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Abstract We analyze the implications of innovation and social interactions on eco-
nomic growth in a stylized endogenous growth model with heterogeneous research
firms. A large number of research firms decide whether to innovate or not, by taking
into account what competitors (i.e., other firms) do. This is due to the fact that their
profits partly depend on an externality related to the share of firms which actively
engage in research activities. Such a share of innovative firms also determines the evo-
lution of technology in the macroeconomy, which ultimately drives economic growth.
We show that when the externality effect is strong enough multiple BGP equilibria
may exist. In such a framework, the economy may face a low growth trap suggesting
that it may end up in a situation of slow long-run growth; however, such an outcome
may be fully solved by government intervention. We also show that whenever multi-
ple BGP exist, they are metastable meaning that the economy may cyclically fluctuate
between the low and high BGP as a result of shocks affecting the individual behavior
of research firms.
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1 Introduction

Technological progress is by far the most important determinant of economic growth
in industrialized economies. During the last two decades, after the seminal works of
Romer (1986), Aghion and Howitt (1992), and Grossman and Helpman (1994), many
efforts have been put forward to try understanding and explaining the sources of tech-
nological advances. All the resulting works take the nature of the research sector as
given, and the interaction among firms in the research industry has never been analyzed
in depth thus far.1 This is, however, one of the main fields of interest of computational
and evolutionary economics; heterogeneous agent models, for instance, may help in
explaining how innovation occurs, which are the dynamics of innovation and how
innovation determines technological progress (see Dawid (2006) for an extensive sur-
vey). The goal of this paper is to bridge these two different branches of literature
by developing a stylized but analytically tractable and micro-founded agent-based
model of innovation to shed some light on the role that interactions among research
firms might play in the process of economic growth. Once an almost traditional eco-
nomic growth model is extended to allow some form of interaction among research
firms along the lines outlined in Brock and Durlauf (2001) and Blume and Durlauf
(2003), some traditional results, like the uniqueness of equilibrium, found in growth
theory vanish. Indeed, such an interaction among research firms, by determining the
rate of technological progress, plays a critical role in shaping the whole macroeco-
nomic dynamics. We show that, under certain parameter conditions, the economy
may be characterized by a multiplicity of balanced growth path (BGP) equilibria
and a situation of low growth trap. We also show that the economy may eventually
(endogenously) fluctuate between the low and high BGP, thus generating a growth
cycle in which periods of low and high economic growth rates follow one another.
Such a cycling behavior is due to the probabilistic nature characterizing the research
industry; indeed, under a certain model parameterization the BGP equilibria turn out
to be metastable: on a short timescale, they appear to be stable attractors, while on
a longer timescale unpredictable random jumps lead the economy to sudden shifts
toward the other BPG equilibrium. In this context, economic policy, aiming to modify
the incentives associated with research activities, may be very effective in order to
completely solve the low growth trap problem, avoiding also fluctuations in economic
activity.

1 Schumpeterian growth models to some extent model the interaction in the research sector by allowing
for a business-stealing effect, determining the likelihood that an incumbent innovator loses its monopoly
power because of a success in the innovation process by a new entrant (Acemoglu 2009). Apart from this
type of characterization, the endogenous growth literature has not emphasized how the choice of research
firms are related and interdependent.
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Our paper is thus related to different branches of the economic literature, namely
computational and evolutionary economics, economic growth and business cycles the-
ory. From the computational and evolutionary economics literature, we simply borrow
the interest in analyzing the interaction between research firms and its eventual impli-
cations for technological progress and the long-run economic growth (Nelson and
Winter 1982; Dawid 2006; Dosi et al. 2010). However, from a methodological point
of view our approach is substantially different since we develop a very simple and
tractable model, in which most of the results are analytically derived; simulations in
our paper play only a marginal role and are instrumental to exemplify some interesting
and potential outcomes. Economic growth theory is the main benchmark for our anal-
ysis since the model is an almost standard continuous-time model of optimal growth
with endogenous technological progress (Acemoglu 2009). With respect to what tra-
ditionally assumed in this literature (Romer 1986; Grossman and Helpman 1994), we
allow for a certain degree of diffusion in the pattern of innovation, meaning that in our
framework technical progress is driven by the interaction among research firms.2 To
the best of our knowledge, no other study has thus far focused on the firms interaction
in the research industry in a way comparable to ours; moreover, all the works identify a
uniqueBGP equilibrium; thus, cyclical behavior cannot occur.3 The understanding and
characterization of cyclical patterns is the main interest of the business cycle theory4

(Kydland and Prescott 1982; King et al. 1988a, b), which besides adopting a discrete-
time framework5 (Evans et al. 1998; Canton 2002; Furukawa 2007), it also relies upon

2 This is in line with what suggested by the seminal work by Bass (1969) in the context of diffusion of
durables. The Bass model is a particular case of a larger class of epidemiological models. We refer the
reader to Hethcote (2000) for a recent survey on the topic.
3 Few exceptions inwhich endogenous growth and cyclical fluctuationsmay be simultaneously experienced
exist. Most of these papers focus on an expanding varietymodel characterized by innovation cycles in which
the mechanism underlying economic fluctuations varies from the existence of different investment regimes
(Matsuyama 1999; Matsuyama 2001) to international trade and foreign spillovers (Furukawa 2015). Others
focus instead on the mutual relation between human capital investments and productivity growth (Kaas and
Zink 2007). Our approach is substantially different since we rely on a simple capital accumulation model
in which the evolution of the total factor productivity is the result of firms’ interactions within the research
industry.
4 Cyclical outcomes are also analyzed in growth theory by characterizing the eventual existence of equi-
librium indeterminacy (Benhabib and Farmer 1994; Benhabib and Nishimura 1998; Lahiri 2001). Also this
approach is substantially different from ours, since our BGP equilibria are all determinate and are due to
the presence of noisy components affecting the research industry costs.
5 Because of the similarity with our paper and their qualitative results, the seminal work by Evans
et al. (1998) deserves some specific comments. Indeed, also Evans et al. (1998) show that under specific
conditions a stylized economic growth model may give rise to a low growth trap and a growth cycle
in which the economy stochastically switches between periods of low and high growth. However, the
underlying argument and the type of dynamics at the basis of their analysis is substantially different from
ours, since, apart from relying on a discrete-time setup, the driver of the entire economic dynamics in their
model is represented by shocks on agents’ expectations which affect the learning dynamics associated with
multiple perfect-foresight equilibria. Our results, instead, are derived in a micro-founded model where
firm-specific shocks within the research industry, by determining the evolution of technology, propagate
in the whole economy eventually generating growth cycles; the concept of endogenous fluctuations we
describe is thus not related to either expectational indeterminacy or self-fulfilling growth cycles, which
represent the traditional mechanisms discussed in the business cycle literature (Evans et al. 1998; Furukawa
2007). The fact that such very different setups allow to generate qualitatively similar dynamics suggests that
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stochastic growth models in which the source of the shock is completely exogenous
(Walde 2005). Probably, the work most close to ours is Bambi et al. (2014), which
analyzes an endogenous growth model with expanding product variety showing that
cyclical fluctuations may arise as a result of implementation delays in the innovation
process. Although their setting is quite similar to ours (an almost traditional endoge-
nous growth model), the mechanism underlying output fluctuations is substantially
different since we do not allow for time delays but simply for some sort of interaction
among firms operating in the research industry. Moreover, different from theirs, our
model shows the existence of a growth trap threshold, allowing to clearly distinguish
economies which will experience low and high growth rates, which is again simply
due to the interaction among research firms.

Our paper is also closely related to the literature on poverty traps. The eventual
existence and characteristics of poverty traps have been extensively analyzed in the
literature since the seminal work by Skiba (1978). Different explanations of why
multiplicity of equilibria and thus poverty traps may exist have been put forward,
and they include increasing returns and imperfect competition, coordination failure,
matching problems and increasing returns (see Azariadis and Stachurski 2005 for
an exhaustive survey). However, all these theories proposed thus far outline sources
of multiplicity in levels, thus suggesting that under certain conditions an economy
may eventually end up in poverty that is a situation of stagnation with no long-run
growth. Our model instead suggests the potential existence of equilibriummultiplicity
in growth rates, meaning that an economymay eventually end up in a situation of long-
run growth characterized by low growth rates. In order to distinguish this result from
what traditionally discussed in the poverty traps literature, we refer to such an outcome
as a “low growth trap.” To the best of our knowledge, apart from the very recent paper
by Agénor and Canuto (2015) in an overlapping generation setting, there is no other
study characterizing the eventual existence of low growth traps. The implications of
the existence of a low growth trap threshold are, however, very intuitive and in line
with empirical evidence: some countries will experience fast economic growth while
others slow economic growth, meaning that income gaps will tend to widen over
time, thus characterizing a situation of long-run divergence, as traditionally found
in the empirics on economic growth, especially between developed and developing
countries6 (Dowrick 1992; Pritchett 1997). Finally, ourmodel predicts a very important
role for economic policy, since in the case of a low growth trap the government, by
simply rising the level of taxation on households in order to increase the revenues
granted to research firms, may be able to completely solve the trap problem. This does
not simply mean that the low growth trap threshold may be exceeded, as the traditional
policy implication of poverty trap models (see for example Sachs et al. 2004, or more

Footnote 5 continued
endogenous growth cycles and low growth traps are not only rare theoretical possibility but rather outcomes
quite common whenever we depart from the traditional economic growth framework.
6 Despite the existence of some (absolute) convergence within a small number of industrialized countries
(see, for example, Barro and Sala-i-Martin 1995), convergence clubs represent more the exception rather
than the rule in the empirics of economic growth.
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recently La Torre et al. 2015), but that the threshold itself will cease to exist, thus
ensuring that the economy is able to experience fast economic growth.

