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Abstract We discuss how linear equilibrium pricing in certain competitive market
structures may represent nonlinear equilibrium pricing of Aliprantis et al. (J Econ
Theory 100:22–72, 2001, J Econ Theory 121:51–74, 2005). Their work extends the
theory of value beyond the scope of theWalrasian singlemarket linear pricemodel.Our
arguments include a new and general result on the existence of linear price equilibrium
with multiple markets. Each market has its own price vector (linear functional), and
agents’ involvement in various markets is heterogeneous. As a result, price differences
across markets may prevail in equilibrium. We present an example in which single
market linear price equilibrium does not exist, but certain corresponding equilibrium
with two markets does. This example is a particular instance of a prevalent nonex-
istence problem in atomless economies with differential information. Bypassing the
nonexistence problem is one of the achievements of the nonlinear equilibrium theory.
Our equilibrium with multiple markets, on the other hand, offers a solution with a
more standard economic interpretation. Besides, our general framework is a model of
multiple markets in their own right, and our results are related to the role of economic
intermediation and bilateral trade.
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1 Introduction

Even though information asymmetries and limited market participation conceal arbi-
trage opportunities, economists often seek solution concepts with laws of one price.
Not surprisingly, working to ensure that such a solution concept was nonvacuous led
Aliprantis et al. (2001, 2005) to allowing for nonlinear equilibrium pricing. Their
model is useful as it extends the theory of value to markets with missing trade in
some options and to infinite-dimensional economies with heterogeneous consump-
tion sets. This pertains to limited market participation, which can arise when agents
lack information, as in the differential information economies introduced by Radner
(1968). Infinite-dimensional development of this finite-dimensional prototype lagged
behind the benchmark common knowledge theory of value, particularly with linear
pricing. Only forty years later, Podczeck and Yannelis (2008) allowed for infinitely
many state independent commodities, but retained the assumption of a finite state
space. Only slightly this assumption has been relaxed since then. Such a progress is
made byHervés-Beloso et al. (2009), but restricting all information asymmetries to the
presence of private signals with only finitely many values. Besides, Klishchuk (2015)
covers situations where agents have independent information, and also where the total
endowment of the economy is common knowledge. Despite these limited equilibrium
existence results, the nonexistence is prevalent in the sense of Anderson and Zame
(2001) according to Podczeck et al. (2008). The problem arises because this literature
is confined to linear price equilibria in which all agents face the same price vector.
This nonexistence problem is distinctive of the Walrasian model and does not affect
the solution concept of the core (Yannelis 1991; Koutsougeras and Yannelis 1993).
Aliprantis et al. (2001) solve this nonexistence problem by allowing for nonlinear
pricing, requiring all agents to face the same possibly nonlinear price function.

Our analysis in this paper suggests that the nonlinearities may often be interpreted
in terms of linear prices that segment the economy into multiple markets. We define
markets by specifying their participants and traded commodity bundles. When the
nonlinear price equilibrium is bilaterally feasible, our maximal segmentation delin-
eates pairwise trades and trade-specific prices yielding that equilibrium allocation.
These prices are linear, but may differ across trades. Such a price disparity echoes
the model of the market with pairwise meetings under a different type of asymmetric
information developed by Wolinsky (1990). “Nonnegligible volumes of trade occur
at two different prices” in equilibrium of this model.

Rather than interpreting the nonlinearities solely in terms of pairwise trade, our
model is flexible enough to allow for simpler representations if frictions are not
extreme. Let us consider the case of identical consumption sets, which is friction-
less in the sense of full market participation and where Walrasian equilibrium exists
in infinite dimensions. In our model of multiple markets, this Walrasian equilibrium
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can also be represented as an equilibrium of an economy with just a single mar-
ket. Unlike our maximal segmentation, this single market representation does not
specify underlying pairwise trades, but is more parsimonious. In intermediate cases,
we decompose agents’ sales and purchases into marketwise components transacted
at the corresponding marketwise prices. Our general framework accommodates all
of these segmentation cases in a unified way, and the only thing that changes is
the number of markets. While all admissible trades are priced linearly in multiple
markets, the induced pricing of commodity bundles agrees with the nonlinear pric-
ing of Aliprantis et al. (2001). Our framework can potentially accommodate even
more nonlinearities if economic intermediaries are explicitly introduced into the
model.

Our equilibrium with multiple markets has a more standard definition than equilib-
rium with nonlinear prices of Aliprantis et al. (2001). They describe a nonlinear price
by a family of personalized linear prices indexed by the set of agents. A commodity
bundle is priced then at the maximum revenue from distributing the bundle among
these individually price-taking agents. But the authors do not explain if such revenue
maximization is feasible and satisfies budget constraints given those personalized
prices. We replace personalized prices with marketwise prices, introducing carefully
chosenmarket structures which have room for linear pricing (Sect. 4).We define linear
price equilibrium with multiple markets in which individual budget constraints and
marketwise feasibility are satisfied (Sect. 4.3). Besides representing nonlinear equi-
libria as equilibria of economies with multiple markets (Sect. 5), we give a general
equilibrium existence result for such economies (Sect. 6). An example, where single
market linear equilibrium does not exist (Sect. 3.3.3), but equilibrium with two mar-
kets does (Sect. 3.3.2), clarifies our ideas. In Sect. 2, we first further discuss the related
literature.

2 Further remarks on the related literature

Ever since its inception, standard infinite-dimensional theory of value has excluded
most small consumption sets pertaining to limited market participation. The situa-
tion is especially tight with the lattice commodity spaces that motivated Mas-Colell
(1986) and Aliprantis and Brown (1983). Limited market participation translates into
heterogeneity of consumption sets and conflicts with the assumption of their equality
initiated byMas-Colell (1986). The nonexistence problem arises because this literature
is confined to single market linear price equilibria. Such nonexistence is known to be
a prevalent situation in atomless economies with differential information (Tourky and
Yannelis 2003; Podczeck et al. 2008). We solve this nonexistence problem by mod-
elling those situations as economies with multiple markets in contrast to nonlinear
pricing of Aliprantis et al. (2001).

