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Abstract Experimental evidence suggests that decision-making has a stochastic ele-
ment and is better described through choice probabilities than preference relations.
Binary choice probabilities admit a strong utility representation if there exists a utility
function u such that the probability of choosing a over b is a strictly increasing func-
tion of the utility difference u(a)−u(b). Debreu (Econometrica 26(3):440–444, 1958)
obtained a simple set of sufficient conditions for the existence of a strong utility rep-
resentation when alternatives are drawn from a suitably rich domain. Dagsvik (Math
Soc Sci 55:341–370, 2008) specialised Debreu’s result to the domain of lotteries (risky
prospects) and provided axiomatic foundations for a strong utility representation in
which the underlying utility function conforms to expected utility. This paper considers
generalmixture set domains. These include the domain of lotteries, but also the domain
of Anscombe–Aumann acts: uncertain prospects in the form of state-contingent lot-
teries. For the risky domain, we show that one of Dagsvik’s axioms can be weakened.
For the uncertain domain, we provide axiomatic foundations for a strong utility rep-
resentation in which the utility function represents invariant biseparable preferences
(Ghirardato et al. in J Econ Theory 118:133–173, 2004). The latter is a wide class that
includes subjective expected utility, Choquet expected utility and maxmin expected
utility preferences. We prove a specialised strong utility representation theorem for
each of these special cases.
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630 M. Ryan

1 Introduction

Experiments provide robust evidence of randomness in choice behaviour, especially
when choosing between risky or uncertain prospects (Loomes 2005; Wilcox 2008;
Hey 2014; Hollard et al. 2016).1 Subjects are often observed to make different choices
in successive presentations of the same choice problem. Since the early 1990s increas-
ing attention has been paid to this phenomenon, and to the way in which “noise” is
modelled in the analysis of experimental data on choice behaviour.

Such lines of inquiry have prompted revisionist thinking about the descriptivemerits
of expected utility (EU). By 1995 John Hey was prepared to advance the following
tentative hypothesis:

“[O]ne can explain experimental analyses of decision-making under risk better
(and simpler) as EU plus noise – rather than through some higher level functional
– as long as one specifies the noise appropriately.” (Hey 1995, p. 640)

Numerous subsequent papers have put Hey’s hypothesis to the test. Contributions
such as Buschena and Zilberman (2000) and Schmidt and Neugebauer (2007) lend
confirmatory evidence, though contrary evidence has also been found (e.g. Loomes
and Sugden 1998; Loomes and Pogrebna 2014).

For uncertain prospects, the descriptive merits of subjective expected utility (SEU)
have also become the subject of renewed debate. The experiments of Ellsberg (1961)
originally discredited SEU by suggesting the prevalence of uncertainty (or ambiguity)
aversion. The latter entails the possibility of a strict preference for betting on a given
“risky” event—one with an objectively determined probability of occurrence—over
betting on an alternative “uncertain” event—one of unknown probability—together
with a strict preference for betting against the risky event over betting against the
uncertain event. Various generalisations of SEU that can accommodate uncertainty
aversion have been proposed, the best known of which are Choquet expected utility
(Schmeidler 1989) and maxmin expected utility (Gilboa and Schmeidler 1989).

More recently, new experimental designs have cast doubt on the prevalence of
uncertainty aversion and have restored some respectability to SEU. Halevy (2007),
for example, found that evidence against SEU all but disappears when attention is
restricted to subjectswhose behaviour is consistentwith the reductionof compound lot-
teries assumption. Approximately 18%ofHalevy’s subjects behave in conformitywith
this assumption, and96%of these exhibit behaviour that is consistentwithSEU.Abdel-
laoui et al. (2016) obtain similar, though less dramatic, results. The experiments of
Binmore et al. (2012) find substantial support for the principle of insufficient reason—
that is, subjective expected utility maximisation with equal subjective probabilities
assigned to each state—while “[t]heories that postulate a large level of ambiguity
aversion all perform badly” (ibid. p. 233). The results in Hey et al. (2010) are more
equivocal, but SEU still performs respectably in describing their aggregate data, and

1 Throughout the paper, we make the traditional Knightian distinction between a risky prospect—in which
objective probabilities are attached to each possible outcome—and an uncertain (or ambiguous) one, in
which outcomes are contingent on states without objective probabilities.
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Uncertainty and binary stochastic choice 631

better, in the sense of minimising the prediction (i.e. out-of-sample) log-likelihood,
than Choquet expected utility—see their Table 1.2

This recent experimental literature, which is ably surveyed by Hey (2014), has
prompted experimentalists to thinkmore carefully about the noise termwhen analysing
their data. Amongst theorists, it has revived interest in probabilistic models of choice.
These models characterise decision-makers through choice probabilities rather than
preference relations. The theoretical challenge is to devise parsimonious, but descrip-
tively accurate, representations for choice probabilities, validated by plausible sets of
axioms.

For binary choices, Fechnerian representations are common. Consider pairs of
alternatives drawn from a set A. Let P(a, b) denote the probability with which a
particular decision-maker chooses a from the choice set {a, b} ⊆ A. We call P the
decision-maker’s binary choice probability function. The function P has a Fechner
model, or Fechner representation, if there exists a utility function u : A → R such that
P(a, b) is a non-decreasing function of the utility difference, u(a) − u(b). If P(a, b)
is a strictly increasing function of this utility difference, we have a strong Fechner
(or strong utility) model. In the latter case, we also say that u is a strong utility for P .

If P has a Fechner model, then binary choice behaviour can be described as “noisy”
utility maximisation, with the probability of “error” being inversely related to the
absolute utility difference between the two options.

There is a small literature on the axiomatic foundations of Fechner models for
probabilistic choice between risky prospects, and an even smaller literature on Fech-
ner models for choice under uncertainty.3 The relevant portions of this literature are
briefly surveyed in Sect. 2. The present paper adds to this literature, with a particular
focus on choice under uncertainty. Since our formal analysis requires that A has a mix-
ture set structure (Herstein and Milnor 1953), we adopt the framework of Anscombe
and Aumann (1963) to describe uncertain prospects. An Anscombe–Aumann act is a
mapping from states to lotteries. We provide axiomatic foundations for strong utility
models in which the utility function u may take (respectively) the subjective expected
utility, Choquet expected utility (CEU) or maxmin expected utility (MEU) form. We
also axiomatise a strong utility model in which u represents invariant biseparable
preferences (Ghirardato et al. 2004, 2005). The latter is a rather broad class of utility
functions, which contains SEU, MEU and CEU as special cases.

Our results expose the axiomatic foundations beneath “noisy” versions of the most
popular models of choice under uncertainty. These are the models amongst which
recent experimental work seeks to adjudicate. When assessing the descriptive accu-
racy of SEU, experiments such as those of Hey et al. (2010) are really assessing the
descriptive credentials of SEU maximisation with Fechnerian noise. It is therefore
important to understand the axioms that underpin “noisy” SEU maximisation, and

2 Hey, Lotito and Maffioletti use a Bingo Blower to generate ambiguous probabilities. This allows them
to vary the ambiguity of the probabilities by varying the number and composition of balls in the blower.
The relative performance of SEU actually improves as probabilities become more ambiguous—compare
Treatment 1 to Treatment 3 in their Table 1.
3 See Sect. 5.2 of Marley and Regenwetter (2015) for a recent survey of axiomatisations of Fechner (and
Fechner-like) models in the context of risk.
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632 M. Ryan

those that underpin its noisy competitors. The present paper provides these axiomatic
foundations.

All of our representation theorems are corollaries of a more general result (Theo-
rem 1) which, though somewhat abstract, may be of independent interest. We say that
a is weakly stochastically preferred to b (denoted a �P b) if the decision-maker is at
least as likely to choose a as to choose b from the set {a, b}. That is,

a �P b iff P(a, b) ≥ 1

2
(1)

Suppose u : A → R is a utility function that represents �P , in the usual sense that
a �P b if and only if u(a) ≥ u(b). A natural question arises:

What are sufficient conditions for P to be a strictly increasing function of utility
differences measured by u?

Theorem 1 provides an answer to this question. The required conditions are joint
restrictions on P and u. The restriction on u is a restricted form of linearity that we
call M-linearity (Definition 3)4 and is partnered with a corresponding restriction on
P called Strong M-Independence (Axiom 3). The latter is a weakened form of the
Strong Independence axiom of Dagsvik (2008).

Many interesting classes of utility functions are M-linear (for suitable choice of
M). In an Anscombe–Aumann environment, the SEU, MEU and CEU classes are all
M-linear when M is the set of “constant” acts—constant mappings from states to
lotteries—as we explain in Sect. 5.

To see the practical significance of Theorem 1, fix some M-linear class of utility
functions, U . For example, U might be the class of CEU functions in an Anscombe–
Aumann environment. Theorem 1 provides a three-step “recipe” for assembling a set
of conditions on P that are sufficient for the existence of a strong utility contained in
U :
Step 1. Identify axioms on preferenceswhich are sufficient for a utility representation

within the class U . Such axioms will usually be available for utility classes of
interest. (In the case of CEU, we could use the axioms of Schmeidler (1989),
for example.)