The paper proceeds as follows. Section 2 focuses on the research industry and
describes its peculiarities without considering its implications for the whole economy.
Specifically, the research industry is populated by a large number of profit-seeking
firms facing a dichotomous choice. On the one hand, these firms are heterogeneous
in their propensity to innovate, and on the other hand, their decision whether to inno-
vate or not is partly affected by the behavior of other firms in the industry through
an externality component. We characterize the research industry dynamics deriving
in the infinite dimensional case an explicit expression which allows us to describe the
(aggregate) behavior of research firm in terms of the share of firms actively engaged in
research activities. Section 3 integrates the research industry in a traditional macroe-
conomic model of endogenous growth, where the government finances research by
taxing households, and the overall level of technology in the economy depends on
the share of firms engaged in innovation. Section 4 shows that the BGP equilibrium,
which strictly depends upon the behavior of research firms, may or may not be unique
according to the magnitude of the externality-induced profit component; we also char-
acterize the dynamic properties of different BGP equilibria, identifying the eventual
existence of a low growth trap along with its policy implications. In Sect. 5, we focus
on one important implication of the eventual multiplicity in BGP equilibria for the
finite dimensional case; we show that when the number of research firms is finite, the
probabilistic nature of the model implies that the locally stable equilibria turn out to
be metastable: sudden and unpredictable regime switchings among the low and high
regimes happen along trajectories, thus resulting in a cycling economic behavior. In
Sect. 6, we propose a generalization of our baseline model in which the incentive to
innovation is no longer constant, but it depends on the overall level of technological
advancement in the economy; we show that despite the higher degree of sophistication
in the model’s structure, the results are qualitatively similar to those in its baseline ver-
sion. In Sect. 7,wediscuss howourmodel relates to themiddle-income trap hypothesis,
suggesting that after a first stage of takeoff characterized by rapid growth developing
countries may face a significant growth slowdown; differently from previous research
which identify mainly inter-sectoral dynamics as a potential source of growth slow-
downs, we argue that this may also be the result of intra-sectoral dynamics (driven by
social interactions and technology diffusion) within the research industry. Section 8
presents concluding remarks and proposes directions for future research. Technical
details about the rationale behind the random utility approach characterizing research
firms’ payoff, and the metastability and probabilistic features of the transition times
associated with the finite dimensional model are discussed in “Appendices 1 and 2,”
respectively.

2 Research activities and intra-industry interactions

We consider a research industry populated by a large number of research firms which
try to maximize the profits associated with their research activities; specifically, there
exist N firms indexed by i = 1, . . . , N . For the sake of simplicity, we assume that the
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research choice is just binary; thus, we do not try to properly quantify research efforts.
Thus, any research firm needs to decide whether to engage in research activities or
not; thus, it needs to compare the profit it will obtain by performing research with the
zero-profit associated with no research activities.

If a firm actively engages in research activities, it will give rise with no uncer-
tainty to an innovation, which generates a given (fixed) amount of revenues h ≥ 0
associated with the sale of the (unitary) innovation.7 In order to produce one unit
of innovation, the firm faces a (stochastic) production cost z + ζi , where z ≥ 0
denotes the cost common to all the firms and ζi is a random firm-specific shock.
Apart from these private components of the profit structure, research profits are
also affected by a social component associated with the number of firms actively
engaged in research activities. Specifically, the size of the research industry through
an externality8 channel determines whether profits, ceteris paribus, tend to rise or
fall. There are two different cases that need to be considered: an increase in the
number of firms actively engaged in research may increase the profit for the whole
research industry and thus rise the profit of the individual research firm; alterna-
tively, an increase in the number of firms actively engaged in research may decrease
the profit for the whole research industry and thus lower the profit of the individ-
ual research firm. The former case represents the so-called standing-on-the-shoulder
effect that is innovation by some firms increases the possibility of further innova-
tion by others, while the latter case the “fishing-out effect,” that is innovation by
some firms decreases the possibility of further innovation by others (Jones 2005).
Formally, we model the individual firm research profits as in random utility mod-
els (see Brock and Durlauf 2001; Barucci and Tolotti 2012). Each firm is thus
characterized by its specific innovative attitude ωi,t ∈ {0; 1}, where ωi,t = 1
(ωi,t = 0) denotes that firm i is (is not) innovating at time t . The decision to engage
in research activities to produce innovation is based on the following profit struc-
ture:

πi (ωi ) = ωi

[
h − (z + ζi ) + J

(
x̃ e

i − 1

2

)]
. (1)

If the firm does not innovate (ωi,t = 0), the profit above is simply null,
πi (0) = 0. If the firm does innovate (ωi,t = 1), the profit is equal to πi (1) =[
h − (z + ζi ) + J (x̃ e

i − 1/2)
]
, where the first two terms represent the private com-

ponent of profit while the third term is the social component related to the effect
of externalities. The impact of the research externality is equal to J (x̃ e

i − 1/2),
where J ∈ R determines the sign and the magnitude of the externality effect and
x̃ e

i is the expectation of firm i about the average of the choices of other firms:

7 For the time being, we do not look at the demand side of the innovation market, but this will be introduced
in a very stylized way in Sect. 3, where we assume that the government buys such an innovation. The amount
of revenue h can thus be interpreted as the incentive provided by the government to induce firms to perform
research activities, or alternatively as the price at which it purchases the innovation from research firms.
8 This externality in research profits may be interpreted in terms of the availability of potential trading
partners for the innovation, which reflects into a larger or smaller willingness to produce according to the
sign of J in (1). With this respect, the market for innovation is similar to the trading market proposed in
Diamond (1982).
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x̃ e
i = 1

N−1E[∑ j �=i ω j ]. Note that the sign of J determines the type of external-
ity affecting research firms: whenever J > 0, individual profits tend to increase as
a result of the research performed by others (standing-on-the-shoulder effect), while
whenever J < 0 individual profits tend to fall (fishing-out effect). The term (x̃ e

i −1/2)
states that in quantifying the impact of the (positive or negative) externality-induced
profit component firms look at what the majority of other firms does. Indeed, the
term 1/2 refers exactly to one half of the total population of research firms; thus, if
x̃ e

i > 1/2, then firm i will expect more than half of the firms to do research. Finally,
the random components of cost, ζi , i = 1, . . . , N are i.i.d. random shocks drawn
from a common distribution η, which affect with different intensity the perceived
profit of individual firms. Two remarks on the profit structure are needed. First of
all, note that the profit π depends on the subjective expectation of the firm about
others’ actions. With this respect, it can be seen as the realized profit once condi-
tioned on agent’s expectation about others’ actions. Secondly, the random component
of the profit is entirely related to the cost structure. We could in principle build a
profit structure where randomness may impact jointly or separately both revenues and
costs. Besides amounting in a more complicated probabilistic structure, this would
not have any significant qualitative implications. For a more comprehensive discus-
sion about the rationale behind the profit structure as in (1), we refer the reader to
“Appendix 1.”

It can be easily verified that profits as in (1) turn into a probabilistic choice model
where

P(ωi = 1| x̃ e
i ) = η

[
h − z + J

(
x̃ e

i − 1

2

)]
. (2)

As shown in the literature on social interactions (see Blume and Durlauf 2003), a
dynamic counterpart of such a model can be derived. Define

x N
t = 1

N

N∑
i=1

ωi,t (3)

as the fraction of innovative firms at time t and assume this quantity is observable;
we refer to x N

t as the “innovation share.” Similarly as in the static model, we assume
that firms can decide whether to invest or not at any time t by considering its potential
revenue h, cost z and the current value of the innovation share x̃ e

i . Indeed,

P(ωi,t+Δt = 1| ωi,t , x N
t ) = η

[
h − z + J

(
x N

t − 1

2

)]
. (4)

It turns out that the Markovian dynamics induced by (4) are difficult to study in the
finite dimensional population model; nevertheless, it is possible to describe in closed-
form the (deterministic) dynamics emerging from the asymptotic system when letting
the number of research firms go to infinity. In particular, the following result describes
the time evolution of xt which is the fraction of innovative firms at time t when we
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let N → ∞. To this aim, we assume that the shocks ζi follow a centered logistic
distribution9 with parameter β > 0:

η(x) = P(ζi ≤ x) = 1

1 + e−β x
.

In this context, β is a measure of the dispersion of opinion in the population of firms:
β = 0 would represent a situation in which the firms decide to innovate or not by
tossing a coin; on the contrary, β → ∞ would mean that the firms do not receive
any stochastic signal (i.e., the random cost component) and decide just by looking
at the sign of h − z + J

(
x N

t − 1
2

)
. In the next proposition, we provide a law of

large numbers10 for the stochastic process x N
t , showing that it converges to a limiting

(deterministic) process xt , whose law of motion is described by a suitable differential
equation characterizing the (deterministic) evolution of the share of innovative firms.

Proposition 1 Let x N
t = 1

N

∑N
i=1 ωi,t be the share of innovative firms at time t.

Suppose limN→∞ x N
0 = x0. Then, when N → ∞, the family of stochastic processes

(x N )N≥0, where x N :=(x N
t )t≥0, converges almost surely to x :=(xt )t≥0, where xt solves

ẋt = 1

2
tanh

{
β

[
h − z + J

(
xt − 1

2

)]}
− xt + 1

2
, (5)

for a given initial condition x0.