It is important to mention alternative models in which information asymmetries
coexist with full market participation. This applies, for instance, to Correia-da-Silva
and Hervés-Beloso (2009), Condie and Ganguli (2011a, b), Definitions 3.5 and 3.6 in
Castro et al. (2011), and a special case of Angelopoulos and Koutsougeras (2015). In
these approaches, agents are to some extent ambiguous about contracts.
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Another relevant observation is that the results of Aliprantis et al. (2001, 2005)
also extend the theory of value beyond vector lattices. Without such structure, the
nonexistence problem spreads even to the case of full market participation, as revealed
by the example of Aliprantis et al. (2004b). Sufficient conditions for the existence of
full participation linear price equilibrium in this context are provided by Aliprantis
et al. (2004a, 2005).

A compelling sufficient condition for the existence of limited participation linear
price equilibrium is seen in Remark 9 of He and Yannelis (2016). Their condition
requires norm compactness of consumption sets, and we note that many sequence
spaces admit appealing norm compact consumption sets (see Wickstead 1975).

Finally, let usmention alternative approaches to nonlinear pricing presentwithin the
theory of value. They allow dispensing with certain convexity assumptions according
to Chavas and Briec (2012) and Habte and Mordukhovich (2011). The latter paper
considers economies with public goods. Nonlinear and linear equilibrium theory for
them is studied at great economic generality by Graziano (2007).

3 Example

In Aliprantis et al. (2001), equilibria with nonlinear prices are called personalized
equilibria. This example compares a personalized equilibrium and an equilibrium
with multiple markets in an economy where single market linear equilibrium does not
exist. To the extent of featuring this nonexistence (Sect. 3.3.3), the example is based
on a sufficient condition and other ideas of Tourky and Yannelis (2003).

3.1 Economy

We consider a particular differential information economy in the framework of
Sect. 9.2 in Aliprantis et al. (2001). Two agents face exogenous uncertainty. It is
described by the probability space ([0, 1] ,�, λ), where � is the σ -algebra of all
Lebesgue measurable subsets of [0, 1], and λ is the Lebesgue measure on R. Here-
inafter, if x is an element of a vector space K and p is a linear functional on K , then
the value of p at x is denoted by p · x .

Agent 1 has full information represented by the σ -algebra �. The agent’s con-
sumption set X1 is the positive cone of the commodity space L1 ([0, 1] ,�, λ).
Agent 2 has a coarser information (σ -algebra) �2 generated by the family of
intervals

In =
[

n

n + 1
,
n + 1

n + 2

)

with n ∈ {0, 1, 2, . . . }. The agent’s consumption set X2 is smaller and limited to
�2-measurable nonnegative commodity bundles, i.e.

X2 = {x ∈ X1 : x is �2-measurable} .
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Table 1 Initial endowments and
utility functions for Sect. 3

Agent Endowment ωi ∈ Xi Utility function ui : Xi → R

1 ω1 (s) = s u1 (x) = ∫ 1
0 f1 (s) x (s) ds

2 ω2 (s) = 1 u2 (x) = ∫ 1
0 x (s) ds

The description of the economy is completed in Table 1, where f1 : [0, 1] → R is
defined by f1 (s) = 1 − s.

3.2 Multiple markets versus personalized equilibria

To describe a typical nonlinear price, let p = (p1, p2) be a vector of personalized
prices both of which are continuous linear functionals on the commodity space. The
induced possibly nonlinear price is the real function ψp that maps each nonnegative
commodity bundle x to its value

ψp · x = sup {p1 · y1 + p2 · y2 : y ∈ X1 × X2, y1 + y2 ≤ x} .

Given an (x1, x2) ∈ X1 × X2 which is an allocation (satisfies x1 + x2 ≤ ω1 + ω2),
the vector (x1, x2, p1, p2) is said to be a personalized equilibrium if

(a) for all i and x ∈ Xi , we have ui (x) > ui (xi ) �⇒ ψp · x > ψp · xi ,
(b) for all α ∈ R

2+, we have ψp · (α1ω1 + α2ω2) ≤ α1ψp · x1 + α2ψp · x2, and
(c) ψp · (ω1 + ω2) > 0.

In Sect. 3.3, we find such a personalized equilibrium (x1, x2, p1, p2), as given in
(1) there, and describe it in terms of two markets. Any commodity bundle can be
traded in market 1, but only fully informed agents participate in it. By contrast, market
2 accepts only �2-measurable bundles, but is open to all agents. Apart from these
participation requirements, agents are only constrained by their initial endowments and
marketwise prices. We find, in a sense, a market-clearing vector p′ = (

p′
1, p

′
2

) �= p of
marketwise prices, which are continuous linear functionals on the commodity space
as well. Agents sell their initial endowments in different markets so as to maximize
revenue and make utility-maximizing purchases in those markets. Agent 1 maximizes
revenue by selling a particular �2-measurable bundle ω12 ∈ [0, ω1] in market 2 and
the remainder ω11 = ω1 − ω12 in market 1. Agent 2 participates and sells the initial
endowment ω2 only in market 2. The corresponding revenues and the marketwise
prices determine the agents’ budget sets. The consumption xi of every agent i in the
personalized equilibrium turns out to coincidewith the agent’s total utility-maximizing
purchases in different markets. Thus, we obtain a competitive equilibrium description
of the personalized equilibrium allocation (x1, x2).

Notice that ψp′ assigns to each nonnegative commodity bundle the maximum rev-
enue from distributing the bundle among these two markets. Even though below we
find p′ �= p, they are such that ψp′ = ψp. Thus, we are able to reinterpret nonlinear-
ities of ψp in terms of multiple markets.
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Fig. 1 Decomposition of ω1
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3.3 Technicalities

Here we confirm our last series of statements as well as the nonexistence of single
market linear equilibrium. We view prices pi and p′

i as elements of L∞ ([0, 1] ,�, λ)

so that corresponding values of a commodity bundle x are

pi · x =
∫ 1

0
pi (s) x (s) ds

and p′
i · x defined analogously. A preliminary step is to decompose ω1 into

ω12 =
∞∑
n=0

n

n + 1
χIn ∈ X2 and ω11 = ω1 − ω12 ∈ X1,

as illustrated in Fig. 1.

