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Abstract We study an allocation problem of heterogeneous indivisible objects among
agents without money. Each agent receives at most one object and prefers any object to
nothing.We identify the class of rules satisfying strategy-proofness, Pareto-efficiency,
and the identical preferences lower bound. Each rule of this class is included in Pápai’s
(Econometrica 68:1403–1433, 2000) rules and can be described by a top trading cycle
rule associated with an inheritance structure that satisfies a symmetry condition called
U-symmetry.
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1 Introduction

We study an allocation problem1 of heterogeneous indivisible objects among agents
without money. Each agent receives at most one object and prefers any object to
nothing. A rule assigns the objects depending on the agents’ preferences.

1 Many applications have been introduced in Sönmez and Ünver (2011).
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1046 K. Hashimoto

Since the seminal works of Ma (1994) and Pápai (2000), strategy-proofness and
Pareto-efficiency have been the most widely2 studied properties concerning this prob-
lem. Strategy-proofness requires that it be a dominant strategy for any agent to report
his true preference relation. Pareto-efficiency requires that the rule assign a Pareto-
efficient allocation.

In the private endowment3 setting, the top trading cycle rule is strategy-proof
and achieves a Pareto-efficient allocation. Moreover, it is the only rule that satisfies
strategy-proofness, Pareto-efficiency, and individual rationality (Ma 1994). Individual
rationality requires that the rule assign an allocation under which no agent prefers his
endowment to his assignment.

Even in the social endowment4 setting, the top trading cycle procedure has an
important role. By suitably specifying the ownership of each object at each round in
the procedure, the corresponding top trading cycle rule is strategy-proof and achieves a
Pareto-efficient allocation.We call such a specification an inheritance structure and the
corresponding rule the top trading cycle rule associated with the inheritance struc-
ture. There are several inheritance structures, and the corresponding rules coincide
with the class of rules satisfying strategy-proofness, Pareto-efficiency, non-bossiness,
and reallocation-proofness (Pápai 2000). Non-bossiness requires that if the assign-
ment of an agent remains unchanged when his preference relation changes, then the
assignments of the others should also remain unchanged. Reallocation-proofness rules
out the possibility that two agents will gain by jointly manipulating the outcome and
swapping objects ex post when the collusion is self-enforcing, in the sense that neither
agent loses by reporting false preferences in case the other agent does not adhere to
the agreement and reports honestly.

Although non-bossiness5 has also been a frequently studied property in this field, it
is to an extent a technical condition and strong requirement. Indeed,manygood rules do
not satisfy it, for example, the Vickrey–Clarke–Groves (VCG) rules in auction models
and the deferred acceptance rules in school choice models. Reallocation-proofness is
also technical.6 Hence, for the next step, it is important to investigate the problem
without non-bossiness and reallocation-proofness.7

Instead of non-bossiness and reallocation-proofness, we focus on another property
called the identical preferences lower bound. Imagine the two-agent and two-object
case. Suppose that a man prefers object a to object b. Let us compare the following two

2 For example, Abdulkadiroğlu and Sönmez (1999), Ehlers et al. (2002), Ehlers and Klaus (2003b, 2006,
2007), Kesten (2009), Sönmez and Ünver (2010), Bade (2014), Velez (2014), and Pycia and Ünver (2017).
3 It means that all the objects are initially owned by the agents. This is known as the housing market
(Shapley and Scarf 1974).
4 It means that all the objects are initially owned by the society. This is known as the house allocation
problem. The differences between the social endowment model and private endowment model [also the
existing tenants model in Abdulkadiroğlu and Sönmez (1999)] are the specification of the property rights
of the objects and the corresponding requirement of individual rationality. Thus, by incorporating them into
the social endowment model, the results can be extended to these models.
5 Thomson (2016) has discussed this condition extensively.
6 Bade (2014) and Pycia and Ünver (2017) have studied the problem without reallocation-proofness.
7 Ehlers et al. (2002), Ehlers andKlaus (2006, 2007), Sönmez andÜnver (2010), Kesten andYazıcı (2012),
and Velez (2014) have studied the problem in this direction.
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Strategy-proofness and identical... 1047

situations: (i) A woman also prefers object a to object b and (ii) she prefers object b
to object a. In (i), the man has to compete with the woman for object a and sometimes
might lose it. On the other hand, in (ii), he does not have to compete with her for object
a and thus can always get it. This consideration tells us that in a private goods setting,
while similarity of preferences means conflict among agents, diversity of preferences
means benefits for agents.Moulin (1990) has called these benefits “positive preference
externalities.” The identical preferences lower bound says that everyone should enjoy
a positive preference externality.8 Formally, it requires that the assignment of an agent
be no worse than his assignment in the problem where all agents have a preference
relation identical to his preference relation.9

We identify the class of rules satisfying strategy-proofness, Pareto-efficiency, and
the identical preferences lower bound. Each rule of this class is included in Pápai’s
(2000) rules and can be described by a top trading cycle rule associated with an
inheritance structure satisfying a symmetry condition called U-symmetry. We also10

show that this class includes all rules11 introduced by Abdulkadiroğlu and Sönmez
(1999).

In Sect. 2, we set up the model. In Sect. 3, we define the axioms. In Sect. 4, we
introduce several rules. In Sect. 5, we state our results. In Sect. 6, we establish the
independence of the axioms. In Sect. 7, we make some concluding remarks. All the
proofs are provided in Appendix.

2 Model

Let N = {1, 2, . . . , n} denote the set of agents. Let K denote the set of indivisible
objects. Let 0 represent the null object. Each agent wants at most one object. Each
agent i ∈ N has a complete and transitive preference relation Ri over K ∪ {0}. The
associated strict preference relation is denoted by Pi . We assume that Ri is strict, that
is, for any k, k′ ∈ K ∪ {0}, kRi k′ means either kPi k′ or k = k′. Furthermore, we
assume that the null object is the worst object, that is, for any k ∈ K , kPi0. Let R
denote the class of such preference relations. We represent Ri ∈ R by an ordered list
of the objects:

Ri = k1, k2, k3, . . . .

A list R = (Ri )i∈N ∈ Rn is a preference profile.

8 See also Thomson (2014) and Fujinaka and Sakai (2007).
9 Many studies have often chosen ones such as an equal division as the assignment where all agents
have the identical preferences with him, although it does not exist in this problem. Then, this property is
equivalent to equal division lower bound. See also Bevia (1996, 1998), Thomson (2003), and Fujinaka and
Sakai (2007).
10 Furthermore, in the supplemental materials on the author’sWeb site, we provide a procedure to construct
U-symmetric inheritance structures.
11 Sönmez and Ünver (2010) have referred to this class as You Request My House-I Get Your Turn rules,
and characterized it with strategy-proofness, Pareto-efficiency, individual rationality, and other axioms in a
related model.
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A feasible allocation is a list x = (xi )i∈N as follows: For any i ∈ N , xi ∈ K ∪ {0},
and none of the objects in K is assigned to more than one agent.12 Let X denote the
set of feasible allocations. A rule is a function f fromRn to X . Given a rule f and a
preference profile R ∈ Rn , we denote by fi (R) agent i’s assignment at f (R). Given
R ∈ Rn and S ⊂ N , RS denotes (Ri )i∈S . We also use the notation R−S = RN\S and
R−i = RN\{i}.

3 Axioms

We introduce the basic properties. The first property requires that it should be a dom-
inant strategy for any agent to report his true preference relation.

Definition 1 A rule f satisfies strategy-proofness if for any R ∈ Rn , any i ∈ N , and
any R′

i ∈ R, we have

fi (R)Ri fi (R
′
i , R−i ).

The second property requires that the rule assign a Pareto-efficient allocation.

Definition 2 A rule f satisfies Pareto-efficiency if for any R ∈ Rn , there exists no
x ∈ X such that for all i ∈ N , it holds that

xi Ri fi (R)

with strict preference holding for some j ∈ N .

To introduce the third property, we need some notation. For any i ∈ N and any
Ri ∈ R, let R(Ri ) ∈ Rn denote the preference profilewhere all agents have preference
relation Ri , that is, R(Ri ) = (Ri , Ri , . . . , Ri ). The third property requires that the
assignment of each agent be at least as good as his assignment where all agents have
the identical preferences with him.

Definition 3 A rule f satisfies the identical preferences lower bound if for any i ∈ N ,
any Ri ∈ R, and any R′−i ∈ Rn−1, we have

fi (Ri , R
′−i )Ri fi (R(Ri )).

The next property requires that if the assignment of an agent remains unchanged
when his preference relation changes, then the assignments of the others should also
remain unchanged.

Definition 4 A rule f satisfies non-bossiness if for any R ∈ Rn , any i ∈ N , and any
R′
i ∈ R, we have

fi (R) = fi (R
′
i , R−i ) implies f (R) = f (R′

i , R−i ).

12 This means that the null object can be assigned to any number of agents and that not all objects in K
have to be assigned.
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The last property rules out the possibility that two agents will gain by jointly manip-
ulating the outcome and swapping objects ex post when the collusion is self-enforcing,
in the sense that neither agent loses by reporting false preferences in case the other
agent does not adhere to the agreement and reports honestly.

