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Abstract A theory of economic equilibrium for incomplete financial markets in gen-
eral real assets is developed in a new formulation with currency-denominated prices.
The “goods” are not only commodities, and they can influence utility through reten-
tion as an alternative to consumption. Perfect foresight is relinquished in a rolling
horizon approach to markets which lets agents pursue long-term interests without
being sure of future prices. The framework is that of an economy operating in a fiat
currency that agents find attractive to retain, in balancewith other needs. The attractive-
ness comes from Keynesian considerations about uncertainty which until now have
not been brought in. The existence of equilibrium is established directly—not just
generically—and moreover under weaker assumptions on endowments than before,
except that utility functions are taken to be concave. Agents do not need to start out
with, or end up with, positive amounts of everything. With a single currency denomi-
nating the units of account in all states, price indeterminacy is avoided and all contracts
issued in the financial markets can be interpreted as “real contracts.” Derivative instru-
ments and collateralized contracts based on money prices are thereby encompassed
for the first time. Transaction costs on sales of contracts, generated endogenously, lead
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to bid–ask spreads and in particular to a gap between interest rates for lending and
borrowing money.

Keywords General economic equilibrium · Incomplete markets · Retainability of
goods · Derivatives and collateral · Transaction costs · Asset pricing · Variational
inequality · Variational analysis
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1 Introduction

Concerns about the future have an undoubted influence on the decisions of economic
agents in making plans that balance immediate and later needs while taking advantage
of opportunities and protecting against hazards. Nonetheless, it has not been easy
to capture this convincingly in the theory of economic equilibrium with incomplete
financial markets (GEI), especially when so-called real assets are bought and sold
and more than a merely generic assurance of the existence of equilibrium is sought.
Anticipated prices of goods must be an important ingredient, but their informational
status and connection to uncertain future supply and demand have posed difficulties
along with the serious question of whether they can be denominated in a currency
that persists beyond the present to fulfill its Keynesian1 role as a store of value and a
hedge against the unforeseen. Apart from elaborate schemes to force the explicit use of
money in transactions through cash-in-advance constraints, the GEI models available
so far have not provided for that. They have mostly expressed prices in unscaled “units
of account” which are not linked to any currency and can only reflect relative values
within a single state of the economy. Financial instruments involving payments or
options tied to a real currency have thus been left by the wayside along with even the
lending and borrowing of money between agents. Another awkward point has been
the almost universal reliance of GEI theory on requiring agents to be endowed with
positive amounts of every good and often to have preferences that forbid anything but
positive amounts in equilibrium as well.

In this paper, we push beyond such limitations by developing a model that, while
sharing core features with previous ones, differs sharply in other ways. It allows the
agents to hold null quantities of some goods both initially and in equilibrium while
moving significantly past tradition in capturing an agent’s preferences.2 It expands
sources of value beyond consumptionwhilemitigating the drawbacks of finite-horizon

1 Keynes wrote that the “desire to hold money as a store of wealth is a barometer of the degree of our
distrust of our own calculations and conventions concerning the future…” Keynes (1978b), and that money
is “above all a subtle device for linking present and future” Keynes (1978a). More can be read about his
views and their present-day relevance in recent publications of Skidelsky (2008, 2009).
2 The original version of this paper, with the same model, results, and equilibrium proof as here, was
circulated and made website-available in May 2010 under the title “General economic equilibrium with
incomplete markets and money”; the results in a streamlined case were published in Jofre et al. (2011).
The paper’s title was subsequently changed to “General economic equilibrium with financial markets and
money” and finally, in 2013, to the present title. The content in these versions has remained the same except
for evolving attempts at better explaining the ideas and their consequences.
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modeling (with its inherent “doomsday”), thereby enabling the incorporation of a
“Keynesian” currency and much more. In a two-stage format, the model generalizes
“goods” beyond their traditional range and allows agents to get utility by retaining them
instead of consuming them. Retention, concerning more than customary “durable”
goods and affecting utility not only at time 0, the present, but also at time 1, the
modeled future, helps to bridge from a past before time 0 to an unmodeled future after
time 1. It serves also as a vehicle for an agent’s longer-term interests and worries.
In line with this, the model departs from the perfect foresight approach of Radner
and others by adopting a different attitude toward prices at time 1, thereby letting
retention of goods at time 1 have a different quality than at time 0. The prices in future
spot markets do not then reflect with certainty the eventual buying power with money
and that gives an additional reason for agents to build attitudes toward holding onto
currency into their preferences.

The items we treat as goods (for want of a better term!) are “generalized goods”:
more than just commodities. They can be anything tradable in markets that enters
each state of the economy in fixed supply within the agents’ holdings. A good retained
in the present might automatically change into something else in the future. Some
goods may deteriorate in passage, but some may persist unaltered. Among the latter
can be “monetary goods,” identifiable as being readily exchangeable for other goods
as a resource backup which agents are attracted to retain, at least in some proportion
(as dictated by their utility functions), and can freely do so. Fiat money, acting as the
accepted currency in a given economy,3 fits this description in particular. Quantities
of currency, limited in overall supply, normally do, after trading, pass from present
to future unchanged in the holdings of agents (cash and interest-free accounts) in
proportions dictated by preferences.

Our generalized conception of goods also includes “investment goods” which
morph into future-sensitive returns of other goods, maybe monetary.4 Investment
goods are distinguished in our model from two-party “contracts” which sellers can
issue to buyers at time 0. The supplies of such contracts are not fixed in advance, thus
failing the test for generalized goods.

Although our assumptions on utility will guarantee that any “monetary good” could
serve as the price numéraire in all markets, we focus on the case of an economy
that indeed functions in a single currency. We make that particular “good,” referred
to as money for convenience, be the numéraire for units of account. No financial
distinction is needed then between real contracts for the delivery of goods and nominal
contracts for the delivery of units of account, which can be recast as money delivery
contracts. Moreover, the indeterminate scaling of units of account associated with
the nominal contract equilibrium of Cass (1984) andWerner (1985), as highlighted by
Geanakoplos (1990) andMagill andShafer (1991), is obviated in a simplermanner than
the layered transaction structures proposed by Magill and Quinzii (1992) and Dubey
andGeanakoplos (2003) with cash-in-advance constraints that moreover limit the total
value of transactions in a given state of the economy to the total supply of money in

3 For a review of the economic importance of fiat money, see (Krugman and Wells 2009, Chapter 14).
4 More about “investment goods” will come later. Observe that this is not akin to production, because the
utility effects permitted for retention would not be appropriate for inputs to production.
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that state—which our model avoids. The capability of relating economic value across
different states, in assessments of inflation or deflation in particular, is thereby secured.
Our money framework makes it possible—for the first time in a GEI model—to allow
the delivered amounts of goods in a contract (instead of just their market value) to
depend on the money-scaled prices in the future states, as in financial instruments like
put/call options or loans backed by collateral. Furthermore, it broadens foundations
for the existence of equilibrium by significantly relaxing the assumptions typically
imposed on the agents’ endowments. They only need to be able, without trading, to
survive (1) individually without exhausting their initial money and (2) collectively in
all states with an aggregate surplus of each other good. That improvement, relying also
on innovations in handling budget constraints, lets boundaries of the agents’ survival
sets5 come realistically into play.

Along with these developments in the theory of equilibrium, we have a secondary
aim of promoting variational analysis as a methodology which can have many uses
in economics. The familiar paradigm of classical analysis is that of fundamentally
reducing a model, at some point, to solving n equations in n unknowns, whether lin-
ear or nonlinear, and under strong assumptions of smoothness and interiority. This
is seen everywhere in economics, especially in looking toward stability and compu-
tation. Beyond that, convex analysis Rockafellar (1970) has long been put to work,
but the much larger body of mathematics that now surrounds it in variational analysis
Rockafellar and Wets (1997) has not yet attracted as much attention from economists
as it might. Variational geometry provides an alternative to the reliance on differential
geometry, which has influenced a large body of work, starting with Debreu (1970), but
emphasizes results that can only be claimed to hold generically. A strong advantage
of variational analysis is the capability that it affords for working at the boundaries
of the agents’ survival sets as well as, eventually, handling the effects of other one-
sided constraints coming from externalities. In an economywith a rich range of goods,
agents should not be obliged to hold positive quantities of all of them.

The contribution we make in that direction is to formulate equilibrium as a vari-
ational inequality problem.6 In fact, variational inequality problems are the new
paradigm beyond “n equations in n unknowns.” They are supported by extensive the-
ory that includes generalizations of the classical implicit function theorem, as available
for instance in the book Dontchev and Rockafellar (2009).7 Passage to a variational
inequality formulation also articulates an extended form of equilibrium that includes
“money rates” along with the agents’ decisions.8 It furthermore opens the door to a

5 Agents are then no longer required to enter each state with a positive quantity of every good, as typically
has been assumed to facilitate proving the existence of equilibrium.
6 For existence of solutions, this amounts to a advantageously structured setup for locating a fixed point.
7 We aim at applying that theory in later work to investigate the degree to which an equilibrium, as
formulated here, may be “locally unique” and nicely behaved with respect to shifts in parameters such as
the agents’ endowments. For one-stage nonfinancial models, that program has already been initiated with
surprising results in our paper (Jofre et al. 2013), drawing on recent work of Dontchev and Rockafellar
(2012).
8 Our existence development centers, in effect, on this full combination of equilibrium elements as the
targeted “fixed point.” Condensing it to a customary type of fixed point argument in “price space” alone
would be extremely unwieldy and result in lost information.
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range of methodology, hitherto unexploited in GEI, which has potential for getting
beyond past obstacles in stability analysis and computation.
Summary of the main new features of the model.

• Retention of goods, directly affecting an agent’s utility, is introduced as a fun-
damental source of value beyond consumption. Time periods and markets are
reinterpreted in this light to help capture at least roughly, even in a two-stage
framework, ongoing economic activity that emerges from the past and continues
to an indefinite future.

• The concept of goods is generalized accordingly to cover even financial elements,
including currency, which can be desired for retention apart from consumption. A
currency can serve then as the numéraire which links prices across all states and
times.

• Markets in financial assets are reconstituted so as to handle “investment goods”
in one way and two-party “contracts’ in another, thereby letting the former to be
open to retention.

• The goods deliveries promised in contracts can depend on the currency-
denominated future prices of those goods. Instruments like call/put options and
collateralized loans are covered then without the scaling ambiguities of the “units
of account” in previous approaches.

• The retainability of money underpins the existence of equilibrium even if agents
have little or no interest in most of the goods in the markets and without the typical
assumption that agents are individually endowed with more of every good than
their survival would require.

• Market-derived costs associated with issuing contracts induce bid–ask spreads in
contract prices and in particular a gap between interest rates in the borrowing and
lending of money.

• Connections between marginal utility and money lead to imputed probabilities
and discount rates. Refined rules of asset evaluation utilizing them furnish new
insights into agents’ behavior.

