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Abstract Billingsley (Probability and measure, Wiley, New Jersey, 1995) and Dubra
and Echenique (Math Soc Sci 47(2):177–185, 2004) provide an example to show that
the formalization of information by σ -algebras and by partitions need not be equiv-
alent. Although Hervés-Beloso and Monteiro (Econ Theory 54(2):405–418, 2013)
provide a method to generate a σ -algebra from a partition and another method for
going in the opposite direction, we show that their two methods are in fact based
on two different notions of information: (i) information as belief, (ii) information
as knowledge. If information is conceived to allow for falsehoods, case (i) above,
the equivalence between σ -algebras and partitions holds after applying the notion of
posterior completion suggested by Brandenburger andDekel (JMath Econ 16(3):237–
245, 1987). If information is conceived not to allow for falsehoods, case (ii) above, the
equivalence holds only for measurable partitions and countably generated σ -algebras.
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1 Introduction

In any model that deals with a decision maker (henceforth DM) facing uncertainty,
the DM’s information is often described by either a signal (equivalently, a random
variable), a partition or a σ -algebra. Specifically, one signal is more informative than
another if it is sufficient in Blackwell’s sense for another; one partition is more infor-
mative than another if it is finer; a σ -algebra is more informative than another if it
is larger.1 A natural question is whether all these three orderings can be equivalently
used to represent information. In other words, it is to ask whether there is a mapping
from one category of representation to another while preserving the ordering in the two
categories that are being used. The answer to this question had been understood to be
positive. Nevertheless, as we shall see below, the understanding is far from complete.

Billingsley (1995) raises concerns that partitions and σ -algebras may not always
be equivalently used by presenting a simple but powerful example: a unit interval is
given as the state space equipped with the Lebesgue measure. A partition that consists
of every singleton indicates that the DM knows exactly in which state she lies. On the
contrary, the smallestσ -algebra generated by the partition implies that theDMis totally
ignorant, for it contains countable or co-countable sets that are of Lebesgue measure
zero.2 In addition, Dubra and Echenique (2004) highlight Billingsley’s concern by
embedding his example in the context of a decision problem. They consider another
partition that contains only two cells. This partition is obviously less informative than
the partition in Billingsley’s example. However, if one compares the expected utility
values conditional on the smallest σ -algebras generated by those partitions, the value
based on the two-cell partition is larger. That is, the σ -algebra generated by the two-cell
partition is more informative.

In response to these cautionary warnings, Hervés-Beloso and Monteiro (2013)
(henceforth HM) argue that one may disregard them. By taking a partition as a prim-
itive representation of information, they introduce a notion of an informed set which
corresponds to a (possibly uncountable) union of partition cells. The collection of
all informed sets is indeed a σ -algebra. If one generates σ -algebras in this way, a
strictly finer partition always yields a larger σ -algebra. Arguably, the collection of
informed sets represents the informational content of a given partition. To establish
the equivalence between partitions and σ -algebras, they also suggest another method
of deriving a partition from a given σ -algebra. Given a measure space equipped with a
strongly Blackwell σ -algebra, HM suggest to form a partition by collecting atoms of
a σ -algebra if it is countably generated.3 If not, they suggest to consider a countably

1 For a pair of partitions, the strictly finer partition distinguishes more elements, implying that a DM can
say more accurately about the true state (the state in which she lies). For a pair of σ -algebras, the larger one
contains more sets. For larger number of sets, a DM is able to say whether it contains the true state or not,
thus having more information.
2 By the smallest σ -algebra generated by the partition, we mean that the σ -algebra contains all the com-
plements and the countable unions of partition cells.
3 A countably generated σ -algebra is the smallest σ -algebra generated by a collection of countably many
subsets of the state space.
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Formalization of information: knowledge and belief 1009

generated σ -algebra that differs from the given σ -algebra by null sets.4 This implies,
although HM do not so explicitly argue, that the informational content of a σ -algebra
is captured by the corresponding countably generated σ -algebra.

In this paper, our primary goal is to show that HM leave unsettled the following
question, “What is the information (equivalently, the informational content) preserved
when one generates a σ -algebra from a partition or when one goes in the opposite
direction?” HM claim that it is the collection of informed sets, and they interpret the
notion of an informed set to denote the set of which occurrence (or non-occurrence)
a DM knows. This naturally leads one to ask a question about the difference between
what one merely knows and what one is informed of. Unfortunately, however, HM
are silent on this question. In addition, the informational content, as HM claim, is
also captured by the countably generated σ -algebra that differs from a σ -algebra by
null sets. This implies that if both a partition and a σ -algebra contain the same infor-
mational content, the collection of informed sets of the partition must be countably
generated.We present a counterexample in which this is not the case (Example 5). Fur-
thermore, the collection of informed sets of a partition may contain non-measurable
sets, because the informed sets do not depend on a given measurable space. We show
that this indeed happens in Billingsley’s example (Example 4). This poses a technical
impossibility of defining a probability measure on the non-measurable set when com-
puting the expected utility value as in Dubra and Echenique (2004), not to mention
a conceptual difficulty of how to understand that a DM is informed about a set lying
outside the event space.5 More importantly, HM’s treatment provides a contradictory
answer about whether a probability measure conveys any informational content or not.
As noted, informed sets of a partition are invariant to any choice of a measure space
and a measure defined on it. This suggests that a probability measure does not convey
any information. Contradictorily, a probability measure conveys information if one
considers the informational content embodied in a σ -algebra, as it is unique up to null
sets.