Step 2. Impose these axioms on theweak stochastic preference relation,�P , and iden-
tify the corresponding restrictions on P by using (1). The resulting restrictions
on P ensure that �P has a utility representation u ∈ U .

Step 3. Add the Strong M-Independence axiom (plus any further restrictions on P
identified in Theorem 1).

This recipe allowsus to leverage any axiomatically groundedmodel of deterministic
choice, described by a family U of M-linear utility functions, into an axiomatically
grounded model of stochastic choice in which a utility function from U is maximised
with Fechnerian error.

4 In fact, M-linearity describes a family of properties, indexed by the set M ⊆ A on which the function
must be mixture linear. Formal definitions of mixture linearity and M-linearity are given in Sect. 3.
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The remainder of the paper is organised as follows. The next section reviews the
related literature on Fechner representation theorems. Section 3 contains our main
result (Theorem 1). The remaining sections present applications of Theorem 1. In
Sect. 4, A is a set of lotteries (the domain of risk) and we axiomatise a strong Fechner
model in which u has the EU form (Proposition 1). Dagsvik (2008, 2015) already
provided axiomatic foundations for such a model, but our axioms differ from his.
“Appendix 2” presents a variant of our representation theorem which shows that one
of Dagsvik’s (2008) axioms can be significantly weakened without jeopardising the
representation (Theorem 3). In Sect. 5, A is a set of Anscombe–Aumann acts (the
domain of uncertainty). We provide four strong Fechner representation theorems for
each of the following utility classes: invariant biseparable (Proposition 2),5 subjective
expected utility (Proposition 3), maxmin expected utility (Proposition 4) and Choquet
expected utility (Proposition 5). Section 6 provides some discussion of our results.
“Appendix 1” contains proofs omitted from the text.

2 Related literature

There are few results on the axiomatics of Fechner, or Fechner-like, models for choice
between risky or uncertain prospects. We review the key contributions here, as well
as some related work on random utility models.

2.1 Risk

For the domain of risk, Blavatskyy (2008) provides sufficient conditions for the exis-
tence of a Fechner representation with u of the expected utility form.6 Dagsvik (2008,
2015) provides sufficient conditions for a strong Fechner representation with u of the
expected utility form.7 In terms of axioms, the critical difference between the results of
Dagsvik and Blavatskyy is the stochastic version of the independence property that is
used: Strong Independence (Dagsvik 2008, Axiom 5)8 versus Common Consequence
Independence (Blavatskyy 2008, Axiom 4).

We focus on strong Fechner models in the present paper. For the domain of risk, we
obtain two sets of sufficient conditions for the existence of a strong Fechnermodelwith
u of the EU form—Proposition 1 and Theorem 3—each of which differs significantly
from the axiomatisations of Dagsvik.

5 We say that a utility function is invariant biseparable—or has the invariant biseparable form—if it
represents invariant biseparable preferences; that is, has the form indicated in Theorem 11 of Ghirardato
et al. (2004).
6 Blavatskyy’s conditions are also necessary for a strict Fechner representation (Ryan 2015), that is,
a Fechner representation for P in which the utility function represents the weak stochastic preference
relation �P . A strong Fechner representation is always strict, but the converse implication does not hold.
7 Dagsvik’s axioms are also necessary if choice probabilities are represented as a continuous and strictly
increasing function of utility differences.
8 Axiom D5∗ in Dagsvik (2015) is a weaker variant.
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634 M. Ryan

Following the lead of Wilcox (2008, 2011), recent experimental literature often
employs “contextual” Fechner models, in which choice probabilities depend on utility
differences that are “normalised” to reflect different choice contexts.9 In these models,
the same utility differencemay vary in its impact on choice depending on the particular
alternatives being compared—that is, on the “context” in which the utilities arise. A
standard Fechnerian logic applies within any fixed context.

For the domain of risk,Wilcox (2008, 2011) advocates a contextual model in which
the relevant context consists of the best and worst possible outcomes across the two
alternative lotteries under consideration. The term “contextual Fechnermodel” is often
used to refer specifically to Wilcox’s model.

Blavatskyy (2011, 2012) suggests a different specification of context, one based
on a dominance relation—first-order stochastic dominance for choice under risk
(Blavatskyy 2011) or statewise dominance for choice under uncertainty (Blavatskyy
2012). If A is a set of lotteries with outcomes inR+ (a risky domain), with each lottery
described by its associated distribution function, then the first-order stochastic dom-
inance relation induces a lattice on A. Blavatskyy’s proposed “context” for a choice
between a and b is the least upper bound and greatest lower bound for {a, b}within this
lattice. Blavatskyy (2011) provides an axiomatic foundation for a contextual Fechner
model of this sort.

All representation theorems in the present paper are for standard (i.e. context-
independent) Fechner models. Our purpose is to describe a new approach to the
construction of such theorems—one embodied in the “recipe” based on Theorem 1—
and to use this approach to prove some new representation results, especially for the
domain of uncertainty.

That said, the axiomatisation of contextual Fechnermodels is certainly an important
task for future research, and the results of Blavatskyy (2011, 2012) are valuable first
steps in this direction.

2.2 Uncertainty

For choice between uncertain prospects, the aforementioned paper by Blavatskyy
(2012) is the only axiomatisation of a Fechner(-like) model of which we are aware. In
Blavatskyy (2012), A is a set of Savage acts—functions from a given state space, S,
to an arbitrary outcome space, X (outcomes need not be lotteries)—and Blavatskyy
axiomatises a model of SEU maximisation with “contextual” Fechnerian error. The
context is based on a statewise dominance relation.Given a utility function u : A → R,
one induces a utility function on X via the utilities of constant acts (i.e. acts that assign
the same outcome to every state). We use u to denote this utility function on X also.
Given Savage acts, a and b, let a ∨ b denote a Savage act that gives, in each state s,
an outcome with utility

max {u (a(s)) , u (b(s))}

9 These are closely related to the Fechner models with heteroscedastic errors which appeared even earlier
in the experimental literature (e.g. Hey 1995; Buschena and Zilberman 2000).
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Uncertainty and binary stochastic choice 635

and let a ∧ b be a Savage act that gives, in each state s, an outcome with utility

min {u (a(s)) , u (b(s))} .

Thus, a and b are mutually statewise dominated by a ∨ b and they mutually statewise
dominate a ∧ b. The acts a ∨ b and a ∧ b provide the “context” in which a and
b are evaluated. In Blavatskyy’s (2012) representation, P(a, b) is a function of the
normalised utility difference

u(a) − u(b)

u (a ∨ b) − u (a ∧ b)
(2)

where u has the SEU form. Blavatskyy provides a set of necessary and sufficient
conditions for the existence of a representation of this form.

The present paper is complementary toBlavatskyy’swork.We considerAnscombe–
Aumann acts, rather than Savage acts, and we obtain a conventional (i.e. context-
independent) strong Fechner representation. In addition to providing an axiomatic
foundation for a strong utility of the SEU form, we also axiomatise strong Fechner
models in which u takes the CEU or MEU form, as well as a more general model in
which u may represent any invariant biseparable preference ordering.

2.3 Random utility models

Themain rivals to the Fechnermodels are the randomutilitymodels. In a randomutility
model, the decision-maker has a set of utility functions, one of which is randomly
drawn according to a fixed probability measure whenever the decision-maker has a
decision to make. The randomly selected utility function is then maximised without
error. In a random utility model, P(a, b) is the probability that a utility function is
selected for which the utility of a exceeds that of b.

Gul and Pesendorfer (2006) axiomatise a random expected utility model, which
requires all possible utility functions to have the expected utility form. Lu (2014)
provides axiomatic foundations for a randomutilitymodel for choice under uncertainty
in an Anscombe–Aumann environment. In Lu’s model, utility functions are randomly
selected from a subset of the MEU class.

Random utility models have the advantage that they exclude the possibility of
dominated alternatives being chosen. They are also suitable for studying multinomial
choice. However, they suffer from their own drawbacks. Most notably, they admit
violations of Weak Stochastic Transitivity, which requires that the weak stochastic
preference relation �P be transitive (see Luce and Suppes, 1965, Theorem 43).10 The
preponderance of experimental evidence suggests that violations of Weak Stochastic
Transitivity are rare (Rieskamp et al. 2006; Loomes et al. 2015).

10 Suppose A = {a, b, c} and there is probability 1
2 of drawing a utility function with u(b) > u (c) > u(a)

and probability 1
2 of drawing a utility function with u (c) > u(a) > u(b). Then a �P b and b �P c but

c 	P a.
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3 A general result for mixture set domains

The basic object of analysis is a binary choice probability function (BCPF) defined
over a set, A, of alternatives. This is a mapping

P : A × A → [0, 1]

that satisfies

P(a, b) = 1 − P (b, a) (3)

for all a, b ∈ A. The quantity P(a, b) is interpreted as the probability with which
the decision-maker selects a when given the choice of a or b. Abstention is not an
option—choices are “forced”—so BCPFs must satisfy the completeness (or balance)
condition (3).