3.3.1 Personalized equilibrium

Weshow in the next paragraph that a personalized equilibrium is obtained, as illustrated
in Fig. 2, by posing

x1 = ω11 +
(
4 − 1

3
π2

)
χ[

0, 12

), x2 = ω2 −
(
4 − 1

3
π2

)
χ[

0, 12

) + ω12,

p1 = f1, and p2 = χ[
0, 12

) p1 + 3

4
χ[

1
2 ,1

]. (1)

It is first useful to note that 4−π2/3 = 2
∫ 1
0 ω12 (s) ds as confirmed below given that

the sum
∑∞

n=1 n
−2 = π2/6 is just the Riemann zeta function evaluated at 2 (see, for

example, Finch 2003):
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Fig. 2 Personalized equilibrium
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∫ 1

0
ω12 (s) ds =

∫ 1

0

∞∑
n=0

n

n + 1
χIn (s) ds

=
∞∑
n=0

∫
In

n

n + 1
ds

=
∞∑
n=0

n

n + 1

∫
In
ds

=
∞∑
n=0

n

n + 1

(
n + 1

n + 2
− n

n + 1

)

=
∞∑
n=0

(
(n + 1)2

(n + 2)2
− n2

(n + 1)2
− 1

(n + 2)2

)

= lim
N→∞

(
N∑

n=0

(
(n + 1)2

(n + 2)2
− n2

(n + 1)2

)
−

N∑
n=0

1

(n + 2)2

)

= lim
N→∞

(
(N + 1)2

(N + 2)2
−

N∑
n=0

1

(n + 2)2

)

= lim
N→∞

(
(N + 1)2

(N + 2)2
−

N∑
n=1

1

n2
+ 1 − 1

(N + 1)2
− 1

(N + 2)2

)

= 2 −
∞∑
n=1

1

n2

= 2 − 1

6
π2.
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Clearly, the pair (x1, x2) ∈ X1 × X2 is an allocation. To see that condition (a) in
the definition of personalized equilibrium is satisfied, notice that

ψp · x ≥ pi · x > pi · xi = ψp · xi . (2)

We verify condition (b) by demonstrating that for all α ∈ R
2+ and y ∈ X1 × X2 such

that y1 + y2 ≤ α1ω1 + α2ω2 we have p1 · y1 + p2 · y2 ≤ α1 p1 · x1 + α2 p2 · x2:

α1 p1 · x1 + α2 p2 · x2 = α1 p1 · ω11 + α1 p1 ·
(
4 − 1

3
π2

)
χ[

0, 12

) + α2 p2 · x2

= α1 p1 · ω11 + α1
3

8

(
4 − 1

3
π2

)
+ α2 p2 · x2

= α1 p1 · ω11 + α1
3

4

∫ 1

0
ω12 (s) ds + α2 p2 · x2

= α1 p1 · ω11 + α1 p2 · ω12 + α2 p2 · ω2

= p1 · (α1ω1 − α1ω12) + p2 · (α2ω2 + α1ω12)

≥ p1 · y1 + p2 · y2.

Finally, condition (c) is also satisfied as ψp · (ω1 + ω2) ≥ p2 · ω2 > 0.

3.3.2 Equilibrium with multiple markets

Let us describe the above personalized equilibrium in terms of twomarkets as outlined
in the last two paragraphs of Sect. 3.2. We explain and illustrate in Fig. 3 how mar-
ketwise prices p′

1 = p1 and p′
2 = (3/4) χ[0,1] clear the two markets. This idea is later

developed into a general definition of equilibrium with multiple markets in Sect. 4.
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Fig. 3 Equilibrium with multiple markets
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First, observe that all commodity bundles belonging to X2 are at least as expensive
in market 2 as in market 1. Next notice that ω12 = sup (X2 ∩ [0, ω1]). Thus, we say
that selling ω12 in market 2 and the remainder ω11 in market 1 maximizes revenue of
agent 1. The maximum revenue of agent 2 is p′

2 · ω2.
Let agent 1 buy

x11 = ω11 in market 1 and x12 =
(
4 − 1

3
π2

)
χ[

0, 12

) in market 2,

and agent 2 buy x2 in market 2. Observe that both markets are cleared, i.e. x11 = ω11
and x12 + x2 = ω12 + ω2. Next we demonstrate how both agents’ preferences are
maximized subject to their budget constraints. These purchases are indeed affordable,
as p′

1 · x11 + p′
2 · x12 = p′

1 · ω11 + p′
2 · ω12 and p′

2 · x2 = p′
2 · ω2. Moreover,

agent 2 cannot afford commodity bundles y ∈ X2 such that u2 (y) > u2 (x2), as
p′
2 · y > p′

2 · x2 = p′
2 · ω2. To see how agent 1’s utility is also maximized, consider

any y1 ∈ X1 and y2 ∈ X2 such that u1 (y1 + y2) > u1 (x11 + x12). We have

p′
1 · y1 + p′

2 · y2 ≥ p′
1 · y1 + p′

1 · y2 = p′
1 · (y1 + y2) > p′

1 · (x11 + x12)

= p′
1 · x11 + p′

1 · x12 = p′
1 · x11 + p′

2 · x12 = p′
1 · ω11 + p′

2 · ω12,

meaning that agent 1 cannot afford a better consumption as well.