The secondary goal of this paper is to tackle these issues and to establish an equiv-
alence relationship between a partition and a σ -algebra in representing information.
Our innovation is to bring out with especial salience the two distinct notions of infor-
mation, knowledge and belief, that are well recognized among researchers working
in epistemic logic and game theory.6 The distinction lies in whether information is
conceived to be factual or not. To elaborate, if one insists that information cannot be
false in order to distinguish it from a rumor, then he conceives information to arise
from knowledge. On the contrary, if one allows for the possibility that information
may turn out to be false, then he conceives information to arise from belief.

4 A null set is a set to which a DM ascribes zero probability. HM refers to it as a negligible set of states.
5 The existence of non-measurable sets can be addressed by Theorem 4 and the following Remark 3 in HM.
However, the notion of an informed set, as it is defined in HM, fails to accommodate this: the collection
of informed sets in Billingsley’s example, according to HM, is the power set even when the underlying
σ -algebra is strongly Blackwell (See Example 4 in HM). In fact, we propose the notion of an informed
event to accommodate Theorem 4 and Remark 3 in HM.
6 See, for example, Aumann (1999a, b), Maschler et al. (2013), and Meyer (2003).
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1010 J. J. Lee

The advantage of bringing out these two notions of information is that each notion,
either knowledge or belief, is formally defined as an operator from a measurable
space (or, equivalently, an event space) to itself that satisfies a certain set of axioms
(Definitions 4, 5). One can thus see easily whether a mathematical object such as a
partition and a σ -algebra qualifies for being a formalization of information (as knowl-
edge/belief), by inspecting the relationship between a knowledge/belief operator to
the mathematical object of one’s interest. By taking advantage of the two notions, we
resolve the issues that HM leave open. Firstly, we show that the notion of an informed
event imposes a counterfactual restriction on that of knowledge/belief. To be spe-
cific, we define a K -informed event for information as knowledge, and a B-informed
event for information as belief. An informed event requires that if one knows/believes
whether an event occurs or not at one state, then he must know/believe it even in a
hypothetical situation that he lies at other states (Example 3). Secondly, we show that
the collection of K -informed events is the restriction of the collection of informed
sets (defined by HM) to a measurable space, thereby resolving the issue regarding the
presence of non-measurable set (Lemma 3). This is immediate from the definition of
knowledge/belief being an operator from a measurable space to itself.

Turning to the remaining issues, we show that if one conceives information as
knowledge, measurable partitions and countably generated σ -algebras can be used
interchangeably to formalize information (Theorem 1). This implies that the preserved
informational contents are the K -informed events of measurable partitions. Moreover,
it also reveals that probability does not convey any information, for the K -informed
event is invariant to a specific choice of a probability measure.

A further question is whether we need restrict the use of partitions or σ -algebras
only to the casewhere partitions aremeasurable orσ -algebras are countably generated.
We argue that if one conceives information as belief, we do not need such a restriction.
By adopting the technique of posterior completion7 proposed by Brandenburger and
Dekel (1987), we show that if the posterior completion of a σ -algebra is larger then
the posterior completion of a partition is strictly finer, and vice versa. Then, what
is the informational content in this case? We argue that the informational content is
indeed the collection of B-informed events, and it depends on a specific choice of
a probability measure. Specifically, a proper regular conditional probability (either
directly from a σ -algebra or from the smallest σ -algebra generated by a partition)
captures the notion of belief. More importantly, the collection of B-informed events
is the posterior completion of a given σ -algebra. Since B-informed events are defined
in relation to a given probability measure, probability conveys information.

The paper is structured as follows: we present preliminary definitions including
the notions of knowledge and belief in Sect. 2. In Sect. 3, under the conception of
information as knowledge, we establish an equivalence betweenmeasurable partitions
and countably generated σ -algebras in formalizing information.Moreover, we discuss
the issues regarding the notion of informed sets as formalized by HM. Section 4

7 The posterior completion of a σ -algebra is to create the smallest σ -algebra by adding events that are
either measure zero or one with a proper regular conditional probability measure, into a given σ -algebra.
The posterior completion of a partition is to add in those events to the partition.
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Formalization of information: knowledge and belief 1011

consists of an equivalence result under the conception of information as belief. Then,
we conclude in Sect. 5.

2 Preliminaries

Partitions and σ -algebras Let (Ω,F) be a measurable space, whereΩ is a non-empty
set of states endowed with a σ -algebra F , so-called the event space. Measurable sets
of the σ -algebraF are called events. We assume thatΩ is a complete separable metric
space, and the event space F is a strongly Blackwell σ -algebra.8 The complement of
an event E is denoted by ¬E .

Definition 1 Let X and Y be partially ordered sets (posets) with the partial orderings
�X and �Y . A mapping Φ : X → Y is an order isomorphism if Φ is bijective and
preserves order in the following sense: x �X x ′ ⇐⇒ Φ(x) �Y Φ(x ′). If such an
order isomorphism exists, X and Y are said to be order isomorphic.

