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Abstract We study equilibria in second-price auctions where bidders are indepen-
dently and privately informed about both their values and participation costs, and
where the joint distributions of these values and costs across bidders are not necessar-
ily identical. We show that there always exists an equilibrium in this general setting
with two-dimensional types of ex ante heterogeneous bidders. When bidders are ex
ante homogeneous, there is a unique symmetric equilibrium, but asymmetric equilibria
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may also exist. We provide conditions under which the equilibrium is unique (not only
among symmetric ones). We find that the marginal density of participation costs and
the concentration of values matter for the uniqueness. The presence of private infor-
mation on participation costs tends to reduce multiplicity of participation equilibria,
although multiplicity still persists.

Keywords Two-dimensional types · Private participation costs · Second-price
auctions · Existence and uniqueness of equilibrium

JEL Classification C62 · C72 · D44 · D61 · D82

1 Introduction

In many auction markets, bidders often incur participation costs. For instance, sellers
may charge an entry fee, or require registration or pre-qualification for the auction. It
may be costly for bidders to prepare bids, travel to the auction site, or acquire infor-
mation about the auction rules and the values of the object to be auctioned. In general,
bidders also incur opportunity costs for participating in auctions. Moreover, bidders
may be privately informed about their participation costs.1 In the presence of such
participation costs, not all potential bidders would be willing to participate. There-
fore, when analyzing bidders’ behavior in auctions, participation decisions, along
with bidding strategies should be endogenously determined.

In this paper, we study existence and uniqueness of equilibria in second-price auc-
tions when bidders are independently and privately informed about their participation
costs as well as their valuations, and the joint distributions of these values and costs
across bidders are not necessarily identical.2 In other words, we allow for ex ante
heterogeneous bidders with two-dimensional types.

Since, conditional on participating, each bidder cannot do better than bidding his
value in a second-price auction, we naturally restrict our attention to (Bayesian–Nash)
equilibria in cutoff strategies: a bidder participates in the auction if and only if his cost
is below a certain cutoff (as a function of his private value.) To characterize the equi-
librium in cutoff strategies, we first convert the equilibrium conditions for a profile of
cutoff strategies to a systemof integral equations.We then use the Schauder–Tychonoff
fixed-point theorem to show that there exists a solution to the system of integral equa-
tions. This establishes the existence of equilibrium in a general environment, which
includes models in previous studies as special cases. Next, we study the uniqueness
issue. When bidders are ex ante symmetric (they have the same joint distribution over
two-dimensional types), we show that there is a unique symmetric equilibrium, i.e.,
each bidder uses the same cutoff strategy. We also show that when there are two het-

1 Several related terms have been used in the literature, including participation cost, entry fee, entry cost, or
opportunity cost. Since we only study equilibrium behavior, we do not need to distinguish between (bidder)
participation costs and entry fees (charged by the seller.)
2 Our analysis in this paper applies to standardEnglish auctions or ascending-price auctions. In this scenario,
bidders who participate will stay in the auction until the price reaches their valuations and the participation
conditions are identical to those in second-price auctions, which we analyze in this paper.

123



Equilibria in second-price auctions with private participation costs 233

erogeneous bidders, if each bidder’s value and participation cost are independently
distributed (not necessarily identical across bidders), the equilibrium is unique under
a restriction on the marginal distributions of participation costs. Our results show that
when the marginal density of costs is uniformly bounded, relative to the expected val-
uations, the equilibrium is unique. This happens when the participation costs follow
more dispersed distributions and the valuations are concentrated more on low values.

Finally, we identify conditions under which (a specific type of) asymmetric equilib-
ria exist in a symmetric environment. We find that the presence of private information
about participation costs tends to reduce the multiplicity of participation equilibria,
although the multiplicity still persists.

Green and Laffont (1984) is the first to study equilibrium bidding behavior in a
second-price auction where bidders are privately informed of their values and partic-
ipation costs. Assuming the bidders’ values and participation costs are independently
and jointly uniformly distributed, Green and Laffont (1984) show the existence and
uniqueness of a symmetric equilibrium in cutoff strategies.

Gal et al. (2007) study second-price procurement auctions with two-dimensional
types that are independently and identically distributed with continuously differen-
tiable density. They show the existence and uniqueness of the symmetric equilibrium,
and then, restricting attention to the symmetric equilibrium, they prove that the buyer
benefits from partially reimbursing the bidders for the costs of preparing their bids.
We make several contributions relative to Gal et al. (2007). First, we establish the
existence of equilibria for general distributions, not only for the symmetric cases with
continuously differentiable density. Second, we identify sufficient conditions for the
uniqueness of the equilibrium, not just the uniqueness of the symmetric equilibrium in
the symmetric model. Third, we illustrate that the uniqueness is not easily guaranteed,
but rather that asymmetric equilibria (and hence multiple equilibria) can easily arise
even when bidders are ex ante symmetric. This suggests that one needs to be cautious
when making policy recommendations based on the symmetric equilibrium.3

When players have multi-dimensional types, the study of equilibrium behavior in
auctions is usually challenging, due to the lack of a natural order on types. In the case
of multi-dimensional types of bidders, determining the equilibrium cutoff strategies
can be complex, even in the case of second-price auctions. The literature on auctions
with participation costs has mostly focused on single-dimensional types, where either
the valuations or the participation costs are commonly known.4,5 In a related paper to
this one, Tan and Yilankaya (2006) characterize the equilibrium structure in second-
price auctions when bidders’ values are private information and participation costs are
common knowledge and identical across bidders. They find conditions under which

3 In another recent paper, Xu et al. (2013) study how resale affects both the entry decision and bidding
behavior in a second-price auction model with two-dimensional types of bidders and binomially distributed
entry costs, focusing on the symmetric equilibrium.
4 The literature starts with Samuelson (1985), Stegeman (1996), and Campbell (1998) are among the early
contributors. See Kaplan and Sela (2006), Tan and Yilankaya (2006), Celik and Yilankaya (2009), Lu
(2009), Cao and Tian (2010, 2013) for some of the more recent contributions.
5 There is another strand of literature where bidders learn their values after incurring their (commonly
known) participation costs, see, for example, McAfee and McMillan (1987), Tan (1992), and Levin and
Smith (1994).
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the equilibrium is unique and symmetric, as well as conditions under which there
exist asymmetric equilibria, despite bidders being ex ante symmetric. The existence
and structure of multiple equilibria can have important implications for policy design
and empirical studies on auctions.