Definition 5 A rule f satisfies reallocation-proofness if there is no R ∈ Rn , i, j ∈ N ,
and R̃i , R̃ j ∈ R such that

f j (R̃i , R̃ j , R−{i, j})Ri fi (R) and fi (R̃i , R̃ j , R−{i, j})Pj f j (R),

and for any h = i, j ,

fh(R) = fh(R̃h, R−h) �= fh(R̃i , R̃ j , R−{i, j}).

4 Rules

4.1 Pápai’s (2000) Rules

We review the rules13 defined by Pápai (2000), each of which is a generalization of
David Gale’s top trading cycle (TTC) procedure. To apply the TTC procedure to this
model, we need to specify a structure determining the initial priority rights and their
inheritance. We specify it by an inheritance structure h as follows.14 First, for any
object k ∈ K , agent h(k) initially has the property right of object k. Next, when agent
h(k) is assigned some other object k′ and leaves with it, the property right of object k
moves to agent h(k, k′). Next, when agent h(k, k′) is assigned some other object k′′
and leaves with it, the property right of object k moves to agent h(k, k′, k′′), and so
on.

To define it formally, we introduce some notation. Let C1 = K . For any � > 1,
define

C� = {(k1, k2, . . . , k�) ∈ K � : �′ �= �′′ ⇒ k�′ �= k�′′ }.

Further, define

C =
min{#N ,#K }⋃

�=1

C�.

For any c, c′ ∈ C, when c = (k1, . . . , k�) and c′ = (k1, . . . , k�, k�+1, . . . , k�′) with
� ≤ �′, we denote c ⊂ c′, as an abuse of notation.

13 We describe the rules through a sophisticated style.
14 Pápai (2000) has expressed this structure by trees. The original expression is intuitive but needs com-
plicated notation. In order to express it by simple notation, we use a functional form.
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Definition 6 An inheritance structure is a function h from C to N satisfying the
following: For any c, c′ ∈ C such that c ⊂ c′ and c �= c′, it holds that

h(c) �= h(c′).

Example 1 In Figs. 1, 2, 3, 4, 5, 6 and 7, we express inheritance structures as trees
in the three-agent and three-object case. Each node indicates an object. For each path
(arrow) c, the corresponding agent h(c) is expressed.

Definition 7 Given an inheritance structure h, for each R ∈ Rn , the top trading cycle
rule associated with h assigns the allocation calculated by the following algorithm.

1st Round: Each object k ∈ K points to agent h(k), and each agent points to his
most preferred object. Then, we look for cycles. A sequence of objects and agents
(k1, i1, . . . , km, im) forms a cycle if k1 points to i1, i1 points to k2, . . . , km points to
im , and im points to k1. Since there are a finite number of objects and agents, there is
at least one cycle. Each agent in a cycle is assigned the object he points to and leaves
with his assignment. If there is no remaining object or agent, the algorithm terminates.
If there is at least one remaining object and agent, proceed with the next round.

t-th Round: Denote K (t, R) and N (t, R) as the set of objects and the set of agents,
respectively, that have already left until the beginning of the t-th Round. Each object
k ∈ K \ K (t, R) points to an agent in N \ N (t, R) determined as follows: When
h(k) /∈ N (t, R), k points to h(k). Otherwise, go to the next stage. When h(k, k1) /∈
N (t, R), where k1 is agent h(k)’s assignment, k points to h(k, k1). Otherwise, go to
the next stage. When h(k, k1, k2) /∈ N (t, R), where k2 is agent h(k, k1)’s assignment,
k points to h(k, k1). Otherwise, go to the next stage, which is similar. Since N (t, R) is
finite, this procedure determines an agent in N\N (t, R). Each remaining agent points
to his most preferred object among the remaining objects K\K (t, R). Each agent in a
cycle is assigned the object he points to and leaves with his assignment. If there is no
remaining object or agent, the algorithm terminates. If there is at least one remaining
object and agent, proceed with the next round.

Example (Basic Example). Consider the three-agent and three-object case. Let f be
the TTC rule associated with the inheritance structure h expressed in Fig. 1. Let
R ∈ R3 be as follows:

R1 = k1, k2, k3.

R2 = k2, k3, k1.

R3 = k2, k1, k3.

First, we calculate f (R) according to the algorithm.
1st Round: All the objects k1, k2, k3 point to agent h(k1) = h(k2) = h(k3) = 1.

Agents 1, 2, and 3 point to objects k1, k2, and k2, respectively. Then, the cycle (k1, 1)
occurs.Hence, agent 1 is assigned object k1 and leaveswith it.Wehave K (2, R) = {k1}
and N (2, R) = {1}.

2ndRound:All the remainingobjects k2, k3 point to agenth(k2, k1) = h(k3, k1) = 2
because h(k2) = h(k3) = 1 ∈ N (2, R) and f1(R) = k1. Both agents 2 and 3 point
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Strategy-proofness and identical... 1051

Fig. 1 This inheritance structure is discussed in Examples labeled as “Basic Example”

to object k2. Then, the cycle (k2, 2) occurs. Hence, agent 2 is assigned object k2 and
leaves with it. We have K (3, R) = {k1, k2} and N (2, R) = {1, 2}.

3rd Round: Object k3 points to agent h(k3, k1, k2) = 3 because h(k3) = 1 ∈
N (3, R), f1(R) = k1, h(k3, k1) = 2 ∈ N (3, R), and f2(R) = k2. Agent 3 points
to object k3. Then, the cycle (k3, 3) occurs. Hence, agent 3 is assigned object k3 and
leaves with it. Since there is no remaining object (agent), the algorithm terminates.
Thus, we have f (R) = (k1, k2, k3).

Let R′
1 ∈ R be as follows:

R′
1 = k2, k1, k3.

Next, we calculate f (R′
1, R−1) according to the algorithm.

1st Round: All the objects k1, k2, k3 point to agent h(k1) = h(k2) = h(k3) =
1. All the agents 1, 2, 3 point to object k2. Then, the cycle (k2, 1) occurs. Hence,
agent 1 is assigned object k2 and leaves with it. We have K (2, R′

1, R−1) = {k2} and
N (2, R′

1, R−1) = {1}.
2nd Round: Objects k1 and k3 point to agents h(k1, k2) = 2 and h(k3, k2) = 3,

respectively, because h(k1) = h(k3) = 1 ∈ N (2, R′
1, R−1) and f1(R′

1, R−1) = k2.
Agents 2 and 3 point to object k3 and k1, respectively. Then, the cycle (k1, 2, k3, 3)
occurs. Hence, agents 2 and 3 are assigned objects k3 and k1, respectively, and leave
with these. Since there is no remaining object (agent), the algorithm terminates. Thus,
we have f (R′

1, R−1) = (k2, k3, k1).

The TTC rules associated with inheritance structures include various well-known
types of rules.15

Example (Serial Dictatorial Rule). The TTC rule associatedwith the inheritance struc-
ture expressed in Fig. 2 corresponds to a serial dictatorial rule, where agent 1 can

15 The serial dictatorial and sequential dictatorial rules have been analyzed in related models by Svensson
(1999), Pápai (2001), Ehlers and Klaus (2003a), Fujinaka and Wakayama (2011), and so on.
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Fig. 2 This inheritance structure is discussed in Examples labeled as “Serial Dictatorial Rule”

Fig. 3 This inheritance structure is discussed in Examples labeled as “Housing Market Rule”

choose his most preferred object from all the objects, agent 2 can choose his most
preferred object from the remaining objects, and so on.

Example (HousingMarket Rule). The TTC rule associated with the inheritance struc-
ture expressed in Fig. 3 corresponds to a housing market rule (Shapley and Scarf
1974), where agents 1, 2, and 3 initially own objects k1, k2, and k3, respectively.

Example (Sequential Dictatorial Rule). The TTC rule associated with the inheritance
structure expressed in Fig. 4 corresponds to a sequential dictatorial rule, where agent
1 can choose his most preferred object from all the objects. When agent 1 chose object
k1 or k2, agent 2 can choose his most preferred object from the remaining objects,
and so on; when agent 1 chose object k3, agent 3 can choose his most preferred object
from the remaining objects, and so on.
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Fig. 4 This inheritance structure is discussed in Examples labeled as “Sequential Dictatorial Rule”

Table 1 Tabular representation
of the inheritance structure
discussed in Examples labeled
as “MDPE Rule”

k1 k2 k3

h(ki ) 1 1 1

h(ki , k) 3 2 3

h(ki , k, k
′) 2 3 2

Example (MDPERule). As analyzed bymany studies,16 simple inheritance structures
can be represented also by tables. The inheritance structure represented by Table 1
corresponds to a mixed dictator-pairwise-exchange rule (Ehlers 2002), where agent
1 can choose his most preferred object from all the objects, and then agent 2 inherits
object k2 (if it remains) and agent 3 inherits objects k1, k3 (if they remain), and agents
2 and 3 trade these objects.

By the following statement, Pápai (2000) has shown that the TTC rules associated
with inheritance structures coincide with the class of rules satisfying strategy-
proofness, Pareto-efficiency, non-bossiness, and reallocation-proofness.

Theorem (Pápai 2000). A rule f satisfies strategy-proofness, Pareto-efficiency, non-
bossiness, and reallocation-proofness if and only if f is a top trading cycle rule
associated with an inheritance structure h.