3.3.3 Nonexistence of single market linear equilibrium

We show that no linear price (functional) q on the commodity space and no (y1, y2) ∈
X1 × X2 which is an allocation with y1 + y2 = ω1 + ω2 are such that

(a) q �= 0,
(b) y2 �= 0, and
(c) for all i and y ∈ Xi , we have ui (y) > ui (yi ) �⇒ q · y > q · yi .
Supposing the existence of such a q and (y1, y2) leads to the following contradiction.
First notice that

X2 ∩ [0, ω11] = {0} . (3)

It follows that y2 ≤ ω2 + ω12, since otherwise we have 0 < y2 ∨ (ω2 + ω12) −
(ω2 + ω12) ≤ ω11, violating (3). Now we see that

y1 = ω1 + ω2 − y2 ≥ ω1 + ω2 − (ω2 + ω12) = ω11,

implying that y1 (s) > 0 almost everywhere. Since q must be positive and thus con-
tinuous, we may assume without loss of generality that q = f1. But this is indeed
impossible given that y2 > 0.
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4 General model

In the above example of twomarkets, an agent either participates in a market fully or is
not involved at all. Whereas this market structure admits a linear price equilibrium, the
alternative of a single market with partial participation does not in view of Sect. 3.3.3.
That is why we cannot eschew embedding this requirement in our general model,
which is presented next. In our model, agents’ heterogeneous involvement in multiple
markets is the reason for the differences in consumption sets. Such situations cannot
be modelled as partial participation in a single market because of the nonexistence
problem.

4.1 Mathematical preliminaries

A Banach lattice is an ordered Banach space L such that every pair x, y ∈ L has a
supremum and an infimum (sup {x,−x} is written |x |), as well as satisfies

|x | ≤ |y| �⇒ ‖x‖ ≤ ‖y‖ .

For example, the commodity space L1 ([0, 1] ,�, λ) in Sect. 3 is a Banach lattice.
Every pair x, y ∈ L defines the set [x, y] = {z ∈ L : x ≤ z ≤ y}. Sets of this
form are called order intervals. A vector sublattice of a Banach lattice L is a vec-
tor subspace closed under pairwise suprema and infima taken in L . For instance,
the space L1 ([0, 1] ,�2, λ) is a closed vector sublattice of the commodity space
L1 ([0, 1] ,�, λ). A Banach lattice is said to be order complete if every nonempty sub-
set that is order bounded from above has a supremum. Order completeness is implied
by weak compactness of order intervals (Aliprantis and Border 2006, Theorem 9.22).
In our example of a Banach lattice, order intervals are weakly compact.

4.2 Economy with multiple markets

Amarket is a pair (Z , J ) consisting of a set Z of admissible trades and a set J of partici-
pants, e.g. Z = L1 ([0, 1] ,�2, λ) and J = {1, 2}. We consider an economy composed
of a finite number of markets (Z1, J1) , (Z2, J2) , . . . , (ZM , JM ). Participants of all
markets form the set I = ∪M

m=1 Jm of agents. The trade spaces Z1, Z2, . . . , ZM are

subspaces of a commodity space L . Their Cartesian product L = ∏M
m=1 Zm is called

the market space. Technically, we assume that

(a) L is a Banach lattice whose order intervals are weakly compact (see remarks
preceding Theorem 2),

(b) each Zm is a closed vector sublattice of L , and
(c) each Jm is nonempty and finite.

Agent i consumes nonnegative bundles from the markets in which she participates.
We index these markets by the set Mi = {m ∈ {1, 2, . . . , M} : i ∈ Jm}. Nonnegative
bundles traded in market (Zm, Jm) comprise the positive cone Z+

m of the trade space
Zm . The agent’s consumption set is Xi = ∑

m∈Mi
Z+
m . The agent has a consumption
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preference correspondence Pi : Xi � Xi , with Pi (x) interpreted as the set of bundles
strictly preferred to x . The initial endowment of the agent is a consumption bundle
ωi ∈ Xi\ {0}. We let ω = ∑

i∈I ωi denote the total initial endowment.

4.3 Equilibrium

Agent i’s demand set X i is obtained by replacing the coordinate spaces of L having
i ∈ Jm with Z+

m and the remaining coordinate spaces of L with {0} ⊂ L. An element
x ∈ X i will usually represent the agent’s purchases in different markets for the
sake of consumption, with xm interpreted as the bundle bought in the mth market.
There is a natural consumption mapping c : L → L defined by c (x) = ∑M

m=1 xm ,
and ci denotes the restriction of c to X i . We define the induced demand preference
correspondence P i : X i � X i by posing P i (x) = c−1

i (Pi (ci (x))).
Agent i’s supply set Y i = c−1

i ([0, ωi ]) captures how the agent’s initial endowment
can be sold in different markets. A coordinate ym of an element y ∈ Y i is interpreted
as the bundle sold in the mth market.

The value of trades x = (x1, x2, . . . , xM ) ∈ L is given by a price system prevailing
across markets. Formally, a price system is a continuous linear functional p on L.

We define X = ∏
i∈I X i and Y = ∏

i∈I Y i . An allocation is a vector (x, y) ∈
X × Y such that

∑
i∈I xi ≤ ∑

i∈I yi .
A quasi-equilibrium is a triple (x̄, ȳ, p̄) consisting of an allocation (x̄, ȳ) and a

nonzero price system p̄ with the following properties for every agent i ∈ I :

(a) y ∈ Y i implies p̄ · y ≤ p̄ · ȳi ,
(b) p̄ · x̄i ≤ p̄ · ȳi , and
(c) x ∈ P i (x̄i ) implies p̄ · x ≥ p̄ · ȳi .
A quasi-equilibrium (x̄, ȳ, p̄) is said to be an equilibrium if for every agent i ∈ I and
for all x ∈ P i (x̄i ) we have p̄ · x > p̄ · ȳi . A quasi-equilibrium (x̄, ȳ, p̄) is said to be
nontrivial if there exist an agent i ∈ I and an x ∈ X i such that p̄ · x < p̄ · x̄i .

5 General perspective on reinterpretation

Nowweare ready for a general analysis of the ideas that in Sect. 3 allowus to reinterpret
an example of nonlinear pricing in personalized equilibrium. Theorem 1 generalizes
such reinterpretation under economically meaningful conditions, and we relate one of
them to the role of economic intermediation.