The remainder of the paper proceeds as follows. We describe our model in Sect. 2
and establish existence in Sect. 3. The uniqueness is addressed in Sect. 4. We discuss
multiple equilibria in Sect. 5 and provide some concluding remarks in Sect. 6. All of
the proofs are presented in the Appendix.

2 The setup

We consider an independent value environment with one seller and n risk-neutral
buyers. Let N = {1, 2, . . . , n}. The seller has an indivisible object which he values at
zero. The auction format is the sealed-bid second-price auction (see Vickrey 1961).
In order to submit a bid, bidder i must incur a participation cost ci . Buyer i’s value
for the object, vi , and his participation cost ci are independently drawn from the
distribution function Ki (vi , ci ), with support [0, 1]× [0, 1].6 Let ki (vi , ci ) ≥ 0 be the
corresponding density function.7,8

Bidders know their own values and participation costs when they make their inde-
pendent participation decisions. If bidder i decides to participate in the auction, he
incurs a participation cost ci and submits a bid. The bidder with the highest bid wins
the object and pays the amount of the second highest bid. If there is only one partici-
pant in the auction, he wins the object and pays 0. If there is a tie in the bidding, the
allocation is determined by a fair lottery.

In this second-price auction with participation costs, without loss of generality, the
action set for any type of bidder is {No}∪[0, 1], where “No” denotes not participating
in the auction. Bidder i incurs the participation cost if and only if his action is different
from “No.” Bidders are risk neutral, and they compare their expected payoffs from
participating with their participation costs to decide whether or not to participate. If
the expected payoff from participating is less than the cost, they will not participate.
Otherwise, they will participate and submit bids.

Given the (Bayesian–Nash) equilibrium strategies of all the other bidders, a bidder’s
expected payoff from participating in the auction is a non-decreasing function of his
valuation. Putting it differently, the maximum one would like to pay to participate
in an auction is a non-decreasing function of one’s valuation. Therefore, we focus
on Bayesian–Nash equilibria in which each bidder uses a cutoff strategy denoted by
c∗
i (vi ), i.e., one bids his true valuation if his participation cost is less than some cutoff

6 The support for valuations is set to be [0, 1] by normalization. Bidders with participation costs higher than
1 will not participate in the auction and such a type of bidder is of no practical interest. If the upper bounds
of the supports for the participation costs are higher than 1, the above distributions on the participation costs
should be interpreted as the truncated distributions of the original distributions on [0, 1]. All the derivations
in the paper hold with this interpretation.
7 We will study the special case where vi and ci are independently distributed in Sects. 4 and 5.
8 When there are atoms in the distribution, ki (vi , ci ) can incorporate Dirac delta functions to handle the
infinite density.
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and does not participate otherwise.9 Note that if a bidder finds that participating in this
second-price auction is optimal, he cannot do better than bidding his true valuation.
All of our results on uniqueness or multiplicity on equilibria should be interpreted
accordingly.10

An equilibrium strategy of each bidder i is then determined by the expected payoff
of participating in the auction c∗

i (vi ) when his value is vi .11 We can interpret c∗
i (vi ) as

the maximal amount bidder i would like to pay to participate in the auction when his
value is vi . Let bi (vi , ci ) denote bidder i’s strategy. Then, the bidding function can be
characterized by

bi (vi , ci ) =
{

vi if 0 ≤ ci ≤ c∗
i (vi )

No otherwise.

At equilibrium, bidder i with value vi is indifferent between participating and not
participating if his cost is c∗

i (vi ).
12

3 Existence

Suppose, provisionally, there exists an equilibrium in which each bidder i uses c∗
i (vi )

as his participation strategy. Then, bidder i with value vi = v will participate in the
auction (and submit v) if and only if ci ≤ c∗

i (v). If we equate not entering with bidding
zero, we can then think of the density function of submitting the bid v as

fc∗
i (v)(v) =

∫ c∗
i (v)

0
ki (v, ci )dci .

Let Fc∗
i (v)(v) be the corresponding cumulative probability function of fc∗

i (v)(v).
There is a mass at v = 0 for Fc∗

i (v)(v), with Fc∗
i (v)(0) being the probability that bidder

i does not submit a bid. For each bidder i , let the maximal bid of the other bidders be
mi . Since each bidder bids his true valuation, he can win the object whenevermi < vi .
Note that, if mi > 0, at least one of the other bidders participates in the auction. If
mi = 0, no other bidder participates.

9 Lu and Sun (2007) show that, for any auction mechanism with participation costs, the participating and
non-participating types of bidders are divided by a non-decreasing and equicontinuous shutdown curve.
10 It is well known that there are other (dominated) equilibria of second-price auctions when there is no
cost of participation (see Blume and Heidhues (2004) for the characterization of all equilibria). In this paper,
we restrict to cutoff equilibria, where all participating bidders bid their valuations.
11 In equilibrium, c∗i (vi ) depends on the distributions of all bidders’ valuations and participation costs.
12 The description of the equilibria can be slightly different under different informational structures on
Ki (vi , ci ). For example, when vi is private information and ci is exogenously fixed for all bidders,
Ki (vi , ci ) = Fi (vi ) (see Campbell 1998; Stegeman 1996; Tan and Yilankaya 2006; Cao and Tian 2013)
and the equilibrium is described by a valuation cutoff v∗

i for each bidder i such that bidder i submits a bid
whenever vi ≥ v∗

i .
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The payoff of participating in the auction for bidder i with value vi = v is given
by

∫ v

0
(v − mi )d

∏
j �=i

Fc∗
j
(mi ),

and thus the zero expected net-payoff condition for bidder i to participate in the auction
when his valuation is v requires that

c∗
i (v) =

∫ v

0
(v − mi )d

∏
j �=i

Fc∗
j
(mi ). (1)

Following some algebraic derivations, we have

Lemma 1 For all i ∈ N,

c∗
i (v) =

∫ v

0

∏
j �=i

[
1 −

∫ 1

mi

∫ c∗
j (τ )

0
k j (τ, c j )dc jdτ

]
dmi . (2)

If c∗
i (v) exists, from (1), it is increasing and therefore continuously differentiable.

