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Abstract Variational preferences (Maccheroni et al. in Econometrica 74:1447–1498,
2006) are an important class of ambiguity averse preferences, compatible with
Ellsberg-type phenomena. In this paper, a new foundation for variational preferences is
derived in a frameworkof two stages of purely subjective uncertainty.A similar founda-
tion is obtained for purely subjective maxmin expected utility (Gilboa and Schmeidler
in J Math Econ 18:141–153, 1989). By establishing their axiomatic foundations with-
out the use of extraneous probabilities, the conceptual appeal and applicability of these
ambiguity models is enhanced.
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1 Introduction

Despite being inconsistent with subjective expected utility, the uncertainty averse
pattern of preferences suggested by Ellsberg (1961) has been defended normatively
(Gilboa et al. 2012; Gilboa 2014) and descriptively (Camerer and Weber 1992; Fox
and Tversky 1995; Halevy 2007). Many new theories have emerged to accommodate
such behaviour (Gilboa andMarinacci 2013). An important class of uncertainty averse
preferences is the variational preferences of Maccheroni et al. (2006), MMR here-
forth. Variational preferences generalise the maxmin expected utility (MEU) model of
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122 C. S. Webb

Gilboa and Schmeidler (1989). The main theorem of this paper characterises a fully
subjective version of variational preferences. The special case of purely subjective
MEU preferences is also characterised.

In this paper, we consider preferences over acts with two stages of subjective
uncertainty. As with Savage (1954), we employ a rich set of states and allow the
outcome set to be arbitrary. Ellsberg-type preferences, in our case, refers to being
more uncertainty averse towards first-stage uncertainty than second-stage uncertainty.
That is, we assume source dependence of uncertainty attitudes (Heath and Tver-
sky 1991; Fox and Tversky 1995; Chow and Sarin 2001; Wakker 2001; Abdellaoui
et al. 2011), also called issue preference (Ergin and Gul 2009; Strzalecki 2011).
Indeed, we will assume that, while second-stage uncertainty can be subjective, the
decision maker displays no particular aversion to such uncertainty. The two-stage
framework is used to develop a subjective notion of averaging events and averag-
ing acts. Ellsberg’s example corresponds to a decision maker who prefers first-stage
uncertainty to be averaged out. We call such a preference second-stage uncer-
tainty aversion. It will be shown that, when combined with other known axioms,
second-stage uncertainty aversion characterises purely subjective variational prefer-
ences.

To the best of my knowledge, there has been no purely subjective foundation for
variational preferences. ForMEU, there has been more success, although a foundation
at the full level of generality of Savage (1954) remains elusive. Chateauneuf (1991)
assumed a single stage of subjective uncertainty and derivedMEUwith linear utility for
final outcomes. MMR’s axioms could be similarly reinterpreted. Recent derivations of
MEUhave used a single stage of purely subjective uncertainty and assumed topological
conditions on the final outcome set (Casadesus-Masanell et al. 2000; Ghirardato et al.
2003; Alon and Schmeidler 2014). A particular benefit of this approach is that, unlike
the approach taken in this paper, it allows for finite state spaces. The topological
richness of the outcome set facilitates the derivation of cardinal utility and separation
of decisionweights from utility, yielding a biseparable representation (Ghirardato and
Marinacci (2001)).Variational preferences are not necessarily biseparable; hence, such
approaches have not yielded new foundations for variational preferences. This paper
advances the literature by characterising purely subjective variational preferences in
a different, special case of the Savage (1954) framework.

2 Ellsberg and multiple stages of uncertainty

The acts considered in Ellsberg (1961) can be naturally viewed as having two separate
stages of uncertainty (Segal 1987;Klibanoff et al. 2005;Nau 2006;Halevy 2007;Chew
and Sagi 2008; Ergin and Gul 2009; Seo 2009; Machina 2011). A simple version of
Ellsberg’s three-colour problem imagines a ball will be chosen from an urn containing
three numbered balls. Ball 1 is red, and the remaining balls are either yellow or black.
In the first stage of uncertainty, the composition of the urn, a colour for each remaining
ball, is determined. In the second stage, the number of the ball is determined. Hence,
the outcome of choices in this problem is determined by the realisation of two states, s
and t , where s ∈ {YY,Y B, BY, BB} and t ∈ {1, 2, 3}. Consider the following choices:
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Choice One.

f pays £100 only if red. v′s g pays £100 only if yellow.