We start by introducing nonlinear pricing independently of our general model of
multiple markets (Sect. 4) and only keep the same commodity space L . Agents now
collectively constitute a finite nonempty set Î . Their consumption sets X̂i ⊂ L , one
for each agent i ∈ Î , enter this model directly as its primitives, in contrast to our more
structural model ofmultiplemarkets. The preference correspondence P̂i : X̂i � X̂i of
every agent i ∈ Î is analogous to our consumption preference correspondences. Also
analogously, the initial endowment of the agent is a consumption bundle ω̂i ∈ X̂i .
We define X̂ = ∏

i∈ Î X̂ i ; let ω̂ = ∑
i∈ Î ω̂i stand for the total initial endowment and

associate with every commodity bundle x ∈ L the set
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A (x) =
⎧⎨
⎩y ∈ X̂ :

∑
i∈ Î

yi ≤ x

⎫⎬
⎭ .

Technically, we assume for every agent i ∈ Î that

(a) X̂i is the positive cone of a closed vector sublattice Ẑi of L and
(b) ω̂i > 0.

For our purpose, it is convenient to suppose from the outset that a personalized
equilibrium exists and then to analyse it. In this equilibrium, personalized prices are
also continuous linear functionals on the commodity space, i.e. they are elements

of the topological dual L ′ of L . Let p̂ ∈ (
L ′) Î be the vector of these equilibrium

personalized prices. They induce a possibly nonlinear price ψ p̂ : ∑
i∈ Î X̂ i → R+ by

assigning to a commodity bundle x in the domain the value

ψ p̂ · x = sup

⎧⎨
⎩

∑
i∈ Î

p̂i · yi : y ∈ A (x)

⎫⎬
⎭ .

Simultaneously, agents’ choices determine the equilibrium allocation x̂ ∈ A (
ω̂

)
such

that the following conditions of Aliprantis et al. (2001) hold:

(a) for all i ∈ Î , if x ∈ P̂i
(
x̂i

)
, then ψ p̂ · x > ψ p̂ · x̂i ,

(b) for all α ∈ R
Î+, we have ψ p̂ · ∑

i∈ Î αi ω̂i ≤ ∑
i∈ Î αiψ p̂ · x̂i , and

(c) ψ p̂ · ω̂ > 0.

Let us refer to this personalized equilibrium by the pair
(
x̂, p̂

)
.

We say that the personalized equilibrium is segmentable if it can be modelled as an
equilibrium (x̄, ȳ, p̄) of an economy with multiple markets in the sense that

(a) I = Î ,
(b) for every agent i ∈ I , we have Xi = X̂i , Pi = P̂i ,ωi = ω̂i , as well as c (x̄i ) = x̂i ,

and
(c) for every commodity bundle x in the domain of the price ψ p̂, we have

ψ p̂ · x = sup
{
p̄ · x : x ∈ c−1 ([0, x]) , x ≥ 0

}
. (4)

Such segmentability is established in Theorem 1 under two conditions, which we next
introduce and motivate.
Individual supportability. Looking carefully into the proofs of Aliprantis et al. (2001),
one finds that their conclusions are stronger than those stated as theorems in the
following sense. Their assumptions yield the existence of personalized equilibrium
with personalized prices summarizing individual incomes and substitution attitudes
(p. 44) via

p̂i · x̂i = ψ p̂ · x̂i , and x ∈ P̂i
(
x̂i

) �⇒ p̂i · x > p̂i · x̂i . (5)
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This way, personalized prices are closer to Walrasian, as in the example of Sect. 3 in
view of (2). We say that the personalized equilibrium

(
x̂, p̂

)
is individually supporting

if conditions (5) hold for every agent i ∈ Î . This condition may be violated, but indi-
vidually supporting personalized equilibria exist under the assumptions of Aliprantis
et al. (2001). That is why we explicitly assume individual supportability.

Bilateral feasibility. To motivate this concept, consider first the benchmark case in
which all consumption sets coincide with the positive cone of L and there is no
disposal, i.e. ∑

i∈ Î
x̂i = ω̂.

Here x̂ is bilaterally feasible in the sense that some z ∈ X̂ Î decomposes individually

ω̂i =
∑
j∈ Î

zi j and x̂i =
∑
j∈ Î

z j i (6)

by the Riesz decomposition property (Aliprantis and Tourky 2007, Theorem1.54). A
coordinate zi j is interpreted as a consumption bundle sold by agent i to agent j . In the
example of Sect. 3, the consumption set of agent 2 differs from the positive cone, but
there exist z12 ∈ X1 ∩ X2, z21 ∈ X2 ∩ X1, z11 ∈ X1, and z22 ∈ X2 with

(
ω1

ω2

)
=

(
z11 + z12
z21 + z22

)
and

(
x1
x2

)
=

(
z11 + z21
z12 + z22

)
.

While in general having zi j ∈ Xi ∩ X j only states that both the buyer and the seller
can consume this traded bundle, it says more with differential information. In this
context, the condition ensures that both agents are sufficiently informed to verify ex-
post consequences of the ex-ante agreement zi j , due to measurability. The following
definition generalizes this property. We say that the personalized equilibrium

(
x̂, p̂

)
is

bilaterally feasible if there exist vectors zi j ∈ X̂i ∩ X̂ j , one for each pair (i, j) ∈ Î 2,
satisfying (6) for all i ∈ Î .

If the indispensability of bilateral feasibility is a concern; a comforting observation
is that a natural way forward suggests itself in that case. Bilaterally infeasible allo-
cations require intermediation, and modelling intermediation explicitly may prove
fruitful. In particular, it may be helpful for explaining the existence of intermediaries
in the real world.

The segmentation obtained in the proof of Theorem 1 is maximal in the sense
that each pair of agents forms a separate market, as defined in (7). Even though
equilibrium prices may differ across pairs, in some sense they are consistent with
perfect competition if there are many pairs. This is because agents cannot do better by
unilaterally changing their supply and demand across pairs given those prices, by our
definition of equilibrium.

Simpler representations of the personalized equilibrium are possible if consumption
sets do not differ too much. One way is to combine markets having identical trade
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spaces Zm in the maximal segmentation, letting their participants (the union of the
corresponding sets Jm) redefine the set of participants. In such a refinement, prices
would form in a number of coalitions, and we note a related model of Dagan et al.
(2011) where agents bargain in coalitions.