In Sect. 2, we present the basics of the model, formulate equilibrium, explain
some of its immediate characteristics, and state our existence theorem. A discussion
of the key features, especially the treatment of money, and connections with other
models is undertaken then in Sect. 3. In Sect. 4, we introduce the money rates and
employ them in a saddle point characterization of optimality in the agents’ utility
problems. This is followed by results that tie the money rates to the marginal utility
of money and develop corresponding discounting rules for the pricing of contracts.
Section 5 develops the variational inequality representation of equilibrium that our
proof of existence is organized around. The “Appendix” lays out the proof itself in
truncation steps with novel features such as the application of duality theory in convex
optimization in order to derive bounds on the money rates. Such effort is vital in the
face of our extremely relaxed assumptions on survival, and in working directly with
money-denominated prices instead of relative prices in a simplex format.
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2 Goods, contracts, and equilibrium

The model has a single present state s = 0 at time t = 0 but a possible multiplicity
of future states s = 1, . . . , S at time t = 1. Agents i = 1, . . . , I are endowed in
these states with nonnegative vectors ei (s) of goods l = 0, 1, . . . , L ,9,10 and can plan
for trading those goods in markets as governed by price vectors p(s) with compo-
nent prices pl(s). Good 0 will play a special role as the money in the economy.11

Because good 0 will end up scaling all the units of account, we only deal with money-
denominated prices and accordingly take

pl(s) ≥ 0 for l = 1, . . . , L , but p0(s) = 1 in all states s. (1)

However, we do not see the spot markets in future goods as having the same economic
character as thepresent “real”markets. Insteadwe see themas informational “stagings”
or “rehearsals” for markets which will take place only later, as will be explained in
Sect. 3.

The tradingof agent i aims at achieving anoptimal balanceover timeanduncertainty
between consumption, represented by goods vectors ci (s), and retention, represented
by goods vectors wi (s); it will be convenient to speak of wi (s) as the wealth of agent
i at the end of the period in state s. The preferences of agent i among these vectors
are ordered by their overall utility

ui (wi , ci ), wi = (wi (0), wi (1), . . . , wi (S)), ci = (ci (0), ci (1), . . . , ci (S)), (2)

for a concave function ui : (IR 1+L)2(1+S) → [−∞,∞) which is nondecreasing (but
not necessarily always increasing) in all arguments and upper semicontinuous.12 The
set

Ui = {
(wi , ci )

∣∣ ui (wi , ci ) > −∞}
, with ∅ �= Ui ⊂

(
IR 1+L

+
)2(1+S)

, (3)

which is convex because ui is concave, is the survival set for agent i . The upper
semicontinuity of ui corresponds to the level sets of the form

{
(wi , ci )

∣∣ ui (wi , ci ) ≥
α
}
for finite α being closed, but the setUi need not be closed.13 However, we assume

that ui is actually continuous relative toUi . Note that neither differentiability nor strict

9 The endowments in state s = 0 serve also as a repository for resources transmitted from the past.
10 Nonnegativity in goods can be relaxed by an obvious trick, which could be important eventually. The
goods quantities here could be reinterpreted as distances above negative but naturally generated lower
bounds for the “true” goods in the economy, with negativity standing for “debts” carried over from past
obligations.
11 The amounts of this money good component in the endowment vectors ei (s) might be provided or
manipulated by a government, but that will not be pursued here.
12 Assuming concavity in place of quasi-concavity is highly beneficial to our later analysis. Although this
is more restrictive than usual, our utilities are in other ways much less restrictive than usual.
13 Utility might tend to −∞ at a point in the boundary of Ui is approached, or even if it stays bounded it
could jump to −∞ as the boundary is crossed.
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concavity is asked of ui . Agent i might, in reality, have zero interest in most of the
goods, and quickly dwindling interest in others.14

Through Ui , which can be far more general than the orthant usually seen, or even
a shifted orthant produced by lower bounds on some goods, intertemporal constraints
on consumption and retention may even be reflected. Many details of utility struc-
ture could of course be plumbed for consequences, such as an expectational form
ui (wi , ci ) = ∑S

s=1 βisuis(wi (0), ci (0), wi (s), ci (s)) with βis being the probability
assigned by agent i to the future state s. Even better, ui (wi , ci ), could be the min-
imum of such expectations with respect to a collection Bi of alternative probability
assignment vectors βi so as to reflect “ambiguity” in the assessments of the agent.
Such ambiguity has been a topic for many economists, for instance in Maccheroni
et al. (2006), Strzalecki (2011) and very recently He and Yannelis (2015), and it ties
in well with the theory of “measures of risk” in finance, cf. Rockafellar and Uryasev
(2013). 15

The role of retention. The wealth wi (0) at time 0 is passed on to state s at time 1 as
Ai (s)wi (0), where Ai (s) is a matrix with nonnegative entries. We say that

a good lcan freely be saved if column l of Ai (s) has 1 in row l, but otherwise 0.

Instead a good could gain or diminish in quantity, or evolve in this manner to some-
thing else, even a boundle of other goods, about which more will be said below.16

Some goods may be more suitable for consumption or for retention, and that could be
accommodated with additional complexity of notation, but it is easier mathematically
to allow a dual role for every good and let utility functions sort out what happens.
For goods suitable for both, there is an advantage also because a quantity can be split
into the two different modes. An agent could plan at time 0 to consume some wine in
a state s at time 1 while retaining some more for the unmodeled future after time 1.
Agents expect that future to come into view when time 1 is reached.
Attractiveness of goods. In tackling the problem differently, we proceed as follows. A
good l will be called attractive for consumption to agent i in state s if any increase
in the l component of the vector ci (s) results in higher utility, or on the other hand,
attractive for retention if this holds for wi (s). It is always attractive for consumption,
or as the case may be, retention, if this holds for every state s = 0, 1, . . . , S. The
attractiveness of a good serves as a specific source of insatiability in an agent’s utility.
For the money in our model, this will be a key property.

14 An equilibrium model that does not account for this must, in our opinion, be seen as seriously falling
short. Such lack of interest can extend to either consumption or retention or both, depending on the “good.”
15 It should be noted, in connection with our assumption of concavity of ui instead of the more com-
mon quasi-concavity, that this is followed also by researchers working nowadays with “ambiguity,” since
expectations of quasi-concave functions can hardly ever themselves be just quasi-concave.
16 This transformation might seem like elementary “home production” in which inputs within wi (0) lead
to output bundles Ai (s)wi (0), but an important distinction needs to be underscored. Retaining wi (0) may
boost ui , but in production the benefits have always been connected with outputs. Agents have never been
portrayed as getting utility directly from the quantities of goods they may devote to inputs, and therefore
our retention vectors wi (0) cannot rightly be interpreted as production inputs.
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Financial support assumption.Good 0 is always attractive to every agent i for retention
and can freely be saved.
Financial markets. We distinguish between financial instruments that deliver from
exogenous sources (outside the agents’ holdings) and, on the other hand, assets
in the form of freshly written two-party agreements between agents, where one
party promises delivery and the other receives it. The instruments belonging
to the first category are handled as investment goods. The term contracts is
reserved here for instruments in the second category, even though various instru-
ments in the first category might sometimes be echoes of contracts written in the
past.

The contracts in our model are not themselves “goods,” even in our broadened
conception. Rather they are general “real assets” which deliver in goods, and they can
be held in either “long” positions (buyers) or “short” positions (sellers). However, it is
important to understand that because their deliveries leave total supplies unaffected,
they come down just to transferring to the recipient’s budget the market value of
the promised goods in money units calculated from the money-denominated prices,
at which point the recipient can buy those goods, but may have other preferences.
The total quantities of goods promised for delivery are liberated then from having
to bow to the total supplies.17 Since essentially only values have to be delivered
by a two-party contract in the end, instead of physical piles of cash, the restricted
supply of such cash is no impediment to the scale of transactions in the economic
model.

Investment goods are initially present in fixed amounts within the agents’ endow-
ments. They are exchangeable in markets (even in fractions) and are open to being
transferred from time 0 to time 1 in the retention process described above. An invest-
ment good in the form of a bond could, for instance, be converted in passage to a
money payment plus a truncated bond. An investment good in the form of owning a
share of stock could turn into future-state-dependent dividends with ownership per-
sisting.18 Yet another type of investment good could be the right to a portion of some
production stream, which in the future would yield bundles of products.

The possible presence of investment goods alongside of two-party contracts in the
financial market enables coverage, for example, of equities in production firms in the
special version admitted by Geanakoplos et al. (1990).19

Contract structure and transaction costs. For two-party contracts, we permit the deliv-
eries to possibly depend on the market prices in the state of delivery. In that way, we

17 In comparison, the nominal asset models of Cass (1984) and Werner (1985) make payments directly in
“units of account,” which may seem akin to money but are unbounded in availability. Such units are valid
only in a single state and, unless anchored to a currency as here, are replaced to different, unrelated units in
the other states.
18 Investment goods, as envisioned, may live on after transition. An agent can desire to retain them at
time 1 even though the model has no time 2, because of anticipations of the future built into utility.
19 The agents in Geanakoplos et al. (1990) have perfect foresight into the production decisions of the firms
(however carried out). Fromamodeling perspective, there is no difference between that and simply assuming
the outputs in each future state are known in advance. The exclusion of short-selling in Geanakoplos et al.
(1990) further reinforces this interpretation of their equities as investment goods in our sense instead of
two-party contracts.
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cover various “options,” as explained later with examples. This is a new capability
based on being able to operate with prices tied to a single numéraire—“money.”20

For tractability, we consider as usual that the contracts can only be of finitely many
unit types, indexed by k = 0, 1, . . . , K , with contract 0 having a special role to be
described shortly. Agents can buy or sell them at prices qk ≥ 0 comprising a price
vector q. Contract k promises delivery of the goods vectors Dk(s, p(s)) ≥ 0 in the
future states s, at least one of which, for some s, has a positive component in some
good that is attractive to some agent, regardless of the particular prices. These vectors
are the columns of the matrix

D(s, p(s)) ∈ IR(1+L)×(1+K )
+ for s = 1, . . . , S.

Contract 0 delivers one unit of good 0 in every future state s = 1, . . . , S. Buying
this contract at price q0 corresponds to lending q0 units of money at time 0 in return
for surely receiving one unit of money at time 1. Selling corresponds similarly to
borrowing.

The contracts can be bought or sold in any amounts (not necessarily integral), and
in this way, agent i can put together a portfolio of long and short positions represented
by vectors z+

i and z−
i in IRK

+ at market cost q[z+
i − z−

i ].21 Simultaneously buying and
selling a contract k is not excluded, but is hindered by another provision. Namely, we
suppose that

any agent, in selling a unit of k, must use up a goods vector Dk(0, p(0))

which satisfies independently of p(0) a bound Dk(0, p(0)) ≥ D∗
k (0) ≥ 0 for a vector

D∗
k (0) having a positive component for at least one good that is attractive to someagent

initially. This could refer of course to money (fees, taxes?), but also to service goods
(professional labor?) connected for instancewith confirming the reliability of a seller’s
delivery promises. In terms of the matrix D(0, p(0)) with columns Dk(0, p(0)), we
have

τk(p(0)) = p(0)Dk(0, p(0)) = the transaction cost in money units for selling contract k.

The portfolio (z+
i , z−

i ) thus consumes the goods vector D(0, p(0))z−
i and incurs in

money units the total transaction cost22
∑K

k=1 τk(p(0))z
−
ik = p(0)D(0, p(0))z−

i .
The matrices D(s, p(s)) for s = 0, 1, . . . , S are assumed to depend continuously,

if at all, on the money-denominated prices. We furthermore allow for the possibility
that some agents might not be “qualified” to take on the delivery obligations associated

20 Tying deliveries to future “units of account” in the established framework of GEI cannot have the same
effect because of inherent ambiguities in scaling.
21 For the sake of the algebra in our formulas, we consistently regard p(s) and q as row vectors, in contrast
to wi (s), ci (s), z

+
i and z−i , which we regard as column vectors.

