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Abstract Expected utility theory (EUT) is widely used in economic theory. How-
ever, its subjective probability formulation, first elaborated by Savage, is linked to
Ellsberg-like paradoxes and ambiguity aversion. This has led various scholars to work
out non-Bayesian extensions of EUT which cope with its paradoxes and incorporate
attitudes toward ambiguity. A variant of the Ellsberg paradox, recently proposed by
MarkMachina and confirmed experimentally, challenges existing non-Bayesian mod-
els of decision-making under uncertainty. Relying on a decade of research which has
successfully applied the formalism of quantum theory to model cognitive entities and
fallacies of human reasoning, we put forward a non-Bayesian extension of EUT in
which subjective probabilities are represented by quantum probabilities, while the
preference relation between acts depends on the state of the situation that is the object
of the decision. We show that the benefits of using the quantum theoretical framework
enable the modeling of the Ellsberg and Machina paradoxes, as the representation of
ambiguity and behavioral attitudes toward it. The theoretical framework presented here
is a first step toward the development of a ‘state-dependent non-Bayesian extension
of EUT,’ and it has potential applications in economic modeling.
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1 Introduction

Economic theory crucially rests on the so-called ‘Bayesian paradigm’: Any source of
uncertainty can be probabilistically quantified, and the ensuing probability theory sat-
isfies the axioms of Kolmogorov (1933). Von Neumann andMorgenstern successfully
applied the Bayesian paradigm when elaborating an axiomatic form of the expected
utility theory (EUT), which is the predominantmodel of decision-making under uncer-
tainty (von Neumann and Morgenstern 1944).

It is, however, well known that, for many events of interest, one cannot define
an objective agreed-upon probability. This led Savage to extend the von Neumann
and Morgenstern ‘objective EUT’ within the Bayesian paradigm (Savage 1954). The
traditional line of reasoning is that, in the absence of objective probabilities, the
decision-maker forms her/his own subjective probabilities and takes decisions on
the basis of these subjective probabilities. This is the basic tenet of subjective EUT:
Individuals take decisions as if they maximized expected utility with respect to a Kol-
mogorovian probability measure which is interpreted as their subjective probability.

The Bayesian paradigm has been applied with success to several problems in eco-
nomicmodeling. However, in 1961Daniel Ellsberg demonstrated in a series of thought
experiments that simple situations exist in which decision-makers violate some of the
‘rationality axioms’ of subjective EUT, preferring certain to uncertain decisions, rather
than maximizing expected utility, a behavior called by Ellsberg ‘ambiguity aversion’
(Ellsberg 1961). Ellsberg’s experiments have been actually performed several times,
generalized under different directions, and applied to domains outside decision theory,
like in finance, medicine and actuarial sciences (see, e.g., McCrimmon and Larsson
1979; Einhorn and Hogarth 1986; Camerer and Weber 1992; Fox and Tversky 1995;
Viscusi and Chesson 1999; see also the exhaustive review byMachina and Siniscalchi
2014). Most of the experimental findings have confirmed this ambiguity aversion atti-
tude.

Anaccurate critical analysis of the problems abovehas ledvarious authors to suggest
that the axiomatic foundations of the Bayesian approach are not so compelling as they
seem, and that the Bayesian approach is probably too limited to cope with any kind
of uncertainty that affects human decision-making (Gilboa and Schmeidler 1989).
Moreover, axiomatic approaches have been elaborated which cope with the Ellsberg
and other puzzles and extend EUT in a non-Bayesian sense. Relevant examples of
non-Bayesian approaches to decision-making under uncertainty are, e.g., ‘expected
utility with multiple priors’ (Gilboa and Schmeidler 1989), ‘Choquet expected utility’
(Schmeidler 1989), ‘smooth ambiguity preferences model’ (Klibanoff et al. 2005),
‘variational preference model’ (Maccheroni et al. 2006) and ‘cumulative prospect
theory’ (Tversky and Kahneman 1992)—just to quote the most celebrated, without the
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aim of being exhaustive. In addition, these non-Bayesian models have been effectively
applied to economic problems of decision under uncertainty, e.g., the ‘home bias
puzzle,’ the ‘equity premium puzzle’ (see, e.g., the review by Gilboa and Marinacci
2013).

More recently, some scholars have proved that the decision-making models above
finddifficulties to represent the preferences hypothesized in twovariants of theEllsberg
paradox, the ‘50:51 example’ and the ‘reflection example’ (Machina 2009; Bail-
lon et al. 2011). This ‘Machina paradox,’ which has been confirmed experimentally
(L’Haridon and Placido 2010), claims for new theoretical approaches to model human
preferences and decision-making in the presence of ambiguity.

We put forward in the present paper that the probabilistic formalism of quantum
theory, free from any physical connotation or interpretation, can be used to model
human choices in the presence of ambiguity. In this respect, we apply here the les-
son we have learned from quantum physics. A measurement process gives rise to
an interaction between the microscopic quantum entity that is measured and a mea-
suring apparatus, and thus the latter acts as a measurement context for the former.
This contextual interaction is non-controllable (which is formalized by the Heisen-
berg uncertainty principle) and determines an intrinsically probabilistic change of the
state of the measured entity. Then, a measurement outcome is actualized among a
set of possible outcomes, as a consequence of this contextual interaction. Whenever
one formalizes the statistical frequencies of repeated experiments to derive probabil-
ities, one discovers that this kind of ‘pure potentiality’ and ‘contextuality’ cannot be
formalized in a single Kolmogorov probability space: They indeed require quantum
probability (Aerts 2009).

The quantummeasurement lessonwas firstly appliedwith success to the representa-
tion of conceptual entities.We introduced the notion of ‘state of a concept’ tomodel the
type of interaction that occurs when people are asked about membership, or typicality,
of specific exemplars with respect to pairs of concepts and their combinations, e.g.,
conjunction, disjunction and negation. We applied the quantum-conceptual approach
to solve various difficulties of the Kolmogorovian model of probability in conceptual
combinations. Then, we extended the approach to more complex situations, show-
ing that genuine quantum effects, i.e., ‘superposition,’ ‘interference,’ ‘entanglement’,
systematically occur in the combination of natural concepts (Aerts 2009; Aerts et al.
2013a, b, 2016; Sozzo 2015).

The quantum-conceptual approach supports a growing research that uses the math-
ematical formalism of quantum theory to model complex cognitive processes, like
probability and similarity judgment, perception, decision-making and knowledge rep-
resentation. More specifically, quantum models have shown their effectiveness in the
explanation of the so-called fallacies of human reasoning, like ‘conjunctive and dis-
junctive fallacies,’ ‘disjunction effects,’ ‘question order effects,’ ‘quantum Zeno effect
in cognition,’ (see, e.g., Busemeyer and Bruza 2012; Busemeyer et al. 2011; Haven
and Khrennikov 2013; Pothos and Busemeyer 2013; Wang et al. 2014; Khrennikov
2015; Yearsley and Pothos 2016). This novel research program has now become a
valid alternative to the Kahneman and Tversky theory of individual heuristics and
biases in providing an explanation for the observed fallacies (Tversky and Kahneman
1974, 1983, 1992).
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What about the above paradoxes of EUT? We have recently applied the quantum-
conceptual approach to decision-making processes. In a human decision-making
process, the interaction between the object of the decision and the decision-maker is
of a cognitive nature rather than of a physical nature like it is the case when quantum
models are applied in physics. The result of this interaction leads to the decision itself,
which is actualized among the possible alternatives. Again, the probabilisticmodel for-
malizing the ambiguity occurring in the decision-making interaction cannot generally
be Kolmogorovian: It should be quantum probability. In particular, the notion of state
of the cognitive entity that is the object of the decision, the ‘decision-making (DM)
entity,’ incorporates the notion of ambiguity and generates the (non-Kolmogorovian)
quantum probability distribution modeling subjective probabilities. In addition, the
change of state of the DM entity after the interaction incorporates attitudes toward
ambiguity, e.g., ‘ambiguity aversion,’ or ‘ambiguity attraction,’ or even other atti-
tudes, depending on the overall ‘conceptual landscape surrounding the DM entity.’
We also show that preferences between acts are not absolute notions, but they depend
on the state of the DM entity and on how the state of the DM changes as a consequence
of the interaction with the decision-maker. This suggests associating the DM entity
with a family of subjective probability distributions, parametrized by the states of the
DM entity itself. We thus put forward a ‘state-dependent extension of EUT,’ of which
the present formalism is a first step.

We may say that the use of quantum probabilities helps clarifying how subjective
probabilities are formed. We indeed suggest that the kind of uncertainty that occurs
in an ambiguity situation is similar to the kind of uncertainty that occurs in quantum
theory as an effect of superposition. It is important to mention that the quantum theo-
retical approach allows reduction of ambiguity to risk, as subjective probabilities can
be estimated from quantum probabilities. However, this is a context-dependent risk
which cannot be modeled by Kolmogorovian probability. Rather, it is a ‘contextual
risk’ that is modeled in the mathematical formalism of quantum theory.

We put forward a non-Bayesian generalization of the Bayesian paradigm, where
human decision-making under uncertainty is modeled in the mathematical formalism
of quantum theory, quantum states incorporate the uncertainty that is present in sit-
uations of ambiguity, and state transformations incorporate people’s attitude toward
ambiguity. This quantum-conceptual approach was recently employed with success
to model Ellsberg- and Machina-like preferences in the corresponding paradox situa-
tions, and to faithfully represent data collected in experimental tests on the ‘three-color
Ellsberg urn’ and the ‘Machina reflection example.’

Let us summarize the content of this paper as follows.
In Sect. 3, we give an overview of the technical details of the mathematical for-

malism of quantum theory that are needed to model cognitive entities, like ‘concepts,’
‘conceptual combinations’ or more complex ‘DM entities.’ We then apply in Sect. 3
the quantum-conceptual approach to model the ‘disjunction effect,’ which entails a
violation of one of the axioms of subjective EUT, the ‘sure thing principle’ (Tversky
and Shafir 1992). Successively, we introduce in Sect. 4 the foundations of subjective
EUT and briefly review its non-Bayesian extensions. We explicitly present the Ells-
berg paradox in the ‘three-color example’ and the Machina paradox in the ‘reflection
example.’ In Sect. 5, we instead work out a general quantum theoretical framework
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to represent events, states, measurements, subjective probabilities, acts and decisions,
which we apply to model the Ellsberg paradox (Sect. 5.1) and the Machina paradox
(Sect. 5.2). In Sects. 5.1 and 5.2, we also show that the quantum theoretical framework
enables a faithful representation of concrete experiments on the Ellsberg three-color
example and theMachina reflection example, respectively.Wefinally discuss in Sect. 6
some potential applications of the quantum theoretical approach to model ambiguity
and ambiguity aversion in economics and finance.