Definition 2 (Partition) Let (Ω,F) be given. A collection of non-empty events is
called a partition and denoted by Π if it satisfies the following:

(1) ∪{E |E ∈ Π} = Ω;
(2) If E, F ∈ Π and E 	= F , then E ∩ F = ∅.
Note that we define a partition to be a collection of events (or, equivalently, measurable
sets). Let Πω denote an element of Π containing a state ω, and it is unique. For two
partitions Π and Π ′, we say that Π is finer than Π ′, denoted by Π �P Π ′, if for each
ω ∈ Ω , Πω ⊆ Π ′

ω. Let P be a collection of all partitions of Ω . Then, �P is a partial
ordering on P and (P,�P ) is a partially ordered set (poset).

Definition 3 (Sub-σ -algebra) Let (Ω,F) be given. A sub-σ -algebra G is a sub-
collection of events satisfying the following two properties:

(1) Closed under complements: for any E ∈ G, ¬E ∈ G.
(2) Closed under countable unions: for any countable number of events {Ei }i∈I with

Ei ∈ G, ∪i∈I Ei ∈ G.
For a σ -algebra G and a state ω ∈ Ω , an atom A (ω,G) = ∩{G ∈ G|ω ∈ G} is the
smallest set containing ω in a σ -algebra G. Whenever G is obvious, we simply denote
it by Aω.

Let Σ be a collection of all sub-σ -algebras of Ω . A sub-σ -algebra G is larger than
H if for every E ∈ H, E ∈ G. This naturally defines a partial ordering �σ on Σ such
that for two sub-σ -algebras G andH, G �σ H if G is larger thanH. Then, (Σ,�σ ) is
a poset.

For the two posets (P,�P ) and (Σ,�σ ), define amapping F : (P,�P )→ (Σ,�σ )

such that for Π ∈ P , F(Π) is the smallest σ -algebra generated by the partition cells
of Π . Then, as the following example from Billingsley (1995) shows, F is not an
(order) isomorphism.

8 A σ -algebra is a strongly Blackwell σ -algebra if it is separable and every two countably generated
sub-σ -algebras with the same atom coincide.
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Example 1 (Billingsley) Let Ω = [0, 1] ⊂ R endowed with a Borel σ -algebra
F . Let Π = {{ω}|ω ∈ Ω} and Π ′ = {[0, 1

2

)
,
[ 1
2 , 1

]}. Then, F(Π) = {E ∈
F | either E or ¬E is countable} and F(Π ′) = {∅,

[
0, 1

2

)
,
[ 1
2 , 1

]
,Ω}. Clearly, Π is

finer than Π ′ (Π �P Π ′). However, neither σ -algebra is larger than the other: neither
F(Π) �σ F(Π ′) nor F(Π ′) �σ F(Π).

Belief and Knowledge The following definitions are standard in the literature on epis-
temic logic and game theory. For example, see Aumann (1999a, b); Maschler et al.
(2013), and Meyer (2003).

Definition 4 (Belief ) Let (Ω,F) be given. An operator B : F −→ F is said to be a
belief if B satisfies the following axioms:

A1 Conjunction: For any countable index set I and events {Ei }i∈I with ∩i∈I Ei ∈
F , ∩i∈I B(Ei ) = B(∩i∈I Ei ).
A2 Consistency: B(E) ∩ B(¬E) = ∅.
A3 Positive introspection: B(E) ⊆ B(B(E)) for E ∈ F .
A4 Negative introspection: ¬B(E) ⊆ B(¬B(E)) for E ∈ F .

For ω ∈ Ω and E ∈ F , ω ∈ B(E) is read as “A DM believes an event E at a
state ω.” Therefore, for an event E , B(E) is an event that whenever it occurs, the DM
believes that the event E occurs. In this sense, B(E) is the event that is an evidence
based on which the DM believes E .

Definition 5 (Knowledge) Let (Ω,F) be given. An operator K : F −→ F is said to
be knowledge if it satisfies the axioms of a belief operator and the following additional
axiom:

A5 Non-delusion: K (E) ⊆ E for E ∈ F .

Note that a knowledge operator K is also a belief operator, but the converse does not
hold in general. In what follows, we shall use B to denote a belief operator and K a
knowledge operator. Similarly to the case of belief, we say that the DM knows at ω

that the event E occurs, or simply that the DM knows E at ω if ω ∈ K (E).
Any belief operator B satisfies the following properties:

A6 Necessitation: B(∅) = ∅.
A7 Monotonicity: E ⊆ F implies B(E) ⊆ B(F).

The proof is easy, so we omit it.9 Given a belief operator, one can completely
describe what the DM believes at each state, or his doxastic status. Similarly, a knowl-
edge operator specifies what the DM knows at each state, or his epistemic status. If
one chooses a different belief (or knowledge) operator, it indicates a different doxastic
(or epistemic) status as it is illustrated in the following example.

Example 2 Let Ω = {ω1, ω2} and F = 2Ω . Consider two knowledge operators, K
and K ′ such that K ({ω}) = {ω} for ω ∈ Ω , and K ′({ω}) = ∅. Let ω be the true

9 Interested readers may see, for example, Bacharach (1985).
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Formalization of information: knowledge and belief 1013

state. For any event E with ω ∈ E , ω ∈ K (E) but ω /∈ K ′(E) unless E = Ω . The
knowledge operator K thus implies that a DM knows all the events that actually occur
at the true state. On the contrary, K ′ indicates that the DM does not know any event
that occurs, except for that the state space Ω itself occurs.