22 Note that this cost is essentially budgetary and does not, in itself, force actual money to change hands
out of the limited supply of good 0 at time 0.
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with certain contracts. Specifically, we introduce for each agent i an index set and a
corresponding subset of IR 1+K

+ ,

Ki = {
k ∈ [1, K ] ∣∣ agent i must not sell contract k

}
,

IR 1+K
+ (i) = {

z−
i = (

z−
i0, z

−
i1, . . . , z

−
i K

) ∣∣ z−
ik = 0 for k ∈ Ki

}
, (4)

and the obligation constraint

z−
i ∈ IR 1+K

+ (i). (5)

No constraint is imposed on the purchases in z+
i . Of course Ki might be empty as a

particular case, and then IR 1+K
+ (i) = IR 1+K

+ . Note however that we have required
0 /∈ Ki , so that all agents are at least able to get buying power at time 0 by promising
to pay money at time 1 in a manner independent of the future state s. This is intended
as additional confirmation of the special monetary role of good 0. On the other hand,
we suppose that

⋂

i
Ki = ∅ (6)

so as to insure that for every contract k there is as least one agent i able to sell it.
Excess demands. To handle the effects of the agents’ decisions, we introduce notation
for the excess demands they induce relative to the agents’ endowments ei (s), namely

di (0, p(0)) = wi (0) + ci (0) + D(0, p(0))z−
i − ei (0),

di (s, p(s)) = wi (s) + ci (s) − D(s, p(s))
[
z+
i − z−

i

] − ei (s)

−Ai (s)wi (0) for s > 0, with goods components dil(s, p(s)),

dil(0, p(0)), for l = 0, 1, . . . , L . (7)

We speak of

(p, q) = (p(0), p(1), . . . , p(S), q) ∈
(
IR 1+L

+
) 1+S

× IR 1+K
+ with p0(s) = 1 for all s (8)

as a price system for the economy. Such a money-denominated price system affords
a picture like that seen in the literature on nominal assets. However, there is a funda-
mental difference with that literature, because here the total quantity of money in any
state s is bounded in our model by the endowments in that state plus the amounts of
money that agents may have saved or otherwise transmitted from the past.23

23 In nominal asset models like those in which Cass (1984) andWerner (1985) demonstrated the existence
of equilibrium, with the units of account in state s considered to be denominated by the money in state s,
there are no such bounds. In effect, each state has its own special money, and the supply of that money is
infinite.
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Utility optimization. The optimization problemPi (p, q) faced by agent i , with respect
to a price system (p, q), is to choose

(wi , ci ) ∈ Ui , z+
i ∈ IR 1+K

+ , z−
i ∈ IR 1+K

+ (i), (9)

to maximize ui (wi , ci ) subject to budget constraints which are expressed through (7)
by

p(0) di (0, p(0)) + q
[
z+
i − z−

i

] ≤ 0, p(s) di (s, p(s)) ≤ 0 for s > 0. (10)

The inequality form of the budget constraints is not necessary, because equality will
prevail in the end, but is convenient for our eventual appeal to Lagrange multipliers
for these constraints.
Definition of equilibrium. A price system (p, q) furnishes an equilibrium if the
problemsPi (p, q) have solutions for which the excess demands (7) satisfy themarket-
clearing conditions

∑

i

dil(s, p(s))

{= 0 if pl(s) > 0
≤ 0 if pl(s) = 0

}
for goods l = 1, . . . , L in all states s,

∑

i

di0(s, p(s)) = 0 for good l = 0 in all states s,

∑

i

z+
ik =

∑

i

z−
ik for all contracts k = 0, 1, . . . , K .

The alternatives for the excess demands on the goods l �= 0 reflect free disposal
when the price is 0. That has no role for good l = 0, for which the price is fixed at 1.
Basic observations about equilibrium. In any equilibrium under the assumptions that
have been made, necessarily

(a) pl(s) > 0 if good l is attractive in state s to some agent i for consumption or
retention,

(b) every contract k delivers a value p(s) Dk(s, p(s)) > 0 in at least one future state
s,

(c) every contract k has transaction cost τk(p(0)) = p(0) Dk(0, p(0)) > 0,
(d) every contract k has price qk > 0,
(e) all budget constraints for all agents i are tight:

p(0) di (0, p(0)) + q[z+
i − z−

i ] = 0 and for s > 0 also p(s) di (s, p(s)) = 0,

(f)
∑

i z
+
ik − ∑

i z
−
ik = 0, and no agent i can have both z+

ik > 0 and z−
ik > 0 for any

contract k.

Property (a) holds because utility would soar to infinity in problem Pi (p, q) if
this good could be obtained cost-free in state s by agent i . Properties (b) and (c)
then follow from the attractiveness assumptions on the delivery matrices D(s, p(s)).
The attractiveness of money precludes optimality from occurring with slackness in
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the budget constraints, hence (e). From (b) we must have (d) to keep buyers from
wanting arbitrarily large quantities of contract k. Through (c), on the other hand, any
(z+

i , z−
i ) portfolio with z−

i �= 0 must engender a positive transaction cost. This acts as
a disincentive to taking short positions and keeps agents from taking long and short
positions simultaneously in a contract k or from promising superfluous deliveries, thus
giving us (f).
Ample survivability assumption. The agents have available to them particular choices

(ŵi , ĉi ) ∈ Ui in combination with
(
ẑ+
i , ẑ−

i

) = (0, 0), (11)

which, in extension of the notation in (7), result in excess demands that satisfy, for
s = 0, 1, . . . , S,

(a) d̂il(s) ≤ 0 for l = 0, 1, . . . , L , with d̂i0(0) < 0,
(b)

∑
i d̂il(s) < 0 for l = 1, . . . , L .

It should be noticed that the possible dependence on prices in the general notation of
excess demands has been suppressed from these conditions because that dependence
falls away when there is no contract activity as in (11). Another observation, important
for our subsequent use of ample survivability, is that, because money can freely be
saved, ample survivability could equivalently be formulated with d̂i0(s) < 0 for all s
in (a), not just s = 0.

Theorem 1 (existence of an equilibrium). Under the financial support assumption
and the ample survivability assumption, along with the stipulated conditions on the
utility functions ui and the delivery matrices D(s, p(s)), an equilibrium exists.

In other words, an equilibrium with money-denominated prices is sure to exist if
the agents, without any trading in the markets, can survive with individual surpluses of
money initially and a collective surplus of every other good in every state. (A surplus
can be arbitrarily tiny.)
The importance of price-dependent deliveries.The effect of admitting price-dependent
delivery matrices D(s, p(s)) is to enlarge the scope of contracts to include examples
of financial instruments like the following.

Example 1 Call and put options. Let l �= 0 designate some good (maybe an investment
good), and consider a contract that, in each future state s, deliversmoney in the amount

α(s)max
{
0, κ − pl(s)

}
.

This would be a call option-type contract; a put option-type contract would deliver

α(s)max
{
0, pl(s) − κ

}
.

Instead of money as good 0, an option such as in Example 1 could deliver a quantity
of l itself or something more complicated. The variants are obviously extensive and
might even have κ(s) in place of just κ , or for that matter, strike prices in several goods
simultaneously.
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Other forms of options fitting into our price-dependent framework could connect
up with collateral that counters potential default.

Example 2 Loans with collateral. Consider, with respect to money amounts m(s) for
s = 1, . . . , S and a nonzero goods vector g (collateral), a contract that delivers in
future state s

{
m(s) if m(s) ≤ p(s)g,
g if m(s) > p(s)g.

The second case corresponds to defaulting on the debt owedwhen the value of the asso-
ciated collateral is “under water” with respect to it. The buyer then gets the collateral
instead.24

Collateral and default are major topics which cannot be discussed here in detail,
with so much else on the agenda, however the ability of our model to cover them,
at least in part, is evident from Example 2. Default was modeled with penalties by
Dubey et al. (2005), but restricted participation of agents as sellers of contracts has also
played a role in the subject. Amore elaborate approach, tuned to collateral proposals of
Geanakoplos and Zame (2002a, b), has been developed by Seghir and Torres-Martinez
(2011).25 However, elementary obligation constraints like ours in (5) do not have a
place in their model.

3 Discussion of the key issues

The transaction costs introduced in the issuance of two-party contracts have a role in the
existence of equilibrium because they act through budgets to bound contract totals,26

but they also generate a bid–ask spread for each contract.Aswill be explained inSect. 4,
this leads to refined rules of asset pricing in terms of market-imputed probabilities of
future states, which can differ among agents and therefore help explain why some
take long positions while others take short positions. In the case of Contract 0, the
transaction cost leads to an endogenously generated difference between the interest
rates for borrowing and lending.

Transaction costs tied endogenously like ours to the consumption of resources are
not new. They have earlier been employed by others, but in different patterns and never
with the amounts consumed depending on the current market prices for those goods.
Laitenberger (1996) imposed them on both buyers and sellers at time 1, permitting
asymmetry. Arrow andHahn (1999) later had them at time 0 like us, but shared equally
by buyers and sellers. In other related work, Préchac (1996) relied on exogenous costs
of brokers who arrange transactions.

24 This could be broadened in many ways, for instance in replacing m(s) by a (generalized) goods vector
h(s), the market value of which is to be compared with that of g. On the other hand, g could become g(s).
25 Sales of contracts are bounded in Seghir and Torres-Martinez (2011) by the amounts of collateral an
agent acquires. The rules for that enter exogenously, like our sets Ki .
26 That does not exclude the well observed phenomenon that promised delivery amounts of a commodity
like copper may far exceed the available supply. Some of the promises, in aggregate, can cancel out others.
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Although Theorem 1 targets a two-stage equilibrium with a wide array of features
beyond the one-stage equilibrium of Arrow and Debreu (1954), comparisons can be
made with the historical attempts in that classical context to soften assumptions of
strong survivability. The farthest advances can be attributed to Florig (2001a, b),27 but
already in (Arrow and Debreu 1954, Theorem 2) there are elements akin to our ample
survivability that can be gleaned from the arguments, if not actually evident on the
surface. A fundamental difference, of course, is the absence of anything like money in
Arrow and Debreu (1954), but another is the focus there on including production. That
led to such complications that the specialization of their conditions to pure exchange
is hard to decipher with clarity.28

A retention scheme with some resemblance to ours has been employed by Seghir
and Torres-Martinez (2011) in a context of “collateral ideas” inspired by unpublished
suggestions of Geanakoplos and Zame (2002a, b). But in that work, adhering to perfect
foresight and not trying to deal with “money,” there is a fixed categorization of goods
into being “durable” or not, and no trade-off between consumption or retention is
available to the agents. Aside from that line of research and a contribution of Dubey
and Geanakoplos (2003) (see below), perfect foresight models stemming from Radner
(1972) have not allowed for retention. Indeed, they have made no attempt to reflect
the possibility (not to speak of the reality) of continuing activity outside of their time
framework and have restricted goods to being consumed in single time periods with
no possibility of carry-over to a future period.