4.2 Abdulkadiroğlu and Sönmez (1999) rules

Abdulkadiroğlu and Sönmez (1999) have defined a class of rules17 that include the
serial dictatorial and housing market rules as extreme cases. As mentioned by Pápai
(2000), Abdulkadiroğlu and Sönmez’s (1999) rules (AS hereafter) are described as a
special subclass of the TTC rules associated with inheritance structures.

16 For example, Pápai (2000), Ehlers et al. (2002), and Ehlers and Klaus (2003b).
17 See also Sönmez and Ünver (2010).
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Table 2 Tabular representation
of the inheritance structure
expressed in Fig. 2

k1 k2 k3

h(ki ) σ (1) = 1 σ(1) = 1 σ(1) = 1

h(ki , k) σ (2) = 2 σ(2) = 2 σ(2) = 2

h(ki , k, k
′) σ (3) = 3 σ(3) = 3 σ(3) = 3

To describe them, we need some notation. Let Ke ⊂ K and Ne ⊂ N be such
that #Ke = #Ne. Denote by E a bijection function from Ke to Ne. Denote by σ a
linear ordering on N , where σ(1) means the first-highest priority agent, σ(2) means
the second-highest priority agent, and so on. For any σ and any S ⊂ N , denote by
σ−S the linear ordering on N\S that preserves the orders of σ . Hence, σ−S(1) means
the first-highest priority agent among N\S with σ , and so on.

In the AS rules, each object k in Ke is initially owned by agent E(k) in Ne as in a
housing market rule and inherited according to the linear ordering σ−E(k). The other
objects are endowed and inherited according to the linear ordering σ as in a serial
dictatorial rule.

Definition 8 An inheritance structure h is AS-type for (E, σ ) if

1. for any k ∈ Ke and any c ∈ C,

h(c) =
{
E(k) if c = (k)
σ−E(k)(�) if c = (k, k1, . . . , k�),

2. for any k1 /∈ Ke and any c = (k1, . . . , k�) ∈ C,

h(c) = σ(�).

The inheritance structures that are AS-types can be also represented by tables as
follows.

Example (Serial Dictatorial Rule). Consider the case N = {1, 2, 3} and K =
{k1, k2, k3}. Let Ke = ∅ and Ne = ∅. (Then, E is meaningless.) Let σ be such
that σ(1) = 1, σ(2) = 2, and σ(3) = 3. Then, the inheritance structure that is
AS-type for this (E, σ ) can be represented by Table 2. This corresponds to a serial
dictatorial rule (see Fig. 2).

Example (Housing Market Rule). Consider the case N = {1, 2, 3} and K =
{k1, k2, k3}. Let Ke = {k1, k2, k3} and Ne = {1, 2, 3}. Let E be such that E(k1) = 1,
E(k2) = 2, and E(k3) = 3. Let σ be such that σ(1) = 3, σ(2) = 2, and σ(3) = 1. (In
this example, σ is arbitrary.) Then, the inheritance structure that is AS-type for this
(E, σ ) can be represented by Table 3. This corresponds to a housing market rule (see
Fig. 3).

Example (Intermediate AS). Consider the case N = {1, 2, 3} and K = {k1, k2, k3}.
Let Ke = {k1, k2} and Ne = {1, 2}. Let E be such that E(k1) = 1 and E(k2) = 2.
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Table 3 Tabular representation
of the inheritance structure
expressed in Fig. 3

k1 k2 k3

h(ki ) E(k1) = 1 E(k2) = 2 E(k3) = 3

h(ki , k) σ−1(1) = 3 σ−2(1) = 3 σ−3(1) = 2

h(ki , k, k
′) σ−1(2) = 2 σ−2(2) = 1 σ−3(2) = 1

Table 4 Tabular representation
of an inheritance structure
intermediate among AS-types

k1 k2 k3

h(ki ) E(k1) = 1 E(k2) = 2 σ(1) = 1

h(ki , k) σ−1(1) = 3 σ−2(1) = 1 σ(2) = 3

h(ki , k, k
′) σ−1(2) = 2 σ−2(2) = 3 σ(3) = 2

Let σ be such that σ(1) = 1, σ(2) = 3, and σ(3) = 2. Then, the inheritance structure
that is AS-type for this (E, σ ) can be represented by Table 4. This corresponds to a
combination of a serial dictatorial rule and a housing market rule.

Remark (Basic Example). Consider the inheritance structure expressed in Fig. 1.
Although it is not AS-type, the TTC rule associated with it can be regarded as another
type of rule that is a combination of a serial dictatorial rule and a housing market rule
as follows: First, agent 1 can choose his most preferred object from all the objects. If
agent 1 chooses object k1, then the rule goes on a serial dictatorial part. That is, agent
2 can choose his most preferred object from the remaining objects, and so on. If agent
1 chooses an object other than k1, then the rule goes to a housing market part. That is,
agent 2 inherits object k1 and agent 3 inherits the remaining object k2 or k3, and then
agents 2 and 3 trade these objects.

4.3 Canonical form

AsmentionedbyPápai (2000), a rule can be expressed by theTTC rules associatedwith
different inheritance structures h and h′. For example, the TTC rule associated with
the inheritance structure expressed in Fig. 3 is equivalent to the TTC rule associated
with the inheritance structure expressed in Fig. 5, because both these rules correspond
to the same housing market rule. Hence, the way of expressing a rule in terms of the
TTC rules associated with inheritance structures is not unique.

To clarify what rules are equivalent, Pápai (2000) has introduced the canonical form
of an inheritance structure. The canonical form h∗ is converted from the original form
h in the following way. First, consider (k1) ∈ C and a preference profile where any
agent’s best object is k1. We set the agent who gets object k1 at this preference profile
as h∗(k1). Second, consider (k1, k2) ∈ C and a preference profile where agent h∗(k1)’s
best and second-best objects are k2 and k1, respectively, and any other agent’s best
object is k1.We set the agent who gets object k1 at this preference profile as h∗(k1, k2).
Third, consider (k1, k2, k3) ∈ C and a preference profile where agent h∗(k1)’s best
and second-best objects are k2 and k1, respectively, and agent h∗(k1, k2)’s best and
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Fig. 5 This inheritance structure is discussed in Examples labeled as “Housing Market Rule.” This is the
canonical form of the one expressed in Fig. 3

second-best objects are k3 and k1, respectively, and any other agent’s best object is k1.
We set the agent who gets object k1 at this preference profile as h∗(k1, k2, k3), and so
on.

By using the canonical form, we can easily find the equivalence classes of the TTC
rules associated with inheritance structures. To define it formally, we introduce some
notation.

Given an inheritance structure h and c = (k1, . . . , k�) ∈ C, we denote by R(h, c)
a preference profile such that18 for any �′ < �,

Rh(k1,...,k�′ )(h, c) = k�′+1, k1, . . . ,

and for any other agent i ,

Ri (h, c) = k1, . . . .

Definition 9 Let h be an inheritance structure. Denote by f the top trading cycle rule
associated with h. An inheritance structure h∗ is the canonical form of h if for any
c = (k1, . . . , k�) ∈ C, it follows that

fh∗(c)(R(h∗, c)) = k1.

Example (Housing Market Rule). Consider the inheritance structure h expressed in
Fig. 3. We construct the canonical form h∗ of h. Denote by f the TTC rule associated
with h. Let c = (k1). Note that R(h∗, c) is as follows:

18 Although R(h, c) is not unique, it has no influence on the canonical form.
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R1(h
∗, c) = k1, . . . ,

R2(h
∗, c) = k1, . . . ,

R3(h
∗, c) = k1, . . . .

Since f1(R(h∗, c)) = k1, we have

h∗(c) = 1.

Let c′ = (k1, k2). Then, since h∗(k1) = 1, R(h∗, c′) is as follows:

R1(h
∗, c′) = k2, k1, . . . ,

R2(h
∗, c′) = k1, . . . ,

R3(h
∗, c′) = k1, . . . .

Since f2(R(h∗, c′)) = k1, we have

h∗(c′) = 2.

Let c′′ = (k1, k2, k3). Then, since h∗(k1) = 1 and h∗(k1, k2) = 2, R(h∗, c′′) is as
follows:

R1(h
∗, c′′) = k2, k1, . . . ,

R2(h
∗, c′′) = k3, k1 . . . ,

R3(h
∗, c′′) = k1, . . . .

Since f3(R(h∗, c′′)) = k1, we have

h∗(c′′) = 3.

Repeating a similar argument for each element in C, we find that h∗ is the inheritance
structure expressed in Fig. 5.

Example (Basic Example). The inheritance structure expressed in Fig. 1 is the canon-
ical form of itself.

Example (Serial Dictatorial Rule). The inheritance structure expressed in Fig. 2 is the
canonical form of itself.

Example (Sequential Dictatorial Rule). The inheritance structure expressed in Fig. 4
is the canonical form of itself.

Example (MDPERule). The inheritance structure represented by Table 1 is the canon-
ical form of itself.

Example (IntermediateAS). The inheritance structure expressed in Fig. 6 is the canon-
ical form of the AS-type represented by Table 4.
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Fig. 6 This inheritance structure is discussed in Examples labeled as “Intermediate AS.” This is the
canonical form of the one expressed in Table 4

By the following statement, Pápai (2000) has shown that the canonical form is
useful to analyze the equivalence classes of the TTC rules associated with inheritance
structures.