Note that the notion of belief and thus of knowledge rely on the event space F .
Although the definitions given in this paper are standard in the literature on epistemic
logic and game theory, this reliance may raise an issue about why some sets of states,
if they lie outside the event space, are precluded from being the subjects of belief
and knowledge. This issue becomes trivial if the event space is given as the powerset.
Hence, we shall focus on the case where the event space is strictly smaller than the
powerset. Then, a natural question arises. What is the meaning of an event if it does
not merely mean a set of states? Before answering this, one cannot understand why
the set of states being an event is essential in defining the notion of belief and thus
of knowledge. Unfortunately, however, there is no consensus about why some sets of
states are not events. Savage (1972) thus insists the event space to be the powerset, but
for a technical need to define a countably additive probability measure, the event space
is required to be smaller as in Arrow (1966). Shafer (1986) interprets this restriction
as complexity of describing states, thus of comparing acts. Villegas (1964), implicit
though, takes this point by taking events to be a primitive of uncertainty. Taking
Shafer’s point of view, we interpret the event space to be the collection of sets of states
which the DM is able to recognize.10 Accordingly, sets of states lying outside the
event space are not recognizable to the DM. As the DM cannot believe/know those
that he cannot recognize, we may preclude those sets of states from being the subjects
of belief and thus of knowledge.

Now, we define an informed event.

Definition 6 (Informed event) For a belief operator B : F −→ F , an event E ∈ F
is an B-informed event if B(E) ∪ B(¬E) = Ω . Similarly, for a knowledge operator
K , an event E ∈ F is said to be K-informed event. A DM is said to be B-informed
(K -informed, resp.) about an event E at ω if E is an B-informed (K -informed, resp.)
event and ω ∈ B(E) (ω ∈ K (E), resp).

The above definition draws a distinction between what one knows/believes and what
one is informed about. Although he knows/believes the event, he may not be informed
about it. For him to be informed, he must know either the event occurs or not at any
state. This requires that the DM has counterfactual knowledge/belief about the event.
To illustrate this possibilities, consider a variant of Example 2.3 in Halpern (1999).

Example 3 Bob is in a room with the light on. The door is painted either
red or blue, and he can tell which color. However, he might not have distin-
guished the colors, had the room been dark. Formally, there are four states,
{(red, of f ), (blue, of f ), (red, on), (blue, on)}, where (red, of f ) denotes a state in
which the door is red and the light is off, and the other states canbe similarly interpreted.

10 This interpretation is similar to the view in Heifetz et al. (2006). They consider events to be “those that
can be “known” or be the object of awareness.” For more discussion about the conception of an event, see
Al-Najjar (2009).
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1014 J. J. Lee

Let RED, BLUE, ON, and OFF be the events that the door is red, the door is blue,
the light is on, and the light is off. Let K be the knowledge operator describing Bob’s
knowledge. Then, K (ON) = ON , K (OFF) = OFF , K (RED) = {(red, on)}, and
K (BLUE) = {(blue, on)}. Suppose that only the event RED is of an agent’s interest,
and the realized state is (red, on). As a consequence, Bob knows that the event RED
occurs.Were the realized state to be (red, o f f ), however, hewouldhavenot known that
RED occurs, nor doesBLUE = ¬RED occur. For K (RED)∪K (¬RED) = ON 	= Ω ,
RED is not an informed event. Therefore, Bob is not informed of the event RED.

In this example, an event ON is a K -informed event. At the state (red, on), an agent
knows that the light is on. In addition, he would know whether the light is on or off,
even in his imagination that any other state might have occurred.

The following lemma shows that a K -informed event is sufficient for a DM to know
itself. In this sense, a K -informed event represents information.

Lemma 1 Let E be a K -informed event. Then, E is self-evident11: E = K (E).

Proof Suppose that E is a K -informed event, i.e., K (E) ∪ K (¬E) = Ω . By A5,
K (E) ⊆ E , so it suffices to show that E ⊆ K (E). By A2, K (E) ∩ K (¬E) = ∅ and
thus ¬K (E) = K (¬E). Again by A5, ¬K (E) = K (¬E) ⊆ ¬E . Thus, E ⊆ K (E).

��
By definition of knowledge and belief, it is easy to see that a K -informed event is a
B-informed event, but not every B-informed event is a K -informed event. Moreover,
a B-informed event is not necessarily self-evident.

3 Representation of information as knowledge

We first present a well-known result on the relationship between a partition and a
knowledge operator.

Lemma 2 For a partition Π ∈ P, define KΠ(E) = {ω|Π(ω) ⊆ E} for each E ∈ F .
Then, KΠ satisfies A1–A5. For an operator K : F → F satisfying A1–A5, define
a partition ΠK = {ΠK (ω)|ω ∈ Ω}, where ΠK (ω) = ∩{E ∈ F |ω ∈ K (E)}. Then,
Π = ΠKΠ .

For the proof, see Aumann (1999a). According to the above lemma, a K -informed
event can be defined with respect to a partition in the following way: E is a K -
informed event with respect to a partition Π if E = KΠ(E). By adapting the notion
of a K -informed event to a partition, we can compare our notion of a K -informed
event directly with HM’s notion of an informed set. For comparison, we present HM’s
notion of an informed set.

Definition 7 (Informed set in HM) A set E ⊆ Ω is an informed set defined by a
partitionΠ if for every F ∈ Π , either F ⊆ E or F ⊆ ¬E . The collection of informed
sets of Π is denoted by IΠ .