f =
{
£100 if t = 1
£0 if t �= 1

v′s g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
£0 if t = 1
£100 if t �= 1

if s = YY{
£0 if t ∈ {1, 3}
£100 if t /∈ {1, 3} if s = Y B{
£0 if t ∈ {1, 2}
£100 if t /∈ {1, 2} if s = BY

£0 if s = BB

Choice Two.

f̃ pays £100 only if a red or black. v′s g̃ pays £100 only if a yellow or black.

f̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
£100 if t = 1
£0 if t �= 1

if s = YY{
£100 if t ∈ {1, 3}
£0 if t /∈ {1, 3} if s = Y B{
£100 if t ∈ {1, 2}
£0 if t /∈ {1, 2} if s = BY

£100 if s = BB

v′s g̃ =
{
£0 if t = 1
£100 if t �= 1

The modal pattern of preferences seems to be f preferred to g and g̃ preferred
to f̃ . The above presentation makes it clear that the commonly preferred acts, f
and g̃, have no first-stage uncertainty. For some reason, the acts with uncertainty
about the second-stage uncertainty are disliked. In the following section, the two-stage
framework is formalised so that, in Sect. 6, this aversion to uncertainty about second-
stage uncertainty can be precisely defined. When combined with known axioms, this
will provide the key axiom for variational preferences in this framework.

3 The two-stage framework

Let S denote a finite set of first-stage states with σ -algebra ES . Let T denote a set of
second-stage states with σ -algebra ET . Let X denote a finite set of outcomes.1 We
impose richness on the second-stage state space T in what follows via a structural
condition (second-stage solvability). Let ES ⊗ ET = σ {A× B:A ∈ ES , B ∈ ET }. An
act is a function f :S × T → X that is measurable with respect to ES ⊗ ET . The set
of acts is A and contains all such functions. The decision maker is modelled using a
preference relation �, a binary relation defined over A.

If A ∈ ES is a first-stage event, then f Ag refers to the act such that f Ag(s, ·) =
f (s, ·) if s ∈ A and f Ag(s, ·) = g(s, ·) otherwise. If B ∈ ET is a second-stage event,
then fBg refers to the act such that fBg(·, s) = f (·, t) if t ∈ B and fBg(·, t) = g(·, t)
otherwise. An act f is constant if there is x ∈ X such that, for all s ∈ S and all t ∈ T ,

1 All results can be extended to simple acts with S and X arbitrary.
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f (s, t) = x . We abuse notation and write x to mean the constant act yielding x . An
event A ∈ Ei , i ∈ {S, T }, is null if f Ah ∼ gAh for all f, g, h ∈ A, otherwise it is
nonnull.

Given an act f :S ×T → X and first-stage state s ∈ S, we define the second-stage
act fs :T → X such that fs(t) = f (s, t) for all t ∈ T . An act f is second-stage
constant if fs is constant for all s ∈ S. An act f is first-stage constant if, for all
s, s̃ ∈ S, the second-stage acts fs and fs̃ coincide. Preferences � over first-stage
constant acts naturally induce preferences over second-stage acts, that we also denote
�, as follows: fs � gs if and only if h � h̃, where h and h̃ are first-stage constant acts
with hs = fs and h̃s = gs for all s ∈ S.

Subjective expected utility evaluates acts as follows:

f �→
∫
S

∫
T
u( f (s, t))dp(s, t)

where p is a joint probability measure over ES ⊗ ET and u:X → R is a strictly
�-increasing utility function.

Denote byPS the set of all finitely additive probability measures over the first-stage
state space S. A function c:PS → [0,∞] is grounded if its infimum value is zero.
Preferences � have a subjective variational representation if acts are evaluated as
follows:

f �→ min
p∈PS

( ∫
S

∫
T
u( f (s, t))dp(s)dq(t) + c(p)

)

where q is a probability measure over second-stage events ET , u:X → R is a strictly
�-increasing utility function and c:PS → [0,∞] is a grounded, convex and lower
semicontinuous function. The function c is called the ambiguity index. In this paper,
the probability measure q is convex valued: for all α ∈ [0, 1], there exists A ∈ ET
such that q(A) = α.

