
Econ Theory (2018) 66:863–899
https://doi.org/10.1007/s00199-017-1065-9

RESEARCH ARTICLE

Agglomeration patterns in a multi-regional economy
without income effects

José M. Gaspar1,2 · Sofia B. S. D. Castro3 ·
João Correia-da-Silva4

Received: 1 August 2016 / Accepted: 5 July 2017 / Published online: 13 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract We study the long-run spatial distribution of industry using a multi-region
core–periphery model with quasi-linear log utility Pflüger (Reg Sci Urban Econ
34:565–573, 2004). We show that a distribution in which industry is evenly dispersed
among some of the regions, while the other regions have no industry, cannot be stable.
A spatial distribution where industry is evenly distributed among all regions except
one can be stable, but only if that region is significantly more industrialized than the
other regions. When trade costs decrease, the type of transition from dispersion to
agglomeration depends on the fraction of workers that are mobile. If this fraction is
low, the transition from dispersion to agglomeration is catastrophic once dispersion
becomes unstable. If it is high, there is a discontinuous jump to partial agglomeration
in one region and then a smooth transition until full agglomeration. Finally, we find that
mobile workers benefit from more agglomerated spatial distributions, whereas immo-
bile workers prefer more dispersed distributions. The economy as a whole shows a
tendency towards overagglomeration for intermediate levels of trade costs.
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1 Introduction

New economic geography (NEG) has been on the forefront in recent decades as an
economics subject that seeks to explain the spatial distribution of economic activity.
Many theoretical models have been built along the lines of the seminal core–periphery
(CP) model proposed by Krugman (1991), in which skilled labour mobility combined
with a general equilibrium framework under increasing returns, monopolistic com-
petition, and transport costs contribute to explain how demand linkages and supply
linkages interplay to determine the geographical distribution of industry (Fujita et al.
1999; Ottaviano et al. 2002; Forslid and Ottaviano 2003; Pflüger 2004).

Most of these models predict a catastrophic transition from an evenly dispersed
distribution into agglomeration in a single region as trade costs fall below a critical
level. One exception is the footloose entrepreneur (FE) model with quasi-linear log
utility (QLmodel) proposed by Pflüger (2004), where the absence of income effects on
regional demand for manufactures, due to the assumption of a quasi-linear upper-tier
utility function, significantly simplifies the analysis. This model reverses the predic-
tions of the seminal CP model (Krugman 1991) and of the original FE model (Forslid
and Ottaviano 2003), according to which industry is either evenly dispersed between
the two regions or fully agglomerated in one region, and the transition between these
two extreme distributions is catastrophic. In the QL model, partial agglomeration can
be stable, and agglomeration is a smooth and gradual process.1

Although insightful, the lack of a multi-regional framework in the QLmodel poten-
tially overlooks complex interdependencies among different regions, which do not
arise in the 2-region set-up (Fujita et al. 1999; Fujita and Mori 2005; Tabuchi et al.
2005; Behrens and Thisse 2007; Fujita and Thisse 2009; Behrens and Robert-Nicoud
2011; Tabuchi 2014). Moreover, the consideration of only two regions hinders empir-
ical work because the real world is heterogeneous and multi-regional (Bosker et al.
2010).

This motivates us to extend the QL model (Pflüger 2004) to any finite number of
equidistant regions. The assumption of equidistant regions coupledwith the removal of
income effects on the demand formanufactures allows us to obtain explicit expressions
for the indirect utilities of inter-regionally mobile workers and to fully characterize
the stability of several kinds of spatial equilibria (one of which is novel) under general
parameter values.2 Moreover, we are able to study how the type of transition from
dispersion to agglomeration, as trade costs decrease, depends on the global size of

1 The influence of preferences on the long-run distribution of industry and on the type of transition dynamics
was widely discussed by Pflüger and Südekum (2008a, b).
2 This is an important departure from Tabuchi’s (2014) multi-regional analysis, which focuses on limit
cases for the trade costs.
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the inter-regionally immobile (unskilled) workforce relative to the mobile (skilled)
workforce.

Castro et al. (2012) and Gaspar et al. (2013) provided numerical evidence that,
in the 3-region CP model and the 3-region FE model, a region without industry and
two evenly populated regions cannot be a stable outcome. We provide an analytical
confirmation of this result in the n-region QL model: at least one empty region paired
with a symmetric distribution of industry among the other regions cannot be a stable
outcome.

A feature of the QL model is that interior asymmetric distributions of industry
may be stable. For simplicity, we focus on the one-dimensional subspace of n −
1 evenly populated regions and one possibly asymmetric region.3 In this subspace,
entrepreneurs face two decisions: that of migrating between evenly populated regions;
and that of migrating between the asymmetric region and any of the evenly populated
regions.4 For some parameter values, there is a stable equilibrium in which industry
is partially agglomerated in a single region and evenly dispersed among the other
regions. By contrast, an equilibrium where the asymmetric region has less industry
than each of the other regions cannot be stable.

We show that the QL model with n ≥ 3 exhibits a primary transcritical bifurcation
at the symmetric equilibrium and a secondary saddle-node bifurcation at an interior
asymmetric equilibrium, a feature which suggests that the migration dynamics of
entrepreneurs as trade costs decrease are complex. The saddle-node bifurcation implies
that industry will stay fully dispersed even after trade costs have fallen below the
threshold level that deems a partial agglomeration equilibrium stable. However, if the
industry is initially at a partial agglomeration equilibrium, a temporary rise in trade
costs will make industry permanently disperse across regions.

When trade costs decrease, the transition from dispersion to agglomeration depends
on the global size of inter-regionally immobile (unskilled) labour relative to mobile
(skilled) labour. If it is relatively high (low worker mobility), there is catastrophic
agglomeration in a single region once dispersion loses stability. If it is relatively
low (high worker mobility), there is a discontinuous jump from dispersion to partial
agglomeration, and a smooth transition towards agglomeration thereafter. Finally, for
even lower ratios between immobile and mobile labour, dispersion is not possible,
and the only possible change as trade costs fall is a smooth transition from partial
agglomeration towards full agglomeration.

We find that full dispersion yields the worst possible welfare to entrepreneurs.
Still, even if migration increases their average utility, it will not occur if the utility
of the migrant decreases (in that case, dispersion is stable). For unskilled workers it
is the opposite: they attain their highest welfare at full dispersion. For the population
as a whole, we show that agglomeration (partial or full), even when stable, may be
socially inferior to more symmetric distributions. We conclude that the multi-regional

3 In an equidistant n-region model, there are many other invariant subspaces. For example, any subspace
where k regions have the same size and the other n − k regions are also equally sized. We focus on the
particular case where k = 1.
4 This is true for any n ≥ 3 because the dimension of this particular subspace is invariant in the number of
regions. In a 2-region model, there is a single decision.
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QL model exhibits a tendency towards overagglomeration for intermediate levels of
transport costs. For simplicity, we refrain from welfare comparisons across different
regions, as well as welfare changes due to decreasing trade barriers. This could be of
potential interest, as some welfare analyses along equilibrium paths have been done in
2-region NEG models, as in the modified footloose capital model by Takahashi et al.
(2013), but to the best of our knowledge, none have beenmade so far formulti-regional
settings.

Extensions of NEGmodels to multi-regional settings have been made, each with its
own specificities.5 Some considered a “racetrack economy”, that is, regions equally
spaced around a circumference (Krugman 1993; Fujita et al. 1999; Picard and Tabuchi
2010; Castro et al. 2012; Mossay 2013). In particular, Castro et al. (2012) studied a
version of Krugman’s CP model with 3 or more regions and concluded that addi-
tional regions favour agglomeration and discourage dispersion of economic activity.
Akamatsu et al. (2012) and Ikeda et al. (2012) showed that in a 2n-region CP model
decreasing trade costs leads to spatial period doubling agglomeration, whereby after
each bifurcation the number of regions where firms locate is reduced by half and the
spacing between populated regions doubles. Heterogeneity in location has also been
tackled, in several ways, by considering: different network topologies to explain loca-
tional advantages of some regions (Barbero and Zofío 2012), equally spaced regions
along a line segment (Ago et al. 2006), or hexagonal configurations in a triangular
space (Ikeda et al. 2014). Along different lines, Oyama (2009) considered an equidis-
tant multi-regional CP model with self-fulfilling expectations in migration that lead
to global stability of a single core region. Tabuchi and Thisse (2011) have built an
NEG model that accounts for the rise of a hierarchical system of central places in a
multi-regional set-up. Ellickson and Zame (2005) used a model with a finite number
of locations and a continuum of agents and showed that the space economy need not
be homogeneous under a perfectly competitive setting if there exist positive transport
costs and locational asymmetries. Recently, Tabuchi (2014) used a multi-regional ver-
sion of Krugman’s (1991) CPmodel to show that it can account for the historical trend
of agglomeration in the capital regions over the past few centuries.6

Tabuchi et al. (2005) also developed a multi-region model with equidistant regions
and quasi-linear utility, but considered quadratic sub-utility, as in Ottaviano et al.
(2002), instead of the logarithm of a CES aggregator, as in Pflüger (2004). They
also considered urban congestion costs (housing and commuting), which act as an
additional dispersion force. Studying the impact of falling transport costs on the size
and number of cities (non-empty regions), Tabuchi et al. (2005) found that cities
initially grow in size and then shrink at a later stage, a situation which corresponds
to agglomeration followed by re-dispersion of industry. Their results are driven by

5 However, the main conclusions of 2-region NEG models have not been reversed by the consideration
of multiple regions (Bosker et al. 2010). This includes not only the equidistant n-region model by Puga
(1999), but also models with non-equidistant regions.
6 Several other works considering multi-regional NEG models could be worth mentioning (e.g. Behrens
et al. 2006; Forslid and Okubo 2012; Fabinger 2015; Commendatore et al. 2015a). For an extensive review
of the literature concerning multi-regional models, see Commendatore et al. (2015b).
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the interplay between inter-regional transport costs and urban congestion costs. In
contrast, our results do not hinge on the existence of urban congestion costs.