11 This term originates in Aumann (1999a). Whenever a self-evident event occurs, it informs the DM of
its occurrence. The self-evident event, therefore, is the knowledge about itself.
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The definition of an informed set by HM is related to ours by the following lemma.
Let FΠ denote the collection of K -informed events adapted to a partition Π .

Lemma 3 Let (Ω,F) be given. For a partition Π , let IΠ denote a collection of its
informed sets defined by HM, and letFΠ denote a collection of its K -informed events.
Then, FΠ = IΠ ∩ F . Moreover, FΠ is a sub-σ -algebra of F .

The collection of informed sets by HM does not have to be a sub-σ -algebra. That is,
there may exist an informed set that is non-measurable.

Example 4 Let Ω = [0, 1] equipped with a Borel σ -algebra, and let μ be the Borel
measure defined on it. LetΠ = {{ω}|ω ∈ Ω} be a partition that contains all singletons.
Then, the collection of its informed sets IΠ is the powerset. Obviously, this is larger
than the Borel σ -algebra and contains a well-known non-measurable set, so-called
Vitali set. See Royden (1988) for its definition.

Now,we investigate the relationship between a knowledge operator and aσ -algebra.
From the discussion on partitions, one can easily see that a knowledge operator defines
a σ -algebra.What is not clear is whether a σ -algebramay define a knowledge operator.
For our purpose, we need the following definition.

Definition 8 (Countably generated σ -algebra) A sub-σ -algebra G is countably gen-
erated if there is a collection of countably many events U = {Ei |i ∈ N} such that G
is the smallest σ -algebra containing U .

We show that a countably generatedσ -algebra also represents information as knowl-
edge.

Lemma 4 LetG be a countably generated sub-σ -algebra. Define for an event E ∈ F ,

K (E) = ∪{G ∈ G|G ⊆ E}.

Then, K is indeed a knowledge operator. Moreover, every event in G is a K -informed
event, i.e., K (G) = G for every G ∈ G.

Proof To show that K is a knowledge operator, it suffices to show A1,A4 and A5,
because they implies the rest Bacharach (1985). For A1, let (Ei )i∈I be given for a
countable index set I . Then, ∩i∈I K (Ei ) = ∪{∩i∈I Gi ∈ G|Gi ⊆ Ei ,∀i ∈ I } =
∪{∩i∈I Gi ∈ G| ∩i∈I Gi ⊆ ∩i∈I Ei } = K (∩i∈I Ei ). For A4, since a countably gen-
erated σ -algebra G is a sub-σ -algebra of a strongly Blackwell σ -algebra F , it is
closed under complements and arbitrary unions, and thus ¬K (E) ∈ G holds. Then,
K (¬K (E)) = ∪{G ∈ G|G ⊆ ¬K (E)} = ¬K (E). Lastly, A5 and the last claim that
K (G) = G for G ∈ G trivially follow from the definition of K . ��
Asboth partitions and countably generatedσ -algebras represent information as knowl-
edge, one may wonder whether they can be always equivalently used. Unfortunately,
however, this is not true.
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Example 5 Let Ω = [0, 1] endowed with a Borel σ -algebra F . Let μ be the Borel
measure. Define a mapping φ : [0, 1] → [0, 1] such that forω ∈ [0, 1], φ(ω) = ω+α

if ω+α ≤ 1 and φ(ω) = ω+α −1 if ω+α > 1, where α is an irrational number. Let
ω ∼ ω′ be an equivalence relation on [0, 1] so thatω ∼ ω′ if and only ifφn(ω) = ω′ for
some n ∈ N. Then, Π(ω) = {ω′|ω′ ∼ ω} is countable and dense in [0, 1]. Moreover,
the collection of these subsets Π = {Π(ω)|ω ∈ [0, 1]} is a partition of Ω . The
informed events of this partition are well known to be φ-invariant measurable subsets
of Ω and they have either measure 0 or measure 1 (Cornfeld et al. 2012).12 Then,
the collection of informed events FΠ contains an atom of measure 1, which cannot
be an element of Π , and thus, it is not countably generated. Moreover, a partition Π ′
generated by FΠ is not the same as the partition Π .

The above example illustrates that if the collection of K -informed events from a par-
tition is not countably generated, the partition generated by such a σ -algebra does not
preserve K -informed events when one goes from a σ -algebra to a partition. There-
fore, we restrict our attention to partitions whose collections of K -informed events
are countably generated σ -algebras.

Definition 9 A partition Π is said to be measurable if FΠ is countably generated.

LetΣc be a sub-collection ofΣ such that it contains all countably generated sub-σ -
algebras. We naturally endow Σc with the partial ordering �σ restricted to Σc. With
a slight abuse of notations, write it also as �σ . Then, (Σc,�σ ) is a poset. Let PM

denote a collection of all measurable partitions of Ω , endowed with a partial ordering
�P restricted to PM . Then, (PM ,�P ) is a poset. Now, we have our first main result
as follows:

Theorem 1 The collection of measurable partitions (PM ,�P ) and the collection
of countably generated sub-σ -algebras (Σc,�σ ) are order isomorphic: Define Φ :
(PM ,�P ) → (Σc,�σ ) such that forΠ ∈ P,Φ(Π) = FΠ is a collection of informed
events. Define Ψ : (Σc,�σ ) → (PM ,�P ) such that for a countably generated sub-
σ -algebra G ∈ Σc, Ψ (G) = {A (ω,G)|ω ∈ Ω} is a partition that contains atoms of
G. Then, the following properties hold.