Before proceeding further, we would like to premise that the mathematical frame-
workpresented inSect. 5 is not derived froma representation theorem. It rather emerges
from heuristic operational considerations on events, measurements, outcomes and
probabilities and their representation within the formalism of quantum theory. And,
indeed, it is able to reconstruct, via the quantum state of the DM entity, the subjective
probability distributions that are actualized in concrete experiments as a consequence
of a particular attitude toward ambiguity.

2 Fundamentals of quantum theoretical modeling

We illustrate in this section how themathematical formalism of quantum theory can be
applied to model situations outside the microscopic quantumworld, more specifically,
in the representation of cognitive entities. This formalismwill be applied to conceptual
entities in Sect. 3 and to decision-making (DM) entities in Sect. 5. We avoid in our
presentation superfluous technicalities, but aim to be synthetic and rigorous at the
same time.

When the quantum mechanical formalism is applied for modeling purposes, each
considered entity—in our case a cognitive entity—is associatedwith a complexHilbert
spaceH , that is, a vector space over the field C of complex numbers, equipped with
an inner product 〈·|·〉 that maps two vectors 〈A| and |B〉 onto a complex number 〈A|B〉.
We denote vectors by using the bra-ket notation introduced by Paul Adrien Dirac, one
of the pioneers of quantum theory (Dirac 1958). Vectors can be ‘kets,’ denoted by |A〉,
|B〉, or ‘bras,’ denoted by 〈A|, 〈B|. The inner product between the ket vectors |A〉 and
|B〉, or the bra-vectors 〈A| and 〈B|, is realized by juxtaposing the bra vector 〈A| and
the ket vector |B〉, and 〈A|B〉 is also called a ‘bra-ket,’ and it satisfies the following
properties:

(i) 〈A|A〉 ≥ 0;
(ii) 〈A|B〉 = 〈B|A〉∗, where 〈B|A〉∗ is the complex conjugate of 〈A|B〉;
(iii) 〈A|(z|B〉 + t |C〉) = z〈A|B〉 + t〈A|C〉, for z, t ∈ C, where the sum vector

z|B〉 + t |C〉 is called a ‘superposition’ of vectors |B〉 and |C〉 in the quantum
jargon.

From (ii) and (iii) follows that the inner product 〈·|·〉 is linear in the ket and anti-
linear in the bra, i.e., (z〈A| + t〈B|)|C〉 = z∗〈A|C〉 + t∗〈B|C〉.

We recall that the ‘absolute value’ of a complex number is defined as the square root
of the product of this complex number times its complex conjugate, that is, |z| = √

z∗z.
Moreover, a complex number z can either be decomposed into its cartesian form
z = x + iy, or into its polar form z = |z|eiθ = |z|(cos θ + i sin θ). As a consequence,
we have |〈A|B〉| = √〈A|B〉〈B|A〉. We define the ‘length’ of a ket (bra) vector |A〉
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(〈A|) as |||A〉|| = ||〈A||| = √〈A|A〉. A vector of unitary length is called a ‘unit
vector.’ We say that the ket vectors |A〉 and |B〉 are ‘orthogonal’ and write |A〉 ⊥ |B〉
if 〈A|B〉 = 0.

We have now introduced the necessary mathematics to state the first modeling rule
of quantum theory, as follows.
First quantum modeling rule: a state A of an entity—in our case a cognitive entity—
modeled by quantum theory is represented by a ket vector |A〉 with length 1, that is
〈A|A〉 = 1.
An orthogonal projectionM is a linear operator on the Hilbert space, that is, a mapping
M : H → H , |A〉 
→ M |A〉 which is Hermitian and idempotent. The latter means
that, for every |A〉, |B〉 ∈ H and z, t ∈ C, we have:

(i) M(z|A〉 + t |B〉) = zM |A〉 + tM |B〉 (linearity);
(ii) 〈A|M |B〉 = 〈B|M |A〉∗ (hermiticity);
(iii) M · M = M (idempotency).

The identity operator 1 maps each vector onto itself and is a trivial orthogonal
projection operator. We say that two orthogonal projections Mk and Ml are orthogonal
operators if each vector contained in the range Mk(H ) is orthogonal to each vector
contained in the rangeMl(H ), and wewriteMk ⊥ Ml , in this case. The orthogonality
of the projection operators Mk and Ml can also be expressed by MkMl = 0, where 0
is the null operator. A set of orthogonal projection operators {Mk | k = 1, . . . , n} is
called a ‘spectral family’ if all projectors are mutually orthogonal, that is, Mk ⊥ Ml

for k �= l, and their sum is the identity, that is,
∑n

k=1 Mk = 1. A spectral family
{Mk | k = 1, . . . , n} identifies an Hermitian operator Ô = ∑n

i=1 okMk , where ok is
called ‘eigenvalue of Ô ,’ i.e., is a solution of the equation Ô|o〉 = ok |o〉—the non-null
vectors satisfying this equation are called ‘eigenvectors of Ô .’

The above definitions give us the necessary mathematics to state the second mod-
eling rule of quantum theory, as follows.
Second quantum modeling rule: a measurable quantity Q of an entity—in our case a
cognitive entity—modeled by quantum theory, and having a set of possible real values
{q1, . . . , qn} is represented by a spectral family {Mk | k = 1, . . . , n}, equivalently,
by the Hermitian operator Q̂ = ∑n

k=1 qkMk , in the following way. If the conceptual
entity is in a state represented by the vector |A〉, then the probability of obtaining the
value qk in a measurement of the measurable quantity Q is 〈A|Mk |A〉 = ||Mk |A〉||2.
This formula is called the ‘Born rule’ in the quantum jargon. Moreover, if the value
qk is actually obtained in the measurement, then the initial state is changed into a state
represented by the vector

|Ak〉 = Mk |A〉
||Mk |A〉|| (1)

This change of state is called ‘collapse’ in the quantum jargon.
Let us now come to the formalization of quantumprobability. Amajor structural differ-
ence between classical probability theory, which satisfies the axioms of Kolmogorov,
and quantum probability theory, which is non-Kolmogorovian, relies on the fact that
the former is defined on a Boolean σ -algebra of events, while the latter is defined
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on a more general algebraic structure. More specifically, let us denote by L (H ) the
set of all orthogonal projection operators over the complex Hilbert spaceH .L (H )

has the algebraic properties of a complete orthocomplemented lattice, but L (H )

is not distributive; hence, L (H ) does not form a σ -algebra. A ‘generalized prob-
ability measure’ over L (H ) is a function μ : M ∈ L (H ) 
−→ μ(M) ∈ [0, 1],
such that μ(1) = 1, and μ(

∑∞
k=1 Mk) = ∑∞

k=1 μ(Mk), for any countable sequence
{Mk ∈ L (H ) | k = 1, 2, . . .} of mutually orthogonal projection operators. The ele-
ments of L (H ) are said to represent ‘events,’ in this framework. Referring to the
definitions above, the event “a measurement of the quantity Q gives the outcome qk”
is represented by the orthogonal projection operator Mk .

The Born rule establishes a connection between states and generalized probability
measures, as follows.

Given a state of a cognitive entity represented by the vector |A〉 ∈ H with length 1,
it is possible to associate |A〉with a generalized probability measure μA overL (H ),
such that, for every M ∈ L (H ), μA(M) = 〈A|M |A〉. The generalized probability
measure μA is a ‘quantum probability measure’ over L (H ). Interestingly enough,
if the dimension of the Hilbert space is greater than 3, all generalized probability
measures overL (H ) can be written as functions μA(M) = 〈A|M |A〉, for some unit
vector |A〉 ∈ H (Gleason theorem; Gleason 1957).

The quantum theoretical modeling above can be extended by adding further
quantum rules to model compound cognitive entities and more general classes of
measurements on cognitive entities. However, the present definitions and results are
sufficient to attain the results in this paper.

3 The quantum cognition lesson

In 2002Daniel Kahnemanwas awarded theNobel Prize in Economic Science for “hav-
ing integrated insights from psychological research into economic science, especially
concerning human judgment and decision-making under uncertainty.”

Researchers have historically formalized human cognition and behavior by using set
theoretical structures, mainly Boolean logic and a probability theory that satisfies the
axioms of Kolmogorov (1933) (‘Kolmogorovian probability’). These are also called
‘classical structures,’ as they were originally employed in classical physics, and later
extended to economics, finance, statistics, psychology, etc. As mentioned in Sect. 1,
this conception has particularly flowed in economics into EUT to form the so-called
Bayesian paradigm and, with it, the roots of ‘rational behavior.’

However, since the beginning of the previous century, researchers have known that
the probability theory axiomatized by Kolmogorov is not the only way to talk about
probabilities and uncertainty. Indeed, quantum probability formalizes uncertainty into
the microscopic realm (see, e.g., Pitowsky 1989). A huge amount of literature has dis-
cussed the conceptual differences between classical and quantum probability. Leaving
aside these differences, that are still object of scientific debate, we can certainly pin
point the structural differences between classical and quantum probabilistic theories.
The former probability indeed rests a normalized probability measure on a σ -algebra
of events represented by sets and set theoretical operations. The latter probability rests
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instead on a more abstract generalized measure on a lattice of orthogonal projection
operators over a complex Hilbert space (see Sect. 2).

What has become evident in the last three decades is that accumulating paradoxical
findings in cognitive psychology suggest that this classical conception of logic and
probability theory is also fundamentally problematical. Puzzling cognitive phenomena
have been identified, revealing the so-called fallacies of human reasoning, which can
be roughly divided in two main classes, as follows.

(1) ‘Probability judgment errors.’ People estimate the conjunction event ‘A and B’
(disjunction event ‘A or B’) as more (less) likely than the events A or/and B
separately, which entails a violation of the monotonicity law of Kolmogorovian
probability.

(2) ‘Decision-making errors.’ People prefer action A over action B if they know that
an event E occurs, and also if they know that E does not occur, but they prefer B
over A if they do not know whether E occurs or not, which entails a violation of
the total law of Kolmogorovian probability.