4 Variational preferences in the AA framework

The Anscombe–Aumann (AA) framework is the special case of our framework where
T is already equipped with a convex-valued probability measure q:ET → [0, 1].
Then, second-stage acts induce, via the probability measure q on T , lotteries on X .
LetΔ(X ) be the set of lotteries overX . Suppose the act f takes values in {x1, . . . , xn}.
Then, the act f can be identified with a function F :S → Δ(X ) such that:

F(s) = (q( f −1
s (x1)), x1; . . . ; q( f −1

s (xn)), xn) for all s ∈ S.

We call F an AA act, the set of which is A∗. Preferences � over A naturally induce
preferences over A∗. For all F,G ∈ A∗, and α ∈ [0, 1], define αF + (1 − α)G as
the AA act that yields the well-defined lottery αF(s) + (1 − α)G(s), for all s ∈ S.
The set of AA acts A∗ can then be taken to be a convex set. The key axioms for
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Purely subjective variational preferences 125

variational preferences, weak certainty independence and uncertainty aversion, and
the continuity axiom used, all make explicit use of the convexity of the set of acts.

AxiomMMR1 (Weak ordering) Preferences � overA∗ are complete and transitive.

AxiomMMR2 (Weak certainty independence) For all F,G ∈ A∗, lotteries P, Q ∈
Δ(X ), and α ∈ (0, 1): αF + (1− α)P � αG + (1− α)P only if αF + (1− α)Q �
αG + (1 − α)Q.

AxiomMMR3 (Mixture continuity) For all F,G, H ∈ A∗, {α ∈ [0, 1] : αF + (1−
α)G � H} and {α ∈ [0, 1] : H � αF + (1 − α)G} are closed subsets of the [0, 1]
interval.

Axiom MMR4 (Monotonicity) F(s) � G(s) for all s ∈ S only if F � G.

Axiom MMR5 (Uncertainty aversion) For all F,G ∈ A∗ and α ∈ (0, 1): F ∼ G
only if αF + (1 − α)G � F .

Axiom MMR6 (Nondegeneracy) F � G for some F,G ∈ A∗.
Preferences have a variational representation in the AA framework if there exists

a nonconstant affine functionU :Δ(X ) → R and a grounded, convex and lower semi-
continuous function c:PS → [0,∞] such that, for all F,G ∈ A∗:

F � G ⇔ min
p∈PS

( ∫
S
U (F)dp + c(p)

)
� min

p∈PS

( ∫
S
U (G)dp + c(p)

)
.

The following theorem characterises variational preferences in the AA framework:

Theorem 1 (Maccheroni et al. 2006) Preferences � over Anscombe–Aumann acts
A∗ satisfy axioms MMR1-6 (weak ordering, weak certainty independence, mixture
continuity, monotonicity, uncertainty aversion and nondegeneracy) if and only if they
admit a variational representation. In such a representation, utility U is cardinal and
the ambiguity index c is a ratio scale.

5 Second-stage subjective expected utility

Consider the following axioms for preferences � over A:

Axiom 1 (Weak ordering) Preferences � over A are complete and transitive.

Axiom 2 (Monotonicity) f (s, t) � g(s, t) for all s ∈ S and t ∈ T only if f � g.

Axiom 3 (Nondegeneracy) There exist constant acts such that x � y.

Axiom 4 (Weak comparative probability) For all events A, B ∈ ET and outcomes
x, x̃, y, ỹ ∈ X , with x � y and x̃ � ỹ, xAy � xB y only if x̃ A ỹ � x̃B ỹ.

Axiom 5 (Archimedeanity) If S = A1, A2, . . . , is a sequence of nonnull second-
stage events such that xA1 f � xA1g and xAi f ∼ xAi+1g for all i = 1, 2, . . . , then S
is finite.
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126 C. S. Webb

Apart from the fact that we have adapted these axioms to two-stage uncertainty,
axioms 1–5 are well known. Rather than use a second-stage version of Savage’s P6,
small event continuity, we use an Archimedean axiom and a solvability assumption,
as follows:
Structural assumption (Second-stage solvability) For all f ∈ A and x, y ∈ X , with
x � f � y, there exists A ∈ ET such that f ∼ xAy.

In this way, nonnecessary conditions are separated from the axiom set. Subjec-
tive variational preferences necessarily satisfy axioms 1–5. The following axiom, the
second-stage sure-thing principle plays a similar role here to that played by the weak
certainty independence axiom in the AA framework. Strzalecki (2011) first introduced
this axiom.2

Axiom 6 (Second-stage sure-thing principle) For all acts f, g ∈ A, first-stage con-
stant acts h, h̃ ∈ A, and second-stage events E ∈ ET : fEh � gEh only if fE h̃ � gE h̃.