Our interpretation of P(a, b) is behaviourally meaningful only if a 
= b, but it is
traditional to define P on the entire Cartesian product A × A for convenience. An
immediate implication of (3) is that

P (a, a) = 1

2

for any a ∈ A.
Given a BCPF, P , we may construct the following binary relation on A: for any

a, b ∈ A,

a �P b ⇔ P(a, b) ≥ P (b, a) ⇔ P(a, b) ≥ 1

2
(4)

where the second equivalence follows from (3). When a �P b we say that a is weakly
stochastically preferred to b. That is, a decision-maker weakly stochastically prefers
a over b if she is at least as likely to choose a from {a, b} as she is to choose b. It is
natural to think of P as a “noisy” expression of these preferences. Note, however, that
while �P is complete by construction, it need not be transitive. In particular, there
may not exist any utility representation for �P . The asymmetric and symmetric parts
of �P are denoted 	P and ∼P , respectively:

a 	P b ⇔ P(a, b) >
1

2

and

a ∼P b ⇔ P(a, b) = 1

2
.
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Following Marschak (1960) we introduce the following definitions:11

Definition 1 We call u : A → R a weak utility for P if u represents �P ; that is, if
the following holds for any a, b ∈ A:

a �P b iff u(a) ≥ u(b) (5)

Definition 2 We call u : A → R a strong utility for P if

P(a, b) ≥ P (c, d) iff u(a) − u(b) ≥ u (c) − u(d) (6)

for any a, b, c, d ∈ A.

This terminology is motivated by the following observation.

Lemma 1 If u is a strong utility for P, then u is a weak utility for P.

Proof If u is a strong utility for P , then

P(a, b) ≥ P (b, a) ⇔ u(a) ≥ u(b)

for any a, b ∈ A. Hence, using (4), we see that u is a weak utility for P . �
When P possesses a strong utility function, then choice probabilities are determined

by utility differences in the Fechnerian tradition of psychophysics (Falmagne 2002).12

Suppose u is a strong utility for P and let

Γu = {u(a) − u(b) | a, b ∈ A } (7)

be the set of utility differences generated by u. Note that Γu is symmetric about 0:
if x ∈ Γu then −x ∈ Γu . It follows that there exists a strictly increasing function
F : Γu → [0, 1] such that

P(a, b) = F (u(a) − u(b)) (8)

for any a, b ∈ A. The completeness condition (3) implies that F must also satisfy

F(x) + F (−x) = 1 (9)

11 Terminology in this area exhibits some variation. Debreu (1958) says that u is a “utility” for P when
(6) is satisfied for any a, b, c, d ∈ A. Luce and Suppes (1965) call u a “strong utility” if (6) holds whenever
P(a, b) ∈ (0, 1) and P (c, d) ∈ (0, 1).
12 There is a closely related literature in which the primitive P is replaced by a weak order �̂ on A × A,
called a difference relation, and sufficient conditions are sought for a utility-difference representation:

(a, b)�̂ (c, d) ⇔ u(a) − u(b) ≥ u (c) − u(d).

The paper byKöbberling (2006) is in this tradition and also gives a useful summary of the previous literature.
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for any x ∈ Γu . Suppose F is continuous.13 Then we may interpret F as a distribution
function—or rather, the restriction to Γu of a distribution function—for some zero-
mean, symmetrically distributed random variable, ε̃, so that

P(a, b) = F (u(a) − u(b)) = Pr
[
u(a) − u(b) ≥ ε̃

]
(10)

for any a, b ∈ A. The representation (10) is the guise in which Fechnerian models are
usually encountered by economists.

In this paper, we study conditions under which a BCPF has a strong utility repre-
sentation within specific classes of utility functions. Throughout, we assume that A
is a mixture set (Herstein and Milnor 1953). Mixture sets generalise the Euclidean
notion of a convex set. Given a, b ∈ A and λ ∈ [0, 1], we write aλb for the λ -mixture
of a and b. In particular, a1b = a and a0b = b. For example, if A is a convex subset
of R

n then

aλb = λa + (1 − λ) b

under the standard mixture operation on R
n .

Mixture sets are very familiar in the domain of risk. The unit simplex inR
n , denoted

by Δn , may be used to describe the set of all lotteries over a fixed set of n possible
outcomes. This is a mixture (indeed, convex) set under the usual mixing operation
for R

n . Similarly, spaces of distribution functions on a given interval are mixture
sets under the usual mixing operation on real-valued functions. For the domain of
uncertainty, mixture sets appear in the framework of Anscombe and Aumann (1963).
Given a set S of states and a mixture set C of consequences, an Anscombe–Aumann
act is a function from S to C. Anscombe and Aumann (1963) assume that C is a set of
lotteries but none of our formal results relies on this interpretation.14 If A is the set of
Anscombe–Aumann acts, the mixture operation on C induces a mixture operation on
A as follows: given a, b ∈ A and λ ∈ [0, 1], aλb is the Anscombe–Aumann act that
maps state s ∈ S to the consequence a(s)λb(s) ∈ C.

When A is a mixture set, we say that u : A → R is mixture linear if

u (aλb) = λu(a) + (1 − λ) u(b)

for any a, b ∈ A and any λ ∈ [0, 1]. For example, if A = Δn then EU functions are
mixture linear. The following definition generalises the notion of mixture linearity:

Definition 3 Given some M ⊆ A we say that u : A → R is M-linear if u (M) =
u (A) and

13 Right-continuity suffices for F to be a distribution function, but Dagsvik (2008) notes that condition (9)
then implies continuity. We discuss conditions under which F may be assumed to be continuous later—see
Corollary 1.
14 However, the plausibility of certain axioms may.
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Uncertainty and binary stochastic choice 639

u (aλb) = λu(a) + (1 − λ) u(b)

for any a ∈ A, any b ∈ M and any λ ∈ [0, 1].

When M = A the notion of M-linearity coincides with ordinary mixture linearity.
For future reference, it will be useful to note that the range of any M-linear function
is convex.

Lemma 2 If u is M-linear, then u (A) is an interval (i.e. a convex subset of R).

Proof Suppose x, y ∈ u (A) and λ ∈ [0, 1]. If u is M-linear, then there exist a, b ∈ M
such that u(a) = x and u(b) = y. Moreover:

u (aλb) = λx + (1 − λ) y

so λx + (1 − λ) y ∈ u (A). �

To the best of our knowledge, the notion of M-linearity has not been defined else-
where in the literature. We introduce it here for two reasons. First, because we can
identify simple conditions on P which ensure that any M-linear weak utility for P is
also a strong utility for P (Theorem 1). This is the central result of the paper. Second,
many familiar classes of utility functions are M-linear for suitable choice of M . These
include the SEU, MEU and CEU classes in the Anscombe–Aumann domain.

Example 1 Let A be the Anscombe–Aumann domain with finite state space S =
{1, . . . , S} and consequence set C. Let

Θ =
{

θ : S → [0, 1]

∣∣∣
∣∣

S∑

s=1

θ(s) = 1

}

be the set of all probability distributions over states. A utility function u : A → R has
the maxmin expected utility form if there exists a non-empty, closed and convex set
P ⊆ Θ and a mixture linear function v : C → R such that

u(a) = min
θ∈P

∑

s∈S
θ(s)v (a(s)) (11)

for all a ∈ A. Let

A = {
a ∈ A

∣∣ a(s) = a
(
s′) for eachs, s′ ∈ S }

be the set of constant acts. Since

u (A) ⊇ u
(
A
) = v (C) ⊇ u (A)
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640 M. Ryan

(where the final inclusion follows from the mixture linearity of v) we have u (A) =
u

(
A
)
. Moreover, if a ∈ A and b ∈ A with b(s) = x ∈ C for every s ∈ S, then

u (aλb) = min
θ∈P

∑

s∈S
θ(s) [λv (a(s)) + (1 − λ) v(x)]

= λ

[

min
θ∈P

∑

s∈S
θ(s)v (a(s))

]

+ (1 − λ) v(x)

= λu(a) + (1 − λ) u(b).

It follows that (11) is A-linear.

In order to state our main result, we need three axioms.

Axiom 1 (Strong Stochastic Transitivity) For all a, b, c ∈ A, if

min {P(a, b), P (b, c)} ≥ 1

2

then

P(a, c) ≥ max {P(a, b), P(b, c)} .

Strong Stochastic Transitivity is a standard assumption in the literature on binary
stochastic choice. It implies (but is not implied by) the transitivity of�P (i.e. theWeak
Stochastic Transitivity of P)—see Fishburn (1973).