Fallacies of type (1) include the ‘conjunction’ and the ‘disjunction fallacy,’ ‘non-
monotonic reasoning’ and ‘over/under-extension effects’ in membership judgments in
conceptual combinations, and violations of distance axioms in similarity judgments.
Fallacies of type (2) include the ‘disjunction effect’ and violations of the axioms of
EUT (see, e.g, Busemeyer and Bruza 2012), which we will extensively discuss in
Sect. 4.

While a well-established proposal of solution comes from the research program on
‘individual heuristics and bias’ developed by Tversky and Kahneman (1974, 1983,
1992), an alternative proposal has recently grownwhich uses themathematical formal-
ism of quantum theory to model the observed deviations from classicality in human
reasoning. In particular, quantum probabilistic models have shown distinctive advan-
tages over Bayesian models in representing experimental data on the fallacies above,
also allowing to make predictions and to discover new non-classical effects (see, e.g.,
the monographs Busemeyer and Bruza 2012; Haven and Khrennikov 2013).

The origins of our quantum theoretical approach can be traced back to the studies
on the structural connections between cognitive and microphysical entities, namely
their behavior with respect to ‘contextuality’ and ‘pure potentiality.’ We recognized
that any decision process involves a ‘transition from potential to actual’ in which
an outcome is actualized from a set of possible outcomes as a consequence of a
contextual interaction (of a cognitive nature) between the decision-maker and the
cognitive situation that is the object of the decision. Hence, human decision processes
exhibit deep analogies with what occurs in a quantum measurement process, where
the measurement context (of a physical nature) influences the measured quantum
particle in a non-deterministic way. Quantum probability—which is able to formalize
this ‘contextually driven actualization of potential,’ rather than classical probability,
which only formalizes a lack of knowledge about actuality—can conceptually and
mathematically cope with this situation underlying both quantum and cognitive realms
(Aerts 2009).

The above analysiswas the starting point for the development of a quantum theoreti-
cal perspective to represent conceptual entities and their combinations—conjunctions,
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disjunctions and negations (Aerts 2009; Aerts et al. 2013a, b, 2016; Sozzo 2015). We
modeled different sets of experimental data that exhibited deviations from classical
logical and Kolmogorovian structures, also identifying new non-classical mechanisms
and extending the approach tomore complex decision-making situations (Sozzo 2015;
Aerts and Sozzo 2016). A systematic treatment of these results would lead us beyond
the scope of the present paper. Hence, we limit ourselves to summarize here a quan-
tum theoretical modeling of the disjunction effect as an example of a long standing
cognitive puzzle. The solution offered here is paradigmatic, because the disjunction
effect entails a violation of the ‘sure thing principle,’ exactly like the paradoxes of
subjective EUT mentioned in Sect. 1.

Savage stated the sure thing principle by means of the following story.
“A businessman contemplates buying a certain piece of property. He considers the

outcome of the next presidential election relevant. So, to clarify the matter to himself,
he asks whether he would buy if he knew that the Democratic candidate were going
to win, and decides that he would. Similarly, he considers whether he would buy if he
knew that the Republican candidate were going to win, and again finds that he would.
Seeing that he would buy in either event, he decides that he should buy, even though
he does not know which event obtains, or will obtain, as we would ordinarily say.”
(Savage 1954).

Tversky and Shafir tested the sure thing principle in an experiment where they
presented a group of students with a ‘two-stage gamble,’ that is, a gamble which can
be played twice (Tversky and Shafir 1992; Busemeyer and Bruza 2012). At each stage,
the decision consisted in whether or not playing a gamble that has an equal chance
of winning, say $200, or losing, say $100. The key result is based on the decision for
the second bet, after finishing the first bet. The experiment included three situations:
(i) The students were informed that they had already won the first gamble; (ii) the
students were informed that they had lost the first gamble; (iii) the students did not
know the outcome of the first gamble. Tversky and Shafir found that 69%, i.e., the
majority, of the students who knew they had won the first gamble chose to play again,
59%, i.e., the majority, of the students who knew they had lost the first gamble, chose
to play again; but only 36% of the students who did not know whether they had won
or lost chose to play again (equivalently, 64%, i.e., the majority, decided not to play
in the second gamble).

The two-stage gamble experiment violates Savage’s sure thing principle: Students
generally prefer to play again if they know they won, and they also prefer to play
again if they know they lost, but they generally prefer not to play again when they
do not know whether they won or lost. More generally, the experiment performed by
Tversky and Shafir violates the total law of Kolmogorovian probability. If we denote
by μ(P) the total probability that a student decides to play again without knowing
whether he/she has won or lost in the first gamble, by μ(W ) and μ(L) the probability
that the student wins or loses, respectively, byμ(P|W ) the conditional probability that
the student decides to play again when he/she knows he/she has won, and by μ(P|L)

the conditional probability that the student decides to play again when he/she knows
he/she has lost, then it is not possible to find any value ofμ(W ) andμ(L) = 1−μ(W )

such that μ(P|W ) = 0.69 and μ(P|L) = 0.59, p(P) = 0.36 and the law of total
probability
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μ(P) = μ(W )μ(P|W ) + μ(L)μ(P|L) (2)

is satisfied. This violation of the laws of Kolmogorovian probability is called the
‘disjunction effect.’

An equivalent formulation of the disjunction effect is known as the ‘Hawaii prob-
lem,’ and it is again due toTversky andShafir (1992).Consider the following situations.

‘Disjunctive version.’ Imagine that you have just taken a tough qualifying exami-
nation. It is the end of the fall quarter, you feel tired and run-down, and you are not
sure that you passed the exam. In case you failed, you have to take the exam again
in a couple of months after the Christmas holidays. You now have an opportunity to
buy a very attractive 5-day Christmas vacation package to Hawaii at an exceptionally
low price. The special offer expires tomorrow, while the exam grade will not be avail-
able until the following day. Would you: x buy the vacation package; y not buy the
vacation package; z pay a $5 nonrefundable fee in order to retain the rights to buy the
vacation package at the same exceptional price the day after tomorrow after you find
out whether or not you passed the exam?

‘Pass/fail version.’ Imagine that you have just taken a tough qualifying examination.
It is the end of the fall quarter, you feel tired and run-down, and you find out that you
passed the exam (failed the exam. You will have to take it again in a couple of months
after the Christmas holidays). You now have an opportunity to buy a very attractive
5-day Christmas vacation package to Hawaii at an exceptionally low price. The special
offer expires tomorrow.Would you: x buy the vacation package; y not buy the vacation
package: z pay a $5 nonrefundable fee in order to retain the rights to buy the vacation
package at the same exceptional price the day after tomorrow.

In the Hawaii experiment, Tversky and Shafir experienced the same pattern of the
two-stage gamble situation. Indeed, more than half of the subjects chose option x (buy
the vacation package) if they knew the outcome of the exam (54% in the pass condition
and 57% in the fail condition), whereas only 32% chose option x (buy the vacation
package) if they did not know the outcome of the exam. The Hawaii problem clearly
shows a violation of the sure thing principle: Subjects generally prefer option x (buy
the vacation package) when they know that they passed the exam, and they also prefer
x when they know that they failed the exam, but they refuse x (or prefer z) when they
don’t know whether they passed or failed the exam. Moreover, as in the two-stage
gamble experiment, the Hawaii problem also violates the total law of Kolmogorovian
probability.

A seemingly plausible explanation is that the origin of the violation of the sure
thing principle in the disjunction effect is ‘uncertainty aversion,’ that is, people prefer
to buy the vacation package in both cases where they have certainty about the outcome
of the exam, while they refuse to buy the package when they do not yet know whether
they passed or failed the exam and hence lack this certainty. We will come back to this
when studying ‘ambiguity aversion’ in Sect. 4.

We now work out a quantum theoretical model for these two experiments, where
the above mentioned deviation is described in terms of genuine quantum effects.

Let us firstly consider the Hawaii problem and denote by A the conceptual situation
inwhich theparticipant has passed the exam, andby B the conceptual situation inwhich
the participant has failed the exam. The disjunction of both conceptual situations,
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denoted by ‘A or B,’ is the conceptual situation in which the participant ‘has passed or
failed the exam.’ The participant has to make a decision whether to buy the vacation
package—positive outcome, or not to buy it—negative outcome.

We introduce the notion of state of a conceptual entity, as in Sect. 2. Thus, each
conceptual situation above is described by a defined state and represented by a unit
vector of a complex Hilbert space. More explicitly, we represent A by the unit vector
|A〉 and B by the unit vector |B〉 in a complex Hilbert space. We assume that |A〉
and |B〉 are orthogonal, that is, 〈A|B〉 = 0, and represent the disjunction ‘A or B’
by means of the normalized superposition state vector 1√

2
(|A〉 + |B〉). The decision

to be made is ‘to buy the vacation package’ or ‘not to buy the vacation package.’
This decision is represented by an orthogonal projection operator M of the Hilbert
space H in our modeling scheme. The probability of the outcome ‘yes,’ i.e., ‘buy
the package,’ in the ‘pass’ situation, i.e., state vector |A〉, is 0.54, and we denote
it by μ(A) = 0.54. The probability of the outcome ‘yes,’ i.e., buy the package,
in the ‘fail’ situation, i.e., state vector |B〉, is 0.57, and we denote it by μ(B) =
0.57. The probability of the outcome ‘yes,’ i.e., buy the package, in the ‘pass or fail’
situation, i.e., state vector 1√

2
(|A〉 + |B〉), is 0.32, and we denote it by μ(A or B)

= 0.32.
In accordance with quantum probability rules in Sect. 2, we have

μ(A) = 〈A|M |A〉 (3)

μ(B) = 〈B|M |B〉 (4)

μ(A or B) = 1

2
(〈A| + 〈B|)M(|A〉 + |B〉) (5)

By applying the linearity of the Hilbert space and the hermiticity of M , that is,
〈B|M |A〉∗ = 〈A|M |B〉, we then get

μ(A or B) = 1

2
(〈A|M |A〉 + 〈A|M |B〉 + 〈B|M |A〉 + 〈B|M |B〉)

= μ(A) + μ(B)

2
+ Re(〈A|M |B〉) (6)

where Re(〈A|M |B〉) is the real part of the complex number 〈A|M |B〉, i.e., the typical
interference term of quantum theory. Its presence allows to produce a deviation from
the average value 1