Taking the derivative of (2) with respect to v, we have

c∗
i
′
(v) =

∏
j �=i

[
1 −

∫ 1

v

∫ c∗
j (τ )

0
k j (τ, c j )dc jdτ

]
. (3)

The above equation is a functional differential equation with the initial condition
c∗
i (0) = 0.
To study the existence and uniqueness of the equilibrium, we first characterize some

properties of c∗
i (v). These properties are used in the proofs of Theorems 1 and 2. From

(1) and (3), we have

Lemma 2 For all i ∈ N, if it exists, c∗
i (v) has the following properties:

(i) c∗
i (0) = 0.

(ii) 0 ≤ c∗
i (v) ≤ v.

(iii) c∗
i
′(1) = 1.

(iv)
dc∗

i (v)

dv ≥ 0 and
d2c∗

i (v)

dv2
≥ 0.

(i)means that when bidder i’s value for the object is 0, then the value of participating
in the auction is zero and, thus, the cost cutoff point for the bidder to enter the auction
is also zero. Then, as long as the bidder’s participation cost is greater than zero, he
will not participate in the auction.

(ii) means that a bidder will not be willing to pay more than his value to participate
in the auction.
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(iii) means that when a bidder’s value is 1, his marginal willingness to pay to
enter the auction is also 1. The intuition is that when his value for the object is 1, he
will almost surely win the object, and the marginal willingness to pay is equal to the
marginal increase in the valuation.

(iv) states that the expected payoff (from participating) is increasing and convex in
valuation.

Definition 1 A cutoff curve equilibrium is an n-dimensional plane comprised of
(c∗

1(v), c∗
2(v), . . . , c∗

n(v)) that is a solution of the following equation system:

(P1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c∗
1(v) = ∫ v

0

∏
j �=1[1 − ∫ 1

m1

∫ c∗
j (τ )

0 k j (τ, c j )dc jdτ ]dm1

c∗
2(v) = ∫ v

0

∏
j �=2[1 − ∫ 1

m2

∫ c∗
j (τ )

0 k j (τ, c j )dc jdτ ]dm2
...

c∗
n(v) = ∫ v

0

∏
j �=n[1 − ∫ 1

mn

∫ c∗
j (τ )

0 k j (τ, c j )dc jdτ ]dmn .

The above is an integral equation system. From (3), the derivative of c∗
i (v) at v

depends not only on v itself, but also on c∗
j (v) with j �= i , which increases the

difficulty of studying the existence of equilibrium.
Note that from Lemma 2, the right-hand side of (P1) defines a mapping of

(c∗
1(v), c∗

2(v), . . . , c∗
n(v)) from a space to itself. In the Appendix, we show that this

space is a compact convex non-empty subset of a locally convex topological space and
the mapping is continuous. Then, we establish the existence of equilibrium using the
Schauder–Tychonoff fixed-point theorem, which states that any continuous mapping
from a non-empty compact convex subset of a locally convex topological space to
itself has a fixed point. We have the following result on the existence of equilibrium
(c∗

1(v), c∗
2(v), . . . , c∗

n(v)):

Theorem 1 (Existence of Equilibria) The integral equation system (P1) has at least
one solution (c∗

1(v), c∗
2(v), . . . , c∗

n(v)), i.e., there is always an equilibrium in which
bidder i uses the cutoff strategy c∗

i (v).

4 Uniqueness

To investigate the uniqueness of equilibrium, we first consider the case where all
bidders are ex ante homogeneous in the sense that they have the same joint distribu-
tion function of valuations and participation costs, and we focus on the symmetric
equilibrium in which all bidders use the same cutoff curve c∗(v).

(P1) can be rewritten as

c∗(v) =
∫ v

0

[
1 −

∫ 1

m

∫ c∗(τ )

0
k(τ, c)dcdτ

]n−1

dm, (4)
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and correspondingly we have

c∗′
(v) =

[
1 −

∫ 1

v

∫ c∗(τ )

0
k(τ, c)dcdτ

]n−1

, c∗(0) = 0. (5)

We then have the following result.

Theorem 2 (Uniqueness of the Symmetric Equilibrium) Suppose that all bidders
have the same distribution function K (v, c). There is a unique symmetric equilibrium
where each bidder uses the same cutoff strategy.

Gal et al. (2007) provide a similar result on the uniqueness of the symmetric equi-
librium. Our uniqueness result is for general joint distributions while their result is
based on the continuously differentiable density. In addition, their proof involves an
ordinary differential equation with two mixed boundary conditions, which is a non-
trivial mathematical problem and requires a careful treatment. Our proof avoids this
difficulty by way of contradiction.13

Note that Theorem 2 only shows the uniqueness of the symmetric equilibriumwhen
bidders are ex ante homogeneous. It does not exclude the possible existence of asym-
metric equilibria. In the case of unidimensional types, as shown by Stegeman (1996),
Campbell (1998), Tan and Yilankaya (2006), and Kaplan and Sela (2006), there may
exist asymmetric equilibria where ex ante homogeneous bidders use different cutoff
strategies. As such, the uniqueness of the equilibrium cannot generally be guaran-
teed, which we will address in the next section. However, we show uniqueness in the
case where the bidders’ valuations and costs are independently distributed with mild
restrictions.