Proposition (Pápai 2000). Let f be a TTC rule associated with an inheritance struc-
ture h. Then, there exists a unique h∗ that is the canonical form of h, and it follows
that f = f ∗, where f ∗ is the top trading cycle rule associated with h∗.

Example (Comprehensive). Consider the three-agent and three-object case. Then,
there exist 123 = 1728 inheritance structures. Among them, 270 inheritance structures
are canonical forms.19 In other words, the rules satisfying Pápai’s axioms consist of
270 different rules in this case.

4.4 U-symmetry

As the following remark shows, a TTC rule associated with some inheritance structure
does not satisfy the identical preferences lower bound.

Remark (Sequential Dictatorial Rule). Consider the inheritance structure h expressed
in Fig. 4. Let f be the TTC rule associated with h. For any i ∈ N , let Ri = k1, k3, k2.
Further, let R′

1 = k3, k1, k2. Then, f (R1, R2, R3) = (k1, k3, k2) and f (R′
1, R2, R3) =

(k3, k2, k1). Hence, we have

f2(R1, R2, R3) = k3P2k2 = f2(R
′
1, R2, R3).

Thus, f does not satisfy the identical preferences lower bound.

19 We explain the detailed procedure of this calculation in the supplementary materials on the author’s
Web site.
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In the following, we define a new subclass of the TTC rules associated with inher-
itance structures that satisfy the identical preferences lower bound.

Given an inheritance structure h, for any c ∈ C, define

H(c) =
⋃

c′⊂c

{h(c′)}.

For any c, c′ ∈ C, when any coordinate of c is some coordinate of c′, and vice versa,
we denote20 c � c′.

Definition 10 An inheritance structure h isU-symmetric if for any c, c′ ∈ C such that
c � c′, it holds that

H(c) = H(c′).

Remark 1 Let h be a U-symmetric inheritance structure and f be the TTC rule asso-
ciated with h. Consider c = (k1, . . . , k�) ∈ C and H(c) ⊂ N . Focus on a round of
TTC such that, until the beginning of this round, agents in I ⊂ H(c) have already
been assigned21 and their assigned objects are in {k1, . . . , k�}. Then, U-symmetry
requires that, on this round, each object remaining in {k1, . . . , k�} point to an agent22
in H(c)\ I . Thus, U-symmetrymeans, so to speak, a property right of the set of objects
{k1, . . . , k�} to the group H(c).

Example (Basic Example). We explain U-symmetry in the three-agent and three-
object case. Let N = {1, 2, 3} and K = {k1, k2, k3}. For c = (k) ∈ C, U-symmetry
obviously requires nothing. For c = (k, k′, k′′) ∈ C also, since H(c) = {1, 2, 3},
U-symmetry requires nothing. Hence, it is sufficient to focus on c = (k, k′) ∈ C.

See Fig. 7, which expresses the same inheritance structure as Fig. 1. We can easily
judge whether H(k1, k2) = H(k2, k1) by checking whether two solid circles include
the same agents. In this figure, since both the circles include the same agents 1 and 2,
we have H(k1, k2) = H(k2, k1). Similarly, we can easily judge whether H(k1, k3) =

20 For example, (k1, k2, k3, k4) � (k4, k2.k1, k3), (k1, k2, k3, k4) �� (k5, k2.k1, k3), and (k1, k2, k3, k4)
�� (k4, k2.k1).
21 We allow that some agents other than H(c) have been assigned.
22 Consider k�1 as a remaining object in {k1, . . . , k�}. When agent h(k�1 ) is remaining, k�1 points to
h(k�1 ). Note that there exists c

′ = (k�1 , . . . ) ∈ C such that c′ � c. Since (k�1 ) ⊂ c′, U-symmetry implies
that

h(k�1 ) ∈ H(c′) = H(c).

Hence, object k�1 points to an agent in H(c)\I .
When agent h(k�1 ) has been assigned object k�2 ∈ {k1, . . . , k�} and agent h(k�1 , k�2 ) is remaining, k�1
points to h(k�1 , k�2 ). Note that there exists c

′′ = (k�1 , k�2 , . . . ) ∈ C such that c′′ � c. Since (k�1 , k�2 ) ⊂
c′′, U-symmetry implies that

h(k�1 , k�2 ) ∈ H(c′′) = H(c).

Hence, object k�1 points to an agent in H(c)\I . Repeating a similar argument, we have the claim.
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Fig. 7 This inheritance structure is the same as in Fig. 1. This is used to explain U-symmetry

H(k3, k1) by checking whether two dotted circles include the same agents. In this
figure, since both the circles include the same agents 1 and 2, we have H(k1, k3) =
H(k3, k1). Similarly, we can easily judge whether H(k2, k3) = H(k3, k2) by checking
whether two dashed circles include the same agents. In this figure, since both the circles
include the same agents 1 and 3, we have H(k2, k3) = H(k3, k2). Thus, the inheritance
structure expressed in Fig. 1 is U-symmetric.

Example (Housing Market Rule). The inheritance structure expressed in Fig. 3 is
not U-symmetric, because H(k1, k2) �= H(k2, k1). However, its canonical form (the
inheritance structure expressed in Fig. 5) is U-symmetric.

Example (Serial Dictatorial Rule). The inheritance structure expressed in Fig. 2 is
U-symmetric.

Example (Sequential Dictatorial Rule). The inheritance structure expressed in Fig. 4
is not U-symmetric, because H(k1, k3) �= H(k3, k1).

Example (MDPE Rule). The inheritance structure represented by Table 1 is not U-
symmetric, because H(k1, k2) �= H(k2, k1).

Example (Intermediate AS). The inheritance structure that is AS-type represented by
Table 4 is not U-symmetric, because H(k1, k2) �= H(k2, k1). However, its canonical
form (the inheritance structure expressed in Fig. 6) is U-symmetric.

Remark 2 In general, U-symmetry can be tested as follows. Take any c =
(k1, . . . , k�) ∈ C. Consider c′ = (k′

1, . . . , k
′
�) ∈ C such that for some m, k′

m = km+1,
k′
m+1 = km , and for any t �= m,m + 1, k′

t = kt . That is, the m-th and m + 1-th coor-
dinates of c are permuted in c′. For each t , we denote h(k1, . . . , kt ) and h(k′

1, . . . , k
′
t )

simply by it and i ′t , respectively. Then, for any t < m, since kt = k′
t , we obvi-

ously have it = i ′t . Since (k1, . . . , km+1) � (k′
1, . . . , k

′
m+1), U-symmetry implies that
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{im, im+1} = {i ′m, i ′m+1}. For any t > m + 1, since (k1, . . . , kt ) � (k′
1, . . . , k

′
t ) and

{i1, . . . , im+1} = {i ′1, . . . , i ′m+1}, U-symmetry means that it = i ′t . Thus, U-symmetry
requires that

(i ′1, . . . , i ′m, i ′m+1, . . . i
′
�) =

⎧
⎨

⎩

(i1, . . . , im, im+1, . . . i�)
or
(i1, . . . , im+1, im, . . . i�).

That is, either (i1, . . . , i�) and (i ′1, . . . , i ′�) are identical, or the m-th and m + 1-th
coordinates of (i1, . . . , i�) are permuted in (i ′1, . . . , i ′�). Therefore, U-symmetry is
equivalent23 to this permutation property for any c ∈ C and any coordinate m.

Remark 3 In the supplemental materials,24 we provide an algorithm to construct U-
symmetric inheritance structures.

5 Results

Now, we state our results. All proofs are provided in Appendix.

5.1 Main results

First, we identify the class of rules satisfying strategy-proofness, Pareto-efficiency,
and the identical preferences lower bound.

Theorem 1 A rule f satisfies strategy-proofness, Pareto-efficiency, and the identical
preferences lower bound if and only if f is a top trading cycle rule associated with a
U-symmetric inheritance structure h.

Example (Basic Example). The TTC rule associated with the inheritance structure h
expressed in Fig. 1 satisfies the axioms, because h is U-symmetric.

Example (Serial Dictatorial Rule). The TTC rule associatedwith the inheritance struc-
ture h expressed in Fig. 2 satisfies the axioms, because h is U-symmetric.

Example (HousingMarket Rule). The TTC rule associated with the inheritance struc-
ture h expressed in Fig. 5 satisfies the axioms, because h is U-symmetric. Since this
rule is equivalent to the TTC rule associated with the inheritance structure h′ expressed
in Fig. 3, the latter rule also satisfies the axioms, although h′ is not U-symmetric.

As mentioned above, a rule satisfying the axioms can be described also by a TTC
rule associated with an inheritance structure that is not U-symmetric. This means that
even if a rule is described by a TTC rule associated with an inheritance structure that
is not U-symmetric, there remains a chance that the rule satisfies the axioms. In the
following, we show that the canonical form is useful to clarify not only what rules are
equivalent but also what rules satisfy the axioms.25

23 The author is grateful to an anonymous referee for the suggestion of this alternative representation.
24 This is on the author’s Web site.
25 The author appreciates an anonymous referee’s suggestion for this result.
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Proposition 1 If an inheritance structure is U-symmetric, then it is the canonical form
of itself.