Axiom 2 (Solvability) For all a, b, c ∈ A and all ρ ∈ (0, 1)

P(a, b) ≥ ρ ≥ P (a, c) ⇒ P (a, e) = ρ for some e ∈ A

This condition was introduced by Debreu (1958).15 One consequence of Axiom 2
is that A must be a sufficiently rich domain.

Our third axiom is actually a family of axioms, indexed by M ⊆ A. When inter-
preting references to “Axiom 3,” context must be used to determine which member of
the family is intended.

Axiom 3 (Strong M-Independence) For any a, b, c, d ∈ A, any e ∈ M and any
λ ∈ (0, 1),

P(a, b) ≥ P (c, d) ⇒ P (aλe, bλe) ≥ P (cλe, dλe) (12)

This notion generalises Dagsvik’s (2008) Strong Independence axiom, which
is equivalent to Strong A-Independence. Note that if M ′ ⊆ M , then Strong M-
Independence implies Strong M ′ -Independence. In other words, Dagsvik’s axiom

15 Köbberling (2006) introduces a related, but weaker, condition that she also calls solvability.
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is the “strongest” member of this family of axioms. We will use the terms Strong
Independence and Strong A-Independence interchangeably.16

Theorem 1 Let M ⊆ A be given and let P satisfy Axioms 1–3. Suppose that u : A →
R is an M-linear weak utility for P. Then u is a strong utility for P.

Theorem 1 is our main result. The rest of the paper explores various applications
of Theorem 1. To understand how this theorem may be applied, suppose we wish to
establish sufficient conditions for the existence of a strong utility for P within a given
M-linear class, U . Suppose further that we know a set of sufficient conditions for
preferences on A to have a utility representation in U . Then we can use this knowl-
edge, together with the three-step recipe from the Introduction, to obtain the desired
conditions on P . (At Step 3, we add Strong Stochastic Transitivity and Solvability, in
addition to Strong M-Independence.)17

We end this section by noting a useful corollary to Theorem 1.18

Corollary 1 Let M ⊆ A be given and let P satisfy Axioms 1–3. Suppose that u :
A → R is an M-linear weak utility for P and let I ⊆ R be a closed interval that is
symmetric about 0 and contains the set Γu defined by (7). Then there exists a zero-
mean, symmetrically and continuously distributed random variable, ε̃, with support
contained in I , such that

P(a, b) = Pr
[
u(a) − u(b) ≥ ε̃

]

for all a, b ∈ A.

It follows from Corollary 1 that all of the models presented in this paper can be
re-expressed in the familiar form (10) for some zero-mean random variable, ε̃, with
continuous and strictly increasing distribution function, F . When expressed in this
form, the axioms in our various representation theorems are also necessary, as is
easily verified.

4 Application I: choice between risky prospects

In this section, we prove a strong “expected utility” representation theorem (Proposi-
tion 1). That is, we obtain sufficient conditions for P to possess a strong utility that is
mixture linear. Our result requires only that A is a mixture set, but the Strong Inde-
pendence axiom (which underpins the result) is motivated by scenarios in which A is
a set of lotteries—a risky domain.

To state our result, we first introduce a strengthening of Axiom 2:

16 Dagsvik defines Strong Independence for A = Δn , but it is clearly meaningful for any mixture set. We
interpret it in this broader sense throughout the paper.
17 Our own proofs do not follow this recipe directly, since doing so often introduces redundancy in the set
of axioms obtained. The axioms added at Step 3 may allow some of the axioms constructed in Step 2 to be
weakened or removed.
18 Compare Dagsvik (2008, Theorem 1).
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Axiom 4 (Mixture Solvability) For all a, b, c ∈ A and all ρ ∈ (0, 1)

P(a, b) ≥ ρ ≥ P (a, c) ⇒ P (a, bλc) = ρ for some λ ∈ [0, 1]

Proposition 1 Let A be a mixture set. If P satisfies Axioms 1, 4 and Strong Indepen-
dence, then P has a strong utility that is mixture linear.

Proposition 1 is closely related to Theorem 4 in Dagsvik (2008), which also estab-
lishes sufficient conditions for a strong expected utility representation.Dagsvik’s result
is less general, in the sense that he assumes A = Δn , and also uses a different set of
axioms. In place of Strong Stochastic Transitivity (Axiom 1), Dagsvik assumes the
following:

Axiom 5 (Quadruple Condition) For all a, b, a′, b′ ∈ A:

P(a, b) ≥ P
(
a′, b′) ⇒ P

(
a, a′) ≥ P

(
b, b′) (13)

Like Strong Stochastic Transitivity, the Quadruple Condition has a long history in
the literature on stochastic choice. It appears in Debreu (1958), who attributes it to
Davidson andMarschak (1959). It is well known that the Quadruple Condition implies
Strong Stochastic Transitivity, but not conversely (Luce and Suppes 1965, Theorem
39). The extra strength of the Quadruple Condition comes at the cost of some intuitive
appeal. Strong Stochastic Transitivity has a familiar and transparent logic,19 while the
Quadruple Condition appears less compelling from a normative point of view.

In place of Mixture Solvability (Axiom 4), Dagsvik assumes two continuity con-
ditions: Axiom 2 (Solvability) and the following:

Axiom 6 (Archimedean Property) For all a, b, c ∈ A, if

P(a, b) >
1

2
> P (c, b)

then there exist α, β ∈ (0, 1) such that

P (aαc, b) >
1

2
> P (aβc, b) .

Theorem 2 (Dagsvik 2008) Let A = Δn. If P satisfies Axioms 2, 5, 6 and Strong
Independence, then P has a strong utility that is mixture linear.

In a recent paper, Dagsvik (2015, Theorem 4) shows that some of the conditions
in Theorem 2 can be relaxed without jeopardising the result: Solvability (Axiom 2)
can be dropped and Strong Independence weakened by requiring that (12) holds only
for degenerate lotteries (i.e. vertices of the simplex). In “Appendix 2” we establish
that the axioms in Theorem 2 can be weakened in another direction, again without

19 It is also equivalent to an arguably even more intuitively appealing condition, calledWeak Substitutabil-
ity—see Lemma 3 in “Appendix 1.”
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jeopardising the result (Theorem 3). We show that the Quadruple Condition (Axiom
5) can be replaced with the weaker (and more intuitively appealing) Strong Stochastic
Transitivity condition. Of course, this raises the interesting question as to whether both
sets of relaxations—those of our Theorem 3 and those of Dagsvik (2015, Theorem
4)—can be simultaneously made while preserving the existence of a mixture linear
strong utility. The answer is obscured by the fact that the two theorems use very
different proof strategies. The question remains open at this time.

5 Application II: choice between uncertain prospects

For this section (and its subsections), A will be a set of Anscombe–Aumann acts—a
domain of uncertainty. For expositional convenience, we confine attention to a finite
state space, S = {1, . . . , S}, but our results generalise straightforwardly to richer state
spaces. We use A to denote the set of constant acts (recall Example 1) and we take
the usual notational liberty of identifying A with C: if x ∈ C we also treat x as an
element of A, relying on context to indicate the intended meaning. Note, in particular,
that A is a mixture set. As discussed in Sect. 3, it is conventional to choose C to be a
space of lotteries (such as Δn) but our formal results require only that C is a mixture
set.

In Example 1 we showed that utility functions of the MEU form are A-linear. This
arises because of the Certainty independence (or C-independence) property of MEU
preferences:20 for any a, b ∈ A , any x ∈ A and any λ ∈ (0, 1),

a � b iff aλx � bλx .

Preferences of the CEU variety also enjoy this property, as do SEU preferences, which
are contained in the intersection of theMEUandCEUclasses.All these classes are spe-
cial cases of invariant biseparable preferences, which were introduced by Ghirardato
et al. (2004). Invariant biseparable preferences are characterised by C-independence
plus another four standard axioms (ibid., p. 141). Ghirardato, Maccheroni and Mari-
nacci (2004, Theorem11) describe the utility functions that represent such preferences.
We say that a utility function is “invariant biseparable” if it represents invariant bisep-
arable preferences.

We refer the reader to Ghirardato et al. (2004) for a detailed description of invariant
biseparable utility functions, which is somewhat involved. For our purposes, invariant
biseparable utilities are interesting because they are all A-linear (ibid., Lemma 1) and
they include many familiar classes of utility functions for the Anscombe–Aumann
domain, such as SEU, MEU and CEU.

Proposition 2 (below) identifies sufficient conditions for a BCPF to possess a strong
utility of the invariant biseparable form. In Sects. 5.1, 5.3 and 5.3 we refine this result
to obtain sufficient conditions for a strong utility of the SEU, MEU and CEU form,
respectively.

20 Gilboa and Schmeidler (1989) state their C-independence axiom using the strict preference relation.We
follow Ghirardato et al. (2004, 2005) definition of Certainty independence.
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To state these representation theorems, it will be convenient to exclude the unin-
teresting case in which the decision-maker is stochastically indifferent between any
two alternatives. We say that a BCPF is non-trivial if there exist a, b ∈ A such that
P(a, b) 
= 1

2 . The following axiom will also be needed for each representation theo-
rem. (In reading the statement of this axiom, recall that we identify the consequence
x ∈ C with the constant act that maps each state to x .)