For the rest of the paper, we consider the case where there are two bidders, and
costs and valuations are independently distributed. Let Ki (vi , ci ) = Fi (vi )Gi (ci ) and
ki (vi , ci ) = fi (vi )gi (ci ), where Fi (vi ) and Gi (ci ) are the cumulative distribution
functions of bidder i’s valuation and participation cost, and fi (vi ) and gi (ci ) are the
corresponding density functions, i = 1, 2. In this case, bidder i with value vi = v will
submit bid v with probability Gi (c∗

i (v)) and stay out with probability 1− Gi (c∗
i (v)).

Correspondingly, we have

c∗
i (v) =

∫ v

0

[
1 −

∫ 1

mi

G j (c
∗
j (τ )) f j (τ )dτ

]
dmi ,

and

c∗
i
′
(v) =

[
1 −

∫ 1

v

G j (c
∗
j (τ )) f j (τ )dτ

]

for i �= j .

13 Uniqueness of the symmetric equilibrium has been addressed in the literature for the special cases where
either costs (see Campbell 1998; Tan and Yilankaya 2006) or valuations (see Kaplan and Sela 2006) are
commonly known. Laffont and Green (1984) investigated the existence and uniqueness of the symmetric
equilibrium in a symmetric model where valuations and participation costs are uniformly distributed.
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Thus, when vi and ci are independent, the equilibrium (c∗
1(v), c∗

2(v)) is a solution
of the following integral equation system:

(P2)

{
c∗
1(v) = ∫ v

0 [1 − ∫ 1
m G2(c∗

2(τ )) f2(τ )dτ ]dm
c∗
2(v) = ∫ v

0 [1 − ∫ 1
m G1(c∗

1(τ )) f1(τ )dτ ]dm.

Focusing on the case of twobidders and applying theContractionMappingTheorem
to (P2), we have the following result on uniqueness.

Proposition 1 (Uniqueness of Equilibrium) If n = 2 and if for i = 1, 2, (i)
Ki (vi , ci ) = Fi (vi )Gi (ci ), (ii) Gi (ci ) is continuous on [0, 1] and differentiable on
(0, 1), and (iii) sup[0,1] gi (ci ) < 1

E(vi )
, then the equilibrium is unique.

The condition thatGi (ci ) is continuous on [0, 1] anddifferentiable on (0, 1) is set for
applying theMean Value Theorem onGi (·). The assumption that the marginal density
of the participation costs is uniformly bounded by 1

E(vi )
, the inverse of the expected

value of the valuation, is used to apply the Contraction Mapping Theorem. These
conditions can be easily satisfied. For instance, when participation costs are uniformly
distributed on [0, 1] for both bidders, the supremum of the density for participation
costs is 1, i.e., sup[0,1] gi (ci ) = 1, and clearly E(vi ) < 1 for any Fi (·) on [0, 1].
Thus, in this case, independent of the distribution of the valuations, the equilibrium is
unique. Loosely speaking, sup[0,1] gi (ci ) < 1

E(vi )
holds when participation costs are

more dispersed and the valuations are more concentrated on the low values.

Remark 1 (i) Proposition 1 also holds when the support of ci is a subset of [0, 1]with
a slightly modified proof, as we discuss in the Appendix.

(ii) For n ≥ 3, there are more product terms inside the first integral on the right-
hand side of (P2), which makes the application of the Mean Value Theorem less
tractable. The same difficulty applies for the case of correlated distributions.

When bidders are ex ante homogeneous, the unique equilibrium is necessarily
symmetric. We now provide the explicit solution of the unique equilibrium when
the valuations and participation costs are independently and uniformly distributed on
[0, 1], the case studied by Laffont and Green (1984).14

14 Following their proof of Lemma 3, when n = 2,

|F(λt+1(θ)) − F(λt (θ))| = |
∫ θ

0

∫ 1

m
[λt (τ ) − λt+1(τ )]dτdm|

≤
∫ θ

0

∫ 1

m
|λt (τ ) − λt+1(τ )|dτdm < ‖λt (·) − λt+1(·)‖

∫ θ

0
dm.

Thus,

‖F(λt+1(·)) − F(λt (·))‖ < ‖λt (·) − λt+1(·)‖.

The Contraction Mapping Theorem can be applied to show the uniqueness of the equilibrium without using
the claim that Laffont and Green (1984) made at the beginning of their proof. The above statement can be
treated as a special case for our proof to Proposition 1.
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Example 1 Suppose Gi (c) and Fi (v) are both uniformly distributed on [0, 1]. At
equilibrium, we have

{
c∗
1
′(v) = 1 − ∫ 1

v
c∗
2(τ )dτ,

c∗
2
′(v) = 1 − ∫ 1

v
c∗
1(τ )dτ.

Then, c∗
1
′′(v) = c∗

2(v) and c∗
2
′′(v) = c∗

1(v). Thus, we have c∗
1
(4)(v) = c∗

1(v) and
c∗
2
(4)(v) = c∗

2(v) with c∗
1(0) = 0, c∗

1
′(1) = 1, c∗

2(0) = 0 and c∗
2
′(1) = 1. One can

check that the only equilibrium is c∗
1(v) = c∗

2(v) = aev − ae−v , where a = e
e2+1

.

5 Asymmetric equilibria

In this section, we briefly discuss the multiplicity issue in a symmetric environment,
again when there are two bidders whose costs and valuations are independently dis-
tributed.15 We provide conditions for a specific type of asymmetric equilibria: one
bidder never participates (independent of his valuation) and the other one participates
(and bids his value) if and only if v ≥ c.

We consider a special case of the general model in Sect. 2, in which the support of
(v, c) is [vl , vh]×[cl , ch] ⊂ [0, 1]×[0, 1].16 There is a unique equilibrium (Proposition
1, see Remark 1 (i)) when sup[cl ,ch ] g(c) < 1

E(v)
. Note that

∫ ch
cl

g(c)dc = 1 implies

sup[cl ,ch ] g(c) ≥ 1
ch−cl

. Therefore, the sufficient condition for uniqueness is likely to
be violated when ch − cl is small or when E(v) is large. In this case, asymmetric
equilibria may exist.

The expected payoff of participating in the auction is a non-decreasing function
of one’s true value. Thus, a necessary and sufficient condition for a bidder to never
participate is that when his value is vh , participating in the auction still gives him an
expected payoff that is less than theminimumparticipation cost, cl , given the strategies
of the other bidders.