Since, by this proposition, the canonical form is a necessary condition forU-symmetry,
whenwewant to show that a TTC rule associatedwith an inheritance structure satisfies
the axioms, it is necessary and sufficient to establish that the canonical form of the
inheritance structure is U-symmetric. The following corollary states this formally.

Corollary 1 A rule f satisfies strategy-proofness, Pareto-efficiency, and the identical
preferences lower bound if and only if f is a top trading cycle rule associated with an
inheritance structure h whose canonical form is U-symmetric.

Example (HousingMarket Rule). The TTC rule associated with the inheritance struc-
ture h expressed in Fig. 3 satisfies the axioms, because the canonical form of h,
expressed in Fig. 5, is U-symmetric.

Example (Sequential Dictatorial Rule). The TTC rule associated with the inheritance
structure h expressed in Fig. 4 does not satisfy the axioms, because the canonical form
of h, which is itself, is not U-symmetric.

Example (MDPE Rule). The TTC rule associated with the inheritance structure h
represented by Table 1 does not satisfy the axioms, because the canonical form of h,
which is itself, is not U-symmetric.

In the following, we establish that all TTC rules associated with inheritance struc-
tures that are AS-types satisfy the axioms. To do so, we show that the canonical form
of any inheritance structure that is AS-type is U-symmetric.

Proposition 2 Given (E, σ ), let h be the inheritance structure that is AS-type for
(E, σ ). Let h∗ be the canonical form of h. Then, h∗ is U-symmetric.

Corollary 2 All top trading cycle rules associated with the inheritance structures that
areAS-types satisfy strategy-proofness, Pareto-efficiency, and the identical preferences
lower bound.

Example (Intermediate AS). From Corollary 2, the TTC rule associated with the
inheritance structure that is AS-type represented by Table 4 satisfies the axioms. In
fact, its canonical form, expressed in Fig. 6, is U-symmetric.

Example (Comprehensive). Among the 270 inheritance structures that are canon-
ical forms, in the three-agent and three-object case, 66 inheritance structures are
U-symmetric. Of these, while 48 inheritance structures take the canonical forms of
AS-types (including the housing market and serial dictatorial rules), 18 inheritance
structures26 take the canonical forms discussed in Examples and Remark labeled as
“Basic Example.”

26 We explain the detailed procedure of this calculation in the supplementary materials on the author’s
Web site.
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6 Independence of axioms

6.1 Axioms in Theorem 1

We verify that none of the axioms in Theorem 1 is redundant. We exhibit rules that
satisfy all but one of the axioms. The no-assignment rule (which always assigns the
null object to all agents) satisfies strategy-proofness and the identical preferences
lower bound, but not Pareto-efficiency. Remark labeled as “Sequential Dictatorial
Rule” exhibits a rule satisfying strategy-proofness and Pareto-efficiency but not the
identical preferences lower bound. The following example exhibits a rule satisfying
Pareto-efficiency and the identical preferences lower bound but not strategy-proofness.

Example 2 Consider the three-agent and three-object case. Denote K = {k1, k2, k3}.
Define f as follows: For any R ∈ R3,

• if R1 = k1, k2, k3 and
1. if R2 = k1, k2, k3 or k2, k1, k3 or k2, k3, k1, then f (R) = (k1, k2, k3),
2. if R2 = k1, k3, k2 or k3, k1, k2, then f (R) = (k1, k3, k2),
3. if R2 = k3, k2, k1 and k2R3k3, then f (R) = (k1, k3, k2),
4. if R2 = k3, k2, k1 and k3R3k2, then f (R) = (k1, k2, k3);

• if R1 = k1, k3, k2 and
1. if R2 = k1, k2, k3 or k2, k1, k3, then f (R) = (k1, k2, k3),
2. if R2 = k1, k3, k2 or k3, k1, k2 or k3, k2, k1, then f (R) = (k1, k3, k2),
3. if R2 = k2, k3, k1 and k2R3k3, then f (R) = (k1, k3, k2),
4. if R2 = k2, k3, k1 and k3R3k2, then f (R) = (k1, k2, k3);

• if R1 = k2, . . . and
1. if k1R2k3 or k3R3k1, then f (R) = (k2, k1, k3),
2. if k3R2k1 and k1R3k3, then f (R) = (k2, k3, k1);

• if R1 = k3, . . . and
1. if k1R2k2 or k2R3k1, then f (R) = (k3, k1, k2),
2. if k2R2k1 and k1R3k2, then f (R) = (k3, k2, k1).

Then, f satisfies Pareto-efficiency and the identical preferences lower bound but not
strategy-proofness.

6.2 Identical preferences lower bound versus non-bossiness and
reallocation-proofness

From Remark labeled as “Sequential Dictatorial Rule,” we know that non-bossiness
and reallocation-proofness do not imply the identical preferences lower bound. The
following example exhibits a rule that satisfies the identical preferences lower bound
but violates non-bossiness and reallocation-proofness. Thus, the former property does
not imply the later ones.

Example 3 Consider the three-agent and three-object case. Denote K = {k1, k2, k3}.
Define f as follows: For any R ∈ R3,

1. if R1 = k1, k2, k3 and R2 = k3, k2, k1 and R3 = k2, k3, k1, then f (R) =
(k1, k3, k2),
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2. if R1 = k1, k3, k2 and R2 = k1, . . . or k3, k1, k2, then f (R) = (k2, k1, k3),
3. if R1 = k1, k3, k2 and R2 = k2, . . . or k3, k2, k1, then f (R) = (k1, k2, k3),
4. otherwise, f (R) = (k2, k1, k3).

This rule satisfies the identical preferences lower bound but not non-bossiness. The
proof is left to the reader. We only show that this rule does not satisfy reallocation-
proofness.

Let R1 = k3, k1, k2, R2 = k3, k1, k2, and R3 = k2, k3, k1. Then, we have

f (R1, R2, R3) = (k2, k1, k3).

Let R̃1 = k1, k2, k3 and R̃2 = k3, k2, k1. Then, we have

f (R̃1, R2, R3) = (k2, k1, k3) and f (R1, R̃2, R3) = (k2, k1, k3),

and

f (R̃1, R̃2, R3) = (k1, k3, k2).

Hence, it holds that

f2(R̃1, R̃2, R3) = k3P1k2 = f1(R1, R2, R3)

and

f1(R̃1, R̃2, R3) = k1R2k1 = f2(R1, R2, R3),

and that

f1(R1, R2, R3) = f1(R̃1, R2, R3) = k2 �= k1 = f1(R̃1, R̃2, R3)

and

f2(R1, R2, R3) = f2(R1, R̃2, R3) = k1 �= k3 = f2(R̃1, R̃2, R3).

Therefore, this rule does not satisfy reallocation-proofness.

7 Concluding remarks

We have identified the class of rules satisfying strategy-proofness, Pareto-efficiency,
and the identical preferences lower bound. We have shown that any rule of this class
can be described by a TTC rule associated with a U-symmetric inheritance structure.
Thus, if we are interested in the rules satisfying the axioms, it is sufficient to focus on
the class of the TTC rules associated with U-symmetric inheritance structures.

Although some rules satisfying the axioms can be described also by a TTC rule
associated with an inheritance structure that is not U-symmetric, we have provided
the necessary and sufficient condition to clarify whether the rule satisfies the axioms.
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Thereby, we have shown that this class includes a variety of rules, such as Abdulka-
diroğlu and Sönmez’s (1999) rules.

Acknowledgements The author thanksYuji Fujinaka,TomoyaKazumura,AnupPramanik,KojiTakamiya,
and Takuma Wakayama for their helpful comments. The author also thanks the associate editor and two
anonymous referees for their valuable comments. This work was supported by JSPS KAKENHI Grant
Number 26780117.

8 Proofs

8.1 “If” Part of Theorem 1

Let h be a U-symmetric inheritance structure. Denote by f the TTC rule associated
with h. Since Pápai (2000) has shown that f satisfies strategy-proofness and Pareto-
efficiency, we only show that f satisfies the identical preferences lower bound.

Let i ∈ N and R ∈ Rn . Let denote xi = fi (R) and x̄i = fi (R(Ri )). We show that
xi Ri x̄i . Suppose to the contrary that

x̄i Pi xi .

Then, we have

x̄i ∈ K .

We express

Ri = k1, k2, . . . , km, x̄i , . . . , xi .

Claim 1: i ∈ H(k1, . . . , km, x̄i ).
Note that

K (m + 2, R(Ri )) = {k1, k2, . . . , km, x̄i }.

Since fi (R(Ri )) = x̄i , there exists (x̄i , k̄1, . . . , k̄m̄) ∈ C such that {x̄i , k̄1, . . . , k̄m̄} ⊂
K (m + 2, R(Ri )) and

h(x̄i , k̄1, . . . , k̄m̄) = i,

which implies

i ∈ H(x̄i , k̄1, . . . , k̄m̄).

Since, for any c, c′ ∈ C such that c ⊂ c′, we have H(c) ⊂ H(c′), by U-symmetry, it
holds that

i ∈ H(k1, . . . , km, x̄i ).