(1) Φ is injective and order-preserving.
(2) Ψ is injective and order-preserving.
(3) Φ ◦ Ψ = IΣc and Ψ ◦ Φ = IPM , where IΣc and IPM are the identity functions

defined on Σc and PM, respectively.

Moreover, the informational content of a measurable partition Π or a countably
generated sub-σ -algebra G is the collection of K -informed events, and a K -informed
set is defined by a knowledge operator K deriving from Π or G.
Remark 1 Note that an atom A (ω,G) of a countably generated sub-σ -algebra is an
event (a measurable set) because a countably generated sub-σ -algebra of a strongly

12 The collection of informed sets suggested by HM consists of φ-invariant subsets of Ω . The collection
includes non-measurable subsets, and the collection of informed events excludes those non-measurable
subsets as it is obvious from Lemma 3.
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Blackwell σ -algebra F is closed under arbitrary unions as long as it is measurable
with respect to a larger σ -algebra. See Remark 3 of HM.

For comparison, we restate the result of HM in the following.

Lemma 5 Let (P,�P ), (Σ,�σ ), and (Σc,�σ ) be given. Define Φ : (P,�P ) →
(Σ,�σ ) such that for Π ∈ P, Φ(Π) = FΠ is a collection of informed events.
Define Ψ : (Σc,�σ ) → (P,�P ) such that for a countably generated sub-σ -algebra
G, Ψ (G) = {A (ω,G)|ω ∈ Ω} is a partition that contains atoms of G. Then, the
following holds.

(1) Φ is injective and order-preserving.
(2) Ψ is injective and order-preserving.
(3) For G ∈ Σc, (Φ ◦ Ψ )(G) = G, i.e., Φ ◦ Ψ = IΣc , where IΣc is the identity

function defined on Σc.

For proof of Theorem 1, see HM.

Remark 2 Note that the codomain of Φ is Σ , not Σc. Due to the existence of non-
measurable partition, as we show in Example 5, Ψ ◦ Φ = IP does not hold. That is,
Φ cannot have Ψ as its inverse, thus (P,�P ) and (Σ,�σ ) are not order isomorphic.
The proof of Theorem 1 follows naturally from the above lemma and the definition of
a measurable partition.

We are concluding this section by showing how our result addresses the problem
identified in Billingsley’s example.

Example 6 Recall that in Billingsley’s example, Ω = [0, 1] endowed with a Borel σ -
algebraF . LetΠ be the partition that contains every singleton. Then, the collection of
K -informed events corresponding toΠ consists of every event inF . As themeasurable
space (Ω,F) is assumed to be a complete separable metric space, F is countably
generated. Therefore, the partition Π ′ generated from F by collecting all of its atoms
is indeed the same as Π .

4 Representation of information as belief

In this section, we fix (Ω,F , μ), and we additionally assume that F is a Borel σ -
algebra. We first argue that the generical equivalence of σ -algebras as it is defined in
HM indeed represents information as belief, not as knowledge. For this purpose, we
present some definitions.

Definition 10 (Generical Equivalence of σ -algebra) Any two sub-σ -algebras G and
H are generically equivalent with respect to a probability measure μ if

(1) for every G ∈ G, there is H ∈ H such that μ(G�H) = 0, and
(2) for every H ∈ H, there is G ∈ G such that μ(G�H) = 0.

Definition 11 (Proper Regular Conditional Probability) Let (Ω,F , μ) and let G be
a sub-σ -algebra. Then, a regular conditional probability is a function Q : F × Ω →
[0, 1] satisfying the following:
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(1) for each ω ∈ Ω , Q(·, ω) is a probability measure on F .
(2) for each E ∈ F , Q(E, ·) is a version of p(E |G) such that p(E |G) isG-measurable

and integrable, and
∫
G p(F |G)dμ = μ(F ∩ G) for all G ∈ G.

Moreover, the regular conditional probability Q is said to be proper if Q(E, ω) =
1E (ω) for each E ∈ G, where 1E (ω) = 1 if ω ∈ E , and 0 otherwise.

By our assumption on the measurable space (Ω,F), a proper regular conditional
probability exists Blackwell and Ryll-Nardzewski (1963).13 Now, we show that one
can define a belief operator by a proper regular conditional probability.

Lemma 6 Let G be a sub-σ -algebra, and let Q(E, ω) be a proper regular conditional
probability derived from the probability space (Ω,F , μ) and G. Define an operator
B : F → F such that for each event E ∈ F ,

B(E) = {ω ∈ Ω|Qω(E) = 1}.

Then, B satisfies A1–A4. That is, B is a belief operator.

For the proof, see Brandenburger and Dekel (1987). In the above lemma, G can be any
σ -algebra which, for example, can be the smallest σ -algebra generated by a partition.
Therefore, one can always define a belief operator regardless of whether one starts
from a partition or from a σ -algebra. Similarly to the case of knowledge, we consider
a collection of all B-informed events and denote it by FQ

In general, B does not satisfy A5, i.e., B(E) ⊆ E does not necessarily hold.
Therefore, B is not a knowledge operator. Moreover, note that for each ω ∈ Ω , Qω is
not a complete measure on G as the following example illustrates.