The rest of the paper is organized as follows. Section 2 presents the n-region FE
model with quasi-linear log utility and characterizes the short-run equilibrium of
the model. Section 3 analyses the stability of several types of long-run equilibria:
agglomeration, dispersion, boundary dispersion, and partial agglomeration. Bifurca-
tion patterns are described and explained in Sect. 4. Section 5 is dedicated to welfare
analysis, first distinguishing between mobile and immobile workers, and then consid-
ering the economy as a whole. Section 6 contains some concluding remarks.

2 The quasi-linear log model with n regions

The model is a natural extension of the FE model with QL utility (Pflüger 2004)
to an economy with a finite number of equidistant regions, N = {1, . . . , n}. We
omit calculations that are well known whenever reasonable. There is a mass H of
entrepreneurs, who can move freely among regions (H = H1 + H2 + · · · + Hn); and
a mass L of unskilled workers, who are immobile and evenly distributed across all
regions (Li = L/n,∀i ∈ N ).

2.1 Demand and indirect utility

The preferences of all agents are represented by a quasi-linear upper-tier utility func-
tion with logarithmic sub-utility, as in Pflüger (2004):

U = μ lnM + A, 0 < μ < 1, (1)

where A is the consumption of agricultural products and M is the consumption of a
CES composite of differentiated varieties of manufactures, defined by:

M =
[∫

sεS
d(s)

σ−1
σ ds

] σ
σ−1

, (2)

where d(s) is the consumption of variety s ∈ S, S is the mass of existing varieties,
and σ > 1 is the constant elasticity of substitution between varieties.

Let pi (s) and di (s) denote delivered price and demand of variety s in region i . The
regional price index associated with the composite good (2) in region i ∈ N is:

Pi =
[∫

sεS
pi (s)

1−σds

] 1
1−σ

. (3)

A consumer in region i ∈ N maximizes utility subject to the budget constraint:

Pi M + A = y,
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where y is her income, Pi is given by (3), and the price of the agricultural good is, as
usual, normalized to unity. This yields the following demand:

di (s) = μ
pi (s)−σ

P1−σ
i

, M = μP−1
i , A = y − μ. (4)

Notice that individual consumption of the agricultural good is non-negative if and
only if nominal wages (income) of entrepreneurs and unskilled workers, wi and wL

i ,
respectively, are not lower than μ. In Sect. 2.2 we check that wL

i = 1 > μ, and in
Sect. 2.3 we make an assumption which implies that wi ≥ μ.

From (1) and (4), we obtain the indirect utility in region i :

Vi = y − μ ln Pi + μ(lnμ − 1). (5)

2.2 Supply

The agricultural good is produced using one unskilled worker (farmer) for each unit
that is produced (constant returns to scale), and is freely traded across the n regions.
Absence of trade costs implies that the price of the agricultural good is the same
everywhere (pA

1 = pA
2 = · · · = pA

n ), which justifies choosing it as numeraire.
Marginal cost pricing implies that the nominal wage of unskilled workers is the same
in all regions and equal to the price of the agricultural good: wL

i = pA
i = 1,∀i ∈ N .

Note that we are assuming that the agricultural good is produced in all regions.
This is true if global consumption of agricultural goods exceeds total production in
n − 1 regions. Given individual demand in (4), global consumption of agricultural
goods is w̄H + L − (H + L) μ, where w̄ ≡ 1

H

∑n
i=1 Hiwi is the weighted average

nominal wage of entrepreneurs, while total production of agricultural goods in n − 1
regions is at most L(n − 1)/n. We will show (Proposition 1) that w̄ = μ

σ

(
1 + L

H

)
.

The non-full-specialization (NFS) condition (Baldwin et al. 2004), which we assume
henceforth, is then given by:

λ >
μσ−1

σ
1
n − μσ−1

σ

,

where λ = L/H is the global unskilled (immobile) to skilled (mobile) labour ratio.
Production of a variety of manufactures requires α units of skilled labour and β

units of unskilled labour for each unit that is produced (Forslid and Ottaviano 2003).
Therefore, the production cost of a firm in region i is:

Ci (xi ) = wiα + βxi . (6)

The iceberg cost parameter τi j denotes the number of units that must be produced in
region i for each unit that is delivered at region j ∈ N . We assume that trade costs
are the same between any pair of regions. If i = j, then τi j = 1. If i �= j , then
τi j = τ ∈ (1,+∞).
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A firm producing variety s in region i maximizes the following profit function:

πi (s) =
n∑
j=1

d j (s)

(
Hj + L

n

) [
p j (s) − τi jβ

]− αwi , (7)

The first-order condition for maximization of (7) yields the following prices:

pi (s) = β
σ

σ − 1
and p j (s) = τβ

σ

σ − 1
, ∀ j �= i. (8)

In any region j ∈ N , all varieties produced in region i are sold at the same delivered
price, pi j , and have the same demand, di j .

Using (8), and the fact that the number of varieties manufactured in region i is
Si = Hi/α, the price index of the composite good (3) becomes:

Pi = βσ

σ − 1

⎛
⎝ 1

α

n∑
j=1

φi j H j

⎞
⎠

1
1−σ

, (9)

where φi j ≡ τ 1−σ
i j ∈ (0, 1] represents the “freeness of trade” between regions i and

j . Note that φi j = φ ≡ τ 1−σ whenever i �= j , while φi j = 1 whenever i = j .

2.3 Short-run equilibrium

Free entry in the manufacturing sector implies zero profit in equilibrium. Operat-
ing profits must thus exactly compensate fixed costs, which are the wages paid to
entrepreneurs:

αwi =
n∑
j=1

di j

(
L

n
+ Hj

) (
pi j − τi jβ

)
,

which becomes, using (4) and (8):

wi = μ

ασ

n∑
j=1

p1−σ
i j

P1−σ
j

(
L

n
+ Hj

)
, (10)

Replacing (8) and (9) in (10) we obtain:

wi = μ

σ

n∑
j=1

φi j
(
L/n + Hj

)
∑n

m=1 φmj Hm
. (11)
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We describe the spatial distribution of industry by working with the share of
entrepreneurs residing in each region i , denoted hi ≡ Hi/H . The set of pos-
sible spatial distributions is the (n − 1)-dimensional simplex defined by � ={
h ∈ R

n+ : ∑n
i=1 hi = 1

}
.

As a function of h, the nominal wage in region i can be expressed as:

wi = μ

σ

n∑
j=1

φi j
(
λ/n + h j

)
φ + (1 − φ)h j

, (12)

and the price index can be written as:

Pi = σβ

σ − 1

(
H

α

) 1
1−σ

[φ + (1 − φ)hi ]
1

1−σ . (13)

Recall that individual consumption of the agricultural good is positive if and only if the
nominal wage is greater thanμ. This is always the case for unskilled workers, because
wL
i = 1 > μ. Regarding entrepreneurs, λ ≥ σ/φ − 1 is a sufficient condition for

wi ≥ μ, since, from inspection of (12), wi ≥ μ
σ

∑n
j=1 φi j

(
λ/n + h j

) ≥ μφ
σ

(λ + 1).

Proposition 1 The weighted average nominal wage paid to entrepreneurs at any spa-
tial distribution is given by:

w̄ = μ

σ
(1 + λ). (14)

Proof See “Appendix A”. 	

The indirect utility of entrepreneurs becomes, after replacing (13) in (5):

Vi = wi + μ

σ − 1
ln [φ + (1 − φ)hi ] + η, (15)

where η ≡ −μ ln
(

σβ
σ−1

)
+ μ

σ−1 ln
( H

α

)+ μ (lnμ − 1) is a constant.

Replacing the expression for the nominal wage (12), we obtain:

Vi = μ

σ

n∑
j=1

φi j
(
λ/n + h j

)
φ + (1 − φ)h j

+ μ

σ − 1
ln [φ + (1 − φ)hi ] + η. (16)

3 Long-run equilibria

The replicator dynamics are generally well suited to describe the migration of
entrepreneurs when they are short-sighted (Baldwin et al. 2004). The rate of change of
the share of entrepreneurs in a region i is assumed to be proportional to the difference
between region i’s indirect utility, Vi , and the weighted average indirect utility across
all regions, V̄ (h) = ∑n

j=1 h j Vj (h). We thus consider a dynamical system given by:

ḣi = hi
[
Vi (h) − V̄ (h)

]
, ∀i ∈ N\ {n} , (17)
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which, since hn = 1−∑i �=n hi , implies that ḣn = −∑i �=n ḣi = hn
[
Vn(h) − V̄ (h)

]
.

A spatial distribution h ∈ � is said to be an equilibrium if ḣ = 0. The boundaries of
� are invariant for the dynamics. If a region is initially empty, it will remain so unless
some exogenous migration to that region occurs.7 Moreover, every spatial distribution
h ∈ � such that hi = 1/k in k regions (and hi = 0 in the other) is an equilibrium.

Our first goal is to provide a description of stable configurations of mobile workers
in the economy. This is achieved by studying the local stability of several types of
equilibria. First, we consider full agglomeration in a single region i (hi = 1). Then,
we study symmetric dispersion, where entrepreneurs are evenly distributed among all
regions (hi = 1/n,∀i). We also study boundary dispersion, where entrepreneurs are
evenly dispersed among some of the regions (h j = 1/k in k ∈ {2, . . . , n − 1} regions
and hi = 0 elsewhere). The last class of equilibria we study are asymmetric interior
distributions where one region has a share of entrepreneurs hi ∈ (0, 1) and the other
n − 1 regions are evenly populated with shares (1 − hi )/(n − 1). We refer to this
spatial distribution as partial agglomeration.

An equilibrium is said to be stable if, after a small perturbation of the equilibrium
distribution, the spatial distribution converges to the initial equilibrium distribution.

3.1 Agglomeration

When there is full agglomeration in region i , since all the entrepreneurs reside in
region i , their weighted average utility is V̄ = Vi . Agglomeration is stable if Vj <

V̄ , ∀ j ∈ N\{i}. The following result gives the condition for stability in parameter
space.