Axiom 7 (Stochastic Monotonicity) For any a, b ∈ A, if

P (a(s), b(s)) ≥ 1

2

for every s ∈ S then P(a, b) ≥ 1
2 .

Proposition 2 If P is a non-trivial BCPF that satisfies Axioms 1, 4, 7 and Strong
A-Independence, then �P are invariant biseparable preferences and P has a strong
utility of the invariant biseparable form.

5.1 Strong SEU

Defining

Θ =
{

θ : S → [0, 1]

∣∣∣∣∣

S∑

s=1

θ(s) = 1

}

to be the set of all probability distributions over states, the utility function u : A → R

has the SEU form if there exists a mixture linear function v : C → R and a probability
θ ∈ Θ such that

u(a) =
S∑

s=1

θ(s)v (a(s)) (14)

for all a ∈ A. Not surprisingly, a strong utility of the form (14) is obtained by strength-
ening Strong A-Independence to Strong A-Independence in Proposition 2. This gives
the following stochastic analogue of theAnscombe andAumann (1963) representation
theorem.

Proposition 3 If P is a non-trivial BCPF that satisfies Axioms 1, 4, 7 and Strong
A-Independence, then P has a strong utility of the SEU form (14).

5.2 Strong MEU

Recall the MEU specification (11) from Example 1. To obtain this functional form,
we need to add a stochastic analogue of Gilboa and Schmeidler’s (1989) uncertainty
aversion axiom:
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Axiom 8 (Stochastic Uncertainty Aversion) For any a, b ∈ A and any λ ∈ (0, 1),

P(a, b) = 1

2
⇒ P (aλb, b) ≥ 1

2
.

Axiom 8 may be written

a ∼P b ⇒ aλb �P b

for any a, b ∈ A and any λ ∈ (0, 1). In other words, Stochastic Uncertainty Aversion
is the property of P implied by the requirement that�P satisfy uncertainty aversion—
Axiom A.5 in Gilboa and Schmeidler (1989).

Proposition 4 If P is a non-trivial BCPF that satisfies Axioms 1, 4, 7, 8 and Strong
A -Independence, then P has a strong utility of the MEU form (11).

5.3 Strong CEU

For our final application, we develop a stochastic version of Choquet expected util-
ity (Schmeidler 1989). CEU is arguably the most frequently applied alternative to
SEU. Unlike MEU, the Choquet expected utility model does not impose uncertainty
aversion—it can accommodate a wide variety of attitudes to uncertainty. However, it
does require that preferences satisfy comonotonic independence (Schmeidler 1989, p.
575), which is a stronger independence property than C-independence.

Definition 4 Let � be a weak order (complete and transitive binary relation) on A.
Acts a, b ∈ A are �-comonotonic if there do not exist states s, s′ ∈ S with a(s) 	
a

(
s′) and b

(
s′) 	 b(s), where 	 is the asymmetric part of � and we identify C with

A in the usual manner.

Axiom 9 (StochasticComonotonic Independence)For any pairwise�P -comonotonic
a, b, c ∈ A and any λ ∈ (0, 1),

P(a, b) >
1

2
⇒ P (aλc, bλc) >

1

2
.

Axiom9says that�P satisfies the comonotonic independenceproperty (Schmeidler
1989) .

A utility of the CEU class has the same form as (14), but the probability θ is replaced
by a capacity and summation by Choquet integration.

Definition 5 A capacity on S is a mapping ω : 2S → [0, 1] that satisfies ω (∅) = 0,
ω (S) = 1 and ω (A) ≤ ω (B) whenever A ⊆ B.

Capacities are non-additive generalisations of probabilities. Choquet integration
allows us to take expectations of real-valued functions with respect to capacities.21

21 The reader is referred to Schmeidler (1986, 1989) for the details of Choquet integration.
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Given a function f : S → R, let

f (S) = {x1, x2, . . . , xk}

with x1 > x2 > · · · > xk and let

Ei = {s ∈ S | f (s) = xi } .

Then

f =
k∑

i=1

xi E
∗
i (15)

where E∗
i : S → {0, 1} is the indicator function for Ei . If ω is a capacity on S, the

Choquet expectation of (15) with respect to ω is defined as follows:

∫
f dω ≡

k∑

i=1

(xi − xi+1) ω

⎛

⎝
i⋃

j=1

E j

⎞

⎠ (16)

where xk+1 = 0. When ω is additive—that is, a probability—( 16) is just the usual
expected value of f with respect to ω.

The utility function u : A → R has the CEU form if there exists a mixture linear
function v : C → R and a capacity ω on S such that

u(a) =
∫

(v ◦ a) dω (17)

Proposition 5 If P is a non-trivial BCPF that satisfies Axioms 1, 4, 7, 9 and Strong
A -Independence, then P has a strong utility of the CEU form (17).

6 Discussion

In their recent, and comprehensive, survey of Fechnerian representation theorems,
Marley and Regenwetter (2015, p. 59) observe: “Clearly, much more research is
needed in this area for uncertain (or ambiguous) gambles and representations other
than expected utility”. Our paper fills some of this gap. It also provides theoreti-
cal background for recent experimental work on binary choice between uncertain
prospects.

Hey et al. (2010) tested the “descriptive and predictive adequacy” of eight
preference-based models of decision-making under uncertainty.22 These included

22 They also tested three non-preference-based models of choice, all of which performed very badly, and
decision field theory, which is a type of randomSEUmodel. Decision field theory exhibited fair-to-middling
performance.
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SEU, MEU, CEU and three other models based on preferences within the invari-
ant biseparable class. Each utility model was embedded in a strong utility structure
(10), with Fechnerian errors drawn from a zero-mean Normal distribution.23

In terms of aggregate predictive accuracy (summarised in Table 1 of Hey, Lotito
andMaffioletti 2010), the strong SEUmodel out-performed the strong CEUmodel but
was marginally inferior to the strong MEU model. The best performing models were
those based on the “maximax” dual to MEU and on α-MEU (Ghirardato et al. 2004).
Both of these are within the invariant biseparable class; the latter is axiomatised in
Section 6 of Ghirardato et al. (2004).

Our paper provides explicit axiomatic foundations for the strong SEU, strong CEU
and strong MEU models, as well as a “recipe” for constructing axiomatisations of
strong utility models based on maximax utility and α-MEU. Corollary 1 shows that
all of our strong utility representations can be re-expressed in the form (10).

Importantly, our results provide axiomatic demarcations between the various mod-
els. Proposition 2 reveals that Strong A-Independence is a central pillar in the
foundation of any strong utility model within the invariant biseparable class. It is
a prime candidate for further testing. Propositions 4 and 5 indicate the additional
axiomatic refinements necessary to confine strong utility to theMEU andCEU classes,
respectively: Stochastic Uncertainty Aversion in the case of MEU and Stochastic
Comonotonic Independence in the case of CEU. If both axiomatic restrictions are sup-
ported by the data, there exists a strong utilitywithin the convexCEUclass (Schmeidler
1989, Proposition), which is commonly encountered in applied work.

Theorem 1 could also be used to axiomatise strong utility models beyond those
considered here, such as a probabilistic analogue of Jaffray’s (1989) linear utility
theory for (the mixture set of) belief functions over a given set of outcomes.

Of course, one limitation of our models, like all Fechner models, is the restriction to
binary choices. It is obviously desirable to have an extension tomultinomial choice, and
preferably an extension with an axiomatic foundation. One such extension is provided
by Blavatskyy (2012, Sect. 4). Let P be a BCPF defined on an arbitrary domain of
alternatives, A. Given a finite choice set C ⊆ A, let P (a|C) denote the probability
of choosing a ∈ C from C . Consider the following formula for constructing P (a|C)

from P:

P (a|C) =
∏

b∈C
P(a, b)

∑
a′∈C

[
∏

b′∈C
P (a′, b′)

] (18)

Blavatskyy (2012, p. 49) provides an axiomatic foundation for (18). One may think
of

23 For comparison, the utility models were also embedded in the context-dependent Fechner structure
proposed by Wilcox (2008). The SEU model performed slightly better in this context-dependent structure
than in the conventional strong utility formulation.
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∏

b∈C
P(a, b) (19)

as the probability that a ∈ C is a Condorcet winner amongst the “candidates” in C—
the probability that a would be chosen over every other element of C in a sequence
of binary choices. Let us therefore call (19) the Condorcet probability of choosing a
from C . The expression (18) says that the relative choice probability

P (a|C)

P (b|C)

(where a, b ∈ C) matches the relative Condorcet probability. This gives a rather
natural extension of a binary choice probabilities to multinomial choice probabilities.
In particular, it could be applied to any of the models in the present paper.24
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Appendix 1: Proofs

Proof of Theorem 1

In what follows we will make frequent use of the following well-known result:

Lemma 3 (Davidson and Marschak 1959) Let P be a BCPF. Then P satisfies Strong
Stochastic Transitivity (Axiom 1) iff it satisfies the the following condition:

P(a, b) ≥ 1

2
⇒ P (a, c) ≥ P (b, c) (20)

for any a, b, c ∈ A.