Theorem 1 The personalized equilibrium
(
x̂, p̂

)
is segmentable if it is individually

supporting and bilaterally feasible.

Proof We let markets be given by an arbitrary enumeration of the family{(
Ẑi ∩ Ẑ j , {i, j}

)
: i, j ∈ Î

}
. (7)

An allocation (x̄, ȳ) such that ∑
i∈I

x̄i =
∑
i∈I

ȳi (8)

is defined by applying to coordinates having Jm = {i, j} the formulas x̄im = z ji and
ȳim = zi j . A price system p̄ is defined by considering the topological dual of each
Zm as a lattice, in which we take the supremum p̄m = ∨

i∈Jm

(
p̂i |Zm

)
, and letting

p̄ · x =
M∑

m=1

p̄m · xm . (9)

If x ≥ 0, then we have

p̄ · x =
M∑

m=1

p̄m · xm

=
M∑

m=1

⎛
⎝ ∨

i∈Jm

(
p̂i |Zm

)
⎞
⎠ · xm

≤
M∑

m=1

ψ p̂ · xm ≤ ψ p̂ ·
M∑

m=1

xm = ψ p̂ · c (x) . (10)

By this fact, the definition of supply set, condition (b) in the definition of personalized
equilibrium, and individual supportability, all i and y ∈ Y i satisfy

p̄ · y ≤ ψ p̂ · c ( y) ≤ ψ p̂ · ω̂i ≤ ψ p̂ · x̂i = p̂i · x̂i . (11)

For all i and x ∈ X i , we additionally obtain

p̄ · x =
M∑

m=1

p̄m · xm ≥
M∑

m=1

p̂i · xm = p̂i ·
M∑

m=1

xm = p̂i · c (x) , (12)

and next verify conditions (a)–(c) in the definition of quasi-equilibrium.
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(c) Combining (12), individual supportability, and (11) for y = ȳi yields

p̄ · x ≥ p̂i · c (x) > p̂i · x̂i ≥ p̄ · ȳi , (13)

as required.
(b) Results (11) and (12) for y = ȳi and x = x̄i give us p̄ · x̄i ≥ p̄ · ȳi , while

an application of equation (8) yields
∑

i∈I
(
p̄ · x̄i − p̄ · ȳi

) = 0. It follows for each
i that p̄ · x̄i = p̄ · ȳi , establishing the equilibrium condition.

(a) Starting with the last condition, letting x = x̄i in (12), and invoking (11), we
obtain

p̄ · ȳi ≥ p̄ · x̄i ≥ p̂i · c (x̄i ) = p̂i · x̂i ≥ p̄ · y,

as desired.
Due to the strict inequality in (13), the quasi-equilibrium (x̄, ȳ, p̄) is actually an

equilibrium.Now it only remains to verify formula (4). Firstly, every y ∈ A (x) defines
an x ∈ c−1 ([0, x]) by matching coordinates so that xm = yi ≥ 0 if Jm = {i} and
xm = 0 otherwise. Since

∑
i∈I p̂i · yi = ∑M

m=1 p̄m · xm = p̄ · x, the supremum on the
right-hand side of equation (4) is greater than or equal toψ p̂ · x . The reverse inequality
is obtained using (10) and calculating for every x ∈ c−1 ([0, x]) satisfying x ≥ 0 that
p̄ · x ≤ ψ p̂ · c (x) ≤ ψ p̂ · x . This yields (4) and completes the proof. ��

6 General and direct equilibrium existence result

Acorollary of Theorem1 is equilibriumexistence for economieswithmultiplemarkets
fitted in a particular fashion to bilaterally feasible personalized equilibria. But opera-
tion (7) and its refinements allow modelling all other economies from the nonlinear
equilibrium theory in focus of Sect. 5 in terms of multiple markets. Thus, our general
existence result without feasibility restrictions in Theorem 2 establishes our model as
a nonvacuous natural alternative to nonlinear pricing. In our approach, one can assume
that each market has a “government institution” able to enforce contracts, which is
problematic in the single market model (Podczeck and Yannelis 2008). Besides, our
framework accommodates economic situations with evident structures of multiple
markets, e.g. the world economy with barriers to international trade. Closed econ-
omy examples are furnished by market exclusions via eligibility criteria in financial
services, license or qualification requirements, or age restrictions.

One could be inclined to misjudge Theorem 2 by viewing each supply set Y i as a
production set of a firm owned privately by agent i . Indeed, our exchange economy
with multiple markets may be viewed as a production economy in L. Unfortunately,
there is no result on the existence of production equilibria that we could apply directly.
The reason is that consumption sets in our induced production economy may be thin
in the sense that they need not coincide with the positive cone, which also may have
an empty interior. Even though consumption sets are allowed to be thin in Florenzano
and Marakulin (2001) and Aliprantis et al. (2006), their properness assumptions are
too strong when consumption sets are actually thin. Nevertheless, it is convenient to
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keep this analogy with production economies in mind when proving the existence of
equilibrium with multiple markets.

One technical assumption on the commodity space in the general model of Sect. 4
is weak compactness of order intervals. Even single market equilibrium existence
theorems require this property partially but indispensably, as Aliprantis et al. (1987)
show in their Example 5.7. They describe an economy which lacks this property,
but otherwise fits our framework with a single market and satisfies all our remaining
existence conditions (Theorem 2). Simply missing weak compactness, this economy
does not have an equilibrium, as the results of Aliprantis et al. (1987) let us see.
When preferences have utility representations, a common alternative assumption is
compactness of the individually rational utility set, used recently by Xanthos (2014).

The additional assumptions required by Theorem 2, which is stated below, are
standard. For instance, Assumptions (a)–(d) are used by Aliprantis et al. (2001).
Assumption (e) is satisfied if Pi has open values, which is also assumed by Aliprantis
et al. (2001). Assumption (f) is a version of the properness condition introduced by
Tourky (1998). We also remark that a nontrivial quasi-equilibrium is an equilibrium
if irreducibility assumptions are satisfied (see Florenzano 2003, Sect. 5.3.6).