Proposition 2 Agglomeration is stable if:

(1 − φ) [λ − (n + λ)φ]

nσφ
+ ln(φ)

σ − 1
< 0, (18)

and is unstable if the opposite inequality holds.

Proof See “Appendix B”. 	

Agglomeration is stable if trade costs are sufficiently low. There exists a threshold
level φs , called sustain point, such that agglomeration is stable if φ > φs and unstable
if φ < φs .8 The sustain point φs is implicitly defined by:

(1 − φs) [λ − (n + λ)φs]

nσφs
+ ln(φs)

σ − 1
= 0. (19)

7 This may seem unreasonable if an empty region has a positive utility differential. However, the replicator
dynamics are generally used to capture the effect ofmigration driven by imitation, so a possible interpretation
is that entrepreneurs are extremely reluctant to be the first to migrate.
8 The left-hand side of (18), denoted F(φ), has a single zero in the domain φ ∈ (0, 1). To verify this, check
that limφ→0 F(φ) = +∞, limφ→1 F(φ) = 0, limφ→1 F

′(φ) > 0, and that F ′(φ) has a single zero.
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We can also observe that agglomeration is stable if labour mobility is sufficiently high.
Rewriting (18), we obtain that agglomeration is stable if λ < λs , where:

λs ≡ nφ [(σ − 1)(1 − φ) − σ ln φ]

(σ − 1)(1 − φ)2
, (20)

and is unstable if λ > λs .

3.2 Symmetric dispersion

The following proposition establishes that full dispersion of entrepreneurs is stable if
trade costs are sufficiently high.

Proposition 3 Dispersion is stable if:

φ < φb ≡ σ(1 − λ) + λ

λ + n − σ (λ + 2n − 1)
, (21)

and is unstable if φ > φb.

Proof See “Appendix B”. 	

The threshold valueφb is called break point.9 A common assumption inNEG literature
is that φb > 0, so that stability of symmetric dispersion cannot be precluded. This is
called the no black hole condition and is equivalent to:

λ >
σ

σ − 1
. (22)

Since we require consumption of the agricultural good to be positive at full dispersion,

it follows that λ > max
{
σ − 1, σ

σ−1

}
.10

Rewriting the stability condition in (21), we find that dispersion is stable if:

λ > λb ≡ σ(2nφ + 1 − φ) − nφ

(σ − 1)(1 − φ)
, (23)

and unstable if λ < λb. Dispersion is thus stable if labour mobility is sufficiently low.

3.3 Boundary dispersion

At boundary dispersion, entrepreneurs are evenly distributed among k∈{2, . . . , n − 1}
regions, while the other n − k regions are empty, where n ≥ 3. By symmetry, we can
supposew.l.o.g. that h j = 0 for j = 1, . . . , n−k and h j = 1

k for j = n−k+1, . . . , n.

9 Substituting n = 2 in (21) we recover the break point of the model of Pflüger (2004).
10 If σ > 1

2 (3 + √
5) the no black hole condition is implied by λ > σ − 1 and thus becomes redundant.
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Theorem 1 Boundary dispersion is always unstable.

Proof See “Appendix B”. 	

Theorem 1 provides analytical confirmation of the numerical evidence presented by
Fujita et al. (1999), Castro et al. (2012), and Gaspar et al. (2013). These authors used
Core–Periphery models with 3 or more regions to provide numerical evidence that
boundary dispersion with k = 2 is always unstable.11

3.4 Partial agglomeration

3.4.1 Existence of partial agglomeration equilibria

In an n-region model, there potentially exist several different kinds of asymmetric
interior equilibria.We restrict our analysis to a one-dimensional subspace of�, defined

by�inv ≡
{
h ∈ � : h j = 1−h1

n−1 ,∀ j �= 1
}
, which is invariant for the dynamics. This is

a particular subspace in a family of one-dimensional subspaces where k regions have
the same share of entrepreneurs and the other n−k regions also have the same share of
entrepreneurs. We focus on the case where only one region differs from the others in
size (k = 1, or k = n−1). Note that agglomeration (h1 = 1) and dispersion (h1 = 1

n )
are distributions in �inv. The next result is on the maximum number of equilibria in
�inv that are interior and asymmetric, i.e. such that h1 ∈ (0, 1/n) ∪ (1/n, 1).

Proposition 4 There exist at most two interior asymmetric equilibria in�inv: at most
one with h1 ∈ (0, 1/n), whereas at most two with h1 ∈ (1/n, 1). A distribution
h ∈ �inv with h1 ∈ (0, 1

n )∪ ( 1n , 1
)
is an equilibrium if and only if λ = λ∗(h1), where:

λ∗(h1) ≡ n(σ − 1)(1 − φ)φ(h1n − 1) − nσ [h1(1 − φ) + φ] [φ(h1 + n − 2) − h1 + 1] ν(h1)

(σ − 1)(1 − φ)2(h1n − 1)
,

(24)

with ν(h1) ≡ ln
{

φ(h1+n−2)−h1+1
(n−1)[h1(1−φ)+φ]

}
.

Proof See “Appendix B”. 	

Note that h1 ∈ (1/n, 1) means that region 1 has more industry than the other regions
and in this case we refer to region 1 as a partial core.

We illustrate in Fig. 1 the possible multiplicity of partial agglomeration equilibria,
drawing λ∗(h1) for n = 3 and σ = 4, for two different values of φ.

When φ is low (picture to the left), there may exist one, two or zero interior asym-
metric equilibria in �inv. For λA < λ < λB , there is only one equilibrium and it does
not have a partial core. For λB < λ < λC , there are two equilibria and at least one has a
partial core (both have if λ is relatively high). If λ > λC , there are no equilibria. When
φ is high (picture to the right), there is at most one interior asymmetric equilibria in
�inv. If λ is high, it has a partial core.

11 The first two works considered the original CP model (Krugman 1991), whereas the latter considered
the FE model proposed by Forslid and Ottaviano (2003).
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Fig. 1 Illustration of λ∗(h1) for n = 3. On the vertical axis we present values of λ such that h1 ∈
(0, 1)\ {1/3} is an interior equilibrium. To the left, we have φ = 0.2 and to the right we have φ = 0.65. The
equilibria occur at the intersection of a horizontal line (λ constant) with the lines depicted in each figure

3.4.2 Stability of partial agglomeration

At a partial agglomeration equilibrium, two types of migrations can take place. One
migration concerns movements along the invariant space�inv, i.e. from region 1 to the
evenly populated regions. Ifn−1 entrepreneurs leave region 1, each of the other regions
will get 1 of those entrepreneurs. Since, along the invariant space, regions {2, . . . , n}
share the same size, the decisions of these n − 1 entrepreneurs are equivalent. The
other migration concerns that of an entrepreneur who chooses to move exogenously
between two regions other than region 1 (transversally to�inv). We have the following
result.

Theorem 2 Partial agglomeration is stable if h1 ∈ (1/n, 1) and:

δ(h1) ≡ (1 − φ)(h1n − 1) [(n − 1)φ + 1] + Φ(h1)ν(h1) < 0, (25)

where Φ(h1) = h21n(1 − φ)2 − 2h1(1 − φ)2 + φ {n [(n − 3)φ + 2] + 3φ − 4} + 1
and ν(h1) is as in (24). It is unstable if either h1 ∈ (0, 1/n) or δ(h1) > 0.

Proof See “Appendix B”. 	

Partial agglomeration can only be stable if the asymmetric region is a partial core.
If this is the case, stability depends solely on the effect of migration on utilities
between a partial core and any of the other regions, i.e. on δ. Notice that ν(h1) < 0
and Φ(h1) > 0 if h1 > 1/n. Therefore, the term Φ(h1)ν(h1) < 0 constitutes
the agglomerative force attracting entrepreneurs towards the partial core, whereas
(1− φ)(h1n − 1) [(n − 1)φ + 1] > 0 is the dispersive force that drives entrepreneurs
away from the partial core to the other evenly populated regions.

To understand why partial agglomeration is unstable if h1 ∈ (0, 1/n), notice that a
small exogenous migration from region n to region j �= 1 decreases the cost-of-living
in region j due to the increase of the number of varieties produced locally. This is
captured by differentiating the second term of Vj in (16) and evaluating at partial
agglomeration, which gives:

μ(n − 1)(1 − φ)

(σ − 1) [φ(h1 + n − 2) − h1 + 1]
> 0. (26)
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Fig. 2 Regions of stability
δn < 0 in (h, φ) space, for
n = {3, 5, 10}. The region below
the solid line corresponds to
δ3 < 0; below the dashed line
we have δ5 < 0; the dotted line
contain δ10 < 0

On the other hand, the nominal wage in region j decreases:

∂w j

∂h j

(
h1,

1 − h1
n − 1

)∣∣∣∣
λ=λ∗(h1)

= (n − 1)2σ [h1(1 − φ) + φ]ν(h1)

(σ − 1)(h1n − 1) [φ(h1 + n − 2) − h1 + 1]
,

which is negative for h1 ∈ (0, 1/n). When h1 ∈ (0, 1/n), the cost-of-living effect
always outweighs the dispersive decrease in nominal wage. The receiving region,
having become the largest after migration, will tend to further develop into an indus-
trialized core. This explains why it is not possible for industry to spread evenly among
n − 1 regions when the other region is less industrialized.

Stability of partial agglomeration requires a significantly industrialized partial core.
There exists ε > 0 such that partial agglomeration is unstable if h1 ∈ ( 1n , 1

n + ε).12

Stability of partial agglomeration also requires that trade costs are not too low. There
exists ε > 0 such that partial agglomeration is unstable for φ ∈ (1 − ε, 1).13 In order
to convey a better picture, we illustrate in Fig. 2 the region δ < 0 in (h1, n) space, for
n = {3, 5, 10}.