Property (20) is calledweak substitutability. Ifwe replace “⇒”with “⇔” in (20),we
obtain the substitutability condition (Tversky and Russo 1969). Weak substitutability
is obviously implied by substitutability, but the converse is false (Fishburn 1973).

The next result sets the foundation for our proof of Theorem 1.

Lemma 4 Let M ⊆ A and let P satisfy Axioms 1–3. Suppose further that �P has an
M-linear representation u : A → R and let Σ = u (A). Then there exists a function
π : Σ × Σ → [0, 1] such that

P(a, b) = π (u(a), u(b)) (21)

24 Random utility models are an alternative path to probabilistic models of multinomial choice. As noted
in Sect. 2.3, Gul and Pesendorfer (2006) and Lu (2014) consider models of this type.
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for any a, b ∈ A. Moreover, π satisfies the following conditions for any λ ∈ [0, 1]
and any x, y, x ′, y′, z ∈ Σu:

(i) π (x, y) = 1
2 iff x = y.

(ii) π (x, y) + π (y, x) = 1.
(iii) π (x, y) = π

(
x ′, y′) implies π (xλz, yλz) = π

(
x ′λz, y′λz

)
.

(iv) π is continuous in each argument.
(v) π is strictly increasing (respectively, strictly decreasing) in its first (respectively,

second) argument.

Proof Since u is M-linear,Σ is an interval inR (Lemma 2). The weak substitutability
condition—which is implied by Axiom 1 (Lemma 3)—together with (3) gives

u(a)=u(b) ⇔ P(a, b)= 1

2
⇒ P (a, c)= P (b, c) ⇔ P (c, a)= P (c, b)

for any a, b, c ∈ A. It follows that (21) determines a well-defined function π : Σ ×
Σ → [0, 1]. It remains to show that π satisfies properties (i)–(v).

Property (i) is immediate from the definition of u. Property (ii) follows from (3).
Strong M-Independence of P and the M-linearity of u imply

π (x, y) = π
(
x ′, y′) ⇒ π (xλz, yλz) = π

(
x ′λz, y′λz

)

for any x, y, x ′, y′ ∈ Σ and any z ∈ u (M). Since u (M) = u (A) = Σ , property (iii)
holds.

To establish property (iv), note that π inherits solvability with respect to its second
argument: for any x, y, z ∈ Σ and any q ∈ [0, 1], if π (z, x) ≥ q ≥ π (z, y) then
π (z, w) = q for some w ∈ Σ . The weak substitutability property, together with
(ii), implies that π is also non-increasing in its second argument. It follows that π is
continuous in its second argument. Continuity in its first argument therefore follows
from (ii).

As already noted, Strong Stochastic Transitivity (Axiom 1) implies that π is non-
increasing in its second argument. Suppose, contrary to what we need to show, that
π

(
x, y0

) = π
(
x, y1

)
for some y1 > y0. We can exclude the possibility that x ∈[

y0, y1
]
since (i) and weak monotonicity would then imply π

(
x, y0

)
< π

(
x, y1

)
.

Hence, either x > y1 > y0 or y1 > y0 > x . We only consider the former case, since
the latter may be handled similarly. Thus:

π
(
x, y0

)
= π

(
x, y1

)
>

1

2
(22)

Let λ ∈ (0, 1) satisfy y1 = y0λx and define yn = yn−1λx = y0λnx for each
n ∈ {2, 3, . . .}. Sinceπ

(
x, y0

) = π
(
x, y1

)
, property (iii) givesπ

(
x, y0

) = π (x, yn)
for all n. By continuity

lim
n→∞ π

(
x, yn

) = π (x, x) = 1

2
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which contradicts (22). This proves thatπ is strictly decreasing in its second argument.
Using (ii), we deduce that it is also strictly increasing in its first argument. �
Corollary 2 Let M ⊆ A and let P satisfy Axioms 1–3. If there is an M-linear utility
representation for �P , then P satisfies the substitutability property; that is,

P(a, b) ≥ 1

2
iff P (a, c) ≥ P (b, c) (23)

for any a, b, c ∈ A.

Proof Strong Stochastic Transitivity (Axiom 1) implies the “only if” part of (23)—
recall Lemma 3. The “if” part follows from property (v) in Lemma 4. �

Before provingTheorem1, let us outline themain obstacle to be overcome. Suppose
P satisfies Axioms 1–2 and Strong M-Independence, and suppose further that u is an
M-linear representation for �P . Consider the weak order ≥∗ on Σ × Σ represented
by the function π defined in Lemma 4:

(x, y) ≥∗ (
x ′, y′) ⇔ π (x, y) ≥ π

(
x ′, y′) .

If we can show that ≥∗ has a linear representation, then properties (i) and (v) in
Lemma 1 imply that π (x, y) = F (x − y) for some strictly increasing function F .
This gives the desired strong utility representation for P . Establishing the existence of a
linear representation for≥∗ is complicated by the fact that property (iii) is weaker than
the usual (Anscombe–Aumann) independence condition on ≥∗. Property (iii) ensures
only the Certainty independence (or C-independence) of ≥∗.25 We must therefore use
the other properties of π to make up for this deficiency.

Proof of Theorem 1 Suppose u : A → R is an M-linear representation for �P with
u (A) = u (M) = Σ . Then Σ is an interval (Lemma 2). The result is trivial if Σ is
a singleton so suppose otherwise. It is without loss of generality to assume that 0 is
contained in the interior of Σ—if not, apply a suitable affine transformation to u.

Let π be defined as in Lemma 4 and let

Λ = {(x, y) ∈ Σ × Σ | x = y} .

Figure 1 illustrates. Lemma 4 implies that Λ is the π -contour along which π = 1
2 .

Lemma 4 further implies that π is strictly increasing as we move southwards or
eastwards in Fig. 1. We need to show that all the other contours of π are parallel to
Λ. Property (ii) ensures that these contours are symmetric about Λ so it suffices to
consider the contours with π (x, y) < 1

2 (i.e. those lying above Λ in Fig. 1).
Suppose, contrary to what we seek to show, that there exist x, y, x ′, y′ ∈ Σ with

x − y = x ′ − y′ < 0

25 See Gilboa and Schmeidler (1989).
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Fig. 1 Illustrating points (x, y)
and (x ′, y′) in the proof of
Theorem 1

Σ 

Σ 

Λ (x,y) 

(x’,y’) 

Σ 

Σ 

Λ 
(x,y) 

(x’,y’) 
(z,z) 

(x’,y’’) = λ (x,y) + (1-λ)(z,z) 

π(x,y) = π(x’,y’’) 

Fig. 2 Constructing point (x ′, y′′) in the proof of Theorem 1

but

π (x, y) > π
(
x ′, y′) .

See Fig. 1 (which assumes x ′ > x).
By properties (i), (iv) and (v) ofπ , there exists some y′′ ∈ Σ such that x ′ < y′′ < y′

and π (x, y) = π
(
x ′, y′′). Since

(
x ′, y′′) lies below the line segment joining (x, y) to(

x ′, y′), we must have

(
x ′, y′′) = λ (x, y) + (1 − λ) (z, z) = (xλz, yλz) (24)

for some z ∈ R and some λ ∈ (0, 1). Figure 2 illustrates (again for the case x < x ′).
We may further assume that z ∈ Σ ; otherwise, we can use property (iii) to contract
(x, y) and

(
x ′, y′′) towards (0, 0) until this condition is satisfied.26

From (24) and the fact that

1

2
> π (x, y) = π

(
x ′, y′′) = (xλz, yλz) ,

26 Recall that 0 ∈ int (Σ).
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repeated applications of property (iii) give

1

2
> π (x, y) = π

(
xλnz, yλnz

)
for each n ∈ {1, 2, . . .} (25)

Since (xλnz, yλnz) → (z, z) as n → ∞ and π (z, z) = 1
2 , we deduce a contradiction

to the continuity property (iv). The contradiction is not quite immediate, as (iv) does
not assert the joint continuity of π . However, for the scenario depicted in Fig. 2 we
obtain the required contradiction by considering the sequence {(xλnz, z)}∞n=1, which
also converges to (z, z) and satisfies

π
(
xλnz, z

) ≤ π
(
xλnz, yλnz

)

for all n by property (v). For the alternative scenario in which x > x ′, wemay consider
the sequence {(z, yλnz)}∞n=1 instead.

This contradiction establishes that π (x, y) = π
(
x ′, y′)whenever x − y = x ′ − y′.