Such models have had difficulties with the value of “money,” in particular, and that
did not begin with them; a long history of struggles over money is recounted by Duffie
(1990). A cogent summary, with various references, has been offered more recently
by Walsh in his book on monetary theory (Walsh 2010, Chapter 2). The core problem
is outlined very clearly by Geanakoplos (1990, Sect. 6). Fiat money, such as paper
currency, might be treated as a special kind of good, but how then would it have any
value? In common opinion, for a good to be positively priced at some time, some
agent must want to consume it then. However, “consuming” money would be akin to
removing quantities of it from the economy and that lacks plausibility as the natural
platform from which money could function as a numéraire. Even if money could be
assigned value in a model as a means of facilitating exchange, that value would drop
away “at the end of time” and, in the propagation of perceptions back to the present,
it would come out as worthless from the start.

Dubey and Geanakoplos (2003) have put together a model that is perhaps closest
to ours in spirit, although very different in structure. They deal explicitly with fiat
money and allow it to be retained. They also allow broadly for retention of “perish-
able goods” within a scheme of home production.29 However, no utility accrues from

27 Florig’s results are so extremely subtle and complex in their statements that it is very hard to see how
to apply them effectively to specific situations.
28 We have held back here from trying, within our framework, to include intertemporal production carried
out by a “firm” because of the serious additional modeling challenges it would entail. For current ideas on
meeting those challenges, see Britz et al. (2015).
29 It would be easy to add general “home production,” i.e., production with a single agent-owner, to our
model, but we have refrained from doing so in order not to obscure the main ideas in our approach.
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their retention in contrast to ours, and money is therefore unable to acquire value in
Keynesian response to uncertainty. In compensation, they introduce cash-in-advance
constraints, requiring that purchases must be made through direct trades with cash.
But cash received cannot be utilized until the following period except through govern-
ment intervention with “short-term loans” within a period.30 This approach is anyway
inconsistent in our view with the modeling of markets by “periods” in which much
can happen but only the net results are recorded. In such modeling, money should be
able to move around, in particular. so that quantities involved in transactions can be
netted out. The total value of transactions ought not then be bounded by the money
supply within a given period.

Other contributions to the existence of equilibriumwith incomplete markets, in line
with ours in omitting production (unless merely confined in inputs and outputs to the
separate states, which succumbs to easier treatment) and not insisting on every good
being attractive to every agent, have not been as broadly based. Chae (1988)succeeded
in obtaining it always if the contracts were restricted to paying multiples of some
numéraire good, or basket of goods: numéraire assets. Laitenberger (1996) got it
always for general real assets like Radner’s by likewise replacing exogenous bounds
on sales by transaction costs generated endogenously much like ours, but without
“money.” Developments building on Cass (1984) and Werner (1985) and centering
on nominal assets only, thus having cope with the corresponding indeterminacy of
equilibrium underscored by Magill and Shafer (1991, Sect. 3) as well as Geanakoplos
(1990), have stopped at generic existence in a context of differential topology; see
Duffie and Shafer (1985).

A commodity like gold might instead be the “monetary good” taken as numéraire,
but then the disparate “units of account” in existing GEI theory would not be linked
to a currency of the kind that financial markets typically do operate in. Gold as “com-
modity money” has been explored by Dubey et al. (2003) in the absence of future
uncertainty and with attention only to efficiency of equilibrium, not its existence. In
the article (Geanakoplos and Polemarchakis 1986) a special “money-like” good serves
as numéraire and is the basis of all delivery contracts, but it is a commodity locked
into consumption without possibilities for retention, and the assumptions deployed for
establishing equilibrium are severe.31 Numéraire assets appear in the work of Ageloni
and Cornet (2006) but likewise in terms of a consumption good which is perishable
and cannot be carried over; see also the papers of Aouani and Cornet (2009, 2011).
Keynesian underpinnings. Market models with gold or some other “consumption
good” as numéraire can never embrace the simple economic truth that ordinarymoney,
alone, provides the scale in which agents really compare values. Our ability here to
deal directly with that relies on our approach to preferences which insists that agents

30 Their two-party contracts deliver only in money, and deliveries must be carried out in cash. That could
raise serious questions about supplies. Anyway, their equilibrium proof depends on very strong assumptions
like every good being attractive to every agent for consumption, together with a complicated and indirect
“gains to trade hypothesis.”
31 Furthermore the financial market has the peculiarity that profits made from selling holdings in other
goods cannot be used to buy contracts.
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always find money attractive for retention. That last point is crucial, of course, and we
must now give our reasons for it.

The attractiveness of fiat money can partly be viewed as cultural, i.e., tied to social
agreement, tradition, taxation, and confidence that it can store value—aspects suitably
built into an agent’s utility.32,33 To these reasons for attractiveness, we add Keynesian
considerations. In harmony with our aim of enabling a two-stage model to capture
ongoing activitywithin a longer time line, an agent’s utility formoney can reflect beliefs
about future buying power, coming from past experience and shared expectations,
however imprecise, just as it can incorporate “untested” assessments of uncertainties
lying ahead. The same can be said about the utility of retaining goods like land and
other enduring resources. The support provided by good 0 in our economy will be
elaborated now in terms of agents being surely able to borrow or lend money.

Buying a unit of contract 0 is tantamount to putting a unit of money aside in an
interest-bearing savings account. We contrast this with just retaining a unit of money,
not in such an account. The utility benefits of lending through contract 0, which arrive
in the future, must be balanced with that retention utility in equilibrium. This fea-
ture, closely connected with the discounting of future income, enters the endogenous
determination of the interest rate in equilibrium in our model. An appreciation of the
difference between lending out money in this sense at time 0 and simply retaining it
until time 1 is therefore all-important for a correct understanding of our approach.34

We take retention of money as referring to deposits in secure accounts that do
not correspond to “investments” yielding interest.35 Depositing money in an interest-
bearing account, with the level of interest determined endogenously in equilibrium, is
regarded instead as a version of lending. It relinquishes access, permitting the money
to be used temporarily by another party, and it earns a reward as compensation. This is
contrasted in our model with retaining the money and not getting that compensation.

The agents retaining money in various amounts do so for reasons related to their
preferences, i.e., their utility. Among those reasons (despite imperfect mirroring due
to gross discretization) are liquidity in the sense of unhindered access, and distrust
over unexpected events in the interim. These are Keynesian financial motivations that
were also deemed essential by Hicks (1935) in his thoughtful and enlightening essay,
which still today makes good reading.36

32 The so-called money illusion provides strong evidence. People commonly express preferences that
involve money without facing up to the effects of inflation or deflation. This may better be interpreted as
indicating that money enters preferences in other ways than just what it can be anticipated to be able to buy.
33 Although in microeconomics an agent’s utility has generally not been applied to money holdings, this
has been commonplace in macroeconomics, starting with Sidrauski (1967).
34 Inevitably, any model in this subject is highly distilled from the world in its discretization of time and
uncertainty andmust be assessedmainly for its usefulness in furnishing basic insights (as withmathematical
models everywhere).
35 This may be combined with holding on to a currency’s notes and coins, which do, of course, pass from
present to future unchanged in the possession of various agents.
36 Hicks also saw “frictions” of dealing with a savings account as a disincentive relative to just retain-
ing money. Here we will only impose transaction costs on borrowers, since that suffices with minimum
complications, but inflicting them also on lenders/depositors would be easy.
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Once this dichotomy between lending and retaining is accepted, the next question
is how a balance between them would be set in an equilibrium. Our model’s answer
focuses on the utility that agents associatewith either action and specifically on “money
rates” which we introduce to convert money values at equilibrium into utility values.
These rates fit into a study of the marginal utility of money that will be undertaken
for its effects on preferences.
Reconsideration of future states and prices.Moremust be said now about themodeling
of future states and prices. This is a complex issue of long standing; cf. Arrow (1974)
for his penetrating remarks. The fundamental purpose of equilibrium theory is to
determine howmarkets in the present can be brought into balance between supply and
demand by present prices for goods and contracts. But market activity in the present
is concerned in part with plans that agents make for the future, and those plans cannot
help but be influenced by what agents anticipate about prices in the future. How can
that influence be modeled “realistically” at the level of a relatively simple abstraction?

In one approach, that of “temporary equilibrium” cf. Grandmont (2006), agents act
on beliefs and anticipations, but the different prices they individually come up with
might have little connection with eventual supply and demand. Financial markets are
modeled tenuously, and hedging opportunities are weak. In the alternative approach
to equilibrium with incomplete markets that goes back to Radner (1972), the prices
do make future markets clear, but the question of how these prices might be known in
the present is not answered satisfactorily. The idea is roughly that the agents possess
the ability to guess them correctly, with perfect foresight and in universal agreement.

The notion of a Walrasian “broker” (or “auctioneer”) has proved valuable for mod-
eling how the price of a good in some market can bring about a balance between
supply and demand. Instead of agents having to bargain separately with each other
until agreement is reached, the market functions as a sort of information exchange on
supplies and demands which is coordinated by the broker entity. In Radner’s scheme,
such “brokers” operate in every future state as well as in the present, and agents are
supposed to surmise the results of their operations in advance.

As we see it, though, the agents’ perceptions about future prices must come from
information developed in the present, if they are to make sense. Therefore, the “bro-
kers” concerned with those prices must be understood as acting in the present. Agents,
in trying to come up with optimal decisions, seek information about what the market
situation might turn out to be in a given future state in connection with a buy/sell com-
ponent of a plan. One can think of this as giving rise to a rough information process
modeled by (abstract) “brokers” who, in response to accumulated requests of the sort,
report back on what may be previewed about total supply and demand for a given
good and state. That way, some basis for surmising market-clearing prices would be
created, even though the true prices would only be known later.37

Rolling horizon.We adopt this interpretation here as more plausible than perfect fore-
sight in explaining the role of projected future prices. However, it carries with it the
caveat that spot markets operating in the future are not claimed to be represented in

37 It must be stressed that the advances in our results would persist even if our future prices were interpreted
as perfect forecasts. What would slip, however, would be the capability of building on Keynes’ ideas about
money to ensure it has value, which has never before been attempted in a GEI model.
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the equilibrium. Everything really revolves around how present prices may respond
to the agents’ communal anticipations of the future, however imperfect. Although
our model is formally two-stage, it is closer in this respect to being a one-stage model
which partly tries to account for the future through tentative future exchanges of goods
in combination with whatever hedges against uncertainty might be available through
investments. Nevertheless, it has a rolling horizon quality: When the next stage of
future truly arrives, the agents face a renewed version with a new time 0 and a new
time 1.