The numerical evidence suggests that, with more regions, partial agglomeration
requires higher barriers to trade (lower φ). With more regions, some partial agglomer-
ation equilibria may arise with less industry in the partial core because total dispersion
implies a lower share of entrepreneurs in each region. Finally, Fig. 2 shows that partial
agglomeration with h1 ∈ (1/n, 1) is stable if the freeness of trade, φ, is low enough.
The more industrialized the partial core is, the higher is the range of freeness of trade
values for which partial agglomeration is a stable equilibrium.

12 This stems from the fact that δ(h1 = 1/n) = 0, ∂δ
∂h (h = 1/n) = 0 and ∂2δ

∂h2
(h = 1/n) > 0.

13 This is a consequence of δ(φ = 1) = 0, ∂δ
∂φ

(φ) = 0 and ∂2δ
∂φ2

(φ = 1) > 0.
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4 Bifurcations in the n-region model

Most 2-region NEG models under exogenous symmetry undergo pitchfork bifurca-
tions at the symmetric dispersion when the parameter path concerns smooth changes
only in transportation costs. Pflüger and Südekum (2008a) have shown that changes
in the functional form of the utility function produce modifications in the qualitative
structure of a class of footloose entrepreneurmodels.However, these changes affect the
type of pitchfork bifurcation rather than the type of bifurcation itself.14 For instance,
the 2-region QL (Pflüger 2004) undergoes a supercritical pitchfork bifurcation at sym-
metric dispersion. We next show that when more than 2 regions come to interplay,
the QL model exhibits instead a primary transcritical bifurcation at the symmetric
equilibrium and a secondary saddle-node bifurcation that branches from an interior
asymmetric equilibrium. A distinctive feature of these bifurcations is that the quali-
tative change in spatial distributions as transport costs decrease here is not reflected
symmetrically across all regions, even though themodel is completely symmetric in all
respects. This suggests that the role of transport costs in an equidistant multi-regional
model may be more complex than what is envisaged in most agglomeration models.15

The remainder of the section is dedicated to explaining the details of these bifurca-
tions and their consequences on the qualitative transition towards more agglomerated
distributions as trade integration increases.

4.1 Primary and secondary bifurcations

We have the following results.

Proposition 5 In the n-region (n ≥ 3) QL model symmetric dispersion undergoes a
transcritical bifurcation at the break point.

Proof See “Appendix C”. 	

From this result, symmetric dispersion looses stability as φ rises above φb. A primary
branch of partial agglomeration equilibria crosses symmetric dispersion at the bifur-
cation point φ = φb. For φ < φb, this branch lies in the region h1 ∈ (1/n, 1). For
φ > φb, the branch lies in the region h1 ∈ (0, 1/n). Locally, both before and after the
bifurcation occurs, the partial agglomeration equilibria along the primary branch are
unstable in a neighbourhood of the bifurcation point.16

In order to understand the behaviour of partial agglomeration equilibria on the
entire invariant space �inv for h1 ∈ (1/n, 1), we take a further step by verifying
the conditions for a secondary bifurcation along the primary branch that occurs at
a fold point, φ f . Because we are looking at the invariant subspace (h1, h j (hi )) =

14 In the model of Ottaviano et al. (2002), the resulting bifurcation is a borderline case between a super-
critical and subcritical pitchfork.
15 Bifurcation in core–periphery models has been addressed by Berliant and Kung (2009) in a different
context. The variety of bifurcations is obtained through the addition of parameters to the original model.
16 The branch for h1 ∈ (0, 1/n) is stable (only) along the invariant space. From Theorem 2, however, it is
unstable.
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(h1, (1−h1)/(1−n)), the studyof bifurcations at the symmetric dispersion equilibrium
in this restriction of the n-region model is reduced to a one-dimensional case.

Proposition 6 Along the primary branch for h1 ∈ (1/n, 1), the n-region QL model
undergoes a saddle-node bifurcation as φ decreases from φb.

Proof See “Appendix C”. 	

The existence of a secondary saddle-node bifurcation for h1 ∈ (1/n, 1), together with
the direction of the transcritical bifurcation and stability of its branches, ensures that
φ f < φb and φ f < φs . As φ increases above φ f , two partial agglomeration equilibria
appear. The one with the more industrialized partial core is stable, whereas the other
one is unstable. In other words, the saddle-node bifurcation is characterized by a curve
of partial agglomeration equilibria along a primary branch for h1 ∈ (1/n, 1) that is
tangent to the line φ = φ f and lies to its right.17

One important question concernswhetherφb < φs orφb > φs . The relative position
of these thresholds determines the smoothness of the progressive industrialization
process as the freeness of trade increases. On the other hand, the qualitative structure
of the model ensures that there always exists a stable spatial distribution with h1 ∈
[1/n, 1], for every freeness of trade value φ ∈ (0, 1).

We first focus on the case φb < φs , which requires a relatively low λ. Figure 3
depicts the QL model’s bifurcation diagram in the invariant space �inv for n = 3.
For the illustrations we set μ = 0.3, σ = 4 and λ = 2.5.18 The interpretation strays
from that of the typical bifurcation diagrams of 2-region models in NEG literature,
because we are restricting ourselves to the invariant subspace �inv ⊂ �. Just like
the simplex in the 2-region model, the subspace is also one-dimensional here and
migration movements that affect region 1 will affect all other regions. A migration
from (to) region 1 would result in 2x entrepreneurs leaving (entering) region 1 for x
entrepreneurs that enter (leave) each of the other 2 regions.19

It thus comes as no surprise to see that h1 = 0 corresponds to a qualitatively
different spatial distribution when n = 2 andwhen n ≥ 3.When n = 2, it corresponds
to agglomeration. When n ≥ 3, it corresponds to border dispersion, which is never
stable.

In Fig. 3 we can see the primary transcritical bifurcation branching from the break
point φb and the secondary saddle-node bifurcation occurring along the primary
branch, whose fold point, φ f , is located in the upper part of the invariant subspace.
Notice that an initially partially agglomerated industry will be forced to fully disperse
across regions if there is a decrease in the freeness of trade below φ f . If this decrease
is temporary, the industry will remain fully dispersed, so there are permanent effects,
which means that the n-region QL model exhibits locational hysteresis. Formally, this
happens because φ f < φb.

17 The details that support these claims about the bifurcations are provided by the derivatives in (T3), (T4),
and (SN3) in “Appendix C”.
18 The parameter values chosen for the simulations ensure that wi , w j > μ at every partial agglomeration
equilibrium, so that entrepreneurs consume both goods at every possible distribution.
19 In a 3-region model, along the invariant space, region 1 has h1 entrepreneurs and regions 2 and 3 have
h2 = h3 = (1 − h1) /2.
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Fig. 3 Bifurcation diagram for the 3-region model. Solid and dashed lines represent stable and unstable
equilibria, respectively. Vertical dashed lines delimit areas (1)–(4) as follows: (1) stability of symmetric
dispersion; (2) stability of both dispersion and partial agglomeration; (3) stability of partial agglomeration;
(4) stability of full agglomeration

Figure 4 contains the different dynamics of the 3-region model inside the two-
dimensional simplex, with correspondence to the regions (1)–(4) of Fig. 3. We start
with low levels of φ. When the freeness of trade is very low, we have φ < φ f <

φb < φs , so only dispersion is stable (upper left picture). However, once φ f < φ <

φb < φs, two partial agglomeration equilibria immediately arise on the upper part
(for h1 ∈ (1/3, 1)) of the invariant space �inv of the simplex (upper left picture).
The one that lies closer to agglomeration is the only stable equilibrium. In the bottom
left picture, φ has risen just above the break point but lies just below the sustain
point, i.e. φ f < φb < φ < φs . At this point there are still two partial agglomeration
equilibria; however, one of them lies in the inferior part of the invariant space�inv and
is unstable, whereas the other is stable. As φ approaches the sustain point, the stable
partial agglomeration equilibrium approaches agglomeration until it disappears once
φ > φs , after which agglomeration becomes the only stable spatial distribution.

Intuitively, the absence of income effects mitigates agglomeration forces as trans-
port costs decrease, which justifies the existence of partial agglomeration just as in the
2-region model. On the other hand, higher market access variability due to the pres-
ence of more regions implies that lower transport costs enhance the relative strength
between centripetal and centrifugal forces, resulting in a spatial distribution where one
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Fig. 4 Migration dynamics of entrepreneurs inside the 2-simplex. From left to right to bottom, φ is increas-
ing, and each picture corresponds to a region in Fig. 3 indexed from (1) to (4). In the first picture, only
symmetric dispersion is stable. In the second, both partial agglomeration and symmetric dispersion are
stable. In the third picture only partial agglomeration is stable. In the last picture, agglomeration is the only
stable equilibrium

region is considerably more industrialized. Further decreases in transport costs then
lead to a progressive and smooth transition towards full agglomeration.
We now focus on the case whereby φb > φs . Note that, in Pflüger’s 2-region QL
model, the existence of a supercritical bifurcation at the break point φb precludes this
scenario. For n ≥ 3, we have the following result.

Proposition 7 There exists a λ ∈ (λb, λs) such that agglomeration and dispersion
are both stable if:

n > nT ≡ − (1 − φ)2

φ(1 − φ + ln φ)
, (27)

Proof See “Appendix C”. 	
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Fig. 5 Threshold nT in (27). Agglomeration and dispersion are simultaneously stable in the graph above
the thick line. For n ≥ 3, simultaneity requires higher transport costs for a higher number of regions

The derivatives of λb in (23) and λs in (20) with respect to φ are both positive.
Therefore, a higher freeness of trade increases the range of values of λ for which
agglomeration is stable and decreases the range of values of λ for which dispersion
is stable. However, the difference λs − λb can be shown to be increasing in φ. This
implies that a higher freeness of trade increases the range of values of immobile to
mobile labour ratio for which agglomeration and dispersion are simultaneously stable.
Accordingly, nT in (27) is decreasing in φ, which means that simultaneity of stability
requires a lower number of regions when the freeness of trade is higher.

Figure 5 illustrates nT from (27) in φ space. It shows that simultaneity of stability
of agglomeration and dispersion is not possible in the 2-region model. It also shows
that an (n + 1)-region model favours simultaneity of agglomeration and dispersion
for a wider range of transport cost values compared to an n-region model.