Theorem 2 There exists a nontrivial quasi-equilibrium if the following conditions
hold for every agent i ∈ I :

(a) Pi is irreflexive, i.e. x /∈ Pi (x) for all x ∈ Xi ;
(b) Pi is convex-valued, i.e. Pi (x) is a convex set for all x ∈ Xi ;
(c) Pi is monotone, i.e. x + z ∈ Pi (x) for all x ∈ Xi and z ∈ Xi\ {0};
(d) Pi has weakly open lower sections, i.e. {z ∈ Xi : x ∈ Pi (z)} is weakly open in

Xi for all x ∈ Xi ;
(d) Pi is “continuous” in the sense that x ∈ Xi , z ∈ Pi (x), and z′ ∈ Xi implies

αz + (1 − α) z′ ∈ Pi (x) for some scalar α ∈ [0, 1);
(e) Pi is proper in the sense that there exists a convex-valued correspondence P̂i :

Xi � L such that for all x ∈ Xi

(i) x + ωi is an interior point of P̂i (x) and
(ii) P̂i (x) ∩ Xi = Pi (x).

Proof of Theorem 2

Lemma 1 For every agent i ∈ I , the supply set Y i has a supremum ui in L.

Proof Due to order completeness of L , the set Y i has a supremum ui ∈ LM . We prove
the lemma by showing that ui ∈ L.

For every m, let Ym = Zm ∩ [0, ωi ]. Notice that uim = sup Ym ∈ L if i ∈ Jm and
uim = 0 otherwise. It suffices to show that uim ∈ Zm if i ∈ Jm . Observe that Ym
is directed by the order relation ≥ of L , making the identity function on Ym a net in
[0, ωi ]. Since this order interval is weakly compact, the net has a subnet {yα}α∈D which
converges weakly to some y ∈ [0, ωi ]. Since Zm is closed and convex, it is weakly
closed as well, and it follows that y ∈ Zm ∩ [0, ωi ]. This also means that y ≤ uim , and
we complete the proof by demonstrating the reverse inequality y ≥ uim . Let us denote
the direction on D by �. Consider another binary relation � on D defined by posing
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α � β if and only if α � β and yα ≥ yβ . This binary relation � inherits reflexivity
and transitivity from � and ≥. Thus, � is also a direction provided that every pair
α, β ∈ D has an upper bound in

(
D,�

)
. Such an upper bound γ can be constructed

as follows: let z = yα ∨ yβ ∈ Ym , using the definition of subnet take any δ0 ∈ D
such that δ � δ0 implies yδ ≥ z, and let γ be an upper bound of {α, β, δ0} in (D,�).
Now consider the net {yα}α∈(D,�), which also converges weakly to y. Moreover, this
net is increasing, i.e. α � β implies yα ≥ yβ . Our last two observations reveal that
y = sup {yα : α ∈ D} (Aliprantis and Tourky 2007, [part (4) of Lemma 2.3]). Now
the definition of subnet yields for each z ∈ Ym some α ∈ D such that y ≥ yα ≥ z.
This confirms that y ≥ uim . ��

For each i , let ui ≥ 0 be the supremum given by Lemma 1. We define u =∑
i∈I ui ∈ L, take the order interval [−u, u] in L, let K = ∪∞

n=1n [−u, u] be the
principal ideal generated by u in L, and K+ = {x ∈ K : x ≥ 0}.

At this stage, let us view K as the commodity space of the production economy
which we now construct by restricting our economy with multiple markets. Agents in
the production economy are the same as in the economy with multiple markets. For
each i , the restricted demand set X i ∩ K is viewed as the agent’s consumption set,
which is the domain of the agent’s preference correspondence x �→ P i (x) ∩ K . The
agent’s initial endowment is 0 ∈ X i ∩ K , but the agent possesses a private firm whose
production set is Y i ⊂ K . We let the price space be the topological dual of (K , ‖·‖u),
where the norm ‖·‖u on K is defined by

‖x‖u = inf {α ∈ R++ : x ∈ α [−u, u]}

(making u an interior point of the positive cone K+). Conveniently, this production
economy is a special case of themodel in Chapter 5 of Florenzano (2003).We combine
Propositions 5.2.3 and 5.3.1 there, whose assumptions are easy to verify, noting that
each i satisfies

∅ �= c−1
i (ωi ) ⊂ (X i ∩ K ) \ {0} ,

and first obtain a nontrivial quasi-equilibrium in K . Namely, we are able to find an
allocation (x̄, ȳ) ∈ K I × K I and a positive linear functional q̄ on K with

q̄ · x̄i > 0 for some i (14)

as well as the following properties for each i :

(a) x ∈ P i (x̄i ) ∩ K implies q̄ · x ≥ q̄ · ȳi ,
(b) y ∈ Y i implies q̄ · y ≤ q̄ · ȳi , and
(c) q̄ · x̄i = q̄ · ȳi .
For each i , define the convex set P̂ i (x̄i ) = c−1

(
P̂i (c (x̄i ))

)
. These sets inherit

the following two properties from properness:

(a) elements of x̄i + c−1
i (ωi ) belong to the interior of P̂ i (x̄i ) and

(b) P̂ i (x̄i ) ∩ X i = P i (x̄i ).

123



542 B. Klishchuk

We note that the interior of P̂ i (x̄i ) is convex and define an open convex set

V i =
{
α (z − x̄i ) : α ∈ R++, z ∈ int

(
P̂ i (x̄i )

)}
⊂ L.

Lemma 2 For every agent i ∈ I , if we have x ∈ (x̄i + V i )∩X i∩K , then q̄ ·x ≥ q̄ · x̄i .

Proof Write x = x̄i +α (z − x̄i ) for some z ∈ int
(
P̂ i (x̄i )

)
∩K and α ∈ R++. Since

x̄i belongs to the closure of P̂ i (x̄i ), it follows that x̄i + β (z − x̄i ) ∈ int
(
P̂ i (x̄i )

)
for all scalars β ∈ (0, 1]. On the other hand, taking positive parts on both sides of
x̄i ≥ −α (z − x̄i ) shows that x̄i ≥ α (z − x̄i )−. Let β = min {1, α} and observe that

0 ≤ x̄i − α (z − x̄i )− ≤ x̄i − β (z − x̄i )−

≤ x̄i + β (z − x̄i ) ∈ int
(
P̂ i (x̄i )

)
∩ X i ∩ K ⊂ P i (x̄i ) ∩ K .