Since π (x, y) is strictly increasing in x − y by property (v), it follows that π (x, y) =
F (x − y) for some strictly increasing function F . �

Proof of Corollary 1

The proof of Theorem 1 establishes that P(a, b) = F (u(a) − u(b)) for some strictly
increasing F—see the discussion following the proof of Lemma 4. Property (iv) in
Lemma 4 ensures that F is continuous. We can obviously construct a continuous
extension of F to I that is non-decreasing everywhere, satisfies F(x) + F (−x) = 1
for all x ∈ I , and whose limit is 1 approaching the right-hand end of I . This will be
the distribution function for a random variable with the required properties.

Proof of Proposition 1

Suppose P satisfiesAxioms 1, 4 and Strong Independence. ByTheorem1, it suffices to
prove that�P has a mixture linear (i.e. A-linear) representation. We do so by showing
that it satisfies the conditions of Theorem 1 in Fishburn (Fisburn 1982, Chapter 2).

It is obvious that �P is complete. It is transitive by virtue of the Strong Stochastic
Transitivity of P (Axiom 1). Setting c = d in the definition of Strong A-Independence,
we see that �P inherits the following independence property: for all a, b, e ∈ A and
all λ ∈ (0, 1)

a �P b ⇒ aλe �P bλe (26)

The proof is completed by showing that

{
λ ∈ [0, 1]

∣∣∣ aλb �P c
}
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and
{
λ ∈ [0, 1]

∣∣∣ c �P aλb
}

are closed for any a, b, c ∈ A.
Fix some a, b, c ∈ A and consider the set

{
λ ∈ [0, 1]

∣∣∣ c �P aλb
}

(27)

It is without loss of generality to assume a �P b. Then aλb �P b for any λ ∈ (0, 1)
by (26). Hence, applying (26) once more, we have:

aλb �P bμ (aλb)

for any μ ∈ (0, 1). Since bμ (aλb) = a [λ (1 − μ)] b, it follows that if λ is in (27)
then so is any λ′ < λ. It remains to exclude the possibility that (27) is of the form
[0, ζ ) for some ζ > 0.

Let {λm}∞m=1 ⊆ [0, ζ ) be a convergent sequence with limit ζ . Suppose aλmb �P c
for each m, while c 	P aζb. Then

P (c, aζb) >
1

2
≥ P (c, aλmb)

for each m. Let

ρ ∈
(
P (c, aζb) ,

1

2

)
.

Given some m ∈ {1, 2, . . .}, Mixture Solvability (Axiom 4) ensures that there exists
μ ∈ (0, 1) such that

ρ = P (c, (aζb) μ (aλmb)) = P (c, a [μζ + (1 − μ) λm] b) .

Since μζ + (1 − μ) λm ∈ [0, ζ ) and ρ > 1
2 we have the desired contradiction.

The same argument (mutatis mutandis) shows that the set

{
λ ∈ [0, 1]

∣
∣∣ aλb �P c

}

is closed. This completes the proof of Proposition 1.

Proof of Proposition 2

Lemma 5 Suppose that P satisfies Axioms 1, 4 and 7. Then for every a ∈ A there
exists some a ∈ A such that a ∼P a.
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Proof Given Strong Stochastic Transitivity (Axiom 1), the binary relation�P weakly
orders the elements of

{
a(s) ∈ A | s ∈ S}

.

Suppose that s′, s′′ ∈ S are such that a
(
s′′) �P a(s) �P a

(
s′) for all s ∈ S. Then

Stochastic Monotonicity (Axiom 7) implies a
(
s′′) �P a �P a

(
s′). That is:

P
(
a, a

(
s′)) ≥ 1

2
≥ P

(
a, a

(
s′′)) .

Hence, Mixture Solvability (Axiom 4) ensures that

a ∼P a
(
s′′) λa

(
s′)

for some λ ∈ [0, 1]. �
When P satisfies Axioms 1, 4 and 7, we may therefore associate each non-constant

act a ∈ A�A with a specific (but arbitrarily chosen) certainty equivalent, denoted by
a. For every constant act a ∈ A, we define a = a. Hence, a ∈ A and a ∼P a for every
a ∈ A.

Proof of Proposition 2 The restriction of P to A× A satisfies Strong Stochastic Tran-
sitivity,Mixture Solvability and Strong A-Independence. ByProposition 1, there exists
a mixture linear function v : A → R such that

P(a, b) ≥ P (c, d) ⇔ v(a) − v(b) ≥ v (c) − v(d) for all a, b, c, d ∈ A (28)

In particular, v represents �P on A. Let u extend v to A by using Lemma 5 to define
u(a) = v (a) for all a ∈ A�A. Then u represents �P by construction. We next show
that u is A-linear.

Supposea ∈ A, x ∈ A andλ ∈ (0, 1). Since P (a, a) = 1
2 , Strong A -Independence

implies that P (aλx, aλx) = 1
2 . Thus:

u (aλx) = u (aλx) = v (aλx) = λv (a) + (1 − λ) v(x) = λu(a) + (1 − λ) u(x),

where the penultimate equality uses the fact that v : A → R is mixture linear. This
proves that u is A -linear.

Applying Corollary 2 (with M = A), and making use of (3), it follows that

P(a, b) ≥ P (c, d) ⇔ P
(
a, b

) ≥ P
(
c, d

)
for all a, b, c, d ∈ A (29)

Combining (28) and (29), we see that u is a strong utility for P .
It remains to show that u is of the invariant biseparable class.
Observe that v and u have the same range by Lemma 5. Call this common range

Σ . Since v is mixture linear, Σ is an interval in R (Lemma 2). Using Stochastic
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Monotonicity (Axiom 7), it is easy to see that there exists a well-defined function
h : Σ S → Σ such that

u(a) = h (v (a (1)) , . . . , v (a (S))) (30)

for all a ∈ A. That is, the utility of any act depends only on the v-utility obtained in each
state and is uniquely determined by these v-utilities. We use h to denote the function
that converts vectors of state-(v-)utilities into the (u-)utility of the corresponding act.

Let C denote the set of constant vectors in Σ S , and identify elements of C with
elements of Σ in the obvious fashion. We now observe that h has the following
properties: (a) h (c) = c for all c ∈ Σ ; (b) h is non-decreasing in each argument by
virtue of Stochastic Monotonicity; and (c) h is C-linear by virtue of the A-linearity
of u. In the language of Ghirardato et al. (2005), h is normalised, monotonic and
constant affine. If P is non-trivial, then Σ is a non-degenerate interval and it follows
(ibid., p. 132) that h has a unique extension h : R

S → R satisfying constant linearity:
h (ax + b) = ah(x) + b for all x ∈ R

S and all a, b ∈ R with a ≥ 0. The desired
result is now immediate from Ghirardato, Maccheroni and Marinacci (2004, Lemma
1 and Theorem 11). �

Proof of Proposition 3

Let v and u be defined as in the proof of Proposition 2 and let h: Σ S → Σ be
the function defined by (30). Non-triviality of P implies that Σ is a non-degenerate
interval (Lemma 2), which we assume, without loss of generality, to contain [−1, 1].

We first show that Strong A-Independence of P implies A-linearity of u. Let a, b ∈
A and λ ∈ (0, 1). Since P (a, a) = 1

2 we deduce that P (aλb, aλb) = 1
2 from Strong

A-Independence. Thus, u (aλb) = u (aλb). Using the A-linearity of u, we have:

u (aλb) = u (aλb)

= λu (a) + (1 − λ) u(b)

= λu(a) + (1 − λ) u(b)

Hence, u is A-linear.27

Next, we show that h is mixture linear. Let a, b ∈ A and λ ∈ [0, 1]. If xs = v (a(s))
and ys = v (b(s)), then u(a) = h(x) and u(b) = h (y). Using the A-linearity of v and
the A-linearity of u we have:

h (λx + (1 − λ) y) = u (aλb)

= λu(a) + (1 − λ) u(b)

= λh(x) + (1 − λ) h (y) .