The expected payoff of bidder 2 with v2 = vh when he participates in the auction
is as follows:

R = vh F(cl) +
∫ ch

cl
[(vh − x)G(x) + vh(1 − G(x))]dF(x) +

∫ vh

ch
(vh − x)dF(x).

The first term is bidder 2’s expected payoff when bidder 1’s value is less than cl (with
probability F(cl)). In this case, bidder 1 does not participate and bidder 2 will get
payoff vh . The second term is the payoff when bidder 1’s value is between cl and ch .
For any v1 ∈ (cl , ch), bidder 2’s payoff is vh − v1 when bidder 1 participates and is
vh when bidder 1 does not participate, and the probabilities are G(v1) and 1−G(v1),
respectively. The third term is the payoff when v1 ≥ ch and in this case bidder 1

15 See Stegeman (1996), Campbell (1998), Tan and Yilankaya (2006), Cao and Tian (2013), and Kaplan
and Sela (2006) for multiplicity when the costs or valuations are commonly known.
16 We can extend the supports of the distributions to be [0, 1] × [0, 1] by assigning zero density over the
extended areas [0, 1]× [0, 1] \ [vl , vh ]× [cl , ch ] with ch ≤ vh . Then, by Theorem 1, an equilibrium exists.
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Equilibria in second-price auctions with private participation costs 241

participates for sure. For bidder 2 to never participate, we need R < cl . Simplifying
R, we have the following result.

Proposition 2 Suppose n = 2 and K (v, c) = F(v)G(c) on [vl , vh] × [cl , ch] with
ch ≤ vh. A necessary and sufficient condition for the existence of an asymmetric
equilibrium in which one bidder never participates is

vh F(ch) −
∫ ch

cl
xG(x)dF(x) +

∫ vh

ch
(vh − x)dF(x) − cl < 0. (6)

Remark 2 Condition (6) is necessarily inconsistent with sup[cl ,ch ] g(c)E(v) < 1, the
condition for uniqueness in Proposition 1. To see this, note that (6) is equivalent to∫ ch
cl

xG(x)dF(x)+∫ vh
ch

xdF(x) > vh −cl , which implies that E(v) = ∫ ch
0 xdF(x) >

vh−cl . Thus, sup[cl ,ch ] g(c)E(v) > sup[cl ,ch ] g(c)(vh−cl) ≥ 1 since sup[cl ,ch ] g(c) ≥
1

ch−cl
and ch ≤ vh .

Based on (6), we provide simpler sufficient conditions for an asymmetric equilib-
rium to arise.

Corollary 1 Suppose n = 2 and K (v, c) = F(v)G(c) on [vl , vh]×[cl , ch] with cl <

ch < vl < vh. A sufficient condition for the existence of an asymmetric equilibrium in
which bidder 1 always participates and bidder 2 never participates is

vh − E(v) < cl . (7)

The economic intuition for Corollary 1 is as follows. If bidder 2 never participates,
then bidder 1 will always participate (his lowest possible valuation is greater than the
highest possible cost). And if bidder 1 always participates, his expected bid, and hence
the expected price faced by bidder 2, is E(v). If vh − E(v) < cl , even the highest
value–lowest cost type has no incentive to participate, making it obvious that “bidder
1 always enters and bidder 2 never participates” is an equilibrium. One sufficient
condition for this to be true is vh − vl < cl (since E(v) ≥ vl ), which is independent
of the distributions of the valuations and participation costs.

There is an important implication for Corollary 1. When participation costs are
always less than the value of the object, but the minimum participation cost is more
than the range in possible values, there always exists one equilibrium in which one
bidder always abstains. That may be an undesirable outcome in terms of revenue and
efficiency. This does not happen when participation costs are more dispersed.

The second simple condition for multiplicity involves a strictly convex F(·) on
[0, 1] as follows.
Corollary 2 Suppose n = 2, K (v, c) = F(v)G(c) on [vl , vh] × [cl , ch], and F(·)
is strictly convex. There exists a c ∈ (0, 1) such that, when ch > c and ch − cl is
sufficiently small, there exists an asymmetric equilibrium in which one bidder never
participates and the other bidder participates whenever v ≥ c.

In Corollary 2, the limiting case of ch = cl = c corresponds to the model in Tan
and Yilankaya (2006), where participation costs are exogenously fixed. They show
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that there exists an asymmetric equilibrium when F(·) is strictly convex. In this case,
F(c) + ∫ 1

c (1 − x)dF(x) − c represents the payoff of a bidder with value 1 if he
participates in the auction while the other participates whenever v ≥ c. Combining
the above Corollary with the result of Tan and Yilankaya (2006), we see that with the
introduction of the private information about the participation cost, or as the support
[cl , ch] of the participation cost that includes c becomes larger, asymmetric equilibrium
still arises, as stated in Corollary 2. However, as ch − cl becomes sufficiently large
such that E(v) sup[0,1] g(c) < 1, Proposition 1 implies that asymmetric equilibria
disappear. Therefore, there is a sense in which the presence of private information
about participation costs tends to reduce the multiplicity of equilibria in comparison
with the case of commonly known participation costs.

Remark 3 When F(·) is concave on [0, 1], there is no equilibrium in which one bidder
never participates and the other one participates whenever his value is greater than his
participation cost, since R = F(cl) + ∫ ch

cl
[(1 − x)G(x) + vh(1 − G(x))]dF(x) +∫ 1

ch
(1 − x)dF(x) ≥ cl .17

Before ending this section, we would like to point out that even though our discus-
sion is based on two bidders, we expect that our result can be extended to the case of
more than two bidders. Specifically, when n > 2, we can find similar conditions such
that one bidder participates if and only if v ≥ c while all other n − 1 bidders never
participate. From the perspective of n − 1 bidders who do not participate, only one
bidder who participates matters, not the n−2 other bidders who never participate, as if
they do not exist, which is the case of n = 2. There may be other types of asymmetric
equilibria than we consider, which calls for future work.