�
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Let t denote the round number at R such that agent i leaves with xi . (When xi = 0,
set t as the final round number plus 1, and in the following, regard K (t, R) = K
and N (t, R) = { j ∈ N : f j (R) ∈ K }.) Note that for any k ∈ K such that kRi x̄i ,
k ∈ K (t, R). Hence, we can arrange all elements of K (t, R) in order as follows:

(
k1, k2, . . . , km, x̄i , k

′
1, . . . , k

′
m′

) ∈ C.

Claim 2: i ∈ H(k1, k2, . . . , km, x̄i , k′
1, . . . , k

′
m′).

Since, for any c, c′ ∈ C such that c ⊂ c′, we have H(c) ⊂ H(c′), by Claim 1, it holds
that

i ∈ H
(
k1, k2, . . . , km, x̄i , k

′
1, . . . , k

′
m′

)
.

�

Claim 3: #H

(
k1, k2, . . . , km, x̄i , k′

1, . . . , k
′
m′

) = #N (t, R).

Note, by definition, that

H(k1, k2, . . . , km, x̄i , k
′
1, . . . , k

′
m′)

= {h(k1)} ∪ {h(k1, k2)} ∪ · · · ∪ {h(k1, k2, . . . , km, x̄i , k
′
1, . . . , k

′
m′)}.

Since, for any c, c′ ∈ C such that c ⊂ c′ and c �= c′, we have h(c) �= h(c′), it holds
that

#H
(
k1, k2, . . . , km, x̄i , k

′
1, . . . , k

′
m′

) = #K (t, R).

Since #K (t, R) = #N (t, R), it follows that

#H
(
k1, k2, . . . , km, x̄i , k

′
1, . . . , k

′
m′

) = #N (t, R).

�

Claim 4: We have a contradiction.

Let j ∈ N (t, R). Then, there exists c ∈ C such that each coordinate of c is in
K (t, R) and h(c) = j. Further, there exists c′ ∈ C such that c ⊂ c′ and c′ �
(k1, k2, . . . , km, x̄i , k′

1, . . . , k
′
m′). By U-symmetry, it holds that

j ∈ H
(
k1, k2, . . . , km, x̄i , k

′
1, . . . , k

′
m′

)
.

Hence, we have

N (t, R) ⊂ H
(
k1, k2, . . . , km, x̄i , k

′
1, . . . , k

′
m′

)
.

Note that i /∈ N (t, R). Since, by Claim 2, we have

i ∈ H
(
k1, k2, . . . , km, x̄i , k

′
1, . . . , k

′
m′

)
,
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this implies that

#N (t, R) < #H
(
k1, k2, . . . , km, x̄i , k

′
1, . . . , k

′
m′

)
,

which contradicts Claim 3. �

Therefore, f satisfies the identical preferences lower bound. �


8.2 “Only If” Part of Theorem 1

Let f be a rule satisfying strategy-proofness, Pareto-efficiency, and the identical pref-
erences lower bound. We show that there exists a U-symmetric inheritance structure
such that f is the TTC rule associated with it.

Step 1: We construct a U-symmetric inheritance structure h from f .
For any non-empty C ⊂ K such that #C ≤ #N , define

R(C) = {Ri ∈ R : for any k ∈ C and any k′ /∈ C, kPi k
′}.

For any non-empty C ⊂ K such that #C ≤ #N and any Ri ∈ R(C), define

Ĥ(C, Ri ) = { j ∈ N : f j (R(Ri )) ∈ C}.

Claim 1-1:For any non-empty C ⊂ K such that #C ≤ #N and any Ri , R′
i ∈ R(C),

it holds that

Ĥ(C, Ri ) = Ĥ(C, R′
i ).

Let j ∈ Ĥ(C, Ri ), that is, f j (R(Ri )) ∈ C . Let R j = Ri . Then, by the identical
preferences lower bound, we have

f j (R j , R(R′
i )− j )R j f j (R(Ri )),

which means that

f j (R j , R(R′
i )− j ) ∈ C.

Then, by strategy-proofness, we have

f j (R(R′
i )) ∈ C,

which implies that

j ∈ Ĥ(C, R′
i ).

This means the desired result. �
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By Claim 1-1, we can describe Ĥ(C, Ri ) by Ĥ(C). Then, by Pareto-efficiency, for
any non-empty C ⊂ K such that #C ≤ #N , we have

#Ĥ(C) = #C.

Claim 1-2: For any non-empty C,C ′ ⊂ K such that C ⊂ C ′ and #C ′ ≤ #N , it
holds that

Ĥ(C) ⊂ Ĥ(C ′).

For simplicity of notation, we describe C = {k1, . . . , k�} and C ′ = {k1, . . . , k�, k�+1,

. . . , k�′ }. Let Ri ∈ R be as follows:

Ri = k1, . . . , k�, k�+1, . . . , k�′ , . . . .

Then, we have Ri ∈ R(C) and Ri ∈ R(C ′). Hence, we have

f j (R(Ri )) ∈ C ⇒ f j (R(Ri )) ∈ C ′,

which means that

Ĥ(C) ⊂ Ĥ(C ′).

This is the desired result. �

We construct a function h : C → N as follows: For any c = (k1) ∈ C,

{h(c)} = Ĥ({k1}).

For any m > 1 and any c = (k1, . . . , km−1, km) ∈ C,

{h(c)} = Ĥ({k1, . . . , km−1, km})\Ĥ({k1, . . . , km−1}).

This is well defined.
Claim 1-3: h is an inheritance structure.

Let c, c′ ∈ C be such that c ⊂ c′ and c �= c′. For simplicity of notation, we describe
c = (k1, . . . , km) and c′ = (k1, . . . , km, km+1, . . . , km′) with m < m′. We show that

h(c) �= h(c′).

Remember that

{h(c)} = Ĥ({k1, . . . , km−1, km})\Ĥ({k1, . . . , km−1})

and

{h(c′)} = Ĥ({k1, . . . , km−1, km′ })\Ĥ({k1, . . . , km′−1}).
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Since {k1, . . . , km−1, km} ⊂ {k1, . . . , km′−1}, by Claim 1-2, it holds that

Ĥ({k1, . . . , km−1, km}) ⊂ Ĥ({k1, . . . , km′−1}),

which implies the desired result. �

Claim 1-4: The inheritance structure h is U-symmetric.

Let c, c′ ∈ C be such that c � c′. We show that

H(c) = H(c′).

For simplicity of notation, we describe c = (k1, . . . , km). Then, by Claim 1-2, it is
sufficient to show that

H(c) ≡
⋃

c′′⊂c

{h(c′′)} = Ĥ({k1, . . . , km}).

Since, for any c′′ = (k1, . . . , k�) ⊂ c, {k1, . . . , k�} ⊂ {k1, . . . , km}, by Claim 1-2, it
holds that

{h(c′′)} = Ĥ({k1, . . . , k�−1, k�})\Ĥ({k1, . . . , k�−1}) ⊂ Ĥ({k1, . . . , km}).

Hence, we have
⋃

c′′⊂c

{h(c′′)} ⊂ Ĥ({k1, . . . , km}).

Furthermore, since #
⋃

c′′⊂c{h(c′′)} = m = #Ĥ({k1, . . . , km}), we also have

⋃

c′′⊂c

{h(c′′)} = Ĥ({k1, . . . , km}).

Therefore, h is the U-symmetric inheritance structure. �

Step 2: We show that f coincides with the TTC rule associated with h.

Let R ∈ Rn . Let (k1, i1, k2, i2, k3, . . . , im) be a cycle occurring at 1st Round of the
TTC rule associatedwith h at R. (Whenm = 1, go directly toClaim2-3.) Let R̂{i1,...,im }
be as follows:

R̂i1 = k2, k1, . . . ,

R̂i2 = k3, k2, . . . ,
...

R̂im = k1, km, . . . .

Claim 2-1: For any agent i� in the cycle and any R′−i�
∈ Rn−1, we have

fi� (R̂i� , R
′−i� ) = k� or k�+1,
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where we regard m + 1 as 1.
Without loss of generality, we focus on agent i1. Let R∗

i ∈ R be as follows:

R∗
i = k1, . . . ,

that is, R∗
i ∈ R({k1}). Since object k1 points to agent i1, it holds that

h(k1) = i1,

which means that

fi1(R(R∗
i )) = k1.

Then, by the identical preferences lower bound, for any R′−i1
∈ Rn−1, it holds that

fi1(R
∗
i1, R

′−i1)R
∗
i1 fi1(R(R∗

i )) = k1,

where R∗
i1

= R∗
i . This implies that

fi1
(
R∗
i1 , R

′−i1

) = k1.

Then, by strategy-proofness, we have

fi1
(
R̂i1 , R

′−i1

)
R̂i1k1,

which means that

fi1
(
R̂i1 , R

′−i1

)
= k1 or k2.

�

Claim 2-2: For any agent i� in the cycle and any R′−{i1,...,im } ∈ Rn−m , we have

fi�

(
R̂{i1,...,im }, R′−{i1,...,im }

)
= k�+1,

where we regard m + 1 as 1.
Without loss of generality, we focus on agent i1. Suppose that for some R′−{i1,...,im } ∈
Rn−m ,

fi1
(
R̂{i1,...,im }, R′−{i1,...,im }

)
= k1.