Corollary 1 For a sufficiently high λ, there exists a range of transport cost values for
which agglomeration and dispersion are both stable.

Proof If condition (27) holds, then, for some λ, agglomeration and dispersion are
simultaneously stable. Since stability of both equilibria requires φ > φs and φ < φb,
then it follows that, for some λ, we must forcibly have φb ≥ φs . Moreover, we have
d(φb −φs)/dλ > 0, which means that φb −φs > 0 occurs for a sufficiently high λ. 	

We now proceed to illustrate the qualitative structure of spatial distributions when
φs < φb. We increase the ratio of immobile to mobile workers compared to the
previous simulations, by setting λ = 6. The resulting bifurcation diagram is now
presented in Fig. 6. Clearly, the main qualitative difference compared to Fig. 3 pertains
to the region indexed by (3), where we now have φ ∈ (φs, φb).
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Fig. 6 Bifurcation diagram for the 3-region model. Solid and dashed lines represent stable and unstable
equilibria, respectively. Vertical dashed lines delimit areas (1)–(4) as follows: (1) stability of symmetric
dispersion; (2) stability of both dispersion and partial agglomeration; (3) stability of both dispersion and
full agglomeration; (4) stability of full agglomeration. Parameter values are σ = 5 and λ = 6

Figure 7 portrays the two-dimensional simplex for φb > φs once φ rises above the
sustain point (corresponding to region (3) in Fig. 6).

We can observe that for φs < φ < φb, agglomeration and total dispersion are both
simultaneously stable, while a single unstable partial agglomeration equilibrium for
h ∈ (1/3, 1) exists in �inv between them.

We now sum up the implications of the relative position between the break point
and sustain point. If φb < φs , once symmetric dispersion loses stability, a significant
migration will occur to a partially agglomerated equilibrium. This migration will be
followed by a smooth transition towards agglomeration if φ rises further. This scenario
is illustrated in Figs. 3 and 4. Conversely, if φb > φs, entrepreneurs will immediately
agglomerate in one single region once dispersion becomes unstable. Moreover, if the
increase in φ above φb is due to some temporary policy, agglomeration is permanent.
This is depicted in Fig. 6. Smoother transitions require a lower immobile to mobile
labour ratio λ, whereas catastrophic agglomeration is more likely under higher values
of λ.20

20 Our results can be shown to extend to a fairly general range of values for λ.
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Fig. 7 A 2-simplex portraying
for φs < φ < φb . We can see
that agglomeration and
symmetric dispersion are both
stable. A single unstable partial
agglomeration equilibrium
exists in the upper part of �inv

In economic terms,when overall inter-regionalmobility is low, dispersion forces are
higher because firms have larger incentives to relocate to less industrialized regions in
order to capture local demand and avoid fiercer competition in more crowded markets.
However, dispersion forces due to existence of immobile workers in other markets are
naturally stronger at more symmetric distributions. The implication is that a lower
global inter-regional mobility encourages symmetric dispersion more than it discour-
ages full agglomeration. When it is too low, if agglomeration forces exceed dispersion
forces at symmetric dispersion, the spatial distribution then immediately shifts towards
full agglomeration.

4.2 A note on the black hole condition and on the role of inter-regional mobility

Weknow that there is a condition onwhich stability of total dispersion hinges crucially;
the no black hole condition. In early NEG literature, the no black hole condition may
have been a requirement assumed out of necessity or convenience; after all, in a
fully symmetric two region, two industry setting, precluding dispersion would doom
geography to the unlikely prediction of full agglomeration in one region. In our context,
the no black hole condition would seem ad hoc to say the least.

Figure 8 shows a bifurcation diagram where the ratio of inter-regionally immobile
workforce relative to mobile (skilled) labour is lower than unity and, as such, total
dispersion is precluded. The results concerning bifurcations in the previous section do
not extend to this case since we know that φ f < φb. In fact, as the freeness of trade
increases, the spatial distribution approaches agglomeration monotonically from an
interior asymmetric equilibrium along the invariant space �inv.

On account of these findings, we conclude that a higher global inter-regional worker
mobility (lower λ) leads to smoother transitions towards agglomeration as transport
costs steadily decrease.
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Fig. 8 If the unskilled labour force is relatively low, dispersion is not a stable outcome, but partial agglom-
eration is still possible. We have σ = 2.5 and λ = 1.6

5 Welfare

We have analysed the different possible spatial distributions in the the QL model with
an arbitrary number of equidistant regions. We now analyse the desirability of these
possible distributions. For normative purposes, we adopt a utilitarian criterion similar
to that of Pflüger and Südekum (2008b), thus looking at the average indirect utility of
entrepreneurs, farmers, and then at the whole economy.

5.1 Entrepreneurs

We start by showing how the spatial distribution of entrepreneurs affects their well-
being.

Theorem 3 The average utility of entrepreneurs is convex in the spatial distribution
of entrepreneurs h, attaining a global minimum at symmetric dispersion.

Proof See “Appendix D”. 	

Total dispersion is the spatial distribution that yields the worst outcome for the
entrepreneurs as measured by average utility. To understand why entrepreneurs may
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be driven to the situation that minimizes their overall welfare, it is useful to consider
an economy with 3 regions whose distribution is initially fully dispersed. Supposing
that full dispersion is stable, consider a marginal exogenous exodus from region 1
to region 3, which increases average utility (from Theorem 3). However, since dis-
persion is stable, entrepreneurs in region 3 will now observe that V1 > V̄ . Since
they are short-sighted and move to the region with the highest utility, they will return
to region 1, restoring symmetric dispersion. This situation is similar to the standard
prisoner’s dilemma. As noticed by Pflüger and Südekum (2008b), the continuum of
stable equilibria with partial agglomeration that the absence of income effects allows
for, as opposed to other NEGmodels, may contribute to this result. Adding dispersion
forces such as a housing sector (Pflüger and Südekum 2008b), commuting costs as in
Ottaviano et al. (2002) and Tabuchi et al. (2005), or conspicuous consumption as in
Ghiglino and Nocco (2017), would most likely improve the welfare of entrepreneurs
at less agglomerated outcomes.

5.2 Farmers

Since the nominal wage of farmers is normalized to 1, all changes in their welfare are
caused by changes in average price indices.21 From (15), their average utility is given
by:

V̄ L(h) = 1 + μ

n(σ − 1)

n∑
j=1

ln
[
φ + (1 − φ)h j

]+ η. (28)

In contrast with entrepreneurs, farmers prefer more dispersed distributions.

Theorem 4 Farmers’ average indirect utility is concave in the spatial distribution of
entrepreneurs h, attaining a global maximum at symmetric dispersion.

Proof See “Appendix D”. 	

Farmers attain the highest welfare when all entrepreneurs are evenly dispersed among
all regions. Regional indirect utility of farmers in region i is strictly increasing in
the number of entrepreneurs that reside there, due to the fact that locally produced
varieties are sold at lower prices.22 Therefore, industrialization of a region leads to a
progressive improvement of the welfare of farmers residing in that region. However,
on average, farmers as a whole become relatively poorer.

5.3 Social welfare

The results shown so far evidence a clear trade-off between thewelfare of entrepreneurs
and the welfare of farmers. For a given stable equilibrium, the welfare of the economy
as a whole thus depends on the global ratio of farmers to entrepreneurs, λ, and the

21 Recalling Proposition 1, a similar statement applies to the average welfare of entrepreneurs.
22 In fact, it is possible to rewrite Pi in a way that it depends only on hi . See proof of Theorem 3.
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number of regions n. Let us define social welfare as an average of both average indirect
utilities that depends on the spatial distribution of entrepreneurs:

Ω(h) = 1

λ + 1

[
V̄ (h) + λV̄ L(h)

]
. (29)

Rewriting (29) using (28) and V̄ we get:

Ω(h) = 1

λ + 1

⎧⎨
⎩ε + μ

(σ − 1)

⎡
⎣ n∑

j=1

ln
[
φ + (1 − φ)h j

] (λ

n
+ h j

)⎤
⎦
⎫⎬
⎭ , (30)

where ε = λ(1+η)+w̄+η is a constant. The next result provides valuable information
concerning the local extrema of Ω(h).

Proposition 8 Social welfare interior extrema are located on one-dimensional invari-
ant spaces whereby k regions have a share of entrepreneurs hi = h1/k and the other
n − k regions have a share h j = (1 − h1)/(n − k).

Proof See “Appendix D”. 	

As we have seen before, one particular invariant space of this kind is �inv, which
corresponds to the particular case where k = 1 or k = n − 1. From Proposition 8, a
Corollary follows for the 3-region case.

Corollary 2 For n = 3, all social welfare interior extrema are located on �inv.

Proof In the 3-region model, the only invariant spaces that correspond to the ones
identified in Proposition 8 are the three invariant spaces whereby one region has h1
entrepreneurs and the other two regions have h j = h1/2. This matches the invariant
space �inv. 	

From Proposition 8, the study of social welfare interior extrema can be reduced to
the simpler one-dimensional invariant space. Additionally, Corollary 2 ensures that in
order to study welfare in a 3-region model we need only look at the one-dimensional
subspace �inv in addition to the boundaries.23 Using (30) and n = 3, we find:

Ω (h1) = 1

3(λ + 1)

[
3ε + μ

(σ − 1)
ζ

]
, (31)

where

ζ = (3h1 + λ) ln [h1(1 − φ) + φ] + [2h + 3(1 − h1)] ln

[
1 − h1

2
(1 − φ) + φ

]
.