Proof We can recover the standard Blume and Durlauf (2003) framework by rear-
ranging the state variables to take values on {−1;+1}. Define ζi = 1 when ωi = 1
and ζi = −1 when ωi = 0. In this case, we have that

P(ζi,t = 1| ζi,t , m N
t ) = η(h − z + J/2 · m N (t)),

P(ζi,t = −1| ζi,t , m N
t ) = 1 − η(h − z + J/2 · m N (t)),

where nowm N (t) = 1
N

∑
i ζi,t takes values on [−1, 1].Arguing similarly as inBarucci

and Tolotti (2012), it can be shown that, under the assumptions of Proposition 1,

lim
N→∞ m N

t = mt ,

where mt is the unique solution to

ṁt = tanh
{
β

(
h − z + J · mt

2

)}
− mt ; m0 = 2x0 − 1. (6)

9 We could in principle use any continuous probability distribution. The logistic is vastly used in the context
of random utility models. One reason being that the dynamics obtained under this assumption have a logistic
shape which seems to represent patterns underlying many social phenomena (see Anderson et al. 1992).
10 We provide here a straightforward proof based on the argument developed in Blume and Durlauf (2003).
A more detailed and alternative proof of the law of large numbers will be provided in Sect. 6 in a more
general setting. Note that in that case, we can only provide a weak convergence result, being the proof based
on the convergence of generators of the underlying Markov processes.
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Since xt = mt +1
2 , Eq. (5) immediately follows. �	

Proposition 1 allows to approximate the random dynamic behavior of research
firms through a deterministic equation which provides us with a simple but useful
benchmark to characterize the outcome in the research industry. This allows us to
analytically derive the outcome in the approximated deterministic version of themodel
that we shall introduce in a while and compare this with the “true outcome” in its
stochastic version. Note, moreover, that in order to derive the approximated dynamic
equation (5), random shocks play an essential role in generating heterogeneity in
research firms’ behavior and thus in giving rise to potentially non-trivial outcomes
(see “Appendix 1” for further details). In the following, we shall restrict our analysis
to the non-trivial situation in which random shocks do affect firms’ decision and
thus firms are effectively heterogeneous in their propensity to innovate. In such a
framework, the quantity xt characterizes the (approximated) fraction of innovative
firms in a large economy of research firms subject to externalities and private signals.
Since (5) provides uswith an explicit expression for describing the behavior of research
firms, as we shall see in the next section, it is now straightforward to incorporate
the research industry in a canonical endogenous growth model. This allows us to
understand to what extent the presence of firm interactions in the research industry
is going to affect the macroeconomic outcome, further distinguishing between the
standing-on-the-shoulders and the fishing-out cases. Since the role of the fixed cost z
is negligible in our setting, for the sake of simplicity in the remainder we will set it
equal to zero.

3 The macroeconomic model

Apart from the characterization of the researchmarket which to some extent resembles
what discussed in Marchese et al. (2014), the model is an almost standard endoge-
nous growth model characterized by households, productive and research firms, and a
government. Households try to maximize their lifetime welfare, by determining how
much to consume given the dynamic evolution of capital. Productive firms produce
competitively the unique final consumption good, by determining how many work-
ers and how much capital to employ given the available technology. Research firms
determine whether to invest or not in innovation, and overall technological progress
depends on the share of research firms which actively engage in research activities.
The government aiming at maintaining a balanced budget at any point in time levies
taxes on households to finance such research activities. Households and productive
firms are homogeneous; thus, we analyze their behavior as traditional representative
agents. Research firms are instead heterogeneous in their propensity to innovate, and
their behavior is consistent with what discussed in the previous section.

The representative household’s problem consists of maximizing its welfare given
its initial capital endowment k0 and the law of motion of capital, kt , by choosing
how much to consume, ct , and supplying inelastically labor. The household size, L ,
is constant, and it is assumed to be infinitely large. Welfare is defined according to
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the average utilitarian criterion;11 thus, it is equal to the infinite discounted sum (ρ is
the pure rate of time preference) of instantaneous utilities, which depend solely upon
consumption. The instantaneous utility function is assumed to take the following

isoelastic form: u(ct ) = c1−σ
t −1
1−σ

, where σ > 1 is the inverse of the intertemporal
elasticity of substitution. As usual lowercase letters denote per capita variables, while
uppercase letters aggregate variables. The household’s problem in per capita terms
can be written as:

max
ct

W =
∫ ∞

0

c1−σ
t − 1

1 − σ
e−ρtdt (7)

s.t. k̇t = (1 − τt )(rt kt + wt ) − ct , (8)

where rt is the capital rental rate, wt the wage rate and τt a (time-varying) income tax
rate. The first terms in the RHS of (7) represent the disposable income which needs to
be allocated between consumption (ct ) and capital investments (k̇t ).

Output is produced by competitive productive firms according to a Cobb–Douglas
production function, combining labor, L (inelastically supplied by households), and
capital, Kt . The production function in per capita terms takes the following form:

yt = At k
α
t (9)

where α ∈ (0, 1) is the capital share while At a technological factor, representing
total factor productivity. Productive firms take the level of technology as given and
maximize their instantaneous profits, thus determining the rental rate of capital, rt

(and the wage rate, wt ).
Research firms indexed by i = 1, . . . , N are heterogeneous in their propensity to

innovate ωi,t and try to maximize the profits associated with their research activi-
ties. Their behavior is identical to what discussed in the previous section and thus is
determined by the comparison between their profit when innovating (ωi,t = 1) and
when not (ωi,t = 0). Whenever innovating they will sell their innovation at a price
h̃t = hyt to the government,12 which does somehow finance the research activities in
the overall economy. We assume the number of research firms is infinitely large such
that Proposition 1 holds.

11 Note that since household size is constant, in our model the difference between welfare as defined
according to either the average or total utilitarian criterion is simply a constant, equal to household size (see
Marsiglio 2014 for a recent discussion of the implications of average and total utilitarianism on economic
growth). However, since the size of household is assumed infinitely large (why this is needed will become
clear later), we cannot rely on total utilitarianism since this would imply that household’s objective function
is infinite.
12 Note that in the research firms’ profit structure (1), only the constant term h appears. We, in fact, use
a “per unit” measure of (perceived) profit h = h̃t /yt . Such a measure is more appropriate to study firms
interaction since h̃t diverges to infinity over time exactly as yt . Although still tractable (see Example 2), the
formulation with the “non-discounted” h̃t turns out to be trivial and thus less interesting, since the private
profit component (related to h̃t ) is not comparable with the social component (which is bounded). See
Sect. 6, where we provide some examples related to the more general case of a time-varying ht , including
also the non-discounted h̃t case.
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The government, by taxing households, collects a tax revenue τt yt from each house-
hold, which is used to buy innovations at a price h̃t (in units of output) from each
research firm actively engaged in research activities,

∑
i ωi . In order to maintain

a balanced budget at any point in time, the government budget constraint reads as

τt yt L = hyt
∑

i ωi,t , implying that τt
L
N = h

∑
i ωi,t
N . Since the number or research

firms N is infinitely large, the previous equation can be non-trivially verified only
if the number of households L is infinitely large as well, such that the household
to research firm ratio � = lim(L ,N )→(∞,∞)

L
N > 0 is constant and finite. Provided

that both the number of households and research firms are infinitely large, the budget
constraint can be rewritten as follows:

τt� = hxt , (10)

where xt is the share of innovative firms whose dynamics is given in (5). Once an
innovation is bought by the government, it is immediately released in the public domain
to allow productive firms to use such an innovation for free to produce the final
consumption good (Marchese et al. 2014). This means that the government plays
an essential role by spreading innovations in the economy by buying them from firms,
thus solving an important coordination problem.This is consistentwith recent evidence
suggesting that most technological advances have effectively been made possible by
entrepreneurial activities pursued by governments (Mazzucato 2013).

By financing research activities, the government determines the time evolution of
the total factors productivity. Indeed, the overall level of technology is determined by
the interaction among research firms. Specifically, we assume that it evolves according
to the following law of motion:

Ȧt = φxt At , (11)

where φ > 0 is a scale parameter and xt represents the share of research firms which
actively engage in innovative activities. According to (11) for technological progress
to occur, it does not matter the size of the research industry (i.e., how many research
firms exist) but the relative size of innovative firms with respect to the industry. If none
does research (xt = 0), then technological progress does not occur, while if all firms
do research (xt = 1) then technological progress occurs at a strictly positive rate φ. For
any situation different from these two extreme cases, the rate of technological progress
will lie between 0 and φ; which specific rate will arise depends on the behavior of
research firms and their interaction within the research industry.

In general equilibrium, all agents maximize their objective function and all markets
clear. The economy is completely characterized by the following system of differential
equations and the given initial conditions k0, x0 and A0:

ċt

ct
= 1

σ

[(
1 − h

�
xt

)
αAt k

α−1
t − ρ

]
(12)

k̇t =
(
1 − h

�
xt

)
At k

α
t − ct (13)
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ẋt = 1

2
tanh

{
β

[
h + J

(
xt − 1

2

)]}
− xt + 1

2
(14)

Ȧt = φxt At (15)

Note from the above equations that the research industry dynamics turns out to be
independent from other macroeconomic variables. Although this might seem a strong
limitation of our model, as we shall see in Sect. 6, results will not be qualitative
different even in a more sophisticated formulation in which research industry and
macroeconomic outcomes affect each other. It seems convenient thus to present the
model first in its simplest possible form. Apart from the case in which xt converges
to zero (which however will never be an equilibrium), the above system (12), (13),
(14) and (15) is not stationary (i.e., it does not show any equilibrium at all); thus, in
order to study its dynamic behavior it may be convenient to recast the system in a
stationary system as traditionally done in the endogenous growth literature. From the
equilibrium properties of this latter system, we will then be able to infer the properties
of the BGP equilibrium associated with (12), (13), (14) and (15). A BGP equilibrium
denotes a situation in which all variables grow at a constant (possibly nonnegative)
rate, and deriving and discussing the characteristics of the BGP equilibrium is our
main goal in next section.

4 BGP equilibrium

By introducing the variables χt = ct
kt
and ϕt = At k

α−1
t , denoting the consumption to

capital ratio and the average product of capital, respectively, it is possible to recast the
above system in the following stationary system:

χ̇t

χt
= χt − ρ

σ
− σ − α

σ

(
1 − h

�
xt

)
ϕt (16)

ϕ̇t

ϕt
= φxt − (1 − α)

(
1 − h

�
xt

)
ϕt + (1 − α)χt (17)

ẋt = 1

2
tanh

{
β

[
h + J

(
xt − 1

2

)]}
− xt + 1

2
(18)

At equilibrium, the above system is characterized by the following steady-state values:

χ = (1 − α)ρ + (σ − α)φx

α(1 − α)
(19)

ϕ = (1 − α)ρ + σφx

α(1 − α)(1 − h
�

x)
, (20)

x = 1

2
tanh

{
β

[
h + J

(
x − 1

2

)]}
+ 1

2
(21)

where x cannot be determined explicitly. However, since xt ∈ [0, 1], it follows that
x will always be nonnegative. This means that provided that � > h, the steady-state

123



Endogenous growth and technological progress with... 305

values χ and ϕ will be strictly positive. We summarize the results about the BGP
equilibria and their stability in the following proposition.