Then, by Claim 2-1, we have

fim
(
R̂{i1,...,im }, R′−{i1,...,im }

)
= km .
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Repeating the similar arguments, it follows that

fi1
(
R̂{i1,...,im }, R′−{i1,...,im }

)
= k1,

fi2
(
R̂{i1,...,im }, R′−{i1,...,im }

)
= k2,

...

fim
(
R̂{i1,...,im }, R′−{i1,...,im }

)
= km,

which contradict Pareto-efficiency. Hence, by Claim 2-1, for any R′−{i1,...,im } ∈ Rn−m ,
we have

fi1
(
R̂{i1,...,im }, R′−{i1,...,im }

)
= k2.

�

Claim 2-3: For any agent i� in the cycle and any R′−{i1,...,im } ∈ Rn−m , we have

fi�

(
R{i1,...,im }, R′−{i1,...,im }

)
= k�+1,

where we regard m + 1 as 1.
Let us consider the case m = 1. Since agent i1’s best object at Ri1 is k1(= k1+1),

we have Ri1 ∈ R({k1}). Since object k1 points to agent i1, it holds that

h(k1) = i1,

which means that

fi1(R(Ri1)) = k1.

Then, by the identical preferences lower bound, for any R′−i1
∈ Rn−1, it holds that

fi1(Ri1, R
′−i1)Ri1 fi1(R(Ri1)) = k1.

This implies that

fi1(Ri1 , R
′−i1) = k1.

This is the desired result.
Let us consider the casem > 1. Pick any one agent, say i1, in the cycle. Since agent

i1’s best object at Ri1 is k2, by strategy-proofness and Claim 2-2, we have

fi1
(
Ri1 , R̂{i2,...,im }, R′−{i1,...,im }

)
= k2.
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By Claim 2-1, this implies that for any other agent i� in the cycle,

fi�

(
Ri1 , R̂{i2,...,im }, R′−{i1,...,im }

)
= k�+1,

where we regard m + 1 as 1.
Next, pick any two agents, say i1 and i2, in the cycle. Then, by strategy-proofness,

we have

fi1
(
Ri1 , Ri2 , R̂{i3,...,im }, R′−{i1,...,im }

)
= k2

and

fi2
(
Ri1, Ri2 , R̂{i3,...,im }, R′−{i1,...,im }

)
= k3.

By Claim 2-1, these imply that for any other agent i� in the cycle,

fi� (Ri1 , Ri2 , R̂{i3,...,im }, R′−{i1,...,im }) = k�+1,

where we regard m + 1 as 1. Repeating the same argument, it holds that for any agent
i� in the cycle and any R′−{i1,...,im } ∈ Rn−m ,

fi�

(
R{i1,...,im }, R′−{i1,...,im }

)
= k�+1,

where we regard m + 1 as 1. �

Remark 4 Claim 2-3 means that for any agent i in any cycle occurring at 1st Round at
R, fi (R) coincides with the assignment determined by the TTC rule associated with
h at R.

Let (k′
1, i

′
1, k

′
2, i

′
2, k

′
3, . . . , i

′
m) be a cycle occurring at 2nd Round of the TTC rule

associated with h at R. (When m = 1, go directly to Claim 2-5.) Let R̂{i ′1,...,i ′m } be as
follows:

R̂i ′1 = k′
2, k

′
1, . . . ,

R̂i ′2 = k′
3, k

′
2, . . . ,

...

R̂i ′m = k′
1, k

′
m, . . . .

Claim 2-4: For any agent i ′� in the cycle and any R′
−(N (2,R)∪{i ′�}) ∈ Rn−#N (2,R)−1,

we have

fi ′�

(
R̂i ′� , RN (2,R), R

′
−(N (2,R)∪{i ′�})

)
= k′

� or k
′
� + 1.
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where we regard m + 1 as 1.
Without loss of generality, we focus on agent i ′1. For simplicity of notation, we describe
K (2, R) = {k1, . . . , k�̄}. Let R∗

i ∈ R be as follows:

R∗
i = k1, . . . , k�̄, k

′
1, . . . ,

that is, R∗
i ∈ R(K (2, R) ∪ {k′

1}). Since object k′
1 points to agent i ′1, there exists

(k′
1, k̂1, . . . , k̂�′) ∈ C such that {k̂1, . . . , k̂�′ } ⊂ K (2, R) and

h(k′
1, k̂1, . . . , k̂�′) = i ′1,

that is,

{i ′1} = Ĥ({k′
1, k̂1, . . . , k̂�′ })\Ĥ({k′

1, k̂1, . . . , k̂�′−1}).

Hence, by Claim 1-2, we have

i ′1 ∈ Ĥ(K (2, R) ∪ {k′
1}),

which means that

fi ′1(R(R∗
i )) ∈ K (2, R) ∪ {k′

1}.

Since, by the identical preferences lower bound, for any R′
−i ′1

∈ Rn−1, it holds that

fi ′1

(
R∗
i ′1
, R′

−i ′1

)
R∗
i ′1
fi ′1(R(R∗

i )),

where R∗
i ′1

= R∗
i , we have

fi ′1

(
R∗
i ′1
, R′

−i ′1

)
∈ K (2, R) ∪ {k′

1}.

From Remark 4, we know that for any R′
−N (2,R) ∈ Rn−#N (2,R),

fi ′1

(
RN (2,R), R

′
−N (2,R)

)
/∈ K (2, R).

Hence, we have

fi ′1(R
∗
i ′1
, RN (2,R), R

′
−(N (2,R)∪{i ′1})) = k′

1.

Then, by strategy-proofness, we have

fi ′1

(
R̂i ′1 , RN (2,R), R

′
−(N (2,R)∪{i ′1})

)
R̂i1k

′
1,
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which means that

fi ′1

(
R̂i ′1 , RN (2,R), R

′
−(N (2,R)∪{i ′1})

)
= k′

1 or k
′
2.

�

Claim 2-5: For any agent i ′� in the cycle and any R′

−(N (2,R)∪{i ′1,...,i ′m }) ∈
Rn−#N (2,R)−m , we have

fi ′� (R{i ′1,...,i ′m }, RN (2,R), R
′
−(N (2,R)∪{i ′1,...,i ′m })) = k′

�+1,

where we regard m + 1 as 1.
By the same argument as 1st Round, we have the desired result. �

Remark 5 Claim 2-5 means that for any agent i in any cycle occurring at 2nd Round
at R, fi (R) coincides with the assignment determined by the TTC rule associated with
h at R.

Continuing the argument in the following rounds, we have the desired result. �


8.3 Proof of Proposition 1

Let h be a U-symmetric inheritance structure. Denote by f the TTC rule associated
with h. Let c = (k1, . . . , k�) ∈ C. For any �′ ≤ �, we denote simply as follows:

h(k1, . . . , k�′) = i�′ ,

that is,

H(k1, . . . , k�) = {i1, . . . , i�}.

We show that fi� (R(h, c)) = k1.
Claim 1: For any i�′ ∈ {i1, . . . , i�−1}, we have

fi�′ (R(h, c)) �= k1.

Suppose to the contrary that for some i�′ ∈ {i1, . . . , i�−1}, it holds that

fi�′ (R(h, c)) = k1.

Since Ri�′ (h, c) = k�′+1, k1, . . . and f satisfies Pareto-efficiency, we must have some
j �= i�′ such that

f j (R(h, c)) = k�′+1.

However, since k1Pj (h, c)k�′+1, it contradicts Pareto-efficiency of f . �
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Let t denote round number at R(h, c) such that a cycle including k1 is formed.
Claim 2: K (t, R(h, c)) ⊂ {k2, . . . , k�}.

Since, for any j /∈ {i1, . . . , i�−1}, R j (h, c) = k1, . . . , and k1 /∈ K (t, R(h, c)), it holds
that

N (t, R(h, c)) ⊂ {i1, . . . , i�−1}.

Since, for any i�′ ∈ {i1, . . . , i�−1}, Ri�′ (h, c) = k�′+1, k1, . . . , and k1 /∈ K (t, R(h, c)),
we have

K (t, R(h, c)) ⊂ {k2, . . . , k�}.

�

Claim 3: At Round t , object k1 points to some agent i�∗ ∈ {i1, . . . , i�}.
Suppose to the contrary that k1 points to j /∈ {i1, . . . , i�}. That is, for some

(k1, k̂2, . . . , k̂m) ∈ C such that k̂2, . . . , k̂m ∈ K (t, R(h, c)),

h(k1, k̂2, . . . , k̂m) = j.

Let (k1, k̂2, . . . , k̂m, . . . , k̂m′) ∈ C be such that

(k1, k̂2, . . . , k̂m, . . . , k̂m′) � (k1, k2, . . . , k�),

which is well defined because k̂2, . . . , k̂m ∈ K (t, R(h, c)) ⊂ {k2, . . . , k�} by Claim
2. Then, we have

j = h(k1, k̂2, . . . , k̂m) ∈ H(k1, k̂2, . . . , k̂m, . . . , k̂m′).

Since h is U-symmetric, we also have

j ∈ H(k1, k̂2, . . . , k̂m, . . . , k̂m′) = H(k1, k2, . . . , k�).

However, since H(k1, k2, . . . , k�) = {i1, . . . , i�}, it means that j ∈ {i1, . . . , i�}, which
is a contradiction. �


In the case i�∗ = i�, since Ri� (h, c) = k1, . . . , (k1, i�) forms a cycle at R(h, c).
Thus, we have fi� (R(h, c)) = k1, which is the desired result. Hence, in the following,
we consider only the case i�∗ ∈ {i1, . . . , i�−1}.