Figure 9 plots the different possible shapes of social welfare for increasing levels of
φ, for λ = 3 and σ = 5. When φ is low (upper left picture), symmetric dispersion

23 For n ≥ 4, there may exist other potential extrema on other invariant spaces (as well as equilibria).
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Fig. 9 Welfare along the invariant space �inv for the 3-region model (with λ = 3 and σ = 5). From left
to right to bottom, φ is increasing

is the only stable equilibrium and is a global welfare maximum. For a slightly higher
φ (upper right picture), both dispersion and a highly industrialized partial agglomera-
tion dispersion are stable, but the former is still a global welfare maximum. Increasing
φ further (medium left picture) makes dispersion unstable, whereas partial agglom-
eration is stable but is socially inferior compared to any less agglomerated spatial
distribution. As φ rises even further (medium right picture) agglomeration becomes
stable but is dominated by another less asymmetric distribution. However, continu-
ous increases in φ steadily improve the welfare at agglomeration until it eventually
becomes a global welfare maximum (lower pictures). The evidence here shows that
the 3-region model exhibits a tendency towards overagglomeration for intermediate
transport cost levels.

In order to check if this tendency carries over to the general n-region model, we
present the following Theorem.
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Theorem 5 From a social point of view: (i) if dispersion is stable, it is a local max-
imum and always superior to agglomeration; (ii) there exists φz ∈ (φs, 1) such that
agglomeration is stable for φ ∈ (φs, φz), but is socially inferior to other less asym-
metric distributions.

Proof See “Appendix D”. 	

From Theorem 5 we learn that there is a range for the freeness of trade just above the
sustain point for which agglomeration is a stable outcome, but also whereby social
welfare is lower compared to other less industrialized distributions. Therefore, there
is a tendency towards overagglomeration. This is particularly notorious if φb > φs ,
because a temporary increase in the freeness of trade just above φb permanently shifts
the spatial distribution to a socially inferior outcome.24

6 Conclusion

The QL model presents itself as a good candidate for extending the study of NEG to
a higher number of regions. By considering a quasi-linear upper-tier utility function,
the absence of income effects on consumers’ demand for manufactures enables one to
obtain simpler analytical expressions for the entrepreneurs’ real wages in each region.
In most other NEGmodels with different utility functional forms, regional wages feed
back on the entrepreneurs’ incomes in all other regions, which in turn depend on the
wages they get, making it progressively harder to obtain tractable expressions as more
regions are considered.

As we have seen, the QL model allows to study NEG with an arbitrary number
of equidistant regions under exogenous symmetry. Moreover, it accommodates for
the possibility of partial agglomeration equilibria, a feature which is ruled out in
many CP models under exogenous symmetry. This enforces the idea that exogenous
asymmetries are not the only source of asymmetric spatial distributions.

We look at equilibria where at least one region is absent of industry and the remain-
ing regions are evenly industrialized, and find they are always unstable. To the best
of our knowledge, this is the first analytical confirmation that an evenly distributed
industry among less than the total number of regions is not possible.

We look at partial agglomeration distributions along invariant spaces where all
but one region share the same level of industry. Contrary to the 2-region QL model
(Pflüger 2004), where the only invariant space is the entire set of spatial distributions
itself and any distribution may correspond to a stable equilibrium, with three and more
regions, along the aforementioned invariant space, a partial agglomeration equilibrium
can only be stable if a single region has a relatively larger industry compared to all
other regions. This happens because, when a single region is comparatively smaller, an
entrepreneur who migrates between any two of the evenly distributed regions (which
are larger) will see his utility rise. Thus, if exogenous migration occurs to any such

24 On the other hand, it can be shown that a higher worker mobility (lower λ) and a higher trade freeness
increases the likelihood that global welfare will be greater at agglomeration compared to dispersion. This
statement is true if λ > nφ/(1− φ), which we assume; otherwise, agglomeration is always stable (see Eq.
(18) in Sect. 3.1).
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region, it will attract more and more entrepreneurs until it becomes an industrialized
core.

A consequence of the stability analysis of partial agglomeration is that theQLmodel
distribution patterns with three regions and more cannot be explained by the 2-region
model’s pitchfork bifurcation (Pflüger 2004). Instead, it undergoes a primary transcrit-
ical bifurcation at the symmetric dispersion equilibrium and a secondary saddle-node
bifurcation occurring at a primary branch along the invariant subspace. The existence
of a saddle-node implies that entrepreneurs, who are initially partially agglomerated,
will become permanently dispersed across all regions if transport costs increase tem-
porarily. Moreover, it is possible that agglomeration becomes stable before dispersion
becomes unstable, depending on the level of worker mobility. Thus, from a smooth
path where transport costs decrease, once symmetric dispersion looses stability, there
are two possibilities: (i) if the worker mobility is high, industry converges imme-
diately to partial agglomeration and then smoothly transits towards a single region
agglomeration; (ii) if mobility is low, industry immediately agglomerates in a single
region.

We have shown that the average utility of the entrepreneurs declines from agglomer-
ation until dispersion, where their average utility is at its lowest. The converse happens
to the welfare of farmers. Their average utility is minimal at agglomeration and is
highest at dispersion. This evidences a clear trade-off in spatial distributions between
entrepreneurs and farmers in terms of social desirability. When we look at the society
as a whole, the model exhibits a tendency towards overagglomeration when trans-
portation costs lie at intermediate levels. The social desirability of more agglomerated
distributions is higher when the proportion of farmers is lower, and can be improved
for all workers by decreasing the cost-of-living through lower transportation costs.
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Appendix A

This appendix contains the formal proofs pertaining to Sect. 2 of the paper.

Proof of Proposition 1 The average nominal wage is the weighted sum of nominal
wages in each region, given by (12):
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w̄ =
n∑

i=1

hiwi = μ

σ

n∑
i=1

hi

n∑
j=1

φi j
(
λ/n + h j

)
φ + (1 − φ)h j

= μ

σ

n∑
j=1

n∑
i=1

hi
φi j
(
λ/n + h j

)
φ + (1 − φ)h j

= μ

σ

n∑
j=1

λ/n + h j

φ + (1 − φ)h j

n∑
i=1

hiφi j = μ

σ

n∑
j=1

λ/n + h j

φ + (1 − φ)h j

[
φ + (1 − φ)h j

]
,

and the result w̄ = μ
σ
(1 + λ) follows. 	


Appendix B

This appendix contains all the proofs concerning both existence and local stability of
equilibria (Sect. 3).

Proof of Proposition 2 Let i be the core region. We show that Vj < Vi ∀ j �= i . We
have, from (16), that:

Vi = μ

σ
(1+λ)+η and Vj = μ

σnφ

[
λ+φ2(λ + n)+λ(n − 2)φ

]
+ μ

σ − 1
ln φ + η.

A straightforward simplification of the inequality Vj < Vi yields the desired result. 	

Proof of Proposition 3 Local stability of interior equilibria in � is given by the sign
of the real part of the eigenvalues of the Jacobian matrix of the system in (17) at
(h1, h2, . . . , hn−1) = ( 1

n , 1
n , . . . , 1

n

)
. At symmetric dispersion, the average utility V̄ is

invariant in the permutation of any two coordinates, due to symmetry. Ifwe interchange
the distributions between region 1 and region n we then have V̄

( 1
n + ε, 1

n , . . . , 1
n

) =
V̄
( 1
n − ε, 1

n , . . . , 1
n

)
. But this implies that ∂hi V̄

( 1
n , 1

n , . . . , 1
n

) = 0.25 The argument
of invariance extends to the indirect utility Vi in the permutation of any two coordinates
j �= i , which implies that ∂h j Vi

( 1
n , 1

n , . . . , 1
n

) = 0,∀ j �= i . Finally, symmetry among

regions establishes that we must have ∂hi Vi
( 1
n , 1

n , . . . , 1
n

) = ∂h j Vj
( 1
n , 1

n , . . . , 1
n

)
.

The Jacobian matrix of (17) at the symmetric equilibrium is thus given by:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Vi
∂hi

0 . . . 0

0
∂Vi
∂hi

. . . 0

...
...

. . .
...

0 0 . . .
∂Vi
∂hi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which has a repeated real eigenvalue with multiplicity n − 1 given by
∂hi Vi

( 1
n , 1

n , . . . , 1
n

)
, and total dispersion is stable if ∂hi Vi

( 1
n , . . . , 1

n

)
< 0.

25 In this formulation, partial derivatives imply that changes in hi are reflected symmetrically in hn .
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Replacing hn = 1−∑n−1
j=1 h j in expression (16) and computing the partial deriva-

tive with respect to hi , ∂hi Vi
( 1
n , . . . , 1

n

)
, we find that total dispersion is stable if:

∂hi Vi
( 1
n , . . . , 1

n

) ≡ μn(1 − φ) [(2n − 1)σφ − λ(σ − 1)(1 − φ) − nφ + σ ]

(σ − 1)σ [(n − 1)φ + 1] 2
< 0

⇔ (2n − 1)σφ − nφ + σ − λ(σ − 1)(1 − φ) < 0.

Solving for φ finishes the proof. 	

Proof of Theorem 1 Two conditions are necessary for the study of stability of bound-
ary dispersion. The first condition ensures that empty regions remain empty and,
analogously to the proof of Proposition 2, demands that Vi |BD − Vj

∣∣
BD < 0, where

hi = 0 and h j = 1/k. The second condition guarantees that along the boundary
(hi = 0; i = 1, . . . , n − k) the configuration is stable. Similarly to the proof of
Proposition 3, this condition requires that ∂h j Vj

∣∣
BD

< 0.
These two conditions yield, respectively:

nσφ [(k − 1)φ + 1] ln

[
kφ

(k − 1)φ + 1

]
+ (σ − 1)(1 − φ) [λ(1 − φ) − nφ] < 0,

k [n(2σ − 1)φ − λ(σ − 1)(1 − φ)] + nσ(1 − φ) < 0.

Solving for λ, we obtain:

n [k(2σ − 1)φ + σ(1 − φ)]

k(σ − 1)(1 − φ)

< λ <

nφ

{
σ [(k − 1)φ + 1] ln

[
(k − 1)φ + 1

kφ

]
+ (σ − 1)(1 − φ)

}

(σ − 1)(1 − φ)2
.

The strict inequalities are incompatible, and thus boundary dispersion is unstable, if:

nφ

{
σ [(k − 1)φ + 1] ln

[
(k − 1)φ + 1

kφ

]
+ (σ − 1)(1 − φ)

}

(σ − 1)(1 − φ)2

− n [k(2σ − 1)φ + σ(1 − φ)]

k(σ − 1)(1 − φ)
< 0.