We see this as offering a workable compromise in how to look at the future, but
at the same time take it as advising that models directly including multiple future
stages might not be soundly appropriate. It is hard to think of the markets in the fully
branchedmultiplicity of uncertain states in all those stages as being assisted effectively
in price projection by “broker entities” in the present. The conclusion then is that, for
microeconomic theory as here,38 a two-stage (or few-stage) approach to equilibrium
may be better than one purporting to take a prolonged future into account. But to bring
this now full circle, a two-stage approach can hardly be convincing if burdened by
doomsday effects. That is a major motivation for our insistence on the retention of
goods, instead of just consumption, as potentially having utility.
Guarding against the unforeseen. This attitude toward framing the future also opens
the way for Keynes’ important ideas about unrepresented eventualities to enter the
picture. Inmodeling future states by information processes in the present, we implicitly
tie them to eventualities that agents can contemplate in common without necessarily
agreeing on their likelihood. Individual agents could haveworries not shared by others,
and for those concerns, there would be no market support or feedback. Our version of
equilibrium accordingly makes no pretense to offer more than a partial glimpse of the
future and thus confronts the agents with significant irreducible uncertainties. Those
could well induce them to postpone some transactions and hang on to money in the
manner suggested by Keynes,39 which our model enables them to do. As underscored
by Arrow (1974), markets for coping with the future are bound to be sparse. This can
be understood as saying that agents will never be able to allay all concerns through
markets and will have to take some precautions outside of them. Being able to retain
money, and other goods as well independently of the available markets, can help.

4 Money versus utility

In understanding the implications of equilibrium in our model with money-
denominated prices, an important role will be played by “money rates” which, at
optimality in the utility problem of an agent i , convert money values in the states
s = 0, 1, . . . , S into utility values. Such rates, arising from Lagrange multipliers asso-
ciated with budget constraints, are essential in appreciating how an agent’s decisions

38 In macroeconomic theory, a long-range future is fundamental, and even the notion of perfect foresight
relative to rational expectations Muth (1961) is different.
39 “The possession of actual money lulls our disquietude; and the premiumwe require to make us part with
money is a measure of the degree of our disquietude” (Keynes 1978b). Note that this quote also supports the
distinction between money held and money lent as an investment, which is fundamental to our treatment.
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are actually based on an individual attitude toward future probabilities and discount-
ing. The transaction costs we have introduced will be shown to force differences
in those attitudes. This is an aspect of the model which deserves to be brought out
carefully and examined for its effects. Lagrange multipliers are familiar in equilibrium
studies, but their application to the agents’ problemsPi (p, q), with concave instead of
merely quasi-concave utilities, produces a saddle point characterization of optimality
which has not been exploited for the valuable additional insights that accrue.

When we come to the variational representation of equilibrium in the next sec-
tion, it will be important even to enlarge the format of the equilibrium to include the
money rates as elements partnered with the market prices and the plans of the agents.
In preparation for that later development, but helpful already below, we introduce
complementary slackness notation which facilitates a more compact description of
equilibrium. In terms of

β ∈ N+(α) ⇐⇒ α ≥ 0, β ≤ 0, αβ = 0, (12)

a price system (p, q) furnishes an if and only if the problems Pi (p, q) have solutions
for which the excess demands (7) satisfy

∑

i

di0(s, p(s)) = 0 and
∑

i

dil(s, p(s)) ∈ N+(pl(s))

for l = 1, . . . , L in all states s, (13)
∑

i

z+
ik −

∑

i

z−
ik ∈ N+(qk) for k = 0, 1, . . . , K . (14)

In (14), the market clearing for contracts has been relaxed, but harmlessly. Agents
are allowed to promise deliveries that no one will pay for, i.e., by issuing contracts k
having price qk = 0 (with unwanted deliveries assigned to disposal). However, that
will not happen in equilibrium, as will be confirmed shortly.

Definition (money rates) The multiplier λi (s) for the budget constraint of agent i in
state s will be called the money rate of agent i in that state.

It rescales the money to units of (present) utility which can be balanced against
preferences in the utility function ui . The balance is expressed by the Lagrangian

Li (wi , ci , z
+
i , z−

i ; λi ) = ui (wi , ci )

+λi (0)
(
p(0) [ ei (0) − wi (0) − ci (0) − D(0, p(0))z−

i ] − q
[
z+
i − z−

i

] )

+
∑

s>0

λi (s)p(s)
[
ei (s) + Ai (s)wi (0) + D(s, p(s))

(
z+
i − z−

i

) − wi (s) − ci (s)
]

= ui (wi , ci ) − λi (0)p(0)di (0, p(0)) −
∑

s>0

λi (s)p(s)di (s, p(s))

−λi (0)q[z+
i − z−

i ], (15)
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where the excess demand notation in (7) has been brought in along with the vector
notation λi = (λi (0), λi (1), . . . , λi (S)). For given λi (and prices), the maximization
of Li with respect to the other variables stands for an auxiliary problem in which
agent i acts without paying attention to budgets, looking instead only at an aggregated
utility based on investments, consumption and retention, both present and future. The
Lagrangian expression (15) can also be organized as

Li (wi , ci , z
+
i , z−

i ; λi ) = ui (wi , ci ) +
∑

s

λi (s)p(s)ei (s) −
∑

s

λi (s)p(s) ci (s)

−
[

λi (0)p(0) −
∑

s>0

λi (s)p(s)Ai (s)

]

wi (0) −
∑

s>0

λi (s)p(s) wi (s)

−
[
λi (0)q −

∑

s>0

λi (s)p(s)D(s, p(s))
]
z+
i

+
[
λi (0)[q − p(0)D(0, p(0))] −

∑

s>0

λi (s)p(s)D(s, p(s))
]
z−
i . (16)

Theorem 2 (Saddle point characterization of an agent’s optimality) The decision ele-
ments (9) for agent i in problem Pi (p, q) are optimal if and only if, for some money
rate vector λi , they provide a saddle point of the Lagrangian (15)–(16) with respect to
maximization in the elements

(wi , ci ) ∈ Ui , z+
i ∈ IRK

+ , z−
i ∈ IRK

+ (i), (17)

and minimization with respect to λi ≥ 0. Having a saddle point corresponds in this
way to the following set of conditions:

(A) (wi , ci ) maximizes over Ui the expression

ui (wi , ci ) −
[
λi (0)p(0) −

∑

s>0

λi (s)p(s)Ai (s)
]
wi (0)

−
∑

s>0

λi (s)p(s) wi (s) −
∑

s

λi (s)p(s) ci (s),

(B)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

s>0

λi (s)p(s)Dk(s, p(s)) − λi (0)qk ∈ N+(z+
ik) for all k,

λi (0)[qk − p(0)Dk(0, p(0))] −
∑

s>0

λi (s)p(s)Dk(s, p(s))

∈ N+
(
z−
ik

)
for k /∈ Ki ,

(C) λi (s) > 0 for s = 0, 1, . . . , S, and in the notation (7), also

p(0) di (0, p(0)) + q[z+
i − z−

i ] = 0, p(s) di (s, p(s)) = 0 for s > 0.
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The proof Theorem 2 goes as follows. Having a saddle point is always sufficient
for optimality in a setting of convexity like this, and it is necessary under the Slater
condition,40 namely that the budget constraints can be satisfied with strict inequality;
cf. (Rockafellar 1970, Sect. 28). That holds because of the strict inequalities for good
0 in (a) of our ample survivability assumption. The maximization half of the saddle
point condition breaks down into the separate conditions in (A) and (B). Through (A)
and the insatiability of utility, it requires all the money rates to be positive. The rest of
(C) corresponds then to the minimization half of the saddle point condition.

Basic properties ofmoney rates.Anymoney rate vectorλi = (λi (0), λi (1), . . . , λi (S))

in the saddle point condition of Theorem 2 satisfies

λi (s) > 0, λi (0) −
∑

s>0

λi (s) > 0, (18)

so that in letting

ρi (s) = λi (s)

λ0(s)
for s = 1, . . . , S, ρi =

∑

s>0

ρi (s), πi (s) = ρi (s)

ρi
, (19)

one has λi (0) − ∑

s>0
λi (s) = [1 − ρi ]λi (0) with

0 < ρi < 1 ρi (s) = ρiπi (s), πi (s) > 0, πi (1) + · · · + πi (S) = 1. (20)

The positivity of λi (s) in (18) for s > 0 is revealed by the maximization in (A) of
Theorem 2 through the attractiveness assumed for the retention of money such states.
The second inequality in (18) arises the sameway from themore special maximization
with respect to retention of money in state 0 and the definition of good 0 being “freely
saved.”

Definition (discount rates and imputed probabilities). The factor ρi (s) is the discount
rate of agent i for money in state s, whereas ρi is the overall discount rate of agent
i for future money. The fraction πi (s) will be called the imputed probability of the
future state s for agent i .

Similar discounts and probabilities are invoked (in different notation) in the
Geanakoplos 1990 introduction to GEI theory (Geanakoplos 1990, Theorem 3) in
order to shed more light on the prices of assets. We use them analogously in the the-
orems that follow, but our orientation is directly toward money and, in the case of
contracts k, must account also for the influence of

τk(p(0)) = p(0)Dk(0, p(0))

= the positive transaction cost in money for selling contract k. (21)

40 Optimality in the case of merely quasi-concave utility can’t be characterized by a saddle point.
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(The positivity of τk(p(0))was noted earlier, right after the definition of equilibrium.)
A new issue, which is very important for us in relation to the Keynesian aspects
of our approach, is understanding the trade-offs between contracts and retention in
transmitting wealth to the future.

Theorem 3 (discounting effects in retention). For goods l �= 0 other than money,
present and future prices are constrained by retention to satisfy

λi (0)pl(0) ≥
∑

s>0

λi (s)pl(s)Ai (s)for the goods l > 0, (22)

which can be expressed in discounted expectation form as the martingale-like inequal-
ity

pl(0) ≥ ρi
∑

s>0

πi (s)pl(s)Ai (s). (23)

These relations must hold with strict inequality if good l is attractive to agent i for
retention in state 0. On the other hand, they must hold as equations if the quantity of
good l retained by agent i in state 0 is at a level at which the marginal utility for a
decrease in that quantity is 0. Moreover, in an equilibrium these properties of goods
prices must hold for all agents i simultaneously.

The inequalities in Theorem 3 are again, like (18) which corresponds to l = 0,
immediate from the maximization in (A) of Theorem 2 through the monotonicity of
ui and the possible attractiveness of good l. The equation case takes advantage of our
assumption that ui is concave: A concave function has one-sided derivatives (possibly
different) for increases and decreases in any variable, in particular. Because λi (0) > 0
from (18), the maximization in (A) would be thrown off in the circumstance described
unless the difference in (22) were 0.

This result has special importance for the modeling of one-sided financial instru-
ments like pre-existing bonds as investment goods by way of our retention features.
Perhaps an agent might get some enjoyment, however slight, from holding a bond, in
which case strict inequality would be seen in (23), but there is no compulsion toward
that in our framework. In the absence of such attractiveness, the price of a bond would
obey (23) as a martingale equation. Bear in mind, though, that the imputed probabili-
ties are those of agent i only. The combined effect from all the agents, as indicated in
the final part of the theorem, would be more crucial.

Theorem 4 (discounting effects on contract prices). In line with the transaction costs
in (21), the prices qk of the contracts k must satisfy the martingale-like inequalities

qk − τk(p(0)) ≤ ρi
∑

s>0

πi (s)p(s) Dk(s, p(s)) ≤ qk . (24)

Equality holds on the right when z+
ik > 0, i.e., agent i buys some of contract k, but

equality holds on the left when z−
ik > 0, i.e., agent i sells some of contract k. Thus,
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agent i will not buy any of contract k if strict inequality holds on the right and will not
sell any of contract k if strict inequality holds on the left. Moreover, in any equilibrium
these properties of contract prices must hold for all agents i simultaneously.