6 Conclusion

We study the existence and uniqueness of equilibrium in second-price auctions when
bidders’ values and participation costs are both private information. We show that
under general distribution functions, there always exists an equilibrium in which each
bidder uses a cutoff strategy.When bidders are ex ante homogeneous, there is a unique
symmetric equilibrium. When there are two heterogeneous bidders, we provide a
sufficient condition for the uniqueness of the equilibrium. Future research may be
focused on identifying sufficient conditions to guarantee uniqueness of equilibrium in
general environments.

We also show that multiple equilibria can easily arise. Specifically, in the symmet-
ric model with two bidders, we identify sufficient conditions under which asymmetric
equilibria exist. The multiplicity of equilibria has important consequences for both
efficiency and seller’s revenue. For instance, asymmetric equilibria are ex post ineffi-
cient: A biddermay obtain the object he bids for evenwhen there is another bidder with

17 Note that since vl = 0 < cl , the condition in Corollary 1 is violated. Moreover, there cannot be
an equilibrium in which one bidder always participates. If F(·) is concave on a support with a positive
lower bound, this potentially induces convexity on some interval in [0, 1], which may induce asymmetric
equilibria. See Tan and Yilankaya (2006) for more on this issue.
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a higher valuation and a lower cost, who nevertheless stays out of the auction. More-
over, revenue-maximizing and ex ante efficient auctions may be asymmetric even in a
symmetric environment. This is suggested by Celik and Yilankaya (2009), who pro-
vide (separate) sufficient conditions for these to happen when the participation cost is
commonly known.18 It would be interesting to study revenue-maximizing or efficient
auctions when both values and participation costs are bidders’ private information.

Appendix

Proof of Lemma 1 Ifmi = 0, none of the other bidderswill participate, the probability
of which is

∏
j �=i

Fc∗
j
(0) =

∏
j �=i

∫ 1

0

∫ 1

c∗
j (τ )

k j (τ, c j )dc jdτ.

Otherwise, at least one other bidder submits a bid. Then,

∏
j �=i

Fc∗
j
(mi ) =

∏
j �=i

[
1 −

∫ 1

mi

∫ c∗
j (τ )

0
k j (τ, c j )dc jdτ

]
.

Thus, the cutoff for individual i , i ∈ 1, 2, . . . n, which is c∗
i (v) = ∫ v

0 (vi −
mi )d

∏
j �=i Fc∗

j
(mi ), can be expressed as

c∗
i (v) =

∫ v

0
(vi − mi )d

∏
j �=i

[
1 −

∫ 1

mi

∫ (c∗
j (τ ))

0
k j (τ, c j )dc jdτ

]

+ v
∏
j �=i

[∫ 1

0

∫ 1

(c∗
j (τ ))

k j (τ, c j )dc jdτ

]
.

Integrating by parts, we have

c∗
i (v) =

∫ v

0
(v − mi )d

∏
j �=i

[
1 −

∫ 1

mi

∫ (c∗
j (τ ))

0
k j (τ, c j )dc jdτ

]

+ v
∏
j �=i

[∫ 1

0

∫ 1

(c∗
j (τ ))

k j (τ, c j )dc jdτ

]

= (v − mi )
∏
j �=i

[
1 −

∫ 1

mi

∫ (c∗
j (τ ))

0
k j (τ, c j )dc jdτ

] ∣∣vi
0

18 Also see Stegeman (1996) for an example of an asymmetric ex ante efficient auction.
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+ v
∏
j �=i

[∫ 1

0

∫ 1

(c∗
j (τ ))

k j (τ, c j )dc jdτ

]

+
∫ v

0

∏
j �=i

[
1 −

∫ 1

mi

∫ (c∗
j (τ ))

0
k j (τ, c j )dc jdτ

]
dmi

= −v
∏
j �=i

[
1 −

∫ 1

0

∫ (c∗
j (τ ))

0
k j (τ, c j )dc jdτ

]

+ v
∏
j �=i

[∫ 1

0

∫ 1

(c∗
j (τ ))

k j (τ, c j )dc jdτ

]

+
∫ v

0

∏
j �=i

[
1 −

∫ 1

mi

∫ (c∗
j (τ ))

0
k j (τ, c j )dc jdτ

]
dmi .

Since

∫ 1

0

∫ (c∗
j (τ ))

0
k j (τ, c j )dc jdτ+

∫ 1

0

∫ 1

(c∗
j (τ ))

k j (τ, c j )dc jdτ =
∫ 1

0

∫ 1

0
k j (τ, c j )dc jdτ=1,

thus we have

c∗
i (v) =

∫ v

0

∏
j �=i

[
1 −

∫ 1

mi

∫ c∗
j (τ )

0
k j (τ, c j )dc jdτ

]
dmi .

��

Proof of Lemma 2 (i) Let v = 0 in the expression of c∗
i (v), we have the result.

(ii) Since

c∗
i (v) =

∫ v

0

∏
j �=i

[
1 −

∫ 1

mi

∫ c∗
j (τ )

0
k j (τ, c j )dc jdτ

]
dmi �

∫ v

0
dmi = v

by 0 ≤ ∫ 1
mi

∫ c∗
j (τ )

0 k j (τ, c j )dc jdτ ≤ ∫ 1
0

∫ 1
0 k j (τ, c j )dc jdτ = 1, thus 0 ≤

c∗
i (v) ≤ v.

(iii) Letting v = 1 in (3), we have the result.
(iv)

dc∗
i (v)

dv
=

∏
j �=i

[
1 −

∫ 1

v

∫ c∗
j (τ )

0
k j (τ, c j )dc jdτ

]
≥ 0
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by noting that
∫ 1
v

∫ c∗
j (τ )

0 k j (τ, c j )dc jdτ ≤ 1. Then,

d2c∗
i (v)

dv2
=

∑
k �=i

∏
j �=i, j �=k

[
1−

∫ 1

v

∫ c∗
j (τ )

0
k j (τ, c j )dc jdτ

] ∫ c∗
k (v)

0
k j (τ, c j )dc jdτ≥0.