Eliminating common factors of positive sign and rearranging terms to our convenience,
the above inequality becomes:

[(k − 1)φ + 1]

{
kφ ln

[
(k − 1)φ + 1

kφ

]
− (1 − φ)

}
< 0

⇔ 1 − φ

kφ
− ln

(
1 + 1 − φ

kφ

)
> 0.

123



Agglomeration patterns in a multi-regional economy… 891

Define g(x) = x − ln(1 + x). It is easy to see that g(0) = 0 and that g is strictly
increasing. Hence, g(x) > 0,∀x > 0. Noting that 1−φ

kφ > 0 finishes the proof. 	


Proof of Proposition 4 Configurations in �inv satisfy h1 ∈ [0, 1], h j = 1−h1
n−1 for

j �= 1. By replacing the values in (17) and solving for an equilibrium we obtain
λ = λ∗(h1), given by (24) and reproduced here for convenience:

λ∗(h1) ≡ n(σ − 1)(1 − φ)φ(h1n − 1) − nσ [h1(1 − φ) + φ] [φ(h1 + n − 2) − h1 + 1] ν

(σ − 1)(1 − φ)2(h1n − 1)
,

where ν = ln
{

φ(h1+n−2)−h1+1
(n−1)[h1(1−φ)+φ]

}
. Let h1 ∈ (0, 1/n) ∪ (1/n, 1) to exclude equilibria

other than partial agglomeration. Notice that ν > 0 for h1 ∈ (0, 1/n), while ν > 0
for h1 ∈ (1/n, 1).

(i) Write λ∗(h1) = (α + βν) /γ , where:

α = n(σ − 1)(1 − φ)φ(h1n − 1)

β = −nσ [h1(1 − φ) + φ] [φ(h1 + n − 2) + 1 − h1]

γ = (σ − 1)(1 − φ)2(h1n − 1),

and observe that α/γ > 0, β < 0 and ν/γ < 0 to see that λ∗(h1) > 0.

(ii) Calculating the first and second derivatives of λ∗(h1) we obtain:

∂λ∗(h1)
∂h1

= α1 + β1ν

(σ − 1)(1 − φ)2(h1n − 1)2
,

∂2λ∗(h1)
∂h21

= nσ [(n − 1)φ + 1]2 (α2 + β2ν)

(σ − 1)(1 − φ)2(h1n − 1)3 [h1(1 − φ) + φ] [φ(h1 + n − 2) − h1 + 1]
,

where

α1 = −(1 − φ)(1 − h1n) [(n − 1)φ + 1]

β1 = h21n(1 − φ)2 − 2h1(1 − φ)2 + φ {n [(n − 3)φ + 2] + 3φ − 4} + 1

α2 = (1 − φ)(1 − h1n) [(3 − 2n)φ − h1(n − 2)(1 − φ) − 1]

β2 = −2(n − 1) [h1(1 − φ) + φ] [φ(h1 + n − 2) − h1 + 1] .

The sign of the numerator of ∂2λ∗(h1)
∂h21

is the sign of F(h1) ≡ α2 + β2ν. Computing

F ′′(h1), we find that F(1/n) = 0, F ′(1/n) = 0, and F ′′(1/n) = 0, and that F(h1)
is concave for h1 ∈ (0, 1/n) and convex for h1 ∈ (1/n, 1). This implies that the

numerator of ∂2λ∗(h1)
∂h21

is negative for h1 ∈ (0, 1/n) and positive for h1 ∈ (1/n, 1).

Since the denominator of ∂2λ∗(h1)
∂h21

is positive for h1 ∈ (0, 1/n) and negative for

h1 ∈ (1/n, 1), we conclude that ∂2hλ
∗(h1) < 0 which means that λ∗(h1) is strictly

concave. Hence, at most two partial agglomeration equilibria exist.
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Calculate the limits of λ∗(h1) and its first derivative as h1 approaches 1/n:

lim
h1→ 1

n±
λ∗(h1) = σ(2nφ + 1) − nφ

(σ − 1)(1 − φ)
> 0.

lim
h1→ 1

n±

∂λ∗(h1)
∂h1

= (n − 2)nσ

2(n − 1)(σ − 1)
> 0.

From the first limit we establish the continuity of λ∗(h1). The fact that the second limit
is positive, together with the concavity of λ∗(h1), guarantees that λ∗(h1) is increasing
for h1 ∈ (0, 1/n). Therefore, at most one equilibrium exists for h1 ∈ (0, 1/n). If there
are two equilibria, both may belong to (1/n, 1). 	

Proof of Theorem 2 Analogously to the proof of Proposition 3, the symmetry of the
problem ensures that the Jacobianmatrix at the partial agglomeration equilibriumwith

coordinates
(
h1,

1−h1
1−n , . . . , 1−h1

1−n

)
is of the form:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂h1

0 . . . 0

0
∂ f j
∂h j

. . . 0

...
...

. . .
...

0 0 . . .
∂ f j
∂h j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues of J are given by:

∂ f1
∂h1

= h

(
∂V1
∂h1

− ∂ V̄

∂h1

)
, and

∂ f j
∂h j

= 1 − h

1 − n

∂Vj

∂h j
,

whichmust both be negative at partial agglomeration for this configuration to be stable.
Using (24) to calculate these derivatives, the stability conditions become, respectively:

{
γ (h1) ≡ (1−φ)(1−h1n)−(n−1)[h1(1−φ)+φ]ν

(1−h1n)
< 0

δ(h1) ≡ (1−φ)(h1n−1)[(n−1)φ+1]+Φν
(h1n−1) < 0.

We finish the proof by showing that:

(i) When h1 ∈ (0, 1/n) we have γ (h1) > 0, thus partial agglomeration is unstable
regardless of the sign of δ(h1). To verify this, notice that, for h1 ∈ (0, 1/n), the
denominator of γ (h1) is positive so the sign of γ (h1) is that of the numerator.
Call N (h1) this numerator. Direct calculation shows that:

∂N (h1)

∂h1
< 0 ⇔ − (1 − φ)

[
(1 − φ)(1 − h1n)

φ(h1 + n − 2) + 1 − h1
+ (n − 1)ν

]
< 0,
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which is always true since ν > 0, that is, the numerator of γ (h1) decreases in h1.
We also have, noticing that ν(1/n) = 0, lim

h→ 1
n
N (h1) = 0. Then, N (h1) > 0

and γ (h1) > 0.

(ii) When h1 ∈ (1/n, 1) we have γ (h1) < 0 so that only δ(h1) < 0 needs to be
verified for stability. To verify this, notice that, for h1 ∈ (1/n, 1), the denominator
of γ (h1) is negative. From proof of Theorem 2, we have lim

h1→ 1
n
N (h1) = 0.

Also, since ν < 0 for h1 ∈ (1/n, 1), we find that dN (h1)
dh1

> 0. Therefore, the
numerator of γ (h1) is positive for h1 ∈ (1/n, 1) and we conclude that γ (h1) < 0
if h1 ∈ (1/n, 1). 	


Appendix C

This appendix contains the formal proofs concerning Sect. 4. We denote by fi (h) the
right-hand side of Eq. (17).

Proof of Proposition 5 The conditions required for a transcritical bifurcation (Guck-
enheimer and Holmes 2002; pp. 149–150) are as follows:

(T1.) For all values of the bifurcation parameter φ, we must have fi
( 1
n , . . . , 1

n ;φ
) =

0.
This condition is satisfied since total dispersion is always an equilibrium.

(T2.) The Jacobian of fi (h) has a zero eigenvalue at total dispersion. This occurs at
the break point φb given in (21).

(T3.) At total dispersion and at the breakpointwemust have ∂2 fi
∂h2i

( 1
n , . . . , 1

n ;φb
) �= 0.

The second derivative of fi with respect to hi at the symmetric equilibrium is
given by:

∂2 fi
∂h2i

( 1
n , . . . , 1

n

)

= μ(n − 2)(1 − φ)
{
φ2 [nσ(2λ + 4n − 3) − 2n(λ + n) + σ ] + σφ [(3 − 2λ)n − 2] + 2λnφ + σ

}
(σ − 1)σ [(n − 1)φ + 1]3

.

At φ = φb, we have:

∂2 fi
∂h2i

( 1
n , . . . , 1

n ;φb
) = μ(n − 2)(1 − 2σ)2

(λ + 1)2(σ − 1)3
,

which is positive for n ≥ 3.

(T4.) At total dispersion and at the break point wemust have ∂2 fi
∂hi ∂φ

( 1
n , . . . , 1

n ;φb
) �=

0.

Again, direct computation yields:

∂2 fi
∂hi∂φ

( 1
n , . . . , 1

n ;φb
) = μ(2σ − 1) [λ − σ(λ + 2n) + n + σ ]2

(λ + 1)2n(σ − 1)3σ
> 0.
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Since all conditions are verified, we conclude that the model undergoes a transcritical
bifurcation at the break point φb. 	

Proof of Proposition 6 A primary branch satisfies λ∗(h1) in Eq. (24). We use the
conditions for a saddle-node bifurcation given by Guckenheimer and Holmes (2002,
Theorem 3.4.1). Applied to the QL model, they are as follows:

(SN1.) At partial agglomeration we must have
d f

dh

(
h1; λ∗(h1);φ f

) = 0.

In this instance, f (hi ) is the RHS of (17) and the proof of Theorem 10 gives:

d f

dh1

(
h1; λ∗(h1);φ f

) = 0 ⇔
δ = 0,

where δ is as in (25). We rewrite δ = 0 as:

(1 − φ f )(1 − h1n)
[
(n − 1)φ f + 1

]
Φ(h1;φ f )

= ν(h1;φ f ), (32)

where

Φ(h1, φ f ) = h21n(1 − φ f )
2 − 2h1(1 − φ f )

2 + φ f
{
n
[
(n − 3)φ f + 2

]
+ 3φ f − 4

}+ 1,

ν(h1, φ f ) = ln

{
φ f (h1 + n − 2) − h1 + 1

(n − 1)
[
h1(1 − φ f ) + φ f

]
}

,

and φ f is the level of freeness of trade at which the interior equilibrium changes
stability.