For c ∈ R, let c = (c, . . . , c) ∈ R
n . A function φ:Rn → R is vertically invariant

if for all x ∈ R
n , α ∈ [0, 1], φ(αx + (1 − α)c) = φ(αx) + (1 − α)c. For finite

S = {s1, . . . , sn}, preferences are represented by invariant second-stage expected
utility if acts are evaluated as follows:

f �→ φ

( ∫
T
u( f (s1, t))dq(t), . . . ,

∫
T
u( f (sn, t))dq(t)

)

where φ:Rn → R is monotonic, mixture continuous and vertically invariant, q is a
convex-valued probability measure over ET and u:X → R is a strictly �-increasing
utility function. This class of preferences encompasses subjective variational prefer-
ences. Axioms 1–6 characterise invariant second-stage expected utility:

Theorem 2 Assume second-stage solvability. Then, preferences � over A satisfy
axioms 1–6 (weak ordering, monotonicity, nondegeneracy, weak comparative proba-
bility, Archimedeanity, the second-stage sure-thing principle) if and only if they admit
an invariant second-stage expected utility representation. In such a representation,
utility u is cardinal and the probability measure q is unique.

6 Averaging events and acts

The uncertainty aversion axiom captures a preference for hedging subjective uncer-
tainty. If f ∼ g holds, the mixture 1

2 f + 1
2g smooths out the subjective uncertainty

of each act. Here, we construct a similar idea using only subjective uncertainty. The
approach taken here is admittedly less straightforward. We will use the notion of a
second-stage event average.

A second-stage event average of two events A and C will, intuitively, correspond
to an event B that evenly mixes the probabilities of A and C . To visualise the idea,
consider the following example. Imagine a container of different coloured rice (or

2 There it is called Weak Fa Independence.
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similar fine material). There is red, yellow and possibly other coloured rice. Bets will
be placed on the colour of a grain selected from the mixed bucket. Event A is “red”
and event C is “yellow”. Suppose that:

{
£100 if s ∈ A
£0 if s /∈ A

�
{
£100 if s ∈ C
£0 if s /∈ C

The interpretation is that the decision believes there are more red grains in the mix
than yellow. Abdellaoui and Wakker (2005) refer to A being revealed as more likely
than C in a basic sense. Now suppose we can scoop out a subset E of red grains
and add the same amount of yellow grains back. Then, “red” is the event A \ E and
“yellow” is the event C ∪ E . Suppose that, perhaps by iterating the procedure, we
elicit the following indifference:

{
£100 if s ∈ A \ E
£0 if s /∈ A \ E

∼
{
£100 if s ∈ C ∪ E
£0 if s /∈ C ∪ E

Then, A \ E is revealed equally likely to C ∪ E , in a basic sense. We call any event B
that is also revealed equally likely to A \ E and C ∪ E an event average of A and C .
This a subjective definition of averaging events. Applying this idea in the two-stage
framework leads to the following:

Definition (Second-stage event average) Given outcomes x, y ∈ X with x � y and
second-stage events A, B,C ∈ ET , B is a second-stage event average of A and C if
xAy � xC y and there exists E ⊂ A \ C such that xB y ∼ xA\E y ∼ xC∪E y.

We also call B a second-stage event average of A and C if it is a second-stage event
average of C and A. The following lemma further justifies this terminology:

Lemma 3 For subjective variational preferences, B ∈ ET is a second-stage event
average of A and B only if q(B) = 1

2q(A) + 1
2q(C).

To see this, suppose that B a second-stage event average of A and C and that
preferences admit a subjective variational preferences representation. Then, xB y ∼
xA\E y holds if and only if:

q(B)u(x) + (1 − q(B))u(y) = q(A\E)u(x) + (1 − q(A \ E))u(y),

and xB y ∼ xC∪E y holds if and only if,

q(B)u(x) + (1 − q(B))u(y) = q(C ∪ E)u(x) + (1 − q(C ∪ E))u(y).

Given u(x) > u(y) and E ⊂ A\C , these are jointly equivalent to:

q(B) = q(A \ E) = q(C ∪ E) ⇔ q(B) = q(A) − q(E) = q(C) + q(E)

⇔ q(A) − q(B) = q(B) − q(C) ⇔ q(B) = 1

2
q(A) + 1

2
q(C).
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128 C. S. Webb

Using the notion of a second-stage event average, a notion of averaging acts can be
constructed. For two acts f and g, in each first-stage state s, replace the second-stage
acts fs and gs with equivalent binary acts xA(s)y and xC(s)y, then construct an act
with second-stage acts (xB(s)y)s such that each B(s) is a second-stage event average
of A(s) and C(s):

Definition (Second-stage act average)Given acts f, g, h ∈ A and outcomes x, y ∈ X
with x � y and x � j � y for j = f, g, h and, for all s ∈ S:

fs ∼ (xA(s)y)s and gs ∼ (xB(s)y)s and hs ∼ (xC(s)y)s,

where A(s), B(s),C(s) ∈ ET , g is a second-stage act average of f and h if, for all
s ∈ S, B(s) is a second-stage event average of A(s) and C(s).

This definition of averaging acts is purely subjective. It would be problematic if
it depended on the particular x and y outcomes, but our axiom set rules out such a
dependence. Implementing the definition could, depending on the acts under consid-
eration require the elicitation a large number of indifferences. The following lemma
justifies the term second-stage act average:

Lemma 4 For subjective variational preferences, g is a second-stage act average of
f and h if and only if, for all s ∈ S,

∫
T
u(g(s, t))dq(t) = 1

2

∫
T
u( f (s, t))dq(t) + 1

2

∫
T
u(h(s, t))dq(t).

The following axiom uses the above notion of second-stage act averages to define
a subjective version of the uncertainty aversion axiom:
Axiom 7 (Second-stage uncertainty aversion) For all acts f, g, h ∈ A, with g a
second-stage act average of f and h, f ∼ h only if g � f .

Let us reconsider the Ellsberg three-colour problem, interpreted in the two-stage
framework. There are three numbered balls in an urn. Ball 1 is red and balls 2 an 3 are
known only to be yellow or black. The first stage of uncertainty concerns the unknown
colours {YY,Y B, BY, BB}, and in the second stage, a number is chosen from {1, 2, 3}.
Let x � y. The act g that pays x only if a yellow ball is drawn is typically considered
worse than the act f that pays x only if a red ball is drawn. Intuitively, one of the
three balls is red, while it is possible that none of the other balls are yellow. The same
reasoning suggests that f would be preferred to an act g∗ that pays x only if a black
ball is drawn. Further, appealing to the symmetry of their descriptions g ∼ g∗ is
reasonable, and we assume this holds:

g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
x if s2 ∈ {2, 3}
y if s2 = 1

if s1 = YY{
x if s2 = 2
y if s2 ∈ {1, 3} if s1 = Y B{
x if s2 = 3
y if s2 ∈ {1, 2} if s1 = BY

y if s1 = BB

∼ g∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y if s1 = YY{
x if s2 = 3
y if s2 ∈ {1, 2} if s1 = Y B{
x if s2 = 2
y if s2 ∈ {1, 3} if s1 = BY{
x if s2 ∈ {2, 3}
y if s2 = 1

if s1 = BB
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Purely subjective variational preferences 129

We appeal to symmetry again and assume:

x{1}y ∼ x{2}y ∼ x{3}y and x{1,2}y ∼ x{1,3}y ∼ x{2,3}y.

Hence, {1} is a second-stage event average of {2, 3} and ∅. Also, {1} is a second-stage
event average of {2} and {3}. It follows that x{1}y = f is a second-stage act average
of g and g∗; therefore, f � g is consistent with second-stage uncertainty aversion. A
similar argument can be used to argue that g̃ � f̃ is simultaneously consistent with
second-stage uncertainty aversion. Second-stage uncertainty averse preferences are
consistent with Ellberg’s example. We now state the main theorem of this paper:

Theorem 5 Assume second-stage solvability. Then, preferences � over A satisfy
axioms 1–7 (weak ordering, monotonicity, nondegeneracy, weak comparative prob-
ability, Archimedeanity, the second-stage sure-thing principle and second-stage
uncertainty aversion) if and only if they admit a subjective variational representa-
tion. In such a representation, utility u is cardinal, the ambiguity index c is a ratio
scale, and the probability measure q is unique.

Finally, consider the following restriction of axiom 7:
Axiom 7∗(Second-stage uncertainty neutrality) For all acts f, g, h ∈ A, with g a
second-stage act average of f and h, f ∼ h only if g ∼ f .

We have the following:

Theorem 6 If