Proposition 2 Assume � > h; then along a BGP equilibrium, the economic growth
rate, γ , is strictly positive and given by the following expression:

γ ≡ γc = γk = γA

1 − α
= γy = φx

1 − α
> 0, (22)

where x denotes the steady-state value of xt . Moreover, there exist two positive thresh-
old levels, J t (β) and ht (J, β), given by the following expressions

J t (β) = 2

β

ht (J, β) = J

2

√
β J − 2

β J
+ 1

β
ln

(√
β J

2
−

√
β J − 2

2

)
,

such that:

(i) if J < J t (β), there exists a unique γ ∗ and the unique BGP equilibrium is
saddle-point stable with a two-dimensional stable manifold;

(ii) if J > J t (β), then two alternative outcomes are possible:
(a) if h > ht (J, β), there exists a unique γ ∗ and the unique BGP equilibrium is

saddle-point stable with a two-dimensional stable manifold;
(b) if h < ht (J, β), there exist three BGP equilibria corresponding to three

values γL < γM < γH . The intermediate one is saddle-point stable with a
one-dimensional stable manifold, whereas the two extreme ones are (locally)
saddle-point stable, each with a two-dimensional stable manifold.

Proof By plugging the steady-state values of χt and ϕt back in the original equations
(12–15), it is straightforward to derive the BGP growth rate γ , as in (22). The char-
acteristics of γ strictly mimic those of x . Indeed, multiplicity is due to the possible
multiplicity of the steady states of Eq. (5). As already shown in the literature (seeBrock
and Durlauf 2001), it turns out that, depending on the values of the parameters, we
can have a unique stable equilibrium (x̄) for (5) or three equilibria (x L < x M < x H ),
two of which are locally stable (x L and x H ). A similar threshold value for J , equal
to 1/β, is also derived by Brock and Durlauf (2001); note that the factor 2, appearing
in our statement, depends on the transformation from the variable mt to the rescaled
variable xt as shown in the proof of Proposition 1.

Concerning the value of ht , in Olivieri and Vares (2005) (see Sects. 4.1.1. and 4.3) it
is shown that the fixed point problem m = tanh(β̃(m + h̃)) admits multiple solutions

as soon as β̃ > 1 and h̃ <

√
β̃−1
β̃

+ 1
β̃
ln

(√
β̃ −

√
β̃ − 1

)
. According to (6) and

assuming z = 0 without loss of generality, we can rewrite our equation in x in the
form m = tanh(βh + β J

2 m). Therefore, ht is derived from the above expressions by
setting β̃ = β J/2 and h̃ = 2h/J . From (22), if there are multiple equilibria for x ,
then the system admits multiple equilibria as well.
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Concerning stability, by linearization around a steady state it is possible to analyze
the (local) stability properties of the above system by deriving the following Jacobian
matrix:

J (χ, ϕ, x) =
⎡
⎣ χ −σ−α

σ
(1 − h

�
x)χ σ−α

σ
h
�
ϕ χ

(1 − α)ϕ −(1 − α)(1 − h
�

x)ϕ φϕ + (1 − α) h
�
ϕ2

0 0 Λ

⎤
⎦ , (23)

whereΛ = ∂ ẋt
∂xt

|xt =x . It is straightforward to show that the eigenvalues are given by the

following expressions λ1 = Λ, and λ2,3 = Δ±√
Δ2+Θ
2 , where Δ = χ − (1 − α)(1 −

h
�

x)ϕ > 0 and Θ = 4 α
σ
(1 − α)(1 − h

�
x)χ ϕ > 0, from which it directly follows that

λ2 > 0 and λ3 < 0. Independently of what the sign of Λ is, there exists at least one
positive and one negative eigenvalue; thus, any possible equilibrium is saddle-point
stable. Moreover, it is possible to show that Λ < 0 for x̄L and x̄H and Λ > 0 for x̄M .
Therefore, the stable manifold associated with the three equilibria has dimension 2 for
γL and γH and dimension one for γM . �	

The parameter condition required by Proposition 2 is needed in order to ensure
that the BGP equilibrium is well defined. Intuitively, it requires that the household to
research firm ratio (�) is large enough to provide the government with the resources
needed to promote research activities (h). Along a BGP the economic growth rate γ

depends negatively on α and positively on φ and more importantly on the equilibrium
share of innovative firms x . This means that our model economy does not show any
scale effect, since the growth rate is independent of any aggregate variable.13 However,
since the equilibrium share of research firms may not be unique,14 also the BGP
equilibrium turns out to be not unique, and this is strictly related to the size of the
externality parameter, J . Indeed, Proposition 2 suggests that in the fishing-out case
(J < 0) there always exists a unique saddle-point stable BGP equilibrium; however,
in the standing-on-the-shoulder case (J > 0) there is a richer variety of possible
outcomes. Whenever the standing-on-the-shoulder effect is weak (i.e., the magnitude
of the positive externality is small), a unique stable equilibrium will emerge. In the
case of a sufficiently large externality, then the number of equilibria depends on the
value of the incentive mechanism provided by the amount of revenues obtained, h. A
large h makes the equilibrium unique, whereas a small h gives rise to the presence of
two locally stable equilibria.15 As a matter of expositional simplicity, in the following

13 An increase in the number of firms in the research industry does not rise the overall economic growth
rate. This rate can increase only if the equilibrium share of innovative firms rises.
14 Note that the eventual multiplicity in the equilibrium of the innovation share is due to the heterogeneity
in research firms. As more specifically discussed in “Appendix 1,” in the case of homogeneous research
firms the equilibrium innovation share will necessarily be unique and equal to either zero or one, meaning
that the BGP growth rate will be either null or maximal, respectively. Such an outcome is clearly possible
but also trivial; thus, in our discussion we focus only on the most interesting case in which research firms
are heterogeneous.
15 Note that the intermediate equilibrium γM , although saddle-point stable, is derived from an innova-
tion share x M which is linearly unstable on its own. Therefore, unless we assume that the economy is exactly
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Table 1 Parameter values
employed in our simulation

σ ρ α � φ β

2 0.04 0.33 1000 0.04 1

we will refer to the case (i) in Proposition 2 as the “small externality case” and to
the case (ii) as the “large externality case.” Note that the macroeconomic behavior
closely resembles the behavior on the innovation share, and when the equilibrium
innovation share is unique (multiple) then the BGP equilibrium is unique (multiple) as
well. Specifically, in the case of multiple equilibria, if x0 < x M then xt will converge
to x L (and the BGP growth rate will be low, γL ), while if x0 > x M then x H will be
reached instead (and the BGP growth rate will be high, γH ). Thus, the initial fraction
of innovative firms plays a crucial role in determining which BGP equilibrium will be
effectively achieved.16

In order to understand more in depth what are the characteristics of the BGP
equilibrium, we now analyze the behavior of the economy under a realistic model’s
parameterization. Specifically, we set the inverse of the intertemporal elasticity of sub-
stitution, σ , equal to 2, the rate of time preference, ρ, to 0.04, the capital share, α to
0.33 (Mullingan and Sala-i-Martin 1993); the scale parameter determining the rate of
growth of technology φ is calibrated to 0.04, in order to obtain an economic growth
rate equal to 0.03 (in the case in which the equilibrium share of innovative firms is
exactly equal to one half); the other parameter values are set arbitrarily in order to
make sure that the assumption required in Proposition 2 is met and that our qualitative
results are as clear as possible. We thus set the households to research firm ratio, �,
equal to 1000, the measure of the dispersion of opinion in the population of research
firms, β equal to 1, while we let the revenue provided to research firms, h, and the size
of the externality parameter, J , vary in order to see how they affect the BGP economic
growth rate γ . Table 1 summarizes the parameter values employed in our analysis.

In Fig. 1, we show how the BGP growth rate γ varies for different values of the
externality parameter, J , whenever the revenue parameter h is set equal to 0. As
expected from Proposition 2, for negative and positive but small enough values of
the externality parameter a unique BGP and thus a unique economic growth rate,
γ ∗ = φx∗

1−α
(equal to 0.03), exists. For larger values, three equilibria, namely γL = φx L

1−α
,

γM = φx M
1−α

and γH = φx H
1−α

with γL < γM < γH , exist and the gap between the high
and low economic growth rate, γH − γL , rises with J .

Since the existence of either a unique or multiple BGP equilibrium is related to the
size of the externality parameter, it may be convenient to separately analyze the cases
in which the externality parameter is either small or large. In Fig. 2, we thus consider
two alternative values J = 1.9 and J = 2.5, lying below and above the threshold value

Footnote 15 continued
tuned on x0 = x̄M , this equilibrium will never emerge. For this reason, we will not consider it as a possible
realist economic outcome.
16 The importance of the initial share of innovative firms for the model’s outcome is further discussed in
Sect. 5 where we focus on the finite-number of research firms case. We will show that in such a (stochastic)
framework the presence of multiple equilibria might give rise to growth cycles.
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Fig. 1 Changes in the economic growth rate, γ , for different values of the externality parameter, J (revenue
parameter h set equal to 0)

J t = 2 (see Fig. 1), respectively, and show how the BGP growth rate γ varies with
the revenue parameter, h. As discussed above, the small externality case represents a
situation in which the research sector is characterized by either fishing-out (J < 0)
or weak standing-on-the-shoulder (0 < J ≤ J t ) effects. In both the cases, equation
(18) shows a unique stable equilibrium and consequently the BGP equilibrium is
unique as well: γ ∗ = φx∗

1−α
. The convergence to the steady state of the system (16–

18) will occur along a two-dimensional stable manifold. We can see that the unique
economic growth rate increases with h; thus, the higher the incentive for research firms
to engage in research activities the faster the economic growth (Fig. 2, top panel). The
large externality case represents instead a situation in which the research sector is
characterized by a strong standing-on-the-shoulder (J > J t ) effect. In this case, Eq.
(18) shows three equilibria (x L < x M < x H ), two of which are locally stable (x L

and x H ). As a consequence, the BGP equilibrium is not unique as well: we need to
distinguish three BGP equilibria, characterized by an economic growth rate equal to
γL = φx L

1−α
, γM = φx M

1−α
and γH = φx H

1−α
with γL < γM < γH , respectively. As seen

from Proposition 2, the convergence to such three steady states of the system (16–18)
will occur either along a two-dimensional stable manifold (for γL and γH ) or along a
one-dimensional stable manifold (for γM ). We can see that the high and low economic
growth rates, γH and γL , increase with h, while the medium one γM falls with h;
thus, the higher the incentive for research firms to engage in research activities the
faster the economic growth in each of the two stable equilibria (Fig. 2, bottom panel).
The threshold value for h provided by Proposition 2 (and confirmed by our numerical
simulation) is ht ≈ 0.078; only whenever h < ht , three equilibria exist.