The relations in Theorem 4 re-express the complementary slackness conditions
in (B) of Theorem 2 through the discount rates and imputed probabilities we have
introduced. Observe that the position of the price qk in the strict interval between
the bounds in (24) partitions the agents i into three distinct categories: agents who
potentially could buy, agents who potentially could sell, and agents who definitely
would refrain from either buying or selling contract k. This is similar to the analysis
of Arrow and Hahn (1999) of the influence of transaction costs.

The case of contract k = 0, which delivers one unit of the money good 0 in every
future state s, deserves particular attention because of what it tells about the overall
discount rates of the agents. Recall here our assumption that all agents can buy and
sell contract 0; cf. (4).

Corollary 1 (discounting effects on lending and borrowing). For contract 0, with
transaction cost τ0(p(0)) > 0, Theorem 4 requires that

q0 − τ0(p(0)) ≤ ρi ≤ q0. (25)

Equality holds on the right when z+
i0 > 0, i.e., agent i lends some money, but equality

holds on the left when z−
i0 > 0, i.e., agent i borrows some money. Thus, agent i will

not consider lending money unless ρi = q0 and will not consider borrowing money
unless ρi = q0 − τ0(p(0)). If q0 > ρi > q0 − τ0(p(0)), agent i will definitely neither
lend nor borrow. In particular, an agent i having ρi < q0 would prefer passing money
to the future through retention rather than lending.

These effects can alternatively be seen from the perspective of the corresponding
endogenously determined interest rates:

1

q0
− 1 = the interest rate received by lenders,

1

q0 − τ0(p(0))
− 1 = the interest rate paid by borrowers.

The final assertion of Corollary 1 pins down a Keynesian reason why an agent
would prefer holding onto money instead of investing it. A discount rate ρi lower than
the market rate q0 could signal a distrust of the market’s appraisal of the uncertainties
being faced.

Corollary 2 (existence of borrowers). If in an equilibrium there are any agents at all
who borrow money, then

q0 = max
i=1,...,I

ρi , q0 − τ0(p(0)) = min
i=1,...,I

ρi , q0 > τ0(p(0)).
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Without the transaction cost τ0(p(0)) > 0 for borrowing money, everything would
simplify, of course. Equality would hold throughout in (25), and every agent would
have the same discount rate ρ = q0. Even then, the imputed probabilities πi (s) of the
agents would not have to agree, although other relations in Theorem 4 and earlier in
Theorem 3 could place severe limitations on the extent of their disagreement. But in
our equilibrium, we do have a positive transaction cost τ0(p(0)), so that, unless no
agent at all lends or borrows, some difference in their discount rates is inevitable in
any equilibrium, as reflected in Corollary 2.

As the concluding contribution in this section, we characterize the money rates of
agent i as describing the marginal utility of having slightly more or less money in the
present or future. Themoney already available, and possible changes to it, are captured
by the vectors

ei0 = (ei0(0), ei0(1), . . . , ei0(S)), 	ei0 = (	ei0(0),	ei0(1), . . . , 	ei0(S)).

The corresponding effects on maximum utility, with prices and the endowments in all
other goods fixed, are described by the (utility) value function

vi (	ei0) =
{
maximum utility in problem Pi (p, q)

when ei0 is replaced by ei0 + 	ei0.

Here, vi (0) equals the maximum utility in the unmodified problem Pi (p, q). The
marginal utility with respect to a shift in money endowments in the direction of 	ei0
is accordingly defined to be

dvi (	ei0) = lim
ε ↘ 0

vi (ε	ei0) − vi (0)

ε
.

Theorem 5 (money rates and marginal utility). Under ample survivability, the value
function vi is concave with vi (0) finite, and if agent i actually has positive endowments
of money in all states,41 vi is surely finite on some neighborhood of 0. Then the
marginal value function dvi is not only well defined and finite but also expressed by

dvi (	ei0) = min
λi∈�i

{
λi (0)	ei0(0) + λi (1)	ei0(1) + · · · + λi (S)	ei0(S)

}
,

where�i is the set of all money rate vectorsλi associatedwith optimality in Theorem 2,
this being a nonempty, compact convex set.

If there is only one such money rate vector λi ∈ �i , then vi is differentiable at 0
with this λi as its gradient vector. In that case,

λi (s) = ∂vi

∂ei0(s)
(0) = themarginal utility of money in state s.

41 This assumption, for convenience, really loses no generality because ample survivability requires a
positive endowment of money initially, and a tiny amount of could freely be saved.
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This result, although new from the economic standpoint, at least in characterizing
marginal utility in optimality with rigor, is a standard consequence of the saddle
point representation of optimality in Theorem 2. The role of Lagrange multipliers in
expressing the one-sided derivatives of value functions in optimization problems with
convexity is fully laid out in Rockafellar and Wets (1997, Chapter 11H).

5 Variational formulation

Variational inequalities have not previously been employed in the theory of economic
equilibrium, apart from some publications in mathematics concerning one-stagemod-
els, cf. the book of Facchinei and Pang (2003) and our own papers (Jofre et al. 2005,
2007), and their references. A brief summary of the facts and concepts is desirable
therefore before proceedingwith thismethodology,which is so central to our approach.

We start with subgradient sets and normal cones of convex analysis. A proper
convex function on IRn is a convex function f : IRn → (−∞,∞] for which the set

dom f = {
x

∣∣ f (x) < ∞}
, the effective domain of f,

is nonempty. The convexity of f corresponds to the convexity of the set

epi f = {
(x, α) ∈ IRn × IR

∣∣ f (x) < α
}
, the epigraph of f.

Lower semicontinuity of f corresponds to the epigraph being closed. The set of sub-
gradients of f at a point x is defined by

y ∈ ∂ f (x) ⇐⇒ f (x ′) ≥ f (x) + y[x ′ − x] for all x ′. (26)

It is a closed convex set, surely empty if x /∈ dom f , and reduces to a single element
y if and only if f is differentiable at x , with y then being the gradient ∇ f (x). The set
of pairs satisfying (26) is regarded in general as the graph of a “set-valued” mapping
∂ f from IRn to IRn .

An important special case occurs when f is the indicator of a nonempty, closed,
convex set C ⊂ IRn , namely with δC (x) = 0 if x ∈ C but δC (x) = ∞ if x /∈ C . Then
dom f = C , and the subgradient mapping ∂ f reduces to the normal cone mapping
NC associated with C , for which

y ∈ NC (x) ⇐⇒ x ∈ C and y·[x ′ − x] ≤ 0 for all x ′ ∈ C. (27)

Having x ∈ intC is equivalent to having NC (x) consist of just y = 0.
Variational inequalities. In terms of a vector function F : IRn → IRn ,

(a) a variational inequality of functional type has the form

−F(x) ∈ ∂ f (x)

for a proper, lower semicontinuous, convex function f on IRn ;
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(b) a variational inequality of geometric type has the form

−F(x) ∈ NC (x)

for a nonempty, closed, convex set C in IRn .

These conditions first gained popularity in infinite-dimensional engineering appli-
cations involving partial differential operators. The “inequality” in their name comes
from the possibility of writing them through (26) or (27) as systems of inequalities on
F(x). They are “variational” that way through interpretation of the inequalities, but
more profoundly by their connection to the classical framework of the inverse theo-
rem or implicit function theorem, in which a problem gets embedded parametrically
in family of similar problems which indicate how it may vary.

A variational inequality of either type is actually a sort of “generalized equation.”
Indeed, one simply gets F(x) = 0, the vector version of n real equations in n real
unknowns, when f = δC with C = IRn , i.e., when f ≡ 0. Variational inequalities
of geometric type go beyond simple equations by insisting that certain normality
relations hold on the boundary of a constraining set C . A remarkable feature is that,
when F ∈ C1, the set

G =
{
(v, x) ∈ IRn × IRn

∣∣∣ v − F(x) ∈ ∂ f (x)
}

(28)

is a “Lipschitz manifold” of dimension n in IRn × IRn . Solutions to −F(x) ∈ ∂ f (x)
are obtained in principle by intersecting G with the subspace v = 0 in IRn × IRn . This
reveals a function-like quality of the graph G which is comparable to the case of an
equation F(x) = 0, where G is the graph of the (generally set-valued) inverse of F . In
that setting, the existence and potential uniqueness of a solution x and how it may vary
when v shifts away from 0, are tied to the classical inverse function theorem and a full
rank condition on Jacobian matrix for F at x . Broader parameterizations F(v, x) = 0
bring up the classical implicit function theorem. Those theorems have heavily been
employed for a long time in economics and other areas, to handle specific issues but
also in judgingwhether a problemmay be reasonably posed, e.g. in having “the number
of equations equal to the number of unknowns.” In fact, though, that picture has solidly
been extended in more recent times from equations to variational inequalities, with
derivatives of F replaced by generalized one-sided derivatives. This is explained in
much detail in Dontchev and Rockafellar (2009); other useful background can be
found in Rockafellar and Wets (1998, Chapter 12).

Themain thing to appreciate is that, bymanaging to arrive at a variational inequality
formulation of some problem, one is not just exercising a preference, but enabling
passage into a rich universe of analysis beyond classical calculus.

For computing solutions, most of the attention has been paid so far to the class of
variational inequalities that aremonotone in the sense that42 [F(x ′)−F(x)]·[x ′−x] ≥

42 This sense of monotonicity, with a long history and literature in the mathematics of optimization and
partial differential equations, takes the opposite sign from the one often associated with this term in eco-
nomics.
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0 for all x, x ′. Such monotonicity guarantees in particular that the set of solutions, if
not a singleton, is at least a closed, convex set. In economics, of course, a multiplicity
of isolated equilibria is normally expected instead in the absence of uniqueness. There
is no surprise, then, in the fact that the equilibrium variational inequality about to be
developed here will not be monotone.

To capture an equilibrium in our present context and analyze it by this methodology,
we need to take advantage of the way that variational inequalities can be built up in
“modules.”

Modular formulation of variational inequalities. A family of conditions

Fj (x1, . . . , xr ) ∈ ∂ f j (x j ) for j = 1, . . . , r with x j ∈ IRn j , (29)

in which each f j is a proper, lower semicontinuous, convex function on IRn j and each
Fj is a function from IRn1 × · · ·× IRnr → IRn j , is equivalent to the (functional-type)
variational inequality −F(x) ∈ ∂ f (x) for the proper, lower semicontinuous, convex
function

f (x) = f (x1, . . . , xr ) = f1(x1) + · · · + fr (xr ) (30)

and the function F : IRn1 × · · · × IRnr → IRn1 × · · · × IRnr given by

F(x) = F(x1, . . . , xr ) =
(
F1(x1, . . . , xr ), . . . , Fr (x1, . . . , xr )

)
. (31)

A crucial aspect in this formulation is that every real variable among the com-
ponents of x = (x1, . . . , xr ) ∈ IRn with n = n1 + · · · + nr has a place finally
in −F(x) ∈ ∂ f (x). Of course some of the functions f j could be indicators δC j ,
so that the composite variational inequality could incorporate normality conditions
Fj (x1, . . . , xr ) ∈ NC j (x j ) on x j which also depend perhaps on other vectors x j ′ with
j ′ �= j . Anyway, the domain will in general be the product of the effective domains
dom fi of the functions fi .
In our equilibrium model, there will be functional modules coming from the utility

functions ui , but primarily we will have geometric modules coming from complemen-
tary slackness relations in the N+ notation of (12) through the fact that

N+ = NC for C = [0,∞) ⊂ IR1. (32)

Another feature is motivated by the significance of the money rates λi (s) in providing
discount rates and imputed probabilities. This suggests that an equilibrium ought to
incorporate these money rates directly, as the dual variables in the agent’s optimization
problems.