Claim 4: At Round t , agent i�∗ points to object k�∗+1.
If i�∗ points to k1, then it holds that fi�∗ (R(h, c)) = k1, which contradicts Claim
1. Hence, i�∗ does not point to k1. Since Ri�∗ (h, c) = k�∗+1, k1, . . . and k1 /∈
K (t, R(h, c)), i�∗ points to k�∗+1. �


Claim 5: At Round t , object k�∗+1 points to some agent i�∗∗ ∈ {i1, . . . , i�}\{i�∗}.
As this is shown by a way similar to Claim 3, we omit the detail. �


In the case i�∗∗ = i�, since Ri� (h, c) = k1, . . . , (k1, i�∗ , k�∗+1, i�) forms a cycle at
R(h, c). Thus, we have fi� (R(h, c)) = k1, which is the desired result. Hence, in the
following, we consider only the case i�∗∗ ∈ {i1, . . . , i�−1}\{i�∗}.
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Repeating the similar argument, since {i1, . . . , i�} is finite, we have

fi� (R(h, c)) = k1.

Therefore, Proposition 1 is valid. �


8.4 Proof of Proposition 2

For any c = (k1, . . . , k�) ∈ C, define

Ke(c) = Ke ∪ {k1, . . . , k�}

and

Ne(c) = ∪k∈Ke(c){E(k)}.

It is sufficient to show that for any c = (k1, . . . , k�) ∈ C,

H(c) ≡
⋃

c′⊂c

{h∗(c′)} = Ne(c) ∪
�−#Ne(c)⋃

m=1

{σ−Ne(c)(m)} (1)

because the right-hand side depends only on the objects that compose c. We show this
by the following induction.

1. When c = (k1), we have (1).
2. Assume that when c = (k1, . . . , k�−1), we have (1). Then, when c = (k1, . . . , k�),

we have (1).

Denote by f the TTC rule associated with h.
The first part.

When k1 ∈ Ke, it holds that

fE(k1)(R(h∗, c)) = k1,

that is, {h∗(c)} = {E(k1)} = Ne(c). Hence, we have (1).
When k1 /∈ Ke, it holds that

fσ(1)(R(h∗, c)) = k1,

that is, h∗(c) = σ(1). Hence, we have (1). Thus, the first part is valid.
The second part.
Let t denote round number at R(h∗, c) such that k1 is included in a cycle under f .

Notice that until the end of Round t , no agent points to objects other than k1, . . . , k�

at R(h∗, c). Hence, the objects in the cycle that includes k1 at R(h∗, c) belong to
{k1, . . . , k�}. This means that any agent (also h∗(c)) in the cycle that includes k1 at
R(h∗, c) must be pointed by some object in {k1, . . . , k�} at Round t . Since the objects
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k1, . . . , k� point to only agents in Ne(c) ∪ ⋃�−#Ne(c)
m=1 {σ−Ne(c)(m)} until the end of

Round t , it implies that

h∗(c) ∈ Ne(c) ∪
�−#Ne(c)⋃

m=1

{σ−Ne(c)(m)}. (2)

Denote ĉ = (k1, . . . , k�−1). Since ĉ ⊂ c, it follows that

Ne(ĉ) ∪
(�−1)−#Ne(ĉ)⋃

m=1

{σ−Ne(ĉ)(m)} ⊂ Ne(c) ∪
�−#Ne(c)⋃

m=1

{σ−Ne(c)(m)}.

Then, by the induction hypothesis, it means that

⋃

c′⊂ĉ

{h∗(c′)} ⊂ Ne(c) ∪
�−#Ne(c)⋃

m=1

{σ−Ne(c)(m)}. (3)

Notice that

⋃

c′⊂c

{h∗(c′)} =
⋃

c′⊂ĉ

{h∗(c′)} ∪ {h∗(c)}.

By (2) and (3), it implies that

⋃

c′⊂c

{h∗(c′)} ⊂ Ne(c) ∪
�−#Ne(c)⋃

m=1

{σ−Ne(c)(m)}.

Since both the sides have the same cardinality �, we have (1).
Therefore, Proposition 2 is valid. �


References

Abdulkadiroğlu, A., Sönmez, T.: House allocation with existing tenants. J. Econ. Theory 88, 233–260
(1999)

Bade, S.: Pareto Optimal, Strategy Proof, and Non-Bossy Matching Mechanisms. mimeo, (2014)
Bevia, C.: Identical preferences lower bound solution and consistency in economies with indivisible goods.

Rev. Econ. Design 3, 195–213 (1996)
Bevia, C.: Fair allocation in a general model with indivisible goods. Soc. Choice Welfare 13, 113–126

(1998)
Ehlers, L.: Coalitional strategy-proof house allocation. J. Econ. Theory 105, 298–317 (2002)
Ehlers, L., Klaus, B.: Coalitional strategy-proof and resource-monotonic solutions for multiple assignment

problems. Soc. Choice Welfare 21, 265–280 (2003a)
Ehlers, L., Klaus, B.: Resource-monotonicity for house allocation problems. Int. J. Game Theory 32, 545–

560 (2003b)
Ehlers, L., Klaus, B.: Efficient priority rules. Games Econ Behav 55, 372–384 (2006)
Ehlers, L., Klaus, B.: Consistent house allocation. Econ. Theor. 30, 561–574 (2007). doi:10.1007/s00199-

005-0077-z

123

http://dx.doi.org/10.1007/s00199-005-0077-z
http://dx.doi.org/10.1007/s00199-005-0077-z


1078 K. Hashimoto

Ehlers, L., Klaus, B., Pàpai, S.: Strategy-proofness and population-monotonicity for house allocation prob-
lems. J. Math. Econ. 38, 329–339 (2002)

Fujinaka, Y., Sakai, T.: The manipulability of fair solutions in assignment of an indivisible object with
monetary transfers. J. Public Econ. Theory 9, 993–1011 (2007)

Fujinaka, Y., Wakayama, T.: Secure implementation in Shapley–Scarf housing markets. Econ. Theor. 48,
147–169 (2011). doi:10.1007/s00199-010-0538-x

Kesten, O.: Coalitional strategy-proofness and resource monotonicity for house allocation problems. Int. J.
Game Theory 38, 17–21 (2009)

Kesten, O., Yazıcı, A.: The pareto-dominant strategy-proof and fair rule for problemswith indivisible goods.
Econ. Theory 50, 463–488 (2012). doi:10.1007/s00199-010-0569-3

Ma, J.: Strategy-proofness and the strict core in a market with indivisibilities. Int. J. Game Theory 23, 75–83
(1994)

Moulin, H.: Uniform externalities: two axioms for fair allocation. J. Public Econ. 43, 305–326 (1990)
Pápai, S.: Strategyproof assignment by hierarchical exchange. Econometrica 68, 1403–1433 (2000)
Pápai, S.: Strategyproof and nonbossy multiple assignments. J. Public Econ. Theory 3, 257–271 (2001)
Pycia, M., Ünver, M.U.: Incentive compatible allocation and exchange of discrete resources. Theor. Econ.

12, 287–329 (2017)
Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1, 23–28 (1974)
Sönmez, T., Ünver, M.U.: House allocation with existing tenants: a characterization. Games Econ. Behav.

69, 425–445 (2010)
Sönmez, T., Ünver, M.U.: Matching, Allocation, and Exchange of Discrete Resources. In: Benhabib, J.,

Bisin, A., Jackson, M. (eds.) Handbook of Social Economics, vol. 1A, pp. 781–852. North-Holland,
The Netherlands (2011)

Svensson, L.G.: Strategy-proof allocation of indivisible goods. Soc. Choice Welfare 16, 557–567 (1999)
Thomson, W.: On monotonicity in economies with indivisible goods. Int. J. Game Theory 38, 17–21 (2003)
Thomson, W.: Non-bossiness. Soc. Choice Welfare 47, 665–696 (2016)
Thomson, W.: Strategy-Proof Allocation Rules. mimeo (2014)
Velez, R.A.: Consistent strategy-proof assignment by hierarchical exchange. Econ. Theory 56, 125–156

(2014). doi:10.1007/s00199-013-0774-y

123

http://dx.doi.org/10.1007/s00199-010-0538-x
http://dx.doi.org/10.1007/s00199-010-0569-3
http://dx.doi.org/10.1007/s00199-013-0774-y

	Strategy-proofness and identical preferences lower bound in allocation problem of indivisible objects
	Abstract
	1 Introduction
	2 Model
	3 Axioms
	4 Rules
	4.1 Pápai's (2000) Rules
	4.2 Abdulkadiroğlu and Sönmez (1999) rules
	4.3 Canonical form
	4.4 U-symmetry

	5 Results
	5.1 Main results

	6 Independence of axioms
	6.1 Axioms in Theorem 1
	6.2 Identical preferences lower bound versus non-bossiness and reallocation-proofness

	7 Concluding remarks
	Acknowledgements
	8 Proofs
	8.1 ``If'' Part of Theorem 1
	8.2 ``Only If'' Part of Theorem 1
	8.3 Proof of Proposition 1
	8.4 Proof of Proposition 2

	References