Figure 2 suggests some interesting policy implications, since it clearly shows how
the revenue parameter impacts on the equilibrium economic growth rate. Indeed, in
the large externality case whenever the revenue provided to research firms is small
(h < ht ), three different BGP equilibria exist, and this is strictly related to the existence
of three different equilibrium values for the innovation share. Therefore, the same
economymay experience different growth rates according to howmany research firms
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Fig. 2 Changes in the growth rate, γ , for different values of the revenue parameter h (0 ≤ h ≤ 0.2); the
externality parameter J set equal to either 1.9 (top panel) or 2.5 (bottom panel)

actively engage in research activities: if this share is small, the economic growth rate
will be low, while if it is large the economic growth rate will be high. This means that
the economy is potentially faced with a low growth trap, which may condemn it to
grow slower than what it could potentially do. In such a framework, it is natural to
wonder what policymakers can do in order to deal with this problem. As traditionally
discussed mainly in the context of poverty traps (Sachs et al. 2004), an economy may
escape its low growth trap by increasing the innovation share, thus allowing the initial
share of research firms (x0) to exceed its unstable middle equilibrium (x M ). Such an
outcome might be implemented by simply opening the economy to international trade
and providing some incentive for foreign firms actively engaged in research activities
to operate also on the domestic market; research activities at international level may
thus provide the economy with the push it needs to achieve fast economic growth.
However, policymakers may do much more than this, since they can effectively allow
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Fig. 3 Equilibrium values x ∈ [0, 1] (marked with a star) found as the intersection between the bisector

line and f (x) = 1
2 tanh

{
β

[
h + J

(
x − 1

2

)]}
+ 1

2 (see Eq. (21)). Parameters values: h = 0 (left panel)

and h = 0.15 (right panel), with J = 2.5

the economy not only to escape its low growth trap, but to even solve completely the
trap problem. Indeed, by rising enough the revenue provided to each research firm such
that h > ht , the innovation share will naturally converge toward its unique (higher)
equilibrium value; the economic growth rate at equilibrium will be high, and thus, the
economy will not be trapped into a low growth equilibrium. Such an outcome can be
easily implemented by increasing the tax rate applied to households’ income in order to
finance the increase in the revenue parameter. Indeed, in our model’s parameterization
the tax parameter τ̂ needed to escape the low growth trap is τ̂ = h

�
x ≈ 0.0413%.

The result should be clear from Fig. 2; it can also be seen from Fig. 3 where we plot
the equilibrium values of x for two different values of the revenue parameter h. This
clearly show that with a higher h a unique equilibrium x (and thus also a unique BGP)
may exist.

5 Metastability and endogenous cycles

As already stressed in Sect. 2, the infinite dimensional research market obtained by
letting N go to infinity is just a deterministic approximation of the more complex
finite N -dimensional heterogeneous research industry described by Eqs. (1–4). We
now focus on some important implications of the fact that the “true” model is actually
not deterministic but stochastic since characterized by some intrinsic randomness.
Indeed,whenmultipleBPGequilibria exists,17 the finite dimensional systemdescribed

17 When a unique equilibrium exists, the finite dimensional system is still stable in the sense that shocks
generate fluctuations around the unique equilibrium. In this case, the long timescale effect is not present
since there is no possibility of cycling between equilibria. We thus focus our discussion in this section on
the most interesting case in which multiple equilibria exist and the implications of metastability.
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in Sect. 2 has the remarkable property to exhibit a“metastable behavior.”As discussed
in Mathieu and Picco (1998), a probabilistic system exhibits a metastable behavior
when it remains for long times close to an apparent equilibrium, called metastable, and
then it suddenly shifts to another attractor. We shall prove that, for some values of the
parameters, these transition times happen with probability one and are unpredictable,
in the sense that their distribution shows lack of memory. This phenomenon gives rise
to a cycling behavior of the finite dimensional system: due to the sudden switching
of the system toward the other attractor, the trajectories oscillate for long times close
to one of the two (metastable) equilibria. Put differently, it is as if there were two
different timescales: on a short timescale, the equilibria described in Proposition 2
are, apparently, stable; on a longer timescale, we instead observe a cycling behavior
generated by the endogenous fluctuations between the two regimes.18 Let us focus
on the large externality case and specifically on a situation in which multiple BGP
equilibria exist (case ii.b in Proposition 2). In such a case two stable BGP equilibria
exist; as discussed above which equilibrium our economy will achieve depends upon
the initial conditions (χ0, ϕ0, x0), and in particular a critical role is played by the initial
condition on xt . Indeed, the initial share of innovative firms determines whether the
equilibrium share will be high or low, thus determining whether the economic growth
rate, γ , will be high or low. While this outcome is clear in the infinitely large number
of research firms version of the problem, whether this holds true also for the finite
version is not so obvious. In fact, in the finite version of the model, research firms
are subject to random shocks which determine whether they will decide to innovate
or not; in the infinite version, the effects of such shocks cannot be analyzed since the
approximation provided by Eq. (18) turns out to be completely deterministic.

Let us denote by x N
t the proportion of innovative firms at time t among a total

population of N firms. As said, under the assumptions of case ii.b in Proposition 2, the
trajectory x N

t has a metastable behavior: it fluctuates close to one of the two equilibria,
say x̄L and, after a random time, it suddenly jumps to values close to x̄H (and vice
versa). We now state a proposition collecting the main properties of the so-called
tunneling time, i.e., the time needed for a trajectory to leave the basin of attraction of
one equilibrium. The cycling behavior is due to a sequence of such (random) tunneling
times.Unfortunately, the results describing the probabilistic properties of the tunneling
times are rather technical; in order to make the discussion more clear, we prefer to
maintain this section as simple as possible avoiding technicalities and postpone to
“Appendix 2” a more involved mathematical discussion. In order to define TN , the
tunneling time of the process x N

t , we introduce two significant values in the state
space of x N

t :

x N
L = �N x̄L�

N
; x N

M = �N x̄M�
N

;

18 We would like to stress the fact that, as mentioned earlier, such a metastable behavior pertains also to the
finite dimensional version of classical random utility models such as the Brock and Durlauf (2001) model.
To the best of our knowledge, such a peculiarity of this type of systems has never been discussed within
the economics literature.
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these are the values that the process x N
t can reach and that better approximate (from

above) the real values x̄L and x̄M , respectively. The tunneling time of the process x N
t

is defined as the time needed to cross the basin of attraction of x̄H , when starting close
to x̄L . More precisely,

TN = min
t>0

{
x N

t = x N
M , x N

0 = x N
L

}
. (24)

Note that this is exactly the first time at which the trajectory starting close to the
equilibrium x̄L will cross x̄M , hence entering the basin of attraction of x̄H . Once the
process has crossed x̄M , it rapidly converges toward x̄H . The main properties of the
tunneling time are summarized in the next proposition.

Proposition 3 Consider the process x N
t as described by Eqs. 3–4. Assume that J >

J t (β) and h < ht (J, β), where the thresholds are as defined in Proposition 2. Then
there exists a suitable constant Δ depending on β, J, h such that the tunneling time
TN has the following properties:

(a) for all δ > 0, limN→∞ P
(
eN (Δ−δ) < TN < eN (Δ+δ)

) = 1;
(b) TN /E[TN ] converges in law to a unit-mean exponential random variable, as N →

∞.

A formal proof of the proposition is presented in “Appendix 2” where the explicit
functional form of Δ is also provided. As suggested by Proposition 3, the random
jumps happen with probability one for each trajectory, although the jump times TN

could be possibly large. Specifically, the transition times tend, for N → ∞, to an
exponentially distributed randomvariablewith expectation proportional to eΔN , where
Δ is a suitable constant depending on the parameters of the model. It turns out that, for
values of J close to J t , the random time needed to exit the basin of attraction of the
two locally stable equilibria is relatively small and trajectories showing growth cycles
arise. In Fig. 4 (bottom panel), we provide an example showing that, for J = 2.05
(recall that J t = 2), this random time is reached early enough to be seen in the
trajectory. More precisely, we show that the (stochastic) time series of x N

t may deviate
from its expected behavior predicted by Eq. (18). Recall that xt describes exactly
the deterministic evolution of the system under the modeling assumption that N is
infinite. In the top panel, we show that x N

t may converge to the equilibrium it is not
supposed to achieve. Indeed, since the initial condition x0 = 0.1 is greatly lower
than x M = 0.4178, we would expect the time series of x N

t to fluctuate around the

red-dashed trajectory x (L)
t leading to the low equilibrium. However, in this particular

simulation, this is not the case: the trajectory deviates and start fluctuating around the
high equilibrium x H . In the bottom panel, as said, we show that the finite dimensional
trajectory x N

t may spend quite a long time close to one of the two equilibria and then
depart from it to reach the other one. What discussed for x N

t has clear implications
also in terms of the macroeconomic outcome: differently from what suggested by the
(deterministic) theory, the system, even when the initial conditions are very close to
the high BGP equilibrium, may converge toward the low BGP equilibrium or oscillate
between the two BGP equilibria without converging to a steady state. Note that in the
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Fig. 4 Evolution of x N
t (in blue) for a finite dimensional system of N = 1000 firms. In the top panel, we

see the deviation from the expected trajectory x(L)
t suggested by the model in favor of x(H)

t . In the bottom
panel, we have a trajectory fluctuating around the two attractors. Parameters are as in Table 1 with h = 0.01
and J = 2.14 (top panel) and h = 0 and J = 2.05 (bottom panel)

small externality case, in which the equilibrium is unique, such an effect naturally
disappears. This suggests that government intervention may be essential not only to
allow the economy to solve its eventual low growth trap problem but also to reduce
the fluctuations (occurring with probability one) in economic activity.