2 (μ(A) + μ(B)), which would be the outcome in the absence of
interference. Note that, also in this disjunction effect situation, we have applied two
key quantum features, namely ‘superposition,’ in taking 1√

2
(|A〉 + |B〉) to represent

‘A or B,’ and ‘interference,’ as the effect appearing in (6).
Our quantummodel can be realized in the three-dimensional complex Hilbert space

C
3 (Aerts 2009; Sozzo 2015), as follows. Let us distinguish two cases:

(i) if μ(A) + μ(B) ≤ 1, we put a(A) = 1 − μ(A), b(B) = 1 − μ(B) and γ = π ;
(ii) if μ(A) + μ(B) > 1, we put a(A) = μ(A), b(B) = μ(B) and γ = 0.
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Moreover, we choose

|A〉 = (
√
a(A), 0,

√
1 − a(A)) (7)

|B〉 =
{
ei(β+γ )

(√
(1−a(A))(1−b(B))

a(A)
,

√
a(A)+b(B)−1

a(A)
,−√

1 − b(B)
)
if a(A) �= 0

eiβ(0, 1, 0) if a(A) = 0

(8)

β =
{
arccos

(
2μ(A or B)−μ(A)−μ(B)

2
√

(1−a(A))(1−b(B))

)
if a(A) �= 1, b(B) �= 1

arbitrary if a(A) = 1 or b(B) = 1
(9)

If μ(A) + μ(B) ≤ 1, we take M to project orthogonally onto the subspace of C3

spanned by the vector (0, 0, 1). Ifμ(A)+μ(B) > 1,we takeM to project orthogonally
onto the subspace of C3 spanned by the vectors (1, 0, 0) and (0, 1, 0).

One can verify that this construction gives rise to a quantum mechanical represen-
tation of the Hawaii problem situation with probabilities μ(A), μ(B) and μ(A or B).
In particular, the interference term in (6) is given by

Re(〈A|M |B〉) = √
(1 − a(A))(1 − b(B)) cosβ (10)

where β is the ‘interference angle for the disjunction.’
Equations (6) and (10) can be used to represent the Hawaii problem situation.

If we set μ(A) = 0.54, μ(B) = 0.57 and μ(A or B) = 0.32, and observe that
μ(A) + μ(B) = 1.11 > 1, then we have a(A) = 0.54, b(B) = 0.57 and γ = 0.
After making the calculations of (7), (8) and (9), we obtain |A〉 = (0.73, 0, 0.68),
|B〉 = ei121.90

◦
(0.61, 0.45,−0.66) and we take M to project onto the subspace of

C
3 spanned by the vectors (1, 0, 0) and (0, 1, 0). One verifies at once that this model

indeed yields the correct numerical outcomes.
Let us now come to the two-stage gamble situation. Here, we have μ(A) = 0.69,

μ(B) = 0.59 and μ(A or B) = 0.36, hence μ(A) + μ(B) = 1.28 > 1,
a(A) = 0.69, b(B) = 0.59 and γ = 0. Equations (6) and (10) can be solved for
β = 141.76◦. In addition, (7), (8) and (9) can be solved for |A〉 = (0.83, 0, 0.56),
|B〉 = ei141.76

◦
(0.43, 0.64, −0.64) and M(C3) is the subspace of C3 spanned by

vectors (1, 0, 0) and (0, 1, 0). Also in this case, one easily verifies that our quantum
model yields the correct numerical outcomes.

We have thus provided a quantummodel which successfully represents the disjunc-
tion effect occurring in the experiments by Tversky and Shafir (1992). It is important
to observe that the observed deviations from Kolmogorovian probability are not inter-
preted in this approach as biases of human mind but, rather, as expressions of genuine
quantum effects, namely contextuality, emergence interference and superposition. It
is also worth noticing the fundamental role that complex numbers play in our con-
struction, since they make it possible to have a non-null interference term in (6).

The treatment of the disjunction effect above constitutes a relevant example of quan-
tum modeling of cognitive entities, states, measurements, probabilities and decisions.
In the next sections, we will extend this treatment to more complex decision-making
situations.
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4 Expected utility theory and its pitfalls

Researchers in probability theory distinguish between probabilities that are known, or
knowable, e.g., from past data, which they call ‘objective probabilities,’ and probabil-
ities that are not known nor can be deduced, calculated or estimated in an objective
way. For this reason, Knight introduced the term ‘risk’ to designate situations that can
be described by objective probabilities, and ‘uncertainty’ to designate situations that
cannot be described by objective probabilities (Knight 1921).1 TheBayesian paradigm
mentioned in Sect. 1minimizes this distinction by introducing the notion of ‘subjective
probability’: Even when the probabilities are not known, people may form their own
‘beliefs,’ or ‘priors,’ thus reducing problems of decision under ambiguity to problems
of decision under risk. Within the Bayesian paradigm, people then update their beliefs
according to the Bayes rule of Kolmogorovian probability.

The predominant model of choice under risk, i.e., in the presence of objective prob-
abilities, is the EUT elaborated by von Neumann and Morgenstern (1944), which we
call ‘objective EUT.’ Von Neumann andMorgenstern presented a set of axioms allow-
ing to uniquely represent human preferences over ‘lotteries’ by maximization of the
expected utility functional. The reasonability of their axioms is so widely accepted
that these axioms constitute the ‘normative counterpart of rational behavior.’ How-
ever, the ‘Allais paradox’ revealed that simple situations exist where decision-makers
violate some axioms of objective EUT (Allais 1953). In addition, the von Neumann–
Morgenstern framework does not apply to problems where objective probabilities are
not given. For this reason, Savage extended EUT to subjective probabilities within the
Bayesian paradigm above: decision-makers behave as if they had subjective probabil-
ities with respect to which they maximize expected utility (Savage 1954).

We illustrate in the following the main definitions and results of ‘subjective EUT.’
While other elegant formulations of subjective EUT have been widely used in the liter-
ature, like the ‘Anscombe–Aumann’ (Anscombe andAumann 1963), or the ‘Fishburn’
(Fishburn 1970) formulation, we prefer presenting the Savage original formulation,
as it will be naturally extended in Sect. 5. As in Sect. 2, we try to be rigorous, without,
however, dwelling on mathematical technicalities.

Our basic mathematical framework requires a set S = {. . . , s, . . .} of states of
nature. A Boolean σ -algebra of subsets of S is denoted by A ⊆ P(S ) (P(S ) is
the power set of S ), while the elements of A denote events. A probability measure
μ : A ⊆ P(S ) −→ [0, 1] over A is such that, for every E ∈ A ,

μ(E) =
∫

E
dμ(s) (11)

Then, we denote by X the set of consequences. For our purposes, it is sufficient
that the elements x ∈ X are monetary payoffs, so that x belongs to the real line
�. A decision-maker is assumed to have preferences over acts. An act is a function
f : s ∈ S 
−→ f (s) ∈ X , and we denote by F the set of all acts. Then, one

1 We prefer using the term ‘ambiguity’ when referring to situations involving unknown probabilities, as
done in many textbooks and papers on the topic.
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assumes a weak order (i.e., reflexive, symmetric and transitive) relation � on the
Cartesian product F × F , and one introduces a utility function u : X −→ �.

Savage proved that if one assumes that the preference relation � satisfies a number
of axioms (including the sure thing principle), then a probability measure μ : A ⊆
P(S ) −→ [0, 1] and a function u : X −→ � exist such that, for every f, g ∈ F ,

f � g iff
∫

S
u( f (s))dμ(s) ≥

∫

S
u(g(s))dμ(s) (12)

The integrals in (12) express the expected utility functionals W ( f ) and W (g) associ-
ated with the acts f and g, respectively. The probability measure μ is interpreted as
a subjective probability measure and represents the decision-maker’s beliefs, while u
is a utility function and represents the decision-maker’s taste. In addition, μ is unique
and u is uniquely defined up to a positive affine transformation (see, e.g., Etner et al.
2012; Gilboa andMarinacci 2013; Karni 2014). As in the von Neumann–Morgenstern
formulation, the concavity of u is a measure of the decision-maker’s risk aversion (for
given beliefs). Deriving both probability and utility from observed choices, Savage
was able to give both a normative and descriptive status to his subjective EUT. It is,
however, important, at this stage, to stress that the probability distribution μ is unique
and satisfies the axioms of Kolmogorovian probability theory, in agreement with the
Bayesian paradigm.

Subjective EUT has been widely applied to economics and finance. However, in
many economic problems of interest it is not clear how one should define probabilities
and, if the latter cannot be defined in a satisfactory way, how people form beliefs. In
addition, in a seminal 1961 paper, Ellsberg predicted in his ‘two-color example’ that
people do not always choose by maximizing their subjective expected utility, but they
generally prefer acts over events with known (or objective) probabilities to acts over
events with unknown (or subjective) probabilities, a phenomenon called ‘ambiguity
aversion’ (Ellsberg 1961). Interestingly enough, the explanation proposed by Ellsberg
for the observed pattern closely resembles the ‘uncertainty aversion’ proposed by
Tversky and Shafir for the disjunction effect (see Sect. 3).

The thought experiment where ambiguity aversion manifestly clashes with subjec-
tive EUT is the ‘three-color example.’

Consider one urn with 30 red balls and 60 balls that are either yellow or black in
unknown proportion. One ball will be drawn at random from the urn. Then, free of
charge, a person is asked to bet on one of the acts f1, f2, f3 and f4 defined in Table 1.
Ellsberg suggested that, when asked to rank these acts, most of the persons will prefer

Table 1 The payoff matrix for
the Ellsberg three-color thought
experiment

Act Red Yellow Black

f1 $100 $0 $0

f2 $0 $0 $100

f3 $100 $100 $0

f4 $0 $100 $100
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f1 over f2 and f4 over f3. On the other hand, acts f1 and f4 are ‘unambiguous,’
as they are associated with events over known probabilities, while acts f2 and f3
are ‘ambiguous,’ as they are associated with events over unknown probabilities. The
conclusion is that people prefer the unambiguous act over its ambiguous counterpart.
There is a huge experimental evidence that decision-makers actually show this ambi-
guity aversion (see, e.g., the extensive review byMachina and Siniscalchi 2014). Only
the experiment by Slovic and Tversky (1974) indicated that ‘ambiguity attraction’
was at play, while more recent experiments identify other behavioral mechanisms as
primary (Binmore et al. 2012).