Definition (enhanced equilibrium). The specification of an equilibrium price system
(p, q), together with elementswi , ci , z

+
i , z−

i , solving the associated problemsPi (p, q)

and the money rate vectors λi that combine with them in optimality, as in Theorem 2,
will be called an enhanced equilibrium.
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Enhanced equilibrium that includes Lagrangemultipliers for budget constraintswas
previously treated in our paper (Jofre et al. 2007) in the context of a one-stage model.
In following that pattern here, we have the additional feature of money interpretations
but also incentives coming from variational analysis. By these means, we achieve a
variational inequality representation which is in prime condition for eventually apply-
ing the perturbation tools in Dontchev and Rockafellar (2009) for understanding the
stability of GEI equilibrium. Results already obtained about the stability of equilib-
rium in one-stage models of exchange, without future states, suggest a high potential
for new insights from such a coming project, cf. Dontchev and Rockafellar (2012),
Jofre et al. (2013).

Theorem 6 (variational representation of enhanced equilibrium). Elements p, q, wi ,

ci and λi furnish an enhanced equilibrium if and only if they solve the composite
variational inequality with the following components for the agents i and contracts
k:

−
(
λi (0)p(0) −

∑

s>0

λi (s)p(s)Ai (s), λi (0)p(0); . . . ; λi (s)p(s), λi (s)p(s); . . .
)

∈ ∂[−ui ]
(
wi (0), ci (0); . . . ;wi (s), ci (s); . . .

)
, (A)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

s>0

λi (s)p(s)Dk(s, p(s)) − λi (0)qk ∈ N+(z+
ik),

λi (0)[qk − p(0)Dk(0, p(0))]
− ∑

s>0
λi (s)p(s)Dk(s, p(s)) ∈ N+(z−

ik)when k /∈ Ki ,

(B)

{
p(0) di (0, p(0)) + q[z+

i − z−
i ] ∈ N+(λi (0)),

p(s) di (s, p(s)) ∈ N+(λi (s)) for s > 0,
(C)

∑

i

dil(s, p(s)) ∈ N+(pl(s)) for the goods l = 1, . . . , L in all states s, (D)

∑

i

z+
ik −

∑

i

z−
ik ∈ N+(qk). (E)

Condition (A) here simply re-expresses (A) of Theorem 2 by subgradients of the
convex functions −ui . Conditions (B), (D), and (E) come unchanged from (B) of
Theorem 2 and the market-clearing conditions (13) and (14). In (C), we have the
complementary slackness form of the budget conditions in (C) of Theorem 2, and this
is equivalent because the multipliers λi (s) must in fact be positive in optimality. The
only feature to raise a question is the absence in (D) of the equilibrium equations for
good0 in (13).However, those equations follow from the other conditions. Specifically,
because the budget constraints must hold with equality, we have for s = 0 that

0 =
∑

i

[
p(0) di (0, p(0)) + q

[
z+
i − z−

i

] ]

=
∑

i

di0(0, p(0)) +
∑

l>0

pl(0)
∑

i

dil(0, p(0)) + q
[ ∑

i

z+
i −

∑

i

z−
i

]
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where all terms but
∑

i di0(0, p(0)) are known to vanish by complementary slackness.
Then

∑
i di0(0, p(0)) = 0 as well. The same argument works for s > 0, without the

q part.
It has to be underscored here that explicit inclusion of the money rates λi (s) was

a key to achieving this representation (hence the notion of an enhanced equilibrium).
Furthermore, this relied on concavity rather than just quasi-concavity of the utility
functions ui . Note that the portfolio variables z−

ik for k /∈ Ki have effectively been
suppressed in light of the obligation constraints (5) on the agents.

Representing an equilibrium by a variational inequality is one thing, and proving
its existence as a solution to that variational inequality is another. The basic tool is the
following “structured” version of a fixed-point theorem.
Existence criterion. A functional variational inequality −F(x) ∈ ∂ f (x) for a proper,
lower semicontinuous, convex function f has a solution, in particular, when

(a) dom f is bounded,
(b) F is continuous relative to the closure of dom f .

In the special case of a geometric variational inequality −F(x) ∈ NC (x) for a
nonempty, closed, convex set C , both dom f and its closure are replaced by C .

We established this criterion in Jofre et al. (2007) with an argument which invokes
a basic fixed-point theorem in the context of special properties enjoyed by subgradient
mappings ∂ f ,43 and wish to put it to work here. Condition (b) of the criterion poses
no difficulties in our equilibrium context, but an immediate impediment is a lack of
the boundedness demanded by (a). Indeed, none of the components in Theorem 6 has
bounded domain. But this is a familiar circumstance of in equilibrium theory, even
if previously approached by economists from other directions. Carefully articulated
truncations must be introduced, and that is how the proof of Theorem 1 is achieved.

Appendix: truncations and the existence proof

Let V0 denote the variational inequality of Theorem 6 for which we are seeking a
solution. Step by step, we will replace V0 by other variational inequalities with smaller
domains until we arrive at one with bounded domain, which therefore has a solution.
We will execute this in such a manner that the solution we get must also be a solution
to V0.

To get started down this track, we consider what happens when a complementary
slackness condition (11), corresponding to N+ = N [0,∞), is replaced by Nη

+ = N [0,η]
for some η ∈ (0,∞):

β ∈ Nη
+(α) ⇐⇒ β ≤ 0 forα = 0, β = 0 for 0 < α < η,

β ≥ 0 forα = η. (33)

43 The derivation is simple because, in terms of the “resolvent” Pf = (I +∂ f )−1, the condition−F(x) ∈
∂ f (x) is equivalent to having M(x) = x for M(x) = Pf (−F(x)). The resolvent Pf maps the whole space
single-valued into dom f and is Lipschitz continuous with constant 1. If F is continuous, M therefore maps
the closure of the convex set dom f continuously into itself and has to have a fixed-point when dom f is
bounded.
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It’s important to observe that

β ∈ Nη
+(α) �⇒ αβ = ηmax{0, β}. (34)

For any η ∈ (0,∞), let V1(η) denote the variational inequality obtained from V0
through replacement of (D) and (E) by

∑

i

dil(s, p(s)) ∈ Nη
+(pl(s)) for the goods l = 1, . . . , L , (Dη)

∑

i

z+
ik −

∑

i

z−
ik ∈ Nη

+(qk), (Eη)

which entail by (34) that

pl(s)
∑

i

dil(s, p(s)) = ηmax
{
0,

∑

i

dil(s, p(s))
}
,

qk
[∑

i

z+
ik −

∑

i

z−
ik

]
= ηmax

{
0,

∑

i

z+
ik −

∑

i

z−
ik

}
. (35)

Obviously, since this modification has no effect on (A), (B) and (C) of Theorem 6,
which are equivalent to the saddle point expression of optimality in Theorem 2. When
we pass fromV0 toV1(η), we are thus dealingwith amodified formulation of economic
equilibrium in which the agents are confronted with the same utility maximization
problems Pi (p, q), but the market-clearing requirements have undergone a sort of
“η-relaxation.”

In what follows, however, we also wish to contemplate truncations with respect to
goods and portfolios in the agents’ problems. Assistance will come from the notation
that

Gμ = {
the vectors in IR 1+L having all components ≤ μ

}
(36)

We fix η̄ ∈ (0,∞) and deal with elements ŵi and ĉi such as appear in the assumption
of ample survivability. As observed ahead of Theorem 1, there is no loss of generality
in supposing for these elements that actually

d̂i0(s) < 0 for s = 1, . . . , S, as well as for s = 0. (37)

Choose μ̄ high enough that

ŵi (s) ∈ Gμ̄ and ĉi (s) ∈ Gμ̄ for all s. (38)
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For μ ∈ [μ̄,∞), we define potential substitutes uμ
i for the utility functions ui by

uμ
i (wi , ci ) =

⎧
⎪⎨

⎪⎩

ui (wi , ci ) if wi (s) ∈ Gμ and ci (s) ∈ Gμ for all s

along with ui (wi , ci ) ≥ ui (ŵi , ĉi ) − 1,

−∞ otherwise.

(39)

Then uμ
i , like ui , is concave and upper semicontinuous, and its associated domainUμ

i
(i.e., the set where uμ

i is finite) is nonempty, convex and bounded. The subgradient
condition

−
(
λi (0)p(0)−

∑

s>0

λi (s)p(s)Ai (s), λi (0)p(0); . . . ; λi (s)p(s), λi (s)p(s); . . .
)

(Aμ)

∈ ∂
[−uμ

i

] (
wi (0), ci (0); . . . ;wi (s), ci (s); . . .

)
,

can potentially serve therefore as a substitute for (A) which fits with our modular
variational inequality scheme.

We denote by V2(η, μ) the variation inequality obtained from V1(η) by substituting
(Aμ) for (A) and at the same time replacing (B) by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

s>0

λi (s)p(s)Dk(s, p(s)) − λi (0)qk ∈ Nμ
+

(
z+
ik

)
,

λi (0)[qk − p(0)Dk(0, p(0))]
− ∑

s>0
λi (s)p(s)Dk(s, p(s)) ∈ Nμ

+
(
z−
ik

)
, when k /∈ Ki

(Bμ)

Step 1 For the problems Pμ
i (p, q) obtained by substituting uμ

i for ui , conditions
(Aμ), (Bμ) and (C) characterize optimality in terms of a saddle point of the corre-
sponding Lagrangian Lμ

i just as (A), (B) and (C) do in Theorem 2 for the problems
Pi (p, q).

This is elementary but underscores the fact that V2(η, μ) stands for a version of
“η-relaxed” equilibrium in which the agents’ problems have undergone truncation.
Step 2 There exists η̄ ∈ (0,∞) such that, for all η ∈ [η̄,∞) and μ ∈ [μ̄,∞), the
solutions to the variational inequality V1(η) (if any) are the same as those of the
variational inequality V2(η, μ).

A solution toV2(η, μ)will also solveV1(η) if the additional bounds in the truncated
problems Pμ

i (p, q) are not active. This will certainly be true for the utility bound
entering the definition of uμ

i in (38): namely since (ŵi , ĉi ) satisfies (38) and thus,
togetherwith the (0, 0) portfolio, furnishes a feasible solution toPμ

i (p, q), any optimal
solution (wi , ci , z

+
i , z−

i ) to Pν
i (p, q) must have ui (wi , ci ) ≥ ui (ŵi , ĉi ), not merely

ui (wi , ci ) ≥ ui (ŵi , ĉi ) − 1.
The issue in Step 2 can be settled, therefore, by demonstrating that the conditions

(Dη) and (Eη) that are common toV1(η) andV2(η, μ) already produce, by themselves,
bounds on goods and portfolios which make the further bounds introduced with μ be
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inactive when μ is high enough. For this we first note that, by adding over all agents
i the budget equations that are guaranteed by (C), we must have

0 = p(0)
∑

i

di (0, p(0)) + q
[ ∑

i

z+
i −

∑

i

z−
i

]

=
∑

i

di0(0, p(0)) +
∑

l>0

pl(0)
∑

i

dil(0, p(0))

+
∑

k

qk
[ ∑

i

z+
ik −

∑

i

z−
ik

]
,

0 =
∑

i

di0(s, p(s)) +
∑

l>0

pl(s)
∑

i

dil(s, p(s)) for s > 0, (40)

where, in the notation of (7),

di (0, p(0)) = wi (0) + ci (0)) + D(0, p(0))z−
i − ei (0),

di (s, p(s)) = wi (s) + ci (s) − D(s, p(s))
[
z+
i − z−

i

] − ei (s) − Ai (s)wi (0) for s > 0,

with goods components dil(s, p(s)), dil(0, p(0)), for l = 0, 1, . . . , L .