��
Proof of Theorem 1 In the following, we apply the Schauder–Tychonoff fixed-point
theorem (see Burton 2005, p. 185) ), which states that any continuous mapping from
a compact convex non-empty subset of a locally convex topological space to itself has
a fixed point, to show the existence of the equilibria.

Let hi (mi , c∗) = ∏
j �=i [1−∫ 1

mi

∫ c∗
j (τ )

0 k j (τ, c)dcdτ ]with c∗ = (c∗
1, . . . , c

∗
n). Since

k j (τ, c) is integrable over c as it is a density function, there exists a continuous function

γ j (τ, c)with
∂γ j (τ,c)

∂c = k j (τ, c) such that
∫ c∗

j (τ )

0 k j (τ, c)dc = γ j (τ, c∗
j (τ ))−γ j (τ, 0).

Thus, hi (mi , c∗) = ∏
j �=i [1− ∫ 1

mi
[γ j (τ, c∗

j (τ ))− γ j (τ, 0)]dτ ], which is a continuous
mapping from [0, 1] × [0, 1]n → [0, 1].

Let H(m, c∗)) = (h1(m1, c∗)), h2(m2, c∗)), . . . , hn(mn, c∗)))′, which is a contin-
uous mapping from [0, 1]n × [0, 1]n → [0, 1]n . By Lemma 2, H is bounded above
by one. Define

M = {c ∈ ϕ |: ‖c‖ ≤ 1},

where ϕ is the space of continuous functions φ defined on [0, 1]n → [0, 1]n with
‖c‖ = sup0≤v≤1 c(v). Then, by Ascoli Theorem, M is compact. M is clearly convex.

Define an operator P : M → M by

(Pc)(v) =
∫ v

0
H(s, c(·))ds.

To see that P is continuous, let φ ∈ M and let ε > 0 be given. We show that there
exists an η > 0 such that ϕ ∈ M and ‖φ−ϕ‖ < η implies ‖(Pφ)(v)−(Pϕ)(v)‖ ≤ ε.
Now

∣∣(Pφ)(v) − (Pϕ)(v)
∣∣ = ∣∣ ∫ v

0
[H(s, φ(·)) − H(s, ϕ(·))]ds∣∣

and hi is continuous, so for ε > 0, there is an η such that
∣∣φ(τ) − ϕ(τ)

∣∣ < η implies∣∣hi (mi , φ(τ )) − hi (mi , ϕ(τ ))
∣∣ < ε. Thus, for ‖φ − ϕ‖ < η, we have

∣∣(Pφ)(v) − (Pϕ)(v)
∣∣ = ∣∣ ∫ v

0
[H(s, φ(·)) − H(s, ϕ(·))]ds∣∣

=
∫ 1

0

∣∣H(s, φ(·)) − H(s, ϕ(·))∣∣ds ≤ ε.
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Then, by Lemma 2, P is a continuous function from M to itself. Thus, by Schauder–
Tychonoff fixed-point theorem, there exists a fixed point, i.e., a solution for the
functional differential equation system exists. ��
Proof of Theorem 2 The existence of the symmetric equilibrium can be established
by the Schauder–Tychonoff fixed-point theorem. Here, we only need to prove the
uniqueness of the symmetric equilibrium. Suppose, by way of contradiction, that we
have two different symmetric equilibria x(v) and y(v). Then, we have

x ′(v) =
[
1 −

∫ 1

v

∫ x(τ )

0
k(τ, c)dcdτ

]n−1

y′(v) =
[
1 −

∫ 1

v

∫ y(τ )

0
k(τ, c)dcdτ

]n−1

.

Suppose x(1) > y(1), then by the continuity of x(v) and y(v), we can find a v∗
such that x(v∗) = y(v∗) = c(v∗) and x(v) > y(v) for all v ∈ (v∗, 1] by noting that
x(0) = y(0).

Case 1: If k(v, c) > 0 with positive probability measure on (v∗, 1) × (c(v∗), 1),
then x(τ ) > y(τ ) for all τ ∈ (v∗, 1] implies that

∫ x(τ )

0
k(τ, c)dc >

∫ y(τ )

0
k(τ, c)dc

for τ ∈ (v∗, 1). Then,we have x ′(v∗) < y′(v∗)which is a contradiction to x(v) > y(v)

for v > v∗. So we have x(1) = y(1).
Now suppose there exists an interval [α, β] ⊂ [0, 1] such that x(α) = y(α) and

x(β) = y(β)while for all v ∈ (α, β), x(v) > y(v) and for all v ∈ [β, 1], x(v) = y(v),
by the same logic above, we have x(β) = y(β) and x ′(v) < y′(v) for v ∈ (α, β),
which is inconsistent with x(v) > y(v) for all v ∈ (α, β). Thus, we can prove that
x(v) = y(v) for all v ∈ [0, 1] and so the symmetric equilibrium is unique.

Case 2: If k(v, c) > 0 with zero probability measure on (v∗, 1) × (c(v∗), 1), then
we have x ′(v) = y′(v) for all v ∈ (v∗, 1]. By x(v∗) = y(v∗), we have x(v) = y(v) for
all v > v∗, which is a contradiction to x(v) > y(v). Thus, there is a unique symmetric
equilibrium.

Then, in both cases, we prove that there is a unique symmetric equilibrium. ��
Proof of Proposition 1 Based on (P2), define a mapping

(Pc)(v) =
∫ v

0
ds −

∫ v

0

∫ 1

s

(
0 f2(τ )

f1(τ ) 0

) (
G1(c1(τ ))

G2(c2(τ ))

)
dτds,

where c = (c1, c2)′.
Take any x(v) = (x1(v), x2(v))′ and y(v) = (y1(v), y2(v))′ with x(v), y(v) ∈ ϕ

whereϕ is the space ofmonotonic increasing continuous functions defined on [0, 1] →
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[0, 1]. First note that by mean value theorem, ∀i = 1, 2,

Gi (xi (τ )) − Gi (yi (τ )) = gi (̂xi (τ ))(xi (τ ) − yi (τ )),

where x̂i (τ ) is somenumber between xi (τ ) and yi (τ ). In the following, for presentation
convenience, denote

h(̂x1(τ ), x̂2(τ ), τ ) =
(

0 g2(̂x2(τ )) f2(τ )

g1(̂x1(τ )) f1(τ ) 0

)
.