Now the restricted quasi-equilibrium properties of x̄i and q̄ yield q̄ · (z − x̄i ) ≥ 0. It
follows that q̄ · x ≥ q̄ · x̄i indeed. ��
Lemma 3 For every agent i ∈ I , there exist a price system pi and a linear functional
p′
i on L such that

(a) x ∈ x̄i + V i implies pi · x ≥ pi · x̄i ,
(b) x ∈ X i ∩ K implies p′

i · x ≥ p′
i · x̄i , and

(c) pi · x + p′
i · x = q̄ · x for all x ∈ K .

Proof This result follows from Lemma 2 and the Podczeck’s extension lemma (Pod-
czeck 1996, Lemma 2). ��

For every i , let pi be a price system given by Lemma 3. For eachm, this pi induces
a continuous linear functional pim on Zm by matching values so that pim · x = pi · x
when xm = x and xn = 0 for n �= m. Since the topological dual of Zm is a lattice,
the supremum

p̄m =
∨
i∈Jm

pim

is also a continuous linear functional on Zm . A price system p̄ is now defined by
formula (9). For all i and x ∈ X i , we have

pi · x ≤ p̄ · x =
M∑

m=1

p̄m · xm . (15)

Lemma 4 The following statements are true for every agent i ∈ I :

(a) x ∈ X i ∩ K implies q̄ · x ≥ pi · x and
(b) q̄ · (x̄i − x) ≤ pi · (x̄i − x) for all x ∈ X i satisfying x̄i ≥ x.
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Proof (a) Since x̄i + x̄i ∈ X i ∩K , part (b) of Lemma 3 yields p′
i · x̄i + p′

i · x̄i ≥ p′
i · x̄i ,

which implies that p′
i · x̄i ≥ 0. Applying part (b) of Lemma 3 once again, we see that

p′
i · x ≥ p′

i · x̄i ≥ 0 for all x ∈ X i ∩ K . Combining this result with part (c) of Lemma
3, we obtain the desired conclusion.

(b) Since x ∈ K , part (b) of Lemma 3 yields p′
i · x ≥ p′

i · x̄i . Now part (c) of
Lemma 3 shows that pi · (x̄i − x) − q̄ · (x̄i − x) = p′

i · (x − x̄i ) ≥ 0, completing
the proof. ��
Lemma 5 For all x ∈ K+, we have q̄ · x ≥ p̄ · x.
Proof For each m, we write q̄m · xm to denote the value of q̄ at the point y ∈ K with
ym = xm and yn = 0 for n �= m. Since xm ∈ Z+

m , the Riesz–Kantorovich formula
yields

p̄m · xm =
⎛
⎝ ∨

i∈Jm

pim

⎞
⎠ · xm

= sup

⎧⎨
⎩

∑
i∈Jm

pim · zi : z ∈ (
Z+
m

)Jm
,
∑
i∈Jm

zi = xm

⎫⎬
⎭ , (16)

and any z in this supremum has a corresponding z ∈ ∏
i∈Jm (X i ∩ K ) with pi · zi =

pim · zi for all i and ∑
i∈Jm zi = y. Using part (a) of Lemma 4, we obtain∑

i∈Jm

pim · zi =
∑
i∈Jm

pi · zi ≤
∑
i∈Jm

q̄ · zi = q̄ ·
∑
i∈Jm

zi = q̄ · y = q̄m · xm .

Since this is true for every z in formula (16), we conclude that q̄m · xm ≥ p̄m · xm .
Observing that this applies to every m, we complete the proof by the calculation

q̄ · x =
M∑

m=1

q̄m · xm ≥
M∑

m=1

p̄m · xm = p̄ · x.

��
Lemma 6 The following statements are true for every agent i ∈ I :

(a) x ∈ P i (x̄i ) implies p̄ · x ≥ p̄ · x̄i ,
(b) p̄ · x̄i = p̄ · ȳi , and
(c) y ∈ Y i implies p̄ · y ≤ p̄ · ȳi .
Proof (a) Since x belongs to the closure of the interior of P̂ i (x̄i ), part (a) of Lemma 3
implies that pi · x ≥ pi · x̄i . Defining x′ = x∧ x̄i ∈ X i ∩ K , we have pi ·

(
x − x′) ≥

pi ·
(
x̄i − x′). Using this result, Lemma 5, the inequality in (15), and part (b) of Lemma

4, we calculate that

p̄ · (x − x̄i ) + q̄ · (
x̄i − x′) ≥ p̄ · (x − x̄i ) + p̄ · (

x̄i − x′) = p̄ · (
x − x′)

≥ pi · (
x − x′) ≥ pi · (

x̄i − x′) = q̄ · (
x̄i − x′) .
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This yields p̄ · x ≥ p̄ · x̄i , as required.
(b) We first use Lemma 5, the restricted quasi-equilibrium properties, part (b) of

Lemma 4, and (15) to obtain the inequality

p̄ · ȳi ≤ q̄ · ȳi = q̄ · x̄i ≤ p̄i · x̄i ≤ p̄ · x̄i . (17)

On the other hand, we utilize part (a) to deduce that p̄ is positive, and it follows that∑
i∈I

(
p̄ · ȳi − p̄ · x̄i

) ≥ 0. Together, these inequalities yield the desired result.
(c) Observing that y ∈ K+, we combine Lemma 5, the restricted quasi-equilibrium

properties, inequalities in (17), and part (b) of this lemma as follows:

p̄ · y ≤ q̄ · y ≤ q̄ · ȳi ≤ p̄ · x̄i = p̄ · ȳi .

This completes the proof. ��
By property (14) and the right-hand side of the equality sign in (17), there exists an

agent i with p̄ · x̄i ≥ q̄ · x̄i > 0. This observation and Lemma 6 finalize the proof of
the theorem.
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