λ(x ∨ z − x) = x ∨ z − λu =
x∨z+v−u = x∨z+v−(x∨z−x) = x+v. Now suppose f (x) ≥ f (y) = f (x�λ

i z).
Then f (x + v) = f (x∇λ

i z) ≥ f (z) = f (y + v), where the inequality follows
from Ci -quasisupermodularity. The case for strict inequality follows similarly. Thus
f satisfies i-single crossing property. i-quasisupermodularity of f follows from Ci -
quasisupermodularity for λ = 0.

For (2) implies (1), fix i , fix a, b ∈ R
N , and fix λ ∈ [0, 1]. As case 1, suppose

ai ≤ bi . In this case, a�λ
i b = a, a∇λ

i b = b, and therefore, f (a) ≥ f (a�λ
i b) ⇒

f (a∇λ
i b) ≥ f (b) holds trivially. Strict inequality holds vacuously. As case 2, sup-

pose ai > bi . As subcase 1, suppose λ �= 0. Let x = a, y = a�λ
i b, and

v = 1−λ
λ

(
a�λ

i b − a ∧ (a�λ
i b)

)
. Using lemma 1, v = 1−λ

λ
(a�λ

i b − a ∧ b). Sup-
pose f (a) ≥ f (a�λ

i b). That is, f (x) ≥ f (y). Then i-single crossing property implies
f (x+v) ≥ f (y+v). By construction, x+v = a+ 1−λ

λ
(a�λ

i b−a∧b) = a∇λ
i b, where

the last equality follows from lemma 2. Also, y+v = a�λ
i b+ 1−λ

λ
(a�λ

i b−a∧b) = b,
where the last equality follows from lemma 2. The case for strict inequality follows
similarly. As subcase 2, suppose λ = 0. Then a�λ

i b = a ∧ b and a∇λ
i b = a ∨ b, so

the property follows from i-quasisupermodularity of f . ��

Appendix B: Some proofs

One set of conditions under which sets can be ordered in the i-directional set order
is as follows. Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N }.
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The function f is i-quasisubmodular on X , if for every a, b ∈ X with ai > bi ,
f (a) ≤ (<) f (a ∧ b) �⇒ f (a ∨ b) ≤ (<) f (b). The function f satisfies dual
i-single crossing property on X , if for every a, b ∈ X with ai > bi , and for every
v ∈ {s(b − a ∧ b) | s ∈ R, s ≥ 0} such that a + v, b + v ∈ X , f (a) ≤ (<) f (b) �⇒
f (a + v) ≤ (<) f (b + v).

Proposition 7 Let X bea convex sublattice ofRN , f : X → R, and i ∈ {1, 2, . . . , N }.
If f is continuous, (weakly) increasing, i-quasisubmodular, and satisfies dual i-single
crossing on X, then τ ≤ τ ′ �⇒ {x | f (x) ≤ τ } �dso

i {x | f (x) ≤ τ ′}.
Proof Let τ ≤ τ ′, A = {x | f (x) ≤ τ }, B = {x | f (x) ≤ τ ′}, and suppose a ∈ A,
b ∈ B with ai > bi . As case 1, suppose f (b) ≤ τ . In this case, let v = 0. Then
b − v = b ∈ A and f (a) ≤ τ ≤ τ ′ implies that a + v = a ∈ B. As case 2, suppose
f (b) > τ . Then f is (weakly) increasing implies that f (a ∧ b) ≤ f (a) ≤ τ . For
s ∈ [0, 1], consider v(s) = s(b−a∧b). Then s = 0 implies f (b−v(s)) > τ and s = 1
implies f (b−v(s)) ≤ τ . By continuity, there is ŝ ∈ (0, 1] such that f (b−v(ŝ)) = τ .
Set v̂ = ŝ(b − a ∧ b). Then b − v̂ ∈ A and f (b − v̂) ≥ f (a). As subcase 1, suppose
ŝ = 1. Then f (a ∧ b) = f (b − v̂) ≥ f (a) and i-quasisubmodularity implies that
f (b) ≥ f (a ∨ b), whence a + 1(a ∨ b − a) ∈ B. As subcase 2, suppose ŝ ∈ (0, 1).
Applying dual i-single crossing to vectors to a and b − v̂, with the directional vector
w = ŝ