Example 7 Let Ω = {ω1, ω2, ω3}, F = 2Ω , and a sub-σ -algebra G = {∅, {ω1, ω2},
{ω3},Ω}. The probability measure μ is given as μ({ω1}) = μ({ω3}) = 0.5. Let
E = {ω2} and F = {ω1, ω2}. The posterior beliefs for E and F atω3 can be calculated
as Q(F, ω3) = Q(E, ω3) = 0.On themeasurable space (Ω,G), Qω3 is not a complete
measure, for E /∈ G.

Motivated by this observation, Brandenburger and Dekel (1987) propose the fol-
lowing:

Definition 12 (PosteriorCompletion) The posterior completion of aσ -algebraG is the
σ -algebra Ĝ generated by G and the class of sets {G ∈ G|Q(G, ω) = 0 for every ω ∈
Ω}. That is, Ĝ = {G ∈ G|Q(G, ω) = 0 or 1 for every ω ∈ Ω} and it is said to be the
posterior-completed σ -algebra.

Although the definition takes a sub-σ -algebra as primitive, one can take a partition
as primitive as well by the following procedure: for a given partition Π , generate the

13 This reveals why we need to restrict F to be a Borel σ -algebra, instead of being a strongly Blackwell
σ -algebra in this subsection. IfF is not a Borel σ -algebra, a proper regular conditional probability may not
exist. See Shortt (1984).
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smallest σ -algebra containing the partition cells, sayH, and then apply the procedure
described in the above definition to obtain the posterior-completed σ -algebra Ĥ. Then,
the posterior-completed partition Π̂ is the collection of the atoms of Ĥ. As a matter of
fact, the posterior completion of a partition is to add in B-informed events. All these
imply that the posterior-completed σ -algebra is indeed a collection of all B-informed
events.

Lemma 7 Let G be a sub-σ -algebra, and let B be the resulting belief operator (by
Lemma 6). The posterior-completed σ -algebra of G is indeed a collection of B-
informed events:

Ĝ = {E ∈ F |B(E) ∪ B(¬E) = Ω}.

By definition of the posterior-completed σ -algebra, the proof is obvious. In Example
7, the posterior completion leads to the powerset.

Define a binary relation ∼ such that for all two sub-σ -algebras G and H, G ∼ H
if Ĝ = Ĥ. It is not hard to see that this relation is an equivalence relation. That is,
the two sub-σ -algebras are considered to be equivalent if their posterior-completed
σ -algebras are identical. Now, we connect the notion of generical equivalence to the
notion of a posterior completion.

Lemma 8 Any sub-σ -algebra is generically equivalent to its posterior completion
with respect to the proper regular conditional probability measure Q.

Proof Let G be a sub-σ -algebra, and let Ĝ be its posterior-completed σ -algebra with
respect to a proper regular conditional probability Q. Clearly, G ⊆ Ĝ. Take any event
E ∈ Ĝ. If E ∈ G, it is trivial. Suppose that E /∈ G. Then, for any ω ∈ E , either
Q(E, ω) = 0 or 1. If Q(E, ω) = 0, trivially there exists an empty set in G satisfying
Q(E�∅, ω) = 0. Otherwise if Q(E, ω) = 1, there exists an event F ∈ G such that
E ⊂ F and thus Q(F, ω) = 1. Hence, Q(E�F, ω) = Q(F \ E, ω) = 0. ��

We are concluding this section by presenting our secondmain result that establishes
an equivalence between partitions and σ -algebras for representing information as
belief. Let P pc = P/∼ denote a collection of all posterior completion of partitions of
Ω , endowedwith a partial ordering�P restricted to P pc.14 Then, (P pc,�P ) is a poset.
Similarly, let Σ pc = Σ/∼ denote a collection of all posterior completion of sub-σ -
algebras, endowed with a partial ordering �σ restricted to Σ pc. Then, (Σ pc,�σ ) is a
poset.

Theorem 2 The collection of all posterior-completed partitions (P pc,�P ) and the
collection of all posterior-completed sub-σ -algebras (Σ pc,�σ )are order isomorphic:
Define Φ : (P pc,�P ) → (Σ pc,�σ ) such that for Π ∈ P, Φ(Π) = FΠ is a
collection of B-informed events. Define Ψ : (Σ pc,�σ ) → (P pc,�P ) such that for
a posterior-completed sub-σ -algebra G ∈ Σ pc, Ψ (G) = {A (ω,G)|ω ∈ Ω} is a
partition that contains atoms of G. Then, the following properties hold.

14 The equivalence relation ∼ between any two partitions Π and Π ′ is defined so that the smallest σ -
algebras generated by these partitions, denoted by σ(Π) and σ(Π ′), have the same posterior-completed
σ -algebra, i.e., σ(Π) ∼ σ(Π ′).
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(1) Φ is injective and order-preserving.
(2) Ψ is injective and order-preserving.
(3) Φ ◦Ψ = IΣ pc and Ψ ◦Φ = IP pc , where IΣ pc and IP pc are the identity functions

defined on Σ pc and P pc, respectively.

Moreover, the informational content of a posterior-completed partition Π or a
posterior-completed sub-σ -algebra G is the collection of B-informed events, and a
B-informed set is defined by a belief operator B deriving from Π or G through a
proper regular conditional probability.