We provide now some estimates of the expected tunneling time for the process x N
t .

When considering the values of the parameters as in Table 1, h = 0 and J = 2.05 (see
Fig. 4, bottom panel), Δ ≈ 1.92 × 10−4 so that eΔN ≈ 1.212. This means that, on
average, we expect eΔN · N ≈ 1212 single transitions (i.e., single firms deciding to
change their innovation policy) to actually observe a tunneling time. As a comparison,
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Fig. 5 Evolution of x N
t (in blue) for a finite dimensional system of N = 1000 firms. Parameters are as in

Table 1 with h = 0 and J = 2.14. The BGP innovation share equilibria are x̄H = 0.7156 and x̄L = 0.2844

in Fig. 5, we show a trajectory of x N
t where parameters are the same except for J

which is now higher: J = 2.14. In this case, Δ = 3.217 × 10−3 and eΔ N ≈ 24.965.
Now, we expect 24,965 single transitions to observe a tunneling time. The comparison
with the bottom panel of Fig. 4 shows that, as expected, the tunneling times are now
less frequent: a longer timescale is needed in order to capture the transitions from one
BGP equilibrium to the other.

We conclude this section by providing an intuition about the effects of metastability
on macroeconomic variables, and in particular on how metastability results in output
fluctuations, thus generating a growth cycle. To this aim, in order to simplify computa-
tional problems we consider the special case in which the inverse of the intertemporal
elasticity of substitution and the capital share perfectly coincide, that is σ = α. Such a
case has been frequently analyzed in order to fully characterize transitional dynamics
in similar growth models (Smith 2006; Xie 1994) since allowing to decouple some
variables in system Eqs. 16–18 and thus to obtain an explicit analytical expression for
the evolution of main variables.Whenever σ = α, it is straightforward to show that the
evolution of capital is given by the following expression: k̇t = (

1 − h
�

xt
)

At kα
t − ρ

α
kt ,

from which it is then possible to characterize the evolution of output from yt = At kα
t .

We wish to provide an intuition about the trajectories of yN
t , the level of per capita

output, under the assumption that xt is now substituted by x N
t . This can be done by

discretizing the system of differential equations to obtain a (approximated) differ-
ence equations system where the variables are now (k N

t , AN
t , yN

t ) where k N
0 = k0,

AN
0 = A0,

{
k N

t+1 = k N
t + (

1 − h
�

x N
t

)
AN

t (k N
t )α − ϕ

α
k N

t
AN

t+1 = φ AN
t x N

t
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Fig. 6 Evolution of yN
t on a logarithmic scale (top panel) associated with the evolution of x N

t (bottom
panel)

and yN
t = AN

t (k N
t )α , with yN

0 = AN
0 (k N

0 )α . In Fig. 6, we plot (on a log-scale)
the trajectory of yN

t associated with the trajectory of x N
t presented in Fig. 5. It is

straightforward to observe that the slope of log(yN
t ), representing the growth rate of

per capita output, changes whenever a regime shift occurs: the slope is steeper when
x N

t fluctuates around x̄H while it is flatter when x N
t fluctuates around x̄L , meaning that

the growth rate fluctuates between high and low values, thus giving effectively rise
to a growth cycle. Even if the difference in the growth rates might apparently seem
small, this is not the case: from γ = φ x̄

1−α
, we can compute that the two BGP rates

are substantially different; indeed, γ̄H = 0.0427 and γ̄L = 0.0170 suggesting a 2.5%
difference in the growth rate between the high and low regimes.

6 A generalized model

The model that we have focused on thus far is based on the assumption that the
incentive for innovative activities (i.e., the price paid by the government in order to
purchase the innovation from research firms), h, is constant and exogenously given.
This might seem a merely convenient ad hoc simplification allowing to decouple the
research industry from other macroeconomic variables; however, as we shall see in
a while even extending the analysis to a more general setting would lead to results
qualitative similar to those just discussed in our baseline model. In order to look at
this, we allow the incentive to be time-dependent and endogenous since depending on
other macroeconomic variables. In this case, the government budget constraint reads
as follows:

τt� = ht xt , (25)

where ht = H(xt , At , t) for a suitable function H : R
3 → [0, �]. Note that the

upper bound is needed to ensure that τt ≤ 1 for all t . This specification of ht suggests
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that the government may wish to provide stronger or weaker incentives to innovative
activities according to the overall level of technological advancement At achieved in
the economy. Therefore, the tax rate should also change with the level of technological
advancement: the tax rate is now defined as τt = T (At ) where we do not impose any
restriction a priori on the shape of the function T (·). The above budget constraint in
this case read as follows:

ht = H(xt , At , t) = �

xt
T (At ).

We will discuss one specific example at the end of this section, but we firstly provide
a generalization of Propositions 1 and 2. Note that, since now ht = H(xt , At , t),
the Markov process x N

t and the relative limit xt are no longer disentangled from
other macroeconomic variables: the dependence in At makes the derivation of the
law of large numbers more complicated.19 Indeed, we need to define a suitable two-
dimensional stochastic process (x N

t , AN
t ) such that, when taking the limit for N → ∞,

(x N
t , AN

t ) converges to the pair (xt , At ) defined by Eqs. 14–15. This is formally stated
in the following proposition.

Proposition 4 For all N ≥ 1, consider the stochastic process (x N
t , AN

t ) defined as:

x N
t = 1

N

N∑
i=1

ωi,t , AN
t :=AN

0 e
∫ t
0 φ x N

s ds

where φ > 0 and

P(ωi,t+Δt = 1| ωi,t , x N
t , AN

t ) = η

[
H(x N

t , AN
t , t) − z + J

(
x N

t − 1

2

)]
. (26)

Moreover, assume that limN→∞ x N
0 = x0 and limN→∞ AN

0 = A0. Then, when N →
∞, the process (x N

t , AN
t ) weakly converges to (xt , At ) solving

ẋt = 1

2
tanh

{
β

[
H(xt , At , t) + J

(
xt − 1

2

)]}
− xt + 1

2
(27)

Ȧt = φ xt At (28)

with initial conditions (x0, A0).

Proof Note that, in principle, the definition of AN
t introduces a dependence on the

past of the process x N
t , thus a loss of Markovianity. Nevertheless, we will see that the

19 We are indebted to an anonymous referee for suggesting such a non-trivial model’s extension. Apart
from generalizing our previous results, this allows us to discuss the mathematics behind this formulation
with endogenous ht = H(·) and compare it with the classical random utility model with constant h. To the
best of our knowledge, such a type of generalization has never been discussed in the literature thus far, not
even in other frameworks.
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pair (x N
t , AN

t ) is still Markovian. To this aim, we introduce the infinitesimal generator
of the process (x N

t , AN
t ) applied to functions f : R3 → R with compact support:

LN f (x, A, t) = N x N
t η−(x N

t , AN
t )

[
f

(
x − 1

N
, A, t

)
− f (x, A, t)

]

+N (1 − x N
t ) η+(x N

t , AN
t )

[
f

(
x + 1

N
, A, t

)
− f (x, A, t)

]

+φ x N
t AN

t f ′
A(x, A, t) + f ′

t (x, A, t),

where

η+(x, A):=η

(
H(x, A, t) − z + J

(
x − 1

2

))

represents the probability for an agent with ωi,t = 0 to become active (i.e., to decide
to do research) at time t and η− = 1 − η+. Since LN only depends on the variables
(x N

t , AN
t ) computed at time t , we conclude that the stochastic process (x N , AN ) is

Markovian.
Moreover, since all the derivatives are uniformly bounded, it turns out that

lim
N→∞ sup

(x,A,t)∈R3
|LN f (x, A, t) − L f (x, A, t)| = 0 (29)

where

L f (x, A, t) = [−x + η+] f ′
x (x, A, t) + Ȧ f ′

A(x, A, t) + f ′
t (x, A, t). (30)

The form of L provided in (30) follows from the fact that, taking the first order
approximation of LN ,

LN f (x, A, t) = N x N
t η−(x N

t , AN
t )

(
− 1

N

)
f ′
x (x, A, t)

+ N (1 − x N
t ) η+(x N

t , AN
t )

(
1

N

)
f ′
x (x, A, t)

+ φ x N
t AN

t f ′
A(x, A, t) + f ′

t (x, A, t) + o

(
1

N

)
;

which can be rewritten as

LN f (x, A, t) = [−x N
t + η+(x N

t , AN
t )] f ′

x (x, A, t)

+ φ x N
t AN

t f ′
A(x, A, t) + f ′

t (x, A, t) + o

(
1

N

)
. (31)
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Now it is easy to show that the limit of LN is L as expressed in (30). Note that L
is the infinitesimal generator of the process (xt , At ), where

ẋt = −xt + η+(xt , At ); Ȧt = Atφ xt .

This can be seen computing Lx and LA (i.e., considering f ≡ x and f ≡ A,
respectively). Finally, by the functional form of η+, we easily see that

ẋt = −xt + 1

2
+ 1

2
tanh

(
H(xt , At , t) − z + J

(
xt − 1

2

))
. (32)

By virtue of Theorem 1.6.1 in Ethier and Kurtz (1986), Eq. (29) and the assumption
on the convergence of the initial conditions ensure that the stochastic process (x N

t , AN
t )

weakly converges to (xt , At ). �	
Apart from the complication introduced by the need to deal with a two-dimensional

stochastic process, the results are qualitatively identical to those discussed earlier.
When the number of research firms is infinitely large, we can approximate the model’s
outcome through some deterministic differential equations describing the evolution of
the innovation share and the evolution of technology.Differently fromwhat seen earlier
in our baseline setup, now the research industry and the macroeconomic outcome are
more realistically mutually interconnected. By having generalized Proposition 1, it is
now straightforward to derive a generalization of Proposition 2.