The relations in (35) coming from (Dη) and (Eη) translate (40) into

−
∑

i

di0(0, p(0)) = η
∑

l>0

max
{
0,

∑

i

dil(0, p(0))
}

+η
∑

k

qk max
{
0,

∑

i

z+
ik −

∑

i

z−
ik

}
,

−
∑

i

di0(s, p(s)) = η
∑

l>0

max
{
0,

∑

i

dil(s, p(s))
}
. (41)

In the first equation of (41), we have −∑
i di0(0, p(0)) ≤ ∑

i ei0(0). Recalling our
assumption in the specification of D(0, p(0)) that there exists, independently of p(0),
of a lower bound D(0, p(0)) ≥ D∗(0) ≥ 0 in which the matrix D∗(0) has at least one
positive entry in each column, we see that the first equation in (41), after being turned
into an inequality by lowering η to η̄, places upper bounds on the nonnegative vectors
wi (0), ci (0) and z

−
i which are independent of the particular η ≥ η̄. The wi (0) bounds

then induce an upper bound on the left side of the second equation in (41), and with
η again lowered to η̄, that yields upper bounds independent of the particular η ≥ η̄

for the vectors wi (s) and ci (s) as well as, through our assumptions on the matrices
D(s, p(s)), an estimate for the size

∑
i z

+
ik − ∑

i z
−
ik . That estimate, with the bounds

already obtained for the vectors z−
ik places bounds on the vectors z

−
ik . We now merely

have to take μ high enough that none of these bounds can be active.
Step 3 For μ̄ as in Step 2, there further exists ζ̄ ∈ (0,∞) large enough that, for any
η ∈ [η̄,∞) and μ ∈ [μ̄,∞), solutions to V2(η, μ) are sure to have

ui (wi , ci ) ≤ ζ̄ and λi (s) < ζ̄ for s = 0, 1, . . . , S. (42)
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The first upper bound in (42) results from the bounds in Step 2 for μ̄ and the upper
semicontinuity of ui . In terms of ζ̄i being the max of ui over a closed set associated
with those bounds, we can take ζ̄ > maxi ζ̄i . For the bounds on λi (s), we appeal to the
saddle point condition for optimality inPμ

i (p, q)mentioned in Step 1. That condition
says, in part, that

Lμ
i (wi , ci , zi+, z−

i ; λi ) ≥ Lμ
i (ŵi , ĉi , 0, 0; λi ).

Because the budget constraints in Pμ
i (p, q) must hold as equations in optimality by

(C), we have

Lμ
i (wi , ci , zi+, z−

i ; λi ) = ui (wi , ci ) ≤ ζ̄i .

via (38). Consequently, though the formula for Lμ
i (ŵi , ĉi , 0, 0; λi ) corresponding to

the one in (15) for Li in terms of excess demands, we have

ζ̄i ≥ ui (ŵi , ĉi ) −
∑

s

λi (s)p(s)d̂i (s) = ui (ŵi , ĉi )

−
∑

s

λi (s)
[
d̂i0(s) +

∑

l>0

pl(s)d̂il(s)
]
. (43)

Condition (a) of ample survivability allows the sums over l > 0 to be dropped without
upsetting the inequality, and as enhanced in (37), provides us then with the upper
bounds λi (s) ≤ ζ̄i/|d̂i0(s)|. Taking ζ̄ greater than these bounds produces the desired
result.

The bounds achieved in Step 3 furnish the platform for truncating the one condition
in V0 that has not been modified until now, namely (C), to

p(0) di (0, p(0))+q[z+
i − z−

i ]∈N ζ
+(λi (0)), p(s) di (s, p(s))∈N ζ

+(λi (s)) for s > 0,
(Cζ )

Let V3(η, μ, ζ ) be the variational inequality obtained from V2(η, μ)with (Cζ ) replac-
ing (C).
Step 4 For μ̄ and ζ̄ as in Steps 2 and 3 and the variational inequality V3(η, μ, ζ ) with
respect to any choice of η ∈ [η̄,∞), μ ∈ [μ̄,∞) and ζ ∈ [ζ̄ ,∞),

(a) solutions to V3(η, μ, ζ ) are the same as the solutions to V1(η),
(b) a solution to V3(η, μ, ζ ) exists.

Here (a) summarizes what we already know fromStep 3, whereas (b) holds by the exis-
tence criterion above, inasmuch as truncations have made the domain in V3(η, μ, ζ )

be bounded. Only one thing still remains: demonstrating that by taking η large enough
we can ensure that the price bounds from (Dη) and (Eη) will be inactive, so that the
solutions to V3(η, μ, ζ ) must actually be solutions to original variational inequality
V0. A lower bound on the multipliers, complementary to the upper bound in Step 3,
will help us toward this goal.
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Step 5 There exists ε > 0 such that, as long as μ ∈ [μ̄ + 1,∞) and ζ ∈ [ζ̄ ,∞) as
well as η ∈ [η̄,∞), solutions to V3(η, μ, ζ ) will have

λi (s) ≥ ε for s = 0, 1, . . . , S. (44)

To see this, fix an s, initially >0 because that case is easier, and let w+
i denote for

any wi the modification in which the component wi0(s) is replaced by wi0(s) + 1 but
all other components are kept the same. Our focus is on condition (Aμ), which implies
for the elements (wi , ci ) in solutions to V3(η, μ, ζ ) that

uμ
i (w+

i , ci ) ≤ uμ
i (wi , ci ) + λi (s). (45)

We know from Step 2 that in such a solution the vector components of wi and ci in
the various states must lie in Gμ̄, in the notation (36), and the corresponding vector
components ofw+

i will then lie inGμ, inasmuch asμ ≥ μ̄+1. In that casewehave from
the definition of uμ

i in (39) that uμ
i (wi , ci ) = ui (wi , ci ) and u

μ
i (w+

i , ci ) = ui (w
+
i , ci ),

along with ui (ŵi , ĉi ) − 1 ≤ ui (w
+
i , ci ), so that (45) yields

ui (ŵi , ĉi ) − 1 ≤ ui (w
+
i , ci ) ≤ ui (wi , ci ) + λi (s). (46)

We claim that for wi and ci having vector components in Gμ̄, whether or not they are
part of a solution to V2(η, μ, ζ ), there is a positive lower bound to the values of λi (s)
occurring in (46).

Indeed, if a lower bound were not available, there would be a sequence of elements
(wn

i , c
n
i ) with vector components in Gμ̄ such that

ui (ŵi , ĉi ) − 1 ≤ ui ( [wn
i ]+, cni ) ≤ ui (w

n
i , c

n
i ) + λni (s) for n

= 1, 2, . . . , with λni (s) → 0. (47)

The boundedness of the goods vectors allows us to suppose, without loss of generality
that (wn

i , c
n
i ) converges as n → ∞ to some (w∞

i , c∞
i ), in which case ([wn

i ]+, cni )
converges to ( [w∞

i ]+, c∞
i ). Under our assumptions, ui is continuous relative to the

set
{
(wi , ci )

∣∣ ui (wi , ci ) ≥ ui (ŵi , ĉi ) − 1
}
, which is closed, so we get in (47) as

n → ∞ that ui ( [w∞
i ]+, c∞

i ) ≤ ui (w∞
i , c∞

i ). This contradicts the insatiability of ui
with respect to good 0.

The argument for the case of s = 0 is essentially the same, but with λi (0) ini-
tially replaced by λi (0) − θi , where θi is the component for good 0 in the vector∑

s>0 λi (s)p(s)Ai (s) appearing in (A), or for that matter, (Aμ). Since θi ≥ 0, it can
be removed and we can proceed with λi (0) by itself just as in the argument already
given.
Step 6 There is a bound ψ such that, in any solution to the variational inequality
V3(η, μ, ζ ) with η ∈ [η̄,∞), μ ∈ [μ̄ + 1,∞) and ζ ∈ [ζ̄ ,∞), the prices satisfy

pl(s) < ψ for all l > 0 and states s = 0, 1, . . . , S, and qk < ψ for all k.
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In order to confirm this, we return to the inequalities in (43), where we have through
(a) of ample survivability that d̂i0(s) < 0 and d̂il(s) ≤ 0 for l > 0 and therefore

ζ̄i ≥ ui (ŵi , ĉi ) − ε
∑

s

[
d̂i0(s) +

∑

l>0

pl(s)d̂il(s)
]

when λi (s) is replaced by the lower bound in Step 5. This implies that

∑

l>0

pl(s)[−d̂il(s)] ≤ [ζ̄i − ui (ŵi , ĉi )]/ε for s = 0, 1, . . . , S.

Adding now over i and invoking from part (b) in the assumption of ample survivability
the property that

∑
i [−d̂il(s)] > 0, we obtain upper bounds on the prices pl(s).

Condition (Bμ) in V3(η, μ, ζ ) now has a role for the prices qk . We already know
that it reduces to (B) of V0 as a property of solutions to V3(η, μ, ζ ), because the μ

upper bounds on the portfolio variables are inactive in a solution to V3(η, μ, ζ ) for
the choices stipulated for μ. Condition (B) entails

λi (0)[qk − p(0)Dk(0, p(0))] −
∑

s>0

λi (s)p(s)Dk(s, p(s)) ≤ 0 when k /∈ Ki .

There is at least one i with k /∈ Ki by (6), and for that i then we have

qk ≤ 1

λi (0)

[
p(0)Dk(0, p(0)) +

∑

s>0

λi (s)p(s)Dk(s, p(s))
]

Utilizing the lower bound ε on λi (0) in Step 5 together with the upper bound in Step 3
on λi (s) for s > 0 and the upper bound on the p prices that we have just produced,
and recalling the continuous dependence of the Dk vectors on those prices, we arrive
at an upper bound on qk .
Concluding argument. We already knew from Step 4 that, by taking μ and ζ large
enough, we could get the solutions to the fully truncated variational inequality
V3(η, μ, ζ ) to come out the same as the solutions to V1(η) for all η ∈ [η̄,∞). Now,
though, we know further that by taking η larger than the bound ψ in Step 6, we can
make the truncations in (Dη) and (Eη) be inactive in solutions to V3(η, μ, ζ ) and
hence also in V1(η). In this case, the solutions to V3(η, μ, ζ ) can be identified with the
solutions to V0. Since the existence of a solution to V3(η, μ, ζ ) has been established,
this verifies the existence of a solution to V0, which we set out to prove.
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