1−ŝ

[
(b − v̂) − a ∧ (b − v̂)

]
implies f (b− v̂ +w) ≥ f (a+w). But notice that

v̂ = ŝ(b− a ∧ b) = ŝ
[
(b − v̂) − a ∧ b

] + ŝv̂ = ŝ
[
(b − v̂) − a ∧ (b − v̂)

] + ŝv̂, and

therefore, v̂ = ŝ
1−ŝ

[
(b − v̂) − a ∧ (b − v̂)

] = w. In other words, f (b) ≥ f (a + v̂),
whence a + v̂ ∈ B. ��

It is easy to check that for given prices p � 0, the functionφ : X → R,φ(x) = p·x
satisfies these conditions. This provides another proof that with respect to wealth w,
Walrasian budgets sets are ordered in the i-directional set order.

To show the equivalence of i-increasing differences (u) on X and i-increasing
differences (*) on X , consider first the following slight modification of i-increasing
differences (u) on X . Let X be a sublattice ofRN , f : X → R, and i ∈ {1, 2, . . . , N }.
f satisfies i-increasing differences (σu), if for every b ∈ X, u ∈ R

N with ui >

0, for every σ, s ≥ 0, such that b + σu, b + s(−u)+, b + σu + s(−u)+ ∈ X ,
f (b+σu)− f (b) ≤ f (b+σu+ s(−u)+)− f (b+ s(−u)+). Consider the following
equivalence.

Lemma 3 Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N }.
f satisfies i-increasing differences (u) on X, if, and only if, f satisfies i-increasing
differences (σu) on X.

Proof For sufficiency, fix b ∈ X , u ∈ R
N with ui > 0, and fix σ, s ≥ 0. If σ = 0, we

are done, because left-hand side and right-hand side of the condition are both zero.
Suppose σ > 0. Let û = σu and ŝ = s

σ
≥ 0. Then ûi > 0 and ŝ(−û+) = s(−u)+,

and therefore,

f (b + σu) − f (b) = f (b + û) − f (b)

≤ f (b + û + ŝ(−û)+) − f (b + ŝ(−û)+)
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= f (b + σu + s(−u)+) − f (b + s(−u)+),

as desired. For necessity, let σ = 1. ��
Now recall that f satisfies i-increasing differences (*) on X , if for every b ∈ X, u ∈

R
N with ui > 0, for every σ ≥ 0, f (b+σu+ s(−u)+)− f (b+ s(−u)+) is (weakly)

increasing in s, (where we consider only points b+ σu + s(−u)+, b+ s(−u)+ ∈ X ).
Consider the following equivalence.

Lemma 4 Let X be a sublattice of RN , f : X → R, and i ∈ {1, 2, . . . , N }.
f satisfies i-increasing differences (σu) on X, if, and only if, f satisfies i-increasing
differences (*) on X.

Proof Suppose f satisfies i-increasing differences (σu) on X . To check for i-
increasing differences (*) on X , fix b ∈ X, u ∈ R

N with ui > 0, and σ ≥ 0.
Fix s1 ≤ s2. If σ = 0, we are done, because the expression is 0 for all s. Suppose
σ > 0. Let b̂ = b + s1(−u)+ and ŝ = s2 − s1 ≥ 0. Then

f (b + σu + s1(−u)+) − f (b + s1(−u)+)

= f (b̂ + σu) − f (b̂)

≤ f (b̂ + σu + ŝ(−u)+) − f (b̂ + ŝ(−u)+)

= f (b + σu + s1(−u)+ + (s2 − s1)(−u)+)

− f (b + s1(−u)+ + (s2 − s1)(−u)+)

= f (b + σu + s2(−u)+) − f (b + s2(−u)+),

as desired.
Suppose f satisfies i-increasing differences (*) on X . To check that f satisfies

i-increasing differences (σu) on X , fix b ∈ X, u ∈ R
N with ui > 0, and fix σ, s ≥ 0.

Let s1 = 0. Then s1 ≤ s, and therefore, f (b+σu)− f (b) = f (b+σu+ s1(−u)+)−
f (b + s1(−u)+) ≤ f (b + σu + s(−u)+) − f (b + s(−u)+), as desired. ��
These lemmas imply the equivalence of i-increasing differences (u) on X and i-

increasing differences (*) on X , as desired.
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