Proposition 5 Consider the economy described by Eqs.16–18where ht = H(xt , At , t)
for a differentiable function H : R3 → [0, �] such that limt→∞ ht = h̄ ∈ [0, �] is
well defined. Then, along the (asymptotic) BGP equilibria the economic growth rate
is given by:

γ = φ x̄

1 − α
, (33)

where x̄ is the solution of:

x̄ = 1

2
tanh

{
β

[
h̄ + J

(
x̄ − 1

2

)]}
+ 1

2
. (34)

Proof Just take the limit for t → ∞ and impose ẋ = 0 in (32). The rest of the proof
follows arguing similarly as in Proposition 2. �	

Proposition 5 characterizes the BGP in our generalized model in which the inno-
vation incentive is endogenous and time-varying. Note that the economic growth rate
is the same as in our baseline model and the only eventual difference between the two
frameworks is due to the eventual different equilibrium share of innovative firms. Con-
cerning multiplicity/uniqueness of equilibria, the whole discussion of Proposition 2
still holds true as long as h is replaced by h̄ ∈ [0, �]. Indeed, two thresholds J t (β) and
ht (J, β) still exist although, differently from the baseline case, we are not able to char-
acterize them explicitly. Propositions 4 and 5 jointly suggest that the results previously
discussed in our baseline setup still hold true even in a more sophisticated model in
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which innovation decisions are endogenous and related to macroeconomic outcomes.
Therefore, also the related discussion of policy implications still apply, confirming
the importance of taking into account social interaction within the research industry
in order to understand the determinants of macroeconomic performance. Finally, also
in this more general case, when multiple BGP equilibria exist, they are metastable in
the sense of what discussed in Sect. 5; therefore, the trajectories of x N

t will exhibit
cycling patterns and endogenous fluctuations will occur over the long run.

We exemplify the above discussion by considering some specific functional form
for ht in order to further clarify the results.

Example 1 Let us consider: ht = H(xt , At , t) = �
xt
T (At ), where T (At ) = τ · (1 +

e−At ), for 0 < τ ≤ 1/2. In this case, h̄ = τ �
x̄ . In Fig. 7, we plot the value of the

BGP growth rate γ as a function of the main parameter. In the top panel, we set
τ = 4 · 10−5 and we let J vary, while in the bottom panel we set J = 3 and we let
τ vary; all other parameter values are set accordingly to Table 1. We can see that the
bifurcation diagram is similar to what described in our baseline model. Finally, note
that in case of multiplicity of equilibria, the equilibrium value for the tax rate and the
innovation incentive h̄ change with the equilibrium prevailing in the economy. For
instance, for J = 3 and τ = 4 · 10−5, h̄ takes value 0.2060 or 0.0427 if xL or xH ,
respectively.

Example 2 Consider the case of h̃t = ht · yt , where ht = H(xt , At , t) ∈ [0, �] and
yt is the time-varying per capita output. In this case, (26) reads as follows:

P(ωi,t+Δt = 1| ωi,t , x N
t , AN

t ) = η

[
H(x N

t , AN
t , t) · yt − z + J

(
x N

t − 1

2

)]
.

It is not difficult to show that Propositions 4 and 5 still apply. The result is, however,
different: being H bounded and yt diverging to infinity when t → ∞, in (27) we have
that h̄ is replaced by limt→+∞ h̃t = +∞. Therefore, in this case, the unique solution
to (27) is now x̄ = 1. This is rather obvious: if the incentive to innovation explodes,
it is worth to enter the market of innovation and the result is trivial.

7 Middle-income trap

An interesting line of interpretation of our stylized model is related to the middle-
income trap hypothesis.20 This refers to the experience common to many developing
countries (especially in Latin America and in theMiddle East) in the second half of the
nineteenth century, in which growth has significantly slowed down after a first stage
of takeoff characterized by rapid growth (see Gill and Kharas 2007; Commission
on Growth and Development 2008). This development process has allowed these
economies to quickly move from a low-income to a middle-income status, but not to

20 The term “middle-income trap” has been originally introduced by Gill and Kharas (2007), and the notion
has also often been referred to as “growth slowdown” (Eichengreen et al. 2012).

123



320 S. Marsiglio, M. Tolotti

J

0

0.01

0.02

0.03

0.04

0.05

0.06

γ

-1 0 1 2 3 4

0 0.2 0.4 0.6 0.8 1
τ ×10-4

0

0.01

0.02

0.03

0.04

0.05

0.06

γ

Fig. 7 Changes in the growth rate, γ , for different values of J (top panel) with −1 ≤ J ≤ 4 and h (bottom
panel) with 0 ≤ h ≤ 0.0001; τ = 4 · 10−5 in the top panel and J = 3 in the bottom panel

make the further leapneeded to becomehigh-incomeeconomies. This has advanced the
hypothesis that theremay exist amiddle-income trap, thus preventing some economies
to fill the gap with more advanced countries. What might be the specific hindrances
affecting this second stage of economic development is still an open question, but these
are likely to be substantially different from those involving the first stage in which
traditional poverty traps are in place.

Understanding what may be the reason why some fast growing economies have
failed to achieve a high-income status is an active and recent research question with
clear policy implications. While empirical evidence supporting the existence of a
middle-income trap seems robust and convincing, much less clear is from a theo-
retical point of view why fast growth might come to an end. On the empirical side,
Eichengreen et al. (2012) showed that growth tends to slowdown at levels of per capita

123



Endogenous growth and technological progress with... 321

income of about $15,000 (at 2005 constant international PPP prices), suggesting that
a critical role is played by a reduction in the growth rate of the total factor productiv-
ity (TFP); specifically, a drop in TFP growth represents about 85% of the fall in per
capita income growth. Eichengreen et al. (2013) provided some additional evidence,
showing that the distribution of growth slowdowns is not necessarily unimodal, and
in particular two modes, one around $15,000 and another around $11,000, exist. On
the theoretical side, very few works have tried to provide some explanation of growth
slowdowns in middle-income countries, and they focus on reallocation or misalloca-
tion of workers between different economic sectors. A traditional argument suggests
that while in earlier stages of development it may be possible to raise productivity by
shifting workers from agriculture to industry, this process may come to an end when-
ever the share of workers employed in agriculture falls enough (Lewis 1954). A more
recent explanation emphasizes that a low allocation of high skilled individuals in the
research sector may give rise to low productivity growth; however, this situation of
potential slow growth can be fixed by policy interventions (Agénor and Canuto 2015).
Differently from these works in which inter-sector dynamics is the driver of eventual
growth slowdowns, our paper provides an alternative explanation based entirely on
social interactions and technology diffusion.

Along the lines of Agénor and Canuto (2015), whenever the economy experiences
multiple BGP equilibria (Proposition 2, case ii.b), the intermediate BGP equilibrium
γM (i.e., the low growth trap threshold) can be clearly interpreted as a middle-income
trap, separating fast and slow growing economies. Note that the eventual existence of
such a trap is determined by the outcome in the research industry, which is completely
driven by social interactions among research firms. Thus, the research intra-sector
dynamics only might explain why technological progress and thus economic growth
tend to be high or low in specific economies. In order to relate this to the pattern
advanced by the middle-income trap hypothesis, we need to understand why an econ-
omy initially (during a first stage of economic development) in a BGP with high
economic growth rate, γH , may end up (in the second stage of development) in a BGP
equilibrium with low growth rate, γL , later. In our setting, this is equivalent to a either
a fall in the number of innovative firms xt or a rise in the intermediate equilibrium of
the innovation share, x M ; both the cases imply that an economy with an original high
innovation share may end up with a low (compared with the critical threshold) inno-
vation share, thus experiencing a slowdown in its economic growth. The former case
may be triggered by a change in international policy, and specifically, it may occur as
a result of the introduction of tariffs or other restrictive policies, which by providing
negative incentives for foreign firms to operate on the domestic market leads some
foreign firms engaged in research activity to exit the domestic research market. The
latter case may instead be triggered by a change in domestic economic policy, and it
may occur as a result of a reduction in the support provided to research firms which,
by determining the amount of revenue received by innovative firms, tends to increase
the intermediate equilibrium value of the share of firms engaged in research activities.
While empirical evidence seems to supports our conclusions related to the negative
relation between growth slowdowns and openness (Eichengreen et al. 2012), the avail-
able evidence does not allow to either support or refute those related to the positive (up
to a certain point) nexus between growth slowdowns and research-enhancing policies.
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Apart from the eventual existence of such a middle-income trap, our model differ-
ently fromAgénor andCanuto (2015) suggests that also growth cyclesmay occur. This
implies that also fast growing economies cannot claim to have definitely escaped their
middle-income trap, since theymay be cyclically pulled into situations of growth slow-
downs. This reinforces our previous conclusions that policymakers can play a critical
role in the development process. By actively intervening with specific policies they
can completely solve the trap problem dampening the size of the growth fluctuations,
promoting a smooth process of fast growth allowing the economy to eventually catch
up with more advanced economies and become a high-income country.

8 Conclusion

Technological progress is by far the most important determinant of economic growth
over the long run. However, whether and how the interaction among research firms in
the research industry might determine technological progress has never been analyzed
thus far in the growth literature. Thus, in this paper we have tried to fill this gap by
allowing a certain degree of firms interaction. Specifically, we assume that firms decide
whether to innovate or not by taking into account also what other research firms do.
Such an interaction among research firms, by determining the rate of technological
progress, plays a critical role in shaping the whole macroeconomic outcome. Indeed,
we have shown that under certain parameter conditions, by mimicking the behavior
of the share of innovative firms, the economy may be characterized by a multiplicity
of BGP equilibria and eventually may face a situation of low growth trap. We have
also shown that the economy may eventually (endogenously) fluctuate between the
low and high BGP, thus generating a growth cycle in which periods of low and high
economic growth rates follow one another. The potential existence of low growth traps
and endogenous growth cycles suggest that the government might play an essential
role in order to contrast such negative effects. In particular, by rising enough the tax rate
applied to households’ income it could completely solve the low growth trap problem,
thus avoiding further fluctuations in economic activity. All these results are robust
in the sense that they hold true both in our baseline model in which the innovation
incentive is constant and in its generalized version in which this is potentially time-
varying and dependent upon other macroeconomic variables.