Proof (1) is trivial, for the posterior-completed σ -algebra is the collection of all B-
informed events of the posterior-completed partition. For (2), suppose thatG andG′ are
two different posterior-completed σ -algebras such that G ⊆ G′. The corresponding
partitions are Π = {A (ω,G)|ω ∈ Ω} and Π ′ = {A (ω,G′)|ω ∈ Ω}. Take any
ω ∈ Ω . Then, A (ω,G′) = ∩{G ∈ G′|ω ∈ G} = ∩{G ∈ G ∪ H|ω ∈ G} ⊆
∩{G ∈ G|ω ∈ G} = A (ω,G). As to (3), it is easy to see that two different posterior-
completed partitions cannot yield the same σ -algebra. Therefore, it suffices to show
that two different posterior-completed σ -algebras generate two different partitions.
Suppose that G and G′ are two different posterior-completed σ -algebras. Assume
without loss of generality that there exists an event E ∈ G but E /∈ G′. Suppose to
the contrary that the corresponding partitions are the same, i.e., Π = {A (ω,G)|ω ∈
Ω} = {A (ω,G′)|ω ∈ Ω}. Since Π is the posterior-completed partition, there exists
ω′ ∈ Ω andΠ ′(ω′) ⊆ E such that Q′(Π ′(ω′), ω′) = 1 where Q′ is the proper regular
conditional probability measure defined by G′ together with μ. Then, Q′(E, ω′) = 1
because Π ′(ω′) ⊆ E . This implies that E ∈ G′, for G′ contains every event F such
that Q′(F, ω′) = 1. This contradicts to the assumption that E /∈ G′. ��
The above theorem shows that after completing each σ -algebra G with respect to a
proper regular conditional probability measure Q (defined jointly by G and μ), the
σ -algebra G uniquely determines a partition Π .

Our result, which is based on the technique of posterior completion, provides a
different result from HM regarding what is a partition that preserves the informational
content of the sub-σ -algebra in Billingsley’s example.

Example 8 Consider the following σ -algebra G in Billingsley’s example:

G = {E ∈ F | either E or ¬E is countable}.

The posterior completion of G is thus F which is the Borel σ -algebra. The partition
generated from this posterior-completed σ -algebra F is the partition that contains
every singleton. This is, in fact, the partition that generates G.
Remark 3 Recall that in HM, the partition claimed to have the same informational
content as G is the coarsest partitionΠ ′ = {Ω}. Notice that G is the smallest σ -algebra
generated by the finest partition Π = {{ω}|ω ∈ Ω}. As G contains every singleton, a
DM can distinguish each state from the other. This is the information that G inherits
from the partition Π . However, HM’s treatment of G ignores this information, while
focusing solely on the information provided by the uniform probability distribution.
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On the other hand, our treatment requires the informational content of G to come from
both the partition Π and the uniform probability distribution conditioned on Π , as
one usually defines a conditional probability. The information contained in Π is not
lost, thus implying that the DM is fully informed of which state occurs. Hence, the
informational content of G must be equal to the underlying event space, which is the
Borel σ -algebra F .

5 Conclusion

In this paper, we establish an equivalent relationship between partitions and σ -algebras
as formalizations of information and equip the notion of an informational content with
a precise and intuitive meaning by viewing it through the two different but related
notions of knowledge and belief. Although both a partition and a σ -algebra have
been prevalently used to formally represent information, there has only been a vague
understanding about the relationship between the two. However, Billingsley (1995)
and Dubra and Echenique (2004) raise a concern about the use of σ -algebra by coming
upwith an example inwhich a partition and the σ -algebra generated by it fail to contain
the same informational content.

Hervés-Beloso and Monteiro (2013) engage this example and elaborate on the
meaning of information. They provide a notion of an informed set and suggest the
two alternative methods: one for generating a σ -algebra from a partition and the
other for going in the opposite direction. However, we find out that their suggestion
still leaves the meaning of information ambiguous. When it comes to a partition,
the information content captured by the notion of an informed set depends neither
on a given measurable space nor on a probability measure. On the other hand, for
a given σ -algebra, the informational content, in general, relies on a specific choice
of a probability measure. Even when information content is captured by a countably
generatedσ -algebra,HMare silent aboutwhether or not it is a collectionof all informed
sets for some partition.

By separating the notion of information into the two notions of knowledge and
belief, we elaborate on the meaning of information in relation to a probability mea-
sure. The two notions are distinct regarding whether the concept of information is
required to satisfy the truthfulness or not. If one allows for falsity, the notion one
works with is that of belief. We show that a proper regular conditional probability,
and the posterior completion of a partition/a σ -algebra correspond to this conception
of information. Specifically, the presence of null events captures the possible falsity
of information. Based on the conception of information as belief, we show that par-
titions and σ -algebras can be equivalently used after applying the technique of the
posterior completion proposed by Brandenburger and Dekel (1987). The idea behind
posterior completion is to add in null events to a partition (or a σ -algebra) to generate
a new partition (a new σ -algebra) that allows a DM to incorporate the possibility of
falsity in his information. On the other hand, if the concept of information is based
on knowledge, information must be independent of one’s belief (which is captured
by a probability measure). In this case, we show that only measurable partitions and
countably generated σ -algebras can be equivalently used.
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We conclude that although the distinction between knowledge and belief matters
for the equivalence between partitions and σ -algebras when formalizing information
either by a partition or by a σ -algebra, one can safely assume information as belief in a
practical sense. In almost all economic models, a partition or a σ -algebra is equipped
with a probability measure to formalize information of a DM. Therefore, the only
thing one needs to make sure is to apply posterior completion before using a partition
or a σ -algebra to analyze the problem in his hand.
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