Neither ambiguity aversion nor ambiguity attraction can be explained within sub-
jective EUT, as they violate the sure thing principle, according to which, preferences
should be independent of the common outcome. For example, in the three-color
urn, preferences should not depend on whether the common event “a yellow ball
is drawn” pays off $0 or $100. More technically, subjective EUT predicts ‘consis-
tency of decision-makers’ preferences,’ that is, f1 is preferred to f2 if and only if f3
is preferred to f4. A simple calculation shows that this is impossible. Indeed, if we
denote by pR , pY and pB the subjective probability that a red ball, a yellow ball,
a black ball, respectively, is drawn (with pR = 1/3 = 1 − (pY + pB)), then the
expected utilities W ( fi ), i = 1, 2, 3, 4, are such that W ( f1) > W ( f2) if and only if
(pR − pB)(u(100) − u(0)) > 0 if and only if W ( f3) > W ( f4). Hence, no assign-
ment of the subjective probabilities pR , pY and pB reproduces a preference with
W ( f1) > W ( f2) and W ( f4) > W ( f3).

In the last forty years, various extensions of subjective EUT have been elaborated,
mainly in an axiomatic form, to cope with the Ellsberg paradox and ambiguity aver-
sion. These proposals weaken some of the axioms of subjective EUT, e.g., the sure
thing principle, taking a non-Bayesian direction. Without pretending to be exhaustive
(extensive reviews can be found in, e.g., Etner et al. 2012; Gilboa andMarinacci 2013;
Machina and Siniscalchi 2014; see also Ellsberg et al. 2011; Machina 2005), we can
roughly group these alternative decision models as follows.

(i) ‘Type-I models’ include ‘Choquet expected utility’ (Schmeidler 1989) and
‘cumulative prospect theory’ (Tversky and Kahneman 1992). These models
assume ‘non-additive capacities,’ rather thanKolmogorovianprobabilities, to rep-
resent beliefs. In particular, Choquet expected utility introduces rank-dependent
axioms.

(ii) ‘Type-II models’ include ‘max-min expected utility’ (Gilboa and Schmeidler
1989) and ‘α-max min expected utility‘ (Ghirardato et al. 2004). These models
rest on the insight that, in the absence of relevant information, asking for pre-
cise subjective beliefs is too demanding. Hence, these models assume a set of
probability distributions, or ‘multiple priors,’ underlying actual decisions.

(iii) ‘Type-III models’ include ‘variational preference’ (Maccheroni et al. 2006) and
‘robust control’ (Hansen and Sargent 2001). These models assume that the
decision-maker has a benchmark probability distribution in mind, but he/she
is not ‘completely confident’ about it.

(iv) ‘Type-IVmodels’ include ‘smooth ambiguity preferences’ (Klibanoff et al. 2005,
2011). These models still assume that the decision-maker has a set of priors, but
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Table 2 The payoff matrix for
the Machina reflection example
with lower tail shifts

Act Red Yellow Black Green

f1 $0 $50 $25 $25

f2 $0 $25 $50 $25

f3 $25 $50 $25 $0

f4 $25 $25 $50 $0

in a concrete decision, he/she also comes up with a prior over this set of priors,
or ‘second order belief.’

The proposals above successfully cope with the Allais and Ellsberg paradoxes
and, though some of them have been criticized (Epstein 1999), they have manifold
applications in economic and financial modeling. More important, they depart from
the assumption that onlyKolmogorovian probabilities can represent subjective beliefs,
but they, more or less explicitly, assume non-Kolmogorovian probability distributions.

In 2009 Mark Machina proposed new thought experiments, which seriously chal-
lenge existing results on EUT, the ‘50:51 example’ and the ‘reflection example’
(Machina 2009). Like Machina and other scholars have proved, the decision mod-
els above are incompatible with the choices expected in these two examples (Machina
2009; Baillon et al. 2011). In particular, the reflection example questions an axiom
of Choquet expected utility, the so-called tail separability, exactly as the Ellsberg
three-color example questions the sure thing principle of subjective EUT.

We present here two versions of the reflection example, as in L’Haridon and Placido
(2010).

Reflection example with lower tail shifts. Consider one urn with 20 balls, 10 are
either red or yellow in unknown proportion, 10 are either black or green in unknown
proportion. One ball will be drawn at random from the urn. Then, free of charge,
a person is asked to bet on one of the acts f1, f2, f3 and f4 defined in Table 2.
Machina introduced the notion of ‘informational symmetry,’ namely the events “the
drawn ball is red or yellow” and “the drawn ball is black or green” have known and
equal probability and, further, the ambiguity about the distribution of colors is similar
in the two events. In an informational symmetry scenario, people should prefer act
f1 over act f2 and act f4 over act f3, or they should prefer act f2 over act f1 and
act f3 over act f4. On the other hand, let us introduce the utilities u(0), u(25) and
u(50), the subjective probabilities pR , pY , pB and pG , and calculate the expected
utilities W ( fi ) of the acts fi , i = 1, 2, 3, 4. Then, we have that preferences should
be consistent according to subjective EUT, namely W ( f1) > W ( f2) if and only if
(u(50) − u(25))(pY − pB) > 0 if and only if W ( f3) > W ( f4). The interesting
aspect of this example is that Choquet expected utility predicts similar consistency
requirements on the basis of tail separability.

An experiment by L’Haridon and Placido (2010) confirms the Machina preference
f1 � f2 and f4 � f3, consistently with informational symmetry. We will illustrate
in detail the experiment in Sect. 5.2, where we will represent it within our general
quantum theoretical modeling.
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Table 3 The payoff matrix for
the Machina reflection example
with upper tail shifts

Act Red Yellow Black Green

f1 $50 $50 $25 $75

f2 $50 $25 $50 $75

f3 $75 $50 $25 $50

f4 $75 $25 $50 $50

Reflection example with upper tail shifts. Consider one urn with 20 balls, 10
are either red or yellow in unknown proportion, 10 are either black or green in
unknown proportion. One ball will be drawn at random from the urn. Then, free
of charge, a person is asked to bet on one of the acts f1, f2, f3 and f4 defined in
Table 3. According to Machina’s informational symmetry, people should again pre-
fer act f1 over act f2 and act f4 over act f3, or they should prefer act f2 over act
f1 and act f3 over act f4. On the other hand, let us introduce the utilities u(25),
u(50) and u(75), the subjective probabilities pR , pY , pB and pG , and calculate the
expected utilities W ( fi ) of the acts fi , i = 1, 2, 3, 4. Then, we have that preferences
should again be consistent according to subjective EUT, namely W ( f1) > W ( f2)
if and only if (u(50) − u(25))(pY − pB) > 0 if and only if W ( f3) > W ( f4).
One shows that tail separability of Choquet expected utility leads to a similar
prediction.

The experiment by L’Haridon and Placido (2010) confirms again the Machina
preference f1 � f2 and f4 � f3, consistently with informational symmetry, and its
results will be reviewed in Sect. 5.2.

The theoretical and experimental arguments above strongly require a novel
approach to ambiguity. As mentioned in Sect. 1, a possible way out of these difficul-
ties is assuming non-Kolmogorovian probability distributions to represent subjective
beliefs. Following our considerations in Sect. 3, we believe that quantum probability
distribution is a proper candidate to represent the uncertainty surrounding decision-
making situations.

5 A quantum theoretical framework to represent preferences

Inspired by the cognitive approach in Sect. 3, we have recently worked out a quantum
theoretical framework to model the Ellsberg and Machina paradox situations (Aerts
et al. 2012, 2014). We have also successfully represented data collected on the three-
color Ellsberg (Aerts et al. 2014) and Machina reflection (L’Haridon and Placido
2010) experiments within the quantum framework (Aerts and Sozzo 2016). In this
section we generalize these results by presenting a unified perspective tomodel events,
states, subjective probabilities, acts, preferences and decisions within the quantum
mechanical formalism. This can be considered as a first step toward the elaboration
of ‘state-dependent EUT’ where subjective probabilities are represented by quantum
probabilities, and attitudes toward ambiguity are incorporated into the states of the
cognitive entities.
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We beginwith the introduction of some basic notions and definitions that are needed
to operationally describe the cognitive aspects of decision-making under uncertainty,
following the approach in Sect. 3.

(i) The cognitive situation that is the object of the decision identifies a DM entity in
a defined state pv . We denote by ΣDM the set of all possible states of the DM
entity. This state has a cognitive nature; hence, it should be distinguished from a
physical state or a state of nature (see Sect. 4). The cognitive state mathematically
captures aspects of ambiguity.

(ii) There is a contextual interaction of a cognitive, not physical, nature between
the decision-maker and the DM entity. This contextual interaction determines
a change of the state of the DM entity. The way in which this change occurs
depends on subjective attitudes toward ambiguity (ambiguity aversion, ambiguity
attraction, etc.).

(iii) Events correspond to measurements that can be performed on the DM entity. For
each state pv of the DM entity, each event E is associated with a probability
μv(E) that the event occurs when the DM entity is in the state pv .

(iv) The DM entity, its states, events, probabilities and the decision-making process
are modeled by using the mathematical formalism of quantum theory in Sect. 2.
In particular, the state of the DM entity identifies a single quantum probability
distribution via the Born rule. We interpret this quantum probability distribution,
which is generally non-Kolmogorovian, as the subjective probability distribution
associated with the specific DM process.

Let us start with the simple case where the set S of states of nature is finite and
let {E1, E2, . . . , En} be a set of mutually exclusive and exhaustive elementary events,
which form a partition of S . We denote byX the set of consequences, and suppose
thatX contains monetary outcomes, for the sake of simplicity. An act is defined as a
function f : S −→ X , and we denote the set of acts by F . If the act f maps the
elementary event Ei into the outcome xi ∈ �, then we can equivalently define f by
the 2n-tuple (E1, x1; . . . ; En, xn). We assume that a utility function u : X −→ �
exists over the set of consequences which incorporates individual preferences toward
risk.