This paper represents a first attempt to enrich the macroeconomic dynamics in
traditional models of endogenous growth by allowing a certain extent of externality
in research decisions. The approach followed is thus quite simplistic on purpose in
order to show in the simplest possible way (which is already all but simple from a
mathematical point of view) which might be the potential implications of allowing for
social interactions in traditional macroeconomic models. Of course, our framework
has several limitations which need to be accounted for in future research. Specifically,
the dichotomous choice of research firms to do or not to do research does not allow
to quantify research efforts; this assumption needs to be relaxed in order to fully
characterize research decisions and outcomes. Also the specification of the research
market is overly simple, and adopting a more traditional setup with either horizontal
or vertical product differentiation may shed some further light on the impacts of social
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interactions on macroeconomic outcomes. Extending the analysis along these lines is
left for future research.
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Appendix 1: The rationale behind random utility models

In this appendix, we briefly summarize themain ideas recovered by Brock andDurlauf
(2001) and leading to the profit structure defined in (1). Suppose that a research firm
faces the binary decision to innovate or not to innovate. We define the binary random
variable ω ∈ {0, 1} accordingly. The main assumption behind random utility models
is that the profit π related to the innovation has the following general structure:

π(ωi ) = R(ωi , μ
e
i (ω−i ), h) − ζ(ωi ),

where revenues R depend on the choice made by the firm, on the price h received by
the buyer of the innovation and by an externality term. Indeed, each firm i estimates
the conditional probability measure μe

i on the choices of others, where ω−i denotes
the vector of actions deprived of the i-th component. As seen in Sect. 2, costs are
random and denoted by ζ . For the moment, we set z = 0 for simplicity.

We now make some further (minimal) assumptions to came up with a tractable
profit structure.

(i) π(0) = 0. This is an obvious normalization. Both R and ζ are zero if no research
activity is in place. Therefore, we concentrate on π(1) (we call it simply π ).
Rearranging variables and notations, we have:

π = R(μe
i (ω−i ), h) − ζi .

(ii) Externalities due to the behavior of competitors only depend on the average action
of others’ choice. This implies that μe

i (ω−i ) is substituted by the (simpler) statis-
tics xe

i = 1
N−1

∑
j �=i xe

i j , where xe
i j = E

(i)[ω j ] denotes the expectation of firm i
about the choice of competitor j . Therefore,

π = R(xe
i , h) − ζi .

Concerning the information structure of the model, we also assume that E(i)[·] =
E

( j)[·] for all i, j = 1, . . . , N . This amounts in saying that all firms share the
same expectations about others’ choices.

(iii) We assume that ∂π
∂xe

i
= J . This simplifying assumption introduces a unique

parameter J measuring the degree of dependence (or the force of externality)
due to the others’ actions. Note that J > 0 resembles a staying-on-the-shoulder
situation, whereas J < 0 a fishing-out case. Secondly, as obvious, ∂π

∂h > 0.
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(iv) We assume that the pecuniary effects due to the sale of the technology and the
externalities are additive. Moreover, for sake of simplicity, we assume a linear
dependence. This fact, together with assumption iii), produces the following
payoff:

π = h + J xe
i − ζi .

(v) Finally, we slightly correct xe
i by substituting it with xe

i − 1
2 . The reason is that

we want the decision to be driven by what the majority of the population of firms
is doing. The quantity xe

i − 1
2 reflects exactly this goal: it is positive if and only

if the majority of the research firms produces an innovation. Therefore, in case
of a positive J , the single firm is more prone to align with the majority. On the
contrary, if J < 0, the firm will tend to behave in the opposite direction. We
obtain:

π = h − ζi + J

(
xe

i − 1

2

)
.

Therefore, by reintroducing a private cost z and recalling that π(0) = 0, we obtain
the general expression for π as it appears in (1):

π(ωi ) = ωi

[
h − (z + ζi ) + J

(
xe

i − 1

2

)]
.

By applying the payoff structure defined above, we can verify that

ωi = 1 ⇐⇒ π(1) ≥ π(0) ⇐⇒ h − (z + ζi ) + J

(
xe

i − 1

2

)
≥ 0.

The probabilistic structure of the model implies that for all i = 1, . . . , N ,

P(ωi = 1) = P

(
h − (z + ζi ) + J

(
xe

i − 1

2

)
≥ 0

)

= P

(
ζi ≤ h − z + J

(
xe

i − 1

2

))
.

Since agents receive different private signals, agentsmay have a different feeling about
the best choice. Heterogeneity gives rise to the non-trivial equilibria and the (possible)
multiplicity discussed in Proposition 2. In the case of a completely deterministicmodel
(i.e., ζi = 0 for all i), agents would be homogeneous and we would obtain:

P

(
0 ≤ h − z + J

(
xe

i − 1

2

))
∈ {0; 1},

meaning that eitherωi = 0 orωi = 1 for all i = 1, . . . , N . The same reasoning extends
to the continuous-time counterpart described by (4): assuming no randomness, there
would be no space for any dynamics, and the outcome would be to a large extent
trivial with all firms deciding either to innovate or not to innovate. In the body of the
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paper, we thus focus on the most interesting situation in which agent heterogeneity
gives rises to non-trivial dynamics. Most of our qualitative results in Proposition 2
would still hold true in the absence of heterogeneity case, but in this case the BGP
equilibrium would be necessarily unique and characterized by either one of the two
extreme long-run growth rates γ = φ

1−α
if x = 1 or γ = 0 if x = 0.

Appendix 2: Proof of Proposition 3

The proof of Proposition 3 basically follows Theorem 4.6 in Olivieri and Vares (2005).
In order to make this reading as much self-consistent as possible, we sketch the proof
rearranged to match our model and our notations. We firstly specify the functional
form for Δ. To this aim, we introduce the so-called Gibbs free energy:21

fβ,J,h(m) = −
(

J

4
m2 + hm

)
+ 1

β
· ε(m), (35)

where

ε(m) = 1 + m

2
ln

(
1 + m

2

)
+ 1 − m

2
ln

(
1 − m

2

)
.

Finally, define

Δ = β ( f (mM ) − f (mL))

where f is as defined in (35), mM = 2x̄M − 1 and mL = 2x̄L − 1 and where x̄L

and x̄M are, respectively, the smallest and the middle solutions (recall that, under our
assumptions on the values of the parameters, this equation admits three real solutions
x̄L < x̄M < x̄H ) to

1

2
tanh

{
β

[
h − z + J

(
xt − 1

2

)]}
− xt + 1

2
= 0.

In what follows, we organize the proof Proposition 3 into four steps. In the first step,
we provide a lower bound for TN , in the second an upper bound. Finally, we prove
part (a) and part (b) of the proposition. As said, we only sketch the main results and
refer the reader to Olivieri and Vares (2005) for further details. Our aim is mainly to
let the reader appreciate the probabilistic properties, which this proposition relies on.

(i) There exists a positive constant c1 such that, for N large enough ,̄ and each positive
integer T ,

P(TN ≤ T ) ≤ c1T e−NΔ. (36)

21 In statistical mechanics, the Gibbs free energy characterizes the potential associated with the states of
the system. In particular, it can be proved that the equilibria mL and m H are local minimum points for f ,
whereas m M is a local maximum point.

123



326 S. Marsiglio, M. Tolotti

This fact follows from the properties of the stationary distribution of a Markov
chain. Indeed, let us define the stationary measure of (x N

t )t≥0 as νN . It can be
proved that

P(TN ≤ T ) ≤ T · νN (x N
M )

νN (x N
L )

= T · e−Nβ( f (mM )− f (mL )).

On the other hand, for N large enough, β f (mM )− f (mL) ≥ Δ− c2
N for a suitable

constant c2. Therefore, (36) easily follows by putting c1 = ec2 .
(ii) For any positive sequence (ϕN )N≥1 such that ϕN → ∞,

P(TN ≥ eNΔNϕN ) = 0. (37)

This follows from the fact that, for suitable constants c3 and c4,

c3eNΔ ≤ E(TN ) ≤ c4N 2eNΔ. (38)

For details on the proof of (38), we refer to Corollary 4.9 in Olivieri and Vares
(2005). From (38) and applying the Markov inequality, we obtain (37).

(iii) Point (a) of Proposition 3 follows from the fact that

1 − P

(
1

ϕN
eNΔ < TN < eNΔNϕN

)

= P

(
TN ≤ 1

ϕN
eNΔ

)
+ P

(
TN ≥ eNΔNϕN

)
.

Both terms of the RHS go to zero for any positive sequence (ϕN )N≥1 such that
ϕN → ∞ due to (i) and (i i), respectively. This proves part (a) in Proposition 3.

(iv) Define the sequence of random variables (T̃N )N≥2, where T̃N := TN /γN and
where γN is such that

lim
N→∞ N−1 ln(γN ) = Δ.

It can be shown that this sequence is tight and its limits τ along subsequences
have the property that

P(τ > t + s) = P(τ > t)P(τ > s).

This, in turns, shows that T̃N is asymptotically exponential, thus, memoryless.
Finally,

lim
N→∞E[T̃N ] =

∫ +∞

0
lim

N→∞P(TN > s γN ) ds =
∫ +∞

0
e−sds = 1 ,

and this concludes the proof of Proposition 3.
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To be precise, what we have shown in point iv) is true for a stopped version of
x N : consider x̃ N where x̃ N

t has the same transition probabilities of x N
t for t ≤ TN

and x̃ N
t ≡ x̃ N

TN
for t ≥ TN (it is a stopped version of the original process at time

TN ). It can be proved that the two processes are coupled up to TN , so that the their
probabilistic features are the same. Since we are interested in the trajectories up
to TN , working with x N or x̃ N is exactly the same to our purposes. �	

Note, finally, that the transition from x̄L to x̄H can be analyzed exactly in the sameway,
by simply considering Δ = β ( f (m M ) − f (m H )). We would like to stress the fact
that, differently from the common notion of cycles in macroeconomics in which their
periodicity is highly irregular and stochastic, in probability theory the notion of cycles
requires the periods of the transitions to be deterministic and constant. According
to this latter view, the tunneling time TN should converge to 1, rather that to an
exponential random time with average 1 as stated in Proposition 3. Therefore, even if
this is not totally correct from a probabilistic point of view, in our discussion we adopt
the macroeconomic view and terminology by referring to the metastability property
as a cycling behavior.
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