(SN2.) At partial agglomeration,
d2 f

dh2
(
h1; λ∗(h1);φ f

) �= 0.

From (24) and (32), we have:

d2 f

dh2
(
h1; λ∗(h1);φ f

) = (h1 − 1)h1μ(1 − φ)2 [(n − 1)φ + 1]2 �

(σ − 1) [h1(1 − φ) + φ]2 [φ(h1 + n − 2) − h1 + 1]2 Φ
,

where�(h, φ)=h21(n−2)(1−φ)2+2h1(1−φ) [(2n − 3)φ + 1]−φ {n [(n − 5)φ + 2]
+5φ − 4} − 1. The term Φ is positive. The term �(h1, φ) has only one (meaningful)
zero given by:

h1 = h∗
1 ≡ −φ(2n(1 − φ) + 3φ − 4) − √

n − 1(1 − φ) [(n − 1)φ + 1] + 1

(n − 2)(1 − φ)2
,

which is not compatible with (SN1). By replacing h1 = h∗
1 in (25) we obtain:

d f

dh1

(
h∗
1; λ∗(h1);φ f

) = δ(h∗
1) ≡ − [(n − 1)φ + 1] 2

(n − 2)2
�,
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where

� =(n − 2)
[(√

n − 1 + 2
)
n − 2

]
+ (n − 1)

(
n + 2

√
n − 1

)
ln(n − 1).

Since � > 0, it follows that δ(h∗
1) < 0. Thus d2 f

dh21

(
h1; λ∗(h1);φ f

) �= 0.

(SN3.) At partial agglomeration,
d f

dφ

(
h1; λ∗(h1);φ f

) �= 0.

From (24) and (32), we have:

d f

dφ

(
h1; λ∗(h1);φ f

) = (1 − h1)h1μ(h1n − 1) × �

(σ − 1)σ [h1(φ − 1) − φ] [φ(h1 + n − 2) − h1 + 1] × Φ
,

where � = h21n(1 − φ)2 − h1(1 − φ) {(n − 2)σ [(n − 1)φ + 1] − 2φ + 2} −
σ [(n − 1)φ + 1] (2nφ−3φ+1)+φ {n [(n − 3)φ + 2] + 3φ − 4}+1 < 0. Since the
term h1n−1 > 0 for h1 ∈ (1/n, 1), we can conclude that d f/dφ > 0 when evaluated
at partial agglomeration and at φ f , ensuring that (SN3) is satisfied. This concludes the
proof. 	


Proof of Proposition 7 We know that total dispersion is stable if λ > λb, whereas
agglomeration is stable if λ < λs . As a result, both equilibria are simultaneously
stable if (λb, λs) is non-empty. Using (20) and (23), simultaneity of stability then
requires λs − λb > 0 :

nφ [(σ − 1)(1 − φ) − σ ln φ]

(σ − 1)(φ − 1)2
− σ(2nφ + 1 − φ) − nφ

(σ − 1)(1 − φ)
> 0 ⇔

− (1 − φ) [(n − 1)φ + 1] + nφ log(φ)

(σ − 1)(1 − φ)2
> 0 ⇔

− (1 − φ)2

φ(1 − φ + ln φ)
< n,

which concludes the proof. 	


Appendix D

This appendix contains the formal proofs concerning Sect. 5.

Proof of Theorem 3 The weighted average utility of entrepreneurs, obtained from
(15), is given by:

V̄ = μ

σ
(1 + λ) + μ

σ − 1

n∑
i=1

hi ln [φ + (1 − φ)hi ] + η.
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Define f (hi ) ≡ hi ln [φ + (1 − φ)hi ]. Observe that f : [0, 1] → R is continuous
and twice differentiable, and that:

f ′′(hi ) = 2 (1 − φ)[φ + (1 − φ) hi ] − hi (1 − φ)2

[φ + (1 − φ) hi ]2
= hi (1 − φ)2 + 2φ (1 − φ)

[φ + (1 − φ) hi ]2
> 0,

which means that f is strictly convex.
Now define g(h1, . . . , hn−1) ≡ f (1 −∑n−1

i=1 hi ). The function g : Rn−1 → R is
convex because it is a composition of a convex function with an affine function.

Therefore,
∑n−1

i=1 f (hi ) + g(h) is convex as it is a sum of convex functions.
We conclude that V̄ : R

n−1 → R is a convex function of (h1, . . . , hn−1). Since
∂hi V̄

( 1
n , . . . , 1

n

) = 0 (see Proof of Proposition 3) and V̄ is convex, it attains a global
minimum at dispersion. 	

Proof of Theorem 4 Let f (hi ) ≡ ln[φ + (1 − φ)hi ]. Then:

f ′′(hi ) = − (1 − φ)2

[h(1 − φ) + φ] 2
< 0,

which means that f (hi ) is strictly concave. Therefore,
∑n−1

i=1 ln[φ + (1 − φ)hi ] is a
strictly concave function of (h1, . . . , hn−1).

Now define g(h1, . . . , hn−1) ≡ f (1 −∑n−1
i=1 hi ). The function g : Rn−1 → R is

concave because f is a concave monotonic transformation of a concave function of
(h1, . . . , hn−1). This implies that V̄ L , given in (28), is strictly concave.

Each price index Pi in (13) is invariant to the permutation of any two region’s coor-
dinates. Therefore, we can assert that ∂hi V̄

L
( 1
n , . . . , 1

n

) = 0, ∀i ∈ N .26 Given strict
concavity, V̄ L attains a global maximum at h = (1/n, . . . , 1/n), which concludes the
proof. 	

Proof of Proposition 8 Rewrite the social welfare function Ω(h) in (30) as:

Ω(h) = ε
λ+1 + μ

(λ+1)(σ−1) [g(h1) + · · · + g(hn)] , (33)

where g(hi ) ≡ (
λ
n + hi

)
ln [φ + (1 − φ)hi ].

The optimization plan for Ω(h) consists on maximizing
∑

i g(h1) subject to∑n
j=1 hi = 1. Write the Lagrangian as L = g(h1) + g(h2) + · · · + g(hn) + γ (1 −

h1 − · · · − hn), where γ is the Lagrange multiplier. From the first-order conditions:

g′(h1) = g′(h2) = · · · = γ.

We must have g′(h1) = g′(h2) = · · · = g′(hn). Each g′(hi ) is given by:

g′(hi ) = (1 − φ)(λ
n + hi )

hi (1 − φ) + φ
+ ln [hi (1 − φ) + φ] .

26 For a more formal reasoning, see Proof of Proposition 3 in “Appendix B”.
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The second derivative g′′(hi ) is given by:

g′′(hi ) = − (1 − φ) [λ − hin(1 − φ) − φ(λ + 2n)]

n [hi (1 − φ) + φ]2
,

which has either one zero for h ∈ [0, 1] or none. Therefore, g′(hi ) has at most one
local extreme. This implies that at most two different values of hi ∈ [0, 1] may
satisfy g′(hi ) = γ . The consequence of this is that all potential interior maximizers of
Ω(h) are characterized by a vector h = (h1, h2, . . . , hn) such that k of its elements
correspond to a share of entrepreneurs equal to h/k and the remaining n− k elements
have a share equal to (1 − h)/(n − k). This concludes the proof. 	


Proof of Theorem 5 (i) Define the summation term of Ω(h) in (30) as F(h) =
f (h1) + f (h2) + · · · + f (hn−1) + g(hn), where hn : (h1, h2, . . . , hn−1) �→
1− h1 −· · ·− hn−1. The second derivative of each f (hi ) evaluated at hi = 1/n
is given by:

∂2 f (hi )

∂2hi

∣∣∣∣
hi= 1

n

= n(1 − φ) [φ(λ + 2n − 1) − λ + 1]

[(n − 1)φ + 1] 2
,

which is negative if and only if:

φ < φw ≡ λ − 1

λ + 2n − 1
.

Using (21), it is easily verified that φb < φw. If φ < φb < φw, symmetric
dispersion is stable and f (hi ) is concave. Given that f : R �→ R is strictly
concave, replicating the reasoning from the proof of Theorem 3 allows us to
conclude that g(hn) = f ◦ hn : Rn−1 �→ R is also strictly concave. Therefore,
F(h) is strictly concave for h = (1/n, . . . , 1/n) and Ω(h), a constant term plus
F(h), is also strictly concave at symmetric dispersion when the latter is stable.
SinceΩ(h) attains a critical value at symmetric dispersion, we conclude that the
latter always attains a local maximum when it is stable.
Evaluating welfare at symmetric dispersion gives us:

Ω

(
1

n
, . . . ,

1

n

)
= 1

λ + 1

[
ε + μ(λ + 1)

(σ − 1)
ln

(
φ + 1 − φ

n

)]
.

At agglomeration, welfare is given by:

Ω(hi = 1) = 1

λ + 1

[
ε + μλ(n − 1)

(σ − 1)n
ln φ

]
.
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This implies that agglomeration yields a higher welfare than dispersion if and
only if:

�Ω ≡ λ(n − 1)

n
ln φ − (λ + 1) ln

(
φ + 1 − φ

n

)
> 0.

The difference �Ω is concave in φ, has a zero for φ ∈ (0, 1) and another at
φ = 1, and is negative at φ = φb. Symmetric dispersion is thus strictly better
than agglomeration from a social point of view when the former is stable.

(ii) It can be shown that Ω ′(1) is concave in φ with only one root φz ∈ (0, 1) and
another at φ = 1. Moreover, it is negative when evaluated at the sustain point
φs , which implies that φs < φz . Therefore, there exists a φ ∈ (φs, φz) where
agglomeration is stable andΩ ′(1) < 0, meaning that welfare is higher at another
less asymmetric distribution. This concludes the proof. 	
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