We refer to the mathematics introduced in Sect. 2. The DM entity is associated with
a Hilbert space H over the field C of complex numbers. Since n is the number of
elementary events, the spaceH can be chosen to be isomorphic to theHilbert spaceCn

of n-ples of complex numbers. We thus denote by {|α1〉, |α2〉, . . . , |αn〉} the canonical
orthonormal (ON) basis of Cn , that is, |α1〉 = (1, 0, . . . 0), …, |αn〉 = (0, 0, . . . n).
The event Ei is then represented by the orthogonal projection operator Pi = |αi 〉〈αi |,
i ∈ {1, . . . , n}.

For every state pv ∈ ΣDM of the DM entity, represented by the unit vector |v〉 =∑n
i=1〈αi |v〉|αi 〉 ∈ C

n , the quantum probability distribution

μv : P ∈ L (Cn) 
−→ μv(P) ∈ [0, 1] (13)

(L (Cn) is the lattice of all orthogonal projection operators over the complex Hilbert
space Cn) induced by the Born rule, associates the probability that the event E , repre-
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sented by the orthogonal projection operator P , occurs when the DM entity is in the
state pv . Thus, in particular,

μv(Ei ) = 〈v|Pi |v〉 = |〈αi |v〉|2 (14)

for every i ∈ {1, . . . , n}.
Suppose that when the decision-maker is presented with a choice between the acts

f and g, the DM entity is in the initial state pv0 . This state is interpreted as the state
of the DM entity when no cognitive context is present. As the decision-maker starts
pondering between f and g, this mental action can be described as a cognitive context
interacting with the DM entity and changing its state. The type of state change directly
depends on the decision-maker’s attitude toward ambiguity. More precisely, if the DM
entity is in the initial state pv0 and the decision-maker is asked to choose between the
acts f and g, a given attitude toward ambiguity, say ambiguity aversion, will determine
a given change of state of the DM entity to a state pv , leading the decision-maker to
prefer, say f to g. But, a different attitude toward ambiguity will determine a different
change of state of the DM entity to a state pw, leading the decision-maker to prefer
g to f . In this way, different attitudes toward ambiguity are formalized by different
changes of state inducing different subjective probabilities.

The considerations above suggest associating the DM entity with a ‘family of sub-
jective probability distributions’ {μv : L (Cn) −→ [0, 1] | pv ∈ ΣDM }, represented
by quantum probabilities and parametrized by the state of the DM entity. In a concrete
choice between two acts, we will derive the exact state, hence the specific subjective
probability distribution that represents the actual choice.

Let us now come to the representation of acts. The act f = (E1, x1; . . . ; En, xn)
is represented by the Hermitian operator

F̂ =
n∑

i=1

u(xi )Pi =
n∑

i=1

u(xi )|αi 〉〈αi | (15)

For every pv ∈ ΣDM , we introduce the functional ‘expected utility in the state pv’
Wv : F −→ � as follows.

For every f ∈ F ,

Wv( f ) = 〈v|F̂ |v〉 = 〈v|
( n∑

i=1

u(xi )Pi
)
|v〉

=
n∑

i=1

u(xi )〈v|Pi |v〉 =
n∑

i=1

u(xi )|〈αi |v〉|2 =
n∑

i=1

u(xi )μv(Ei ) (16)

because of (14) and (15). Equation (16) generalizes the expected utility formula of
subjective EUT. As we can see, expected utility explicitly depends on the state pv of
the DM entity. This means that, for two acts f and g, two states pv and pw may exist
such that Wv( f ) > Wv(g), but Ww( f ) < Ww(g), depending on subjective attitudes
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toward ambiguity. This suggests introducing a state-dependent preference relation�v

on the set of acts F , as follows.
For every f, g ∈ F , pv ∈ ΣDM ,

f �v g iff Wv( f ) ≥ Wv(g) (17)

It follows that the DM entity incorporates the presence of ambiguity, as the quantum
probability distribution representing subjective probabilities depends on the state of
the DM entity. Furthermore, the way in which the state of the DM entity changes in the
interaction with the decision-maker incorporates people’s attitude toward ambiguity,
as it determines the state-dependent preference relation �v . The state-dependence
enables the ‘inversion of preferences’ observed in the Ellsberg and Machina paradox
situations, as will become evident from the next sections.

Before concluding this section, it is worth mentioning that the one presented here
is not the unique quantum-based approach to decision-making and expected utility.
More specifically, Mura (2009) elaborated a ‘projective expected utility’ within the
formalism of quantum theory, which allowed him to successfully model the Allais
and Ellsberg paradoxes. In addition, Khrennikov and Basieva (2014) and Khrennikov
(2015) put forward a quantum version of the known ‘Aumann theorem’ on common
knowledge about the impossibility of decision-makers to “agree to disagree.” There
are interesting technical analogies with these proposals, e.g., also La Mura’s projec-
tive expected utility is obtained as the expectation value of a Hermitian operator in a
quantum state, and the Born rule is used to incorporate subjective probabilities. How-
ever, it seems to us that an essential difference is that the state does not formalize the
subjective belief of the decision-maker in our approach but, rather, a mode of being of
the conceptual entity, and that the decision-maker enters the process by rather deter-
mining a change of state of this conceptual entity. Moreover, we understand that these
approaches have not been applied to the Machina paradox.

5.1 Application to the Ellsberg three-color urn

Let us now consider the Ellsberg three-color example and represent it by using the
formalism in Sect. 5.

The DM entity, which we call the ‘Ellsberg entity,’ is a cognitive representation of
the urn with 30 red balls and 60 yellow and black balls in unknown proportion. Let us
point out explicitly that the ‘Ellsberg entity’ is ‘not’ the physical entity of the urn with
30 red balls and 60 yellow and black balls. We can also easily understand that it cannot
be, because for the physical entity the proportion of black balls and yellow balls ‘is’
always determined. Thus, if we specify in our description of the Ellsberg situation that
this proportion is unknown we bring in explicitly a cognitive element, which makes
the Ellsberg entity, i.e., the entity experimented upon, a cognitive entity and no longer
a physical entity. One can wonder whether this cognitive aspect which renders the
Ellsberg entity from a physical entity into a cognitive entity is not just a subjective
element which can be recuperated in the notion of subjective probability. It is not, at
least not if subjective probabilities are meant to describe the subjectiveness pertained
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to the person performing the Ellsberg test. Indeed, the specification of the proportion
of black balls and yellow balls to be unknown is presented each time again to each
different participant when the test is performed, and hence cannot be attributed to the
subjectivity of one individual test participant. It is objectively part of the beginning
experimental situation that each person is confronted with in an experiment, and this
is the reason it pertains to the cognitive representation of the Ellsberg physical entity
which is indeed the ‘object’ of the test. The above reasoning clarifies whywe introduce
the notion of ‘state’ to describe it. Hence, the state pv of the Ellsberg entity exactly
describes the cognitive situation of the urn with 30 red balls and 60 yellow and black
balls in unknown proportion. However, many states of the Ellsberg entity are possible
if we, for example, also specify something more than just ‘unknown proportion’ about
yellow and black balls, in which case the cognitive situation is described by a different
state. We represent each state pv by the unit vector |v〉 of the complex Hilbert space
C
3 over complex numbers.2 We denote by (1, 0, 0), (0, 1, 0) and (0, 0, 1) the unit

vectors of the canonical basis of C3.
Let us now consider the elementary, exhaustive and mutually exclusive events ER :

“a red ball is drawn,” EY : “a yellow ball is drawn,” and EB : “a black ball is drawn.”
They define a ‘color measurement’ on the Ellsberg entity. This color measurement
has three outcomes, corresponding to the three colors red, yellow and black, and it is
represented by aHermitian operatorwith eigenvectors |R〉 = (1, 0, 0), |Y 〉 = (0, 1, 0),
and |B〉 = (0, 0, 1) or, equivalently, by the spectral family {Pi = |i〉〈i | | i = R,Y, B}.
In other terms, the event Ei is represented by the orthogonal projection operator
Pi = |i〉〈i |, i = R,Y, B. In the canonical basis of C3, a state pv of the Ellsberg entity
is represented by the unit vector

|v〉 = ρRe
iθR |R〉 + ρY e

iθY |Y 〉 + ρBe
iθB |B〉 = (ρRe

iθR , ρY e
iθY , ρBe

iθB ) (18)

By using the Born rule of quantum probability, the probability μv(Ei ) of drawing a
ball of color i , i = R,Y, B, when the Ellsberg entity is in a state pv , is given by

μv(Ei ) = 〈v|Pi |v〉 = |〈i |v〉|2 = ρ2
i (19)

We have ρ2
R = 1/3, as the urn contains 30 red balls. Therefore, a state pv of the

Ellsberg entity is represented by the unit vector

|v〉 =
(

1√
3
eiθR , ρY e

iθY ,

√
2

3
− ρ2

Y e
iθB

)

(20)

Let us now introduce two specific states pRY and pRB of the Ellsberg entity. The states
pRY and pRB are represented by the unit vectors

2 As mentioned in Sect. 5, the choice of C3 depends on the fact that there are three mutually exclusive
and exhaustive events in the three-color example—the generalization to the Ellsberg n-color example is
straightforward.
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|vRY 〉 =
(

1√
3
eiθR ,

√
2

3
eiθY , 0

)

(21)

and

|vRB〉 =
(

1√
3
eiθR , 0,

√
2

3
eiθB

)

(22)

and describe the cognitive situation “there are no black balls” and “there are no yellow
balls,” respectively.

As the Ellsberg entity is a cognitive entity, ‘cognitive contexts’ have an influence
on its state, and in general will make a specific state change into another state. This
is what happens in the cognitive realm in analogy with the physical realm, where a
physical context will in general change the physical state of a physical entity. Hence,
whenever a decision-maker is asked to ponder between the choice of f1 and f2, the
pondering itself, before a choice ismade, is a cognitive context, and hence it changes in
general the state of the Ellsberg entity. Similarly, whenever a decision-maker is asked
to ponder between the choice of f3 and f4, also this introduces a cognitive context,
before the choice is made—and a context which in general is different from the one
introduced by pondering about the choice between f1 and f2—which will in general
change the state of the Ellsberg entity.