Then, we have

|(Px)(v) − (Py)(v)| = |
∫ v

0

∫ 1

s
h(̂x1(τ ), x̂2(τ ), τ )

(
x1(τ ) − y1(τ )

x2(τ ) − y2(τ )

)
dτds|

≤
∫ v

0

∫ 1

s
h(̂x1(τ ), x̂2(τ ), τ )dτds sup

0<v≤1
|x(v) − y(v)|

≤
∫ 1

0

∫ 1

s
h(̂x1(τ ), x̂2(τ ), τ )dτds sup

0<v≤1
|x(v) − y(v)|

≤
∫ 1

0

(
0 sup[0,1] g2(c)(1 − F2(s))

sup[0,1] g1(c)(1 − F1(s)) 0

)
ds

sup
0<v≤1

|x(v) − y(v)|.

Thus, when sup[0,1] gi (c)
∫ 1
0 (1 − Fi (s))ds = sup[0,1] gi (c)E(vi ) < 1, or

sup[0,1] gi (c) < 1
E(vi )

by noting that E(vi ) = ∫ 1
0 s fi (s)ds = ∫ 1

0 (1 − Fi (s))ds, the
above mapping is a contraction, so there exists a unique equilibrium.

We further show Proposition 1 also holds when the support of ci is a subset of [0, 1]
and the proof is slightlymodified. Suppose that the support ofGi (ci ) is [cl , ch] ⊂ [0, 1]
and Gi (ci ) is differentiable on (cl , ch). Then, for any c1(τ ) and c2(τ ), if cl ≤ ci (τ ) ≤
ch for i = 1, 2, we can follow the proof above to apply the Mean Value Theorem.
Otherwise, if one of them is not in [cl , ch], an extra treatment is needed. For instance,
if cl ≤ c1(τ ) ≤ ch and c2(τ ) < cl , then |Gi (c1(τ )) − Gi (c2(τ ))| = |Gi (c1(τ )) −
Gi (cl)| ≤ sup[cl ,ch ] gi (ci )|(c1(τ ) − cl)| < sup[cl ,ch ] gi (ci )|(c1(τ ) − c2(τ ))|. Similar
inequalities hold for other possible cases. Thus, if sup[cl ,ch ] gi (ci ) < 1

E(vi )
for i = 1, 2,

the equilibrium is unique. ��
Proof of Proposition 2 We first prove necessity. Suppose, in an asymmetric equilib-
rium, bidder 2 never participates, then bidder 1 participates if and only if v1 ≥ c1
and thus we have c∗

1(v1) = v1. Simplifying R, the expected revenue of bidder 2 with
v2 = vh when he participates in the auction while bidder 1 participates whenever
v1 ≥ c1, we get (6) and thus necessity holds.

Next we prove sufficiency. Suppose (6) holds. Consider the strategies that bidder
2 never participates and bidder 1 participates whenever v1 ≥ c1. Given the strategy
of bidder 2, bidder 1’s best response is to participate whenever v1 ≥ c1. Given the
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strategy of bidder 1, since (6) holds, the expected revenue of bidder 2 with v2 = vh
is less than cl ; thus, the best response for bidder 2 is never participating for any type.
Thus, there exists an asymmetric equilibrium in which one bidder never participates
and sufficiency satisfies. ��
Proof of Corollary 1 Suppose we have an equilibrium in which bidder 1 always par-
ticipates and bidder 2 never participates. Then, bidder 1 always participates is a
best response to bidder 2’s strategy since vl > ch . For bidder 2’s strategy to be a
best response, we just check that (6) holds with cl < ch < vl < vh . To see this,
note that F(ch) = 0,

∫ vh
ch

(vh − x)dF(x) = ∫ vh
vl

(vh − x)dF(x) = vh − E(v) and∫ ch
cl

xG(x)dF(x) = 0, thus

vh F(ch) −
∫ ch

cl
xG(x)dF(x) +

∫ vh

ch
(vh − x)dF(x) − cl = vh − E(v) − cl < 0

by noting that vh − E(v) < cl . ��
Proof of Corollary 2 Let λ(c) = vh F(c)+∫ vh

c (vh−x)dF(x)−cwith c ∈ [0, vh] and
notice that (6) can bewritten as λ(ch)−

∫ ch
cl

xG(x)dF(x)+ch−cl < 0. Note that when

v is distributed on [0, 1], vh = 1, and we have λ(c) = F(c) + ∫ 1
c (1 − x)dF(x) − c.

First we prove for any strictly convex F(·) with support [0, 1], there exists a unique
c ∈ (0, 1) such that λ(c) < 0 if and only if c ∈ (c, 1). To see this, note that from
λ(c), we have λ(0) = ∫ 1

0 (1 − x)dF(x) > 0, λ(1) = 0 and λ′(c) = −1 + c f (c).
When F(·) is strictly convex on [0, 1], λ(c) is a strictly convex function of c with
λ(1) = 0 since λ′′(c) = f (c) + c f ′(c) > 0. Also note that λ′(1) = f (1) − 1 > 0,
by the strict convexity of λ(c) with λ(1) = 0, there exists a unique c such that
λ(c) < 0 if and only if c ∈ (c, 1). Thus, we have λ(ch) > 0 for ch ∈ (c, 1). Note
that ch − cl − ∫ ch

cl
xG(x)dF(x) = 0 when ch = cl . By continuity, when ch − cl is

sufficiently small,

λ(ch) −
∫ ch

cl
xG(x)dF(x) + ch − cl ≤ 0

for all ch ∈ (c, 1). Thus, (6) holds with vh = 1 and an asymmetric equilibrium in
which one bidder never participates exists. The other bidder participates whenever
v ≥ c. ��
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