27 We could also have applied Proposition 1 to deduce this directly.
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Hence, h is mixture linear. It has a unique linear extension h: R
S → R by standard

arguments.28 Stochastic Monotonicity (Axiom 7) implies that the coefficients of this
linear function are non-negative. Since u is non-constant, at least one coefficient is
strictly positive so the vector of coefficients can be positively scaled to lie in Θ . �

Proof of Proposition 4

Once again, let v and u be defined as in the proof of Proposition 2 and let h: Σ S → Σ

be the function defined by (30).
From Stochastic Uncertainty Aversion (Axiom 8) and the A-linearity of v, we

see that h : Σ S → Σ satisfies—in addition to the properties noted in the proof of
Proposition 2—the following: for any x, y ∈ Σ S ,

h(x) = h (y) ⇒ h (λx + (1 − λ) y) ≥ h (y) (31)

Its unique constant-linear extension h: R
S → R is therefore superadditive: that is,

h (x + y) ≥ h(x) + h (y) (32)

for any x, y ∈ R
S . To see why, let x, y ∈ R

S , x = h(x), y = h (y) and ε = x − y.
Then constant linearity and (31) give

1

2
h (x + y) + 1

2
ε = h

(
1

2
(x + y) + 1

2
ε

)

≥ 1

2
h(x) + 1

2
h (y + ε)

= 1

2
[h(x) + h (y)] + 1

2
ε

which implies (32).
The proof is completed by applying the followingwell-known result (see, for exam-

ple, Lemma 3.5 in Gilboa and Schmeidler 1989):

Lemma 6 Let h: R
S → R be a superadditive, constant-linear function that is non-

decreasing in each argument. Then there exists a closed and convex set P ⊆ Θ such

28 Here is a sketch. First, extend h to R
S by defining

h(x) = 1

μ
h (μx)

for any μ ∈ (0, 1] such that μx ∈ Σ S . (Recall that 0 is in the interior of Σ .) It can be verified that
this extension is well defined and preserves all the relevant properties of h. One may easily show that
the extended function satisfies the following for all a ∈ R and all x, y ∈ R

S : h (ax) = ah(x) and
h (x + y) = h(x) + h (y).
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that

h(x) = min
θ∈P

S∑

s=1

θ(s)xs

for every x ∈ R
S.

Proof of Proposition 5

As usual, we let v and u be defined as in the proof of Proposition 2 and let h: Σ S → Σ

be the function defined by (30). Since Σ is a non-degenerate interval we may assume,
without loss of generality, that it contains [−1, 1].

Definition 6 Vectors x, y ∈ Σ S are comonotonic if there do not exist s, s′ ∈ S with
xs > xs′ and ys′ > ys .

If P satisfies Stochastic Comonotonic Independence (Axiom 9), then h: Σ S → Σ

satisfies

h(x) > h (y) ⇒ h (λx + (1 − λ) z) > h (λy + (1 − λ) z) (33)

for any pairwise comonotonic x, y, z ∈ Σ S and any λ ∈ (0, 1). The desired represen-
tation is now an immediate implication of the following result:29

Lemma 7 (Schmeidler 1986, Corollary) Let Σ ⊆ R be a non-degenerate interval
containing [−1, 1] and let h : Σ S → Σ be a normalised, monotonic function that
satisfies (33) for any for any pairwise comonotonic x, y, z ∈ Σ S and any λ ∈ (0, 1).
Then there exists a capacity ω such that

h(x) =
∫

x dω (34)

for all x.30

Appendix 2: Strengthening Theorem 2

The following strengthensTheorem2by replacing theQuadrupleCondition (Axiom5)
with Strong Stochastic Transitivity (Axiom 1).

Theorem 3 Let A = Δn. If P satisfies Axioms 1, 2, 6 and Strong Independence, then
P has a strong utility that is mixture linear.

29 Grant and Polak (2013, Theorem 1 and Corollary (f)) provide an analogous result.
30 In (34) we treat x as a function from S to Σ rather than a vector.

123



658 M. Ryan

We use a similar argument to that for Proposition 1, except we can no longer appeal
to Mixture Solvability to establish the continuity of �P . Instead, we show that �P

possesses a linear representation by an alternative route.

Proof of Theorem 3 As in the proof of Proposition 1, we may assume that �P is a
weak order satisfying

a �P b ⇒ aλc �P bλc (35)

for all a, b, c ∈ A and all λ ∈ (0, 1). Since the result is obvious if �P is trivial (i.e.
a ∼P b for all a, b ∈ A), let us assume otherwise. From Axiom 6, we also know that
�P satisfies the following Archimedean property: for any a, b, c ∈ A

a 	P b 	P c ⇒ aλc 	P b 	P aμc (36)

for some λ,μ ∈ (0, 1). It therefore suffices (Fisburn 1982, Chapter 2) to establish that

a 	P b ⇒ aλc 	P bλc (37)

for all a, b, c ∈ A and all λ ∈ (0, 1).

Lemma 8 Condition (37) holds on the interior of A (that is, for any a, b, c ∈ A ∩
R
n++).

Proof Suppose a, b, c ∈ A ∩ R
n++ with a 	P b and aλc ∼P bλc.31 That is,

P(a, b) >
1

2
and P (aλc, bλc) = 1

2
(38)

We claim that

P(a, b) ≥ P (d, e) ≥ 1

2
⇒ P (dλc, eλc) = 1

2
(39)

for any d, e ∈ A. To see why, observe that Strong Independence and

P (d, e) ≥ 1

2
= P (c, c)

give

P (dλc, eλc) ≥ 1

2
.

The reverse inequality follows by applyingStrong Independence to P(a, b) ≥ P (d, e)
and using (38).

31 Note that bλc 	P aλc is ruled out by (35) and a 	P b.
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We next show that d = aμb and e = b satisfy the antecedent in (39) for any
μ ∈ [0, 1]. The cases μ ∈ {0, 1} are trivial so we focus on μ ∈ (0, 1).

Since

P(a, b) >
1

2
= P (b, b) = P (a, a)

we have

P (aμb, b) ≥ 1

2
(40)

and

P (a, aμb) = P (a, b (1 − μ) a) ≥ 1

2

by Strong Independence. From the latter inequality and weak substitutability (which
is implied by Strong Stochastic Transitivity—Lemma 3), we have

P(a, b) ≥ P (aμb, b) (41)

Thus, from (39)–(41):

P ((aμb) λc, bλc) = 1

2
(42)

for any μ ∈ [0, 1].
From (42) we obtain a linear segment of strictly positive length,32 parallel to the

line joining a and b, which forms part of an indifference curve for �P . Since a and
b are in the interior of the simplex, we can use the existence of this linear segment,
together with transitivity of �P and the independence property (35), to deduce that
the line segment joining a and b must also be part of an indifference curve. Figure 3
illustrates the required construction (for the case n = 3). By moving point z along the
segment from x to y, we sweep out an indifference curve joining a to b.33 This is the
desired contradiction, since a 	P b. �

Since A∩R
n++ is a mixture set (under the usual mixing operation forR

n), it follows
that �P possesses a linear representation on A∩R

n++. Let u be such a representation.
Observe that Axiom 6 is not required for the proof of Lemma 8—Strong Indepen-

dence does all the work. We now use Axiom 6 to extend the linear representation to
the boundary of the simplex.

32 Recall that a 	P b, so a 
= b.
33 Let â = aλc and b̂ = bλc. The points x and y are chosen such that a = xγ â and b = yγ b̂ for some

γ ∈ (0, 1). The independence property (35) implies that u
((

âμb̂
)

γ (xηy)
)
is constant in μ ∈ [0, 1] for

any η ∈ [0, 1].
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z 

x 

y 

a 

b 

c 

Fig. 3 Illustrating the construction in the proof of Lemma 8

First, u has a unique mixture linear extension to A. We use u to denote the extended
function, as no confusion should arise. Let a be a boundary point of A. There are two
possibilities: either (i) u(a) = u(b) for some b ∈ A ∩ R

n++ or else (ii) the face of the
simplex containing a is part of a contour of u.

For case (i) we show that a ∼P b. (It follows that a ∼P b for any boundary point a
and any interior point b on the same utility contour as a.) If, for example, a 	P b, then
we can find some c ∈ A ∩ R

n++ with u (c) < u(b) = u(a). Hence a 	P b 	P c, but
u (aλc) < u(b) for all λ ∈ (0, 1) by the mixture linearity of u. Since aλc ∈ A ∩ R

n++
for any λ ∈ (0, 1), we have b 	P aλc for all λ ∈ (0, 1), which contradicts the
Archimedean property (36). Assuming b 	P a leads similarly to contradiction.

Now consider case (ii). Thus, u is constant on the face of the simplex containing a.
Suppose, in particular, that u(a) > u(b) for all b ∈ A∩R

n++. The alternative scenario,
in which u(a) < u(b) for all b ∈ A ∩ R

n++, may be handled similarly. We will show
that a ∼P b for any b on the same face as a, and a 	P b for any b ∈ A not contained
in the face containing a. Combined with case (i), this shows that �P is represented by
u on all of A.

Suppose b ∈ A with u(a) = u(b), so b lies on the same face of the simplex as a.
If a 	P b then a 	P b 	P c for any c ∈ A ∩ R

n++. Since b 	P aλc ∈ A ∩ R
n++ for

any λ ∈ (0, 1), we deduce a contradiction to (36). Assuming b 	P a leads similarly
to contradiction.

Finally, let b ∈ A with u(a) > u(b). Assume, contrary to what we seek to show,
that b �P a. Since u(a) > u(b) we may choose some c, d ∈ A ∩ R

n++ with

u(a) > u(d) > u (c) > u(b) .

Therefore, d 	P c 	P b �P a and

u (dλa) = λu(d) + (1 − λ) u(a) > u(d) > u (c)
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It follows that dλa 	P c for all λ ∈ (0, 1). This contradicts the Archimedean property
(36) and completes the proof of Theorem 3. �
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