Let us now introduce a state p0 describing the situation where no cognitive context
is present. This is the initial state of the Ellsberg entity, and symmetry reasons suggest
to represent it by the unit vector |v0〉 = 1√

3
(1, 1, 1). Then, a pondering about the choice

between f1 and f2 will make the state p0 of the Ellsberg entity change to a state pw1

that is generally different from the state pw2 in which the Ellsberg entity changes
from p0 when pondering about a choice between f3 and f4. In particular, a ‘highly
ambiguity averse’ decision-maker will be, as a consequence of her/his pondering in
the choice between f1 and f2, confronted with the Ellsberg entity which changes from
the initial state p0 to a state pw1 that is very close to the state pRY represented in (21).
Analogously, a ‘highly ambiguity averse’ decision-maker will be, as a consequence
of her/his pondering in the choice between f3 and f4, confronted with the Ellsberg
entity which changes from the state p0 to a state pw2 that is very close to the state
pRB represented in (22).

Let us then come to the representation of the acts f1, f2, f3 and f4 in Table 1, Sect. 4.
For a given utility function u, to be estimated from empirical data, we, respectively,
associate f1, f2, f3 and f4 with the Hermitian operators

F̂1 = u(100)PR + u(0)PY + u(0)PB (23)

F̂2 = u(0)PR + u(0)PY + u(100)PB (24)

F̂3 = u(100)PR + u(100)PY + u(0)PB (25)

F̂4 = u(0)PR + u(100)PY + u(100)PB (26)
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The corresponding expected utilities in a state pv of the Ellsberg entity are

Wv( f1) = 〈v|F̂1|v〉 = 1

3
u(100) + 2

3
u(0) (27)

Wv( f2) = 〈v|F̂2|v〉 =
(
1

3
+ ρ2

Y

)

u(0) +
(
2

3
− ρ2

Y

)

u(100) (28)

Wv( f3) = 〈v|F̂3|v〉 =
(
1

3
+ ρ2

Y

)

u(100) +
(
2

3
− ρ2

Y

)

u(0) (29)

Wv( f4) = 〈v|F̂4|v〉 = 1

3
u(0) + 2

3
u(100) (30)

We observe that Wv( f1) and Wv( f4) do not depend on the state pv; hence, they are
ambiguity-free, i.e., independent of the state, whileWv( f2) andWv( f3) do depend on
pv . This means that it is possible to find a state pw1 , e.g., the state represented in (21),
such that Ww1( f1) > Ww1( f2), and a state pw2 , e.g., the state represented in (22),
such that Ww2( f4) > Ww2( f3). These two states reproduce Ellsberg preferences, in
agreement with an ambiguity aversion attitude.

We repeated the Ellsberg three-color experiment, asking 57 persons, chosen among
our colleagues and friends, to rank the four acts in Table 1, Sect. 4 (Aerts et al. 2014).
We found that 34 participants preferred acts f1 and f4, 12 participants preferred acts
f2 and f3, 7 participants preferred acts f2 and f4, and 6 participants preferred acts
f1 and f3. This makes the weights with preference of acts f1 over act f2 to be 0.68
against 0.32, and the weights with preference of act f4 over act f3 to be 0.69 against
0.31. Hence, 46 participants over 57 chose f1 and f4 or the inversion f2 and f3, for an
‘inversion percentage’ of 78%, thus confirming the typical behavior observed in the
Ellsberg three-color example.

A quantummodel for these data can be constructed by finding two orthogonal states
pw1 and pw2 , represented by the unit vectors |w1〉 and |w2〉, respectively, such that

〈w1|F̂1 − F̂2|w1〉 = 0.68 (31)

〈w2|F̂4 − F̂3|w2〉 = 0.69 (32)

where F̂i , i = 1, 2, 3, 4, are defined in (23)–(26). In the canonical basis of C3, a
solution is

|w1〉 =
(

1√
3
, 0.787ei28

◦
, 0.216ei9.3

◦
)

(33)

|w2〉 =
(

1√
3
, 0.206ei208

◦
, 0.790ei189.3

◦
)

(34)

as we have proved in Aerts and Sozzo (2016). The states pw1 and pw2 represented in
(33) and (34) identify the subjective probability distributions μw1 and μw2 , respec-
tively, reproducing the ambiguity aversion pattern of the experiment, for an utility
value u(100) − u(0) ≈ 2.4. But, generally speaking, preferences do depend on the
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state pv of the Ellsberg entity. This completes the construction of a quantum model
for the Ellsberg three-color example, which follows the prescriptions in Sect. 5.

We observe that the solution in (33) and (34) is not unique, as the Ellsberg three-
color example only requires collection of two data points, in (31) and (32), against the
free parameters in the two unit and orthogonal vectors |w1〉 and |w2〉 ofC3—a further
condition to satisfy is the probability to draw a red ball. However, we stress that the
present quantum model allows representation of any decision-making situation with
three elementary events, not just the Ellsberg three-color example. The quantummodel
can be applied to more complex experiments when more data are collected; hence,
further empirical constraints are present. In addition, the quantum model was not
designed ‘ad hoc’ to accommodate the Ellsberg paradox patterns. Rather, it emerges
from the general theoretical framework inSect. 5 and from the investigation of quantum
theory as a unitary paradigm to represent subjective probabilities and preferences,
suggested by the impressive foundational and operational analogies between quantum
measurement and decision-making processes. As such, all these quantummodels have
to satisfy the algebraic and probabilistic constraints of Hilbert space quantum theory.

5.2 Application to the Machina reflection example

In this section, we represent the ‘Machina reflection example’ within the formalism.
We start from the reflection example with lower tail shifts. The DM entity, which we
call the ‘Machina entity,’ is the urn with 10 red or yellow balls and 10 black or green
balls, in both cases in unknown proportion. A possible state pv of the Machina entity
has a cognitive nature and is represented by the unit vector |v〉 of the complex Hilbert
space C

4 over complex numbers. We denote by (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)
and (0, 0, 0, 1) the unit vectors of the canonical basis of C4.

Let us consider the elementary, exhaustive and mutually exclusive events ER : “a
red ball is drawn,” EY : “a yellow ball is drawn,” EB : “a black ball is drawn,” and EG :
“a green ball is drawn.” They define a ‘color measurement’ that can be performed
on the Machina entity. This color measurement has four outcomes corresponding to
the four colors red, yellow, black and green, and it is represented by a Hermitian
operator with eigenvectors |R〉 = (1, 0, 0, 0), |Y 〉 = (0, 1, 0, 0), |B〉 = (0, 0, 1, 0)
and |G〉 = (0, 0, 0, 1) or, equivalently, by the spectral family {Pi = |i〉〈i | | i =
R,Y, B,G}. Hence, the event Ei is represented by the orthogonal projection operator
Pi , i = R,Y, B,G. In the canonical basis of C4, a state pv of the Machina entity is
represented by the unit vector

|v〉 = ρRe
iθR |R〉 + ρY e

iθY |Y 〉 + ρBe
iθB |B〉 + ρGe

iθG |G〉
= (ρRe

iθR , ρY e
iθY , ρBe

iθB , ρGe
iθG ) (35)

By using quantum probabilistic rules, the probabilityμv(Ei ) of drawing a ball of color
i , i = R,Y, B,G, when the Machina entity is in a state pv is given by

μv(Ei ) = 〈v|Pi |v〉 = |〈i |v〉|2 = ρ2
i (36)
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The reflection with lower tail shifts situation requires that ρ2
R +ρ2

Y = 1/2 = ρ2
B +ρ2

G .
Therefore, a state pv of the Machina entity is represented by the unit vector

|v〉 =
(

ρRe
iθR ,

√
1

2
− ρ2

Re
iθY , ρBe

iθB ,

√
1

2
− ρ2

Be
iθG

)

(37)

As in the Ellsberg case, let us suppose that the initial state p0 of the Machina entity
completely reflects the symmetry between the different colors. Thus, p0 is represented
by the unit vector |v0〉 = 1

2 (1, 1, 1, 1). Whenever the decision-maker is presented with
the Machina paradox situation, her/his pondering about the choices to make gives rise
to a cognitive context, which changes the state of the Machina entity from p0 to a
generally different state pw, represented by the unit vector |w〉, as in (37). In this
framework, the pondering about a choice between f1 and f2 will make the initial state
p0 of the Machina entity change to a state pw1 that is generally different from the
state pw2 in which the Machina entity changes from the initial state p0 in a pondering
about the choice between f3 and f4.

Let us now come to the representation of the acts f1, f2, f3 and f4 in Table 2, Sect. 4.
For a given utility function u, to be estimated from empirical data, we, respectively,
associate f1, f2, f3 and f4 with the Hermitian operators

F̂1 = u(0)PR + u(50)PY + u(25)PB + u(25)PG (38)

F̂2 = u(0)PR + u(25)PY + u(50)PB + u(25)PG (39)

F̂3 = u(25)PR + u(50)PY + u(25)PB + u(0)PG (40)

F̂4 = u(25)PR + u(25)PY + u(50)PB + u((0)PG (41)

The corresponding expected utilities in a state pv are

Wv( f1) = 〈v|F̂1|v〉 = u(0)ρ2
R + u(50)ρ2

Y + 1

2
u(25) (42)

Wv( f2) = 〈v|F̂2|v〉 = u(0)ρ2
R + u(25)ρ2

Y + u(50)ρ2
B + u(25)ρ2

G (43)

Wv( f3) = 〈v|F̂2|v〉 = u(25)ρ2
R + u(50)ρ2

Y + u(25)ρ2
B + u(0)ρ2

G (44)

Wv( f4) = 〈v|F̂4|v〉 = 1

2
u(25) + u(50)ρ2

B + u(0)ρ2
G (45)

All expected utilities depend on the state pv , and thus, it is possible to find a state
pw1 such that Ww1( f1) > Ww1( f2) (Ww1( f2) > Ww1( f1)), and a state pw2 such that
Ww2( f4) > Ww2( f3) (Ww2( f3) > Ww2( f4)). Indeed, let us consider the state pYG
describing the cognitive situation where there are no red balls and no black balls. This
state is represented by the unit vector

|vYG〉 =
(

0,

√
1

2
eiθY , 0,

√
1

2
eiθG

)

(46)
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Then, let us consider the state pRB describing the cognitive situation where there are
no yellow balls and no green balls. This state is represented by the unit vector

|vRB〉 =
(√

1

2
eiθR , 0,

√
1

2
eiθB , 0

)

(47)

By using (42), (43), (44) and (45), we have WYG( f1) = WRB( f4) and WYG( f2) =
WRB( f3). Therefore, the states pYG and pRB perfectly reproduce informational sym-
metry in the Machina reflection example with lower tail shifts.

Let us now apply the quantummodel for theMachina paradox situation to represent
the data collected inL’Haridon andPlacido (2010) on the reflection examplewith lower
tail shifts. These authors asked 94 students to rank the four acts in Table 2, Sect. 4. The
students’ response was that 11 students preferred acts f1 and f3, 44 students preferred
acts f1 and f4, 15 students preferred acts f2 and f4, and 24 students preferred acts f2
and f3. This entails that 68 students over 94 reversed their preferences, for an inversion
percentage of 72%, thus violating subjective EUT and in agreement with Machina’s
expectations (L’Haridon and Placido 2010). Equivalently, a rate of 0.59 preferred act
f1 over act f2, and a rate of 0.63 preferred act f4 over f3. As we have seen in Sect. 4,
this result is problematical also from the point of view of Choquet expected utility.

A quantum mechanical model for the experimental data above can be constructed
by finding two orthogonal states pw1 and pw2 , represented by the unit vectors |w1〉
and |w2〉, respectively, such that

〈w1|F̂1 − F̂2|w1〉 = 0.59 (48)

〈w2|F̂4 − F̂3|w2〉 = 0.63 (49)

where F̂i , i = 1, 2, 3, 4, are defined in (38)–(41). In the canonical basis of C4, a
solution is

|w1〉 = (0, 0.71ei1.6
◦
, 0.38ei1

◦
, 0.60ei185.2

◦
) (50)

|w2〉 = (0.71ei0.7
◦
, 0.05ei191.8

◦
, 0.62ei2.9

◦
, 0.34ei7.4

◦
) (51)

as we have proved in Aerts and Sozzo (2016). The states pw1 and pw2 represented in
(50) and (51) identify the subjective probability distributions μw1 and μw2 , respec-
tively, reproducing the experimental pattern, for anutility valueu(50)−u(25) ≈ 1.636.
But, generally speaking, preferences do depend on the state pv of the Machina entity.
This completes the construction of a quantummodel for the Machina reflection exam-
ple with lower tail shifts, which follows the prescriptions in Sect. 5.

L’Haridon and Placido (2010) also tested the reflection example with upper tail
shifts. The authors asked the same 94 students to rank the four acts in Table 3, Sect. 4.
The students’ response was that 8 students preferred acts f1 and f3, 47 students pre-
ferred acts f1 and f4, 6 students preferred acts f2 and f4, and 33 students preferred acts
f2 and f3. This entails that 47+ 33 = 80 students over 94 reversed their preferences,
for a ratio of 0.85, thus violating subjective EUT and in agreement with Machina’s
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expectations. Equivalently, a rate of 0.59 preferred act f1 over act f2, and a rate of
0.56 preferred act f4 over f3.

A quantum model for these experimental data can be constructed by following
along the lines above. We have proved in Aerts and Sozzo (2016) that the states pw1

and pw2 reproducing the data collected in the Machina reflection example with upper
tail shifts are represented by the unit vectors

|w1〉 = (0.02ei0.3
◦
, 0.71ei11.6

◦
, 0.38ei1.3

◦
, 0.60ei196.5

◦
) (52)

|w2〉 = (0.71ei0.7
◦
, 0, 0.59ei1.7

◦
, 0.39ei16.9

◦
) (53)

for an utility value u(50) − u(25) = 1.636.
In all the examples above, we have proved that it is possible to reconstruct the

quantum states, hence the quantum probability distributions representing the priors
underlying concrete decisions in the presence of ambiguity. However, we have also
argued that a more complete mathematical treatment suggests that preferences under
ambiguity depend on the state of the DM entity, and that a DM entity should be asso-
ciated with a family of subjective probability distributions parametrized by its states.

Themodeling of theMachina paradox situations—we have alsomodeled the ‘50:51
example’ in Aerts et al. (2012)—is relevant, in our opinion, because the most estab-
lished non-Bayesian models face difficulties when trying to reproduce the expected
pattern (Machina 2009; Baillon et al. 2011).

We finally notice that the same remark made at the end of Sect. 5.1 holds also for
the Machina reflection examples. Namely, the solution in (50) and (51) [similarly,
in (52) and (53)] is not unique, and the free parameters in the C

4-representation of
the unit and orthogonal vectors |w1〉 and |w2〉 will have to satisfy further constraints,
besides (48) and (49), if more complex and detailed experiments are performed. As
already emphasized in Sect. 5.1, we only aim at showing that a unitary and coherent
theoretical framework can be constructed, based on the quantum theoretical paradigm,
to reproduce different data sets on human decisions in an ambiguity environment.

5.3 Possible extensions and a definition of ambiguity

We conclude the presentation of the quantum theoretical framework with some tech-
nical remarks.

The quantum theoretical model for human preferences can be extended to the case
in which the set of states of nature S has a continuous cardinality, as follows.

We introduce, in addition to S , the set of consequences X , the set of acts F =
{ f : S −→ X }, the utility function u : X −→ �. Further, let H be the Hilbert
space representing states of the DM entity, and let {|α〉} be an orthonormal basis of
H , so that 〈α|α′〉 = δ(α − α′), where δ(·) is the δ-Dirac distribution.

For every state pv ∈ ΣDM describing the DM entity, the represented vector |v〉 can
be written as

|v〉 =
∫

�
〈α|v〉|α〉dα =

∫

�
c(α)|α〉dα (54)
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An event E is represented by the orthogonal projection operator PE = ∫
E |α〉〈α|dα.

Hence, the subjective probability that the event E occurs when the DM entity is in the
state pv is

μv(E) = 〈v|
( ∫

E
|α〉〈α|dα

)
|v〉 =

∫

E
|〈α|v〉|2dα =

∫

�
d||Pα|v〉||2 (55)

where the integral is intended in the Lebesgue sense.
The act f is instead represented by the Hermitian operator

F̂ =
∫

�
u( f (α))|α〉〈α|dα (56)

Hence, the expected utility of the act f in the state pv is

Wv( f ) = 〈v|F̂ |v〉 =
∫

�
u( f (α))|c(α)|2dα =

∫

�
u( f (α))d||Pα|v〉||2 (57)

The right side of (57) is also useful when one does not specifies the cardinality of
the set of states. It is indeed sufficient to require that the integral is intended in the
Lebesgue–Stieltjes sense.

The treatment of the Ellsberg and Machina paradox situations enables providing a
general definition of ambiguity within the quantum theoretical framework, as follows.

We say that ‘an event E is unambiguous’ if the subjective probability μv(E) does
not depend on the state pv of the DM entity. In the Ellsberg three-color example, the
event ER : “a red ball will be drawn” is indeed unambiguous in the sense specified
here. Indeed, for every state pv of the Ellsberg entity, represented by the unit vector
|v〉 ∈ C

3, μv(ER) = 1
3 .

Finally, we say that ‘an act f is unambiguous’ if the expected utility Wv( f ) does
not depend on the state pv of the DM entity. Again in the Ellsberg three-color example,
the act f4 is indeed unambiguous in the sense specified above, since, for every state
pv of the Ellsberg entity, represented by the unit vector |v〉 ∈ C

3,Wv( f4) = 1
3 (u(0)+

u(100)).

6 Conclusive remarks

We have worked out in this paper a theoretical framework to represent preferences
and decisions under uncertainty. This framework uses the mathematical formalism of
quantum theory. In it, subjective probabilities are represented by families of quantum
probability distributions, parametrized by the state of the DM entity under inves-
tigation. The interaction with the overall cognitive landscape, which includes the
decision-maker’s pondering about two acts, provokes a change of state of the DM
entity, which enables modeling of the ambiguity aversion affecting Ellsberg- and
Machina-like preferences. However, the present theoretical framework is flexible
enough to reproduce different experimental patterns arising from different attitudes
toward ambiguity. We have also stressed that the present approach allows modeling
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of beliefs, but in a generally non-Bayesian setting where a kind of ‘contextual risk’ is
present. Finally, the present approach suggests the development of a quantum-based
subjective EUT with state-dependent preferences between acts.

In our opinion, this quantum theoretical framework can be successfully used to rep-
resent ambiguity-laden situations outside pure decision theory, in particular in strategic
management decisions and some long standing economic puzzles. We conclude this
paper with some hints in this direction.

Experiments have revealed a mixture of ambiguity aversion and ambiguity attrac-
tion in decisions under uncertainty. In this respect, managers typically compare the
performance of an investment with a benchmark, or targeted performance, e.g., the
return on investment (ROI), or the internal rate of return (IRR). A ‘gain’ is realized
when the performance is above the benchmark, a ‘loss’ is realized when the perfor-
mance is below the benchmark. For example, risk occurs in a situation where the
probability that the ROI of a given investment is above the benchmark is x percent.
Ambiguity occurs instead in a situation where the probability that the ROI of the
investment is above the benchmark is between (x − Δ) and (x + Δ). Viscusi and
Chesson (1999) identified a ‘fear effect,’ as well as a ‘hope effect,’ in their experi-
mental study. More precisely, they found that as the probability of a loss increases,
managers become less ambiguity averse, reaching a ‘crossover point’ at which they
become ambiguity seeking, which indicates a shift from a fear to a hope effect. Vicev-
ersa, as the probability of a gain increases, managers become less ambiguity seeking,
reaching a ‘crossover point’ at which they become ambiguity averse, which indicates
this time a shift from a hope to a fear effect. This result was confirmed by Ho et al.
2002). The quantum theoretical framework can reproduce this dual behavior by recon-
structing the quantum states, hence the subjective probability distributions underlying
the observed behavior, as we have done in the three color Ellsberg urn and theMachina
reflection example (Aerts and Sozzo 2016).

Coming to economics and finance, Epstein and Miao (2003) have put forward that
ambiguity aversionmay explain the ‘home bias puzzle’ in international finance: People
prefer to trade stocks of their own country rather than foreign stocks. This is in principle
compatible with the quantum theoretical approach, where ambiguity aversion can be
explained in terms of the overall cognitive landscape surrounding the decision-making
situation. Further, Hansen et al. (2002) have shown that ambiguity aversion models
lead to market prices that are closer to the empirical prices than the prices predicted
by EUT, which may explain the ‘equity premium puzzle.’ Again, this behavior can
in principle be reproduced within a theoretical framework where ambiguity aversion
depends on the way the cognitive landscape influences the DM entity.

We believe that the quantum theoretical approach presented here can be naturally
applied to the fascinating problems above, and we plan to dedicate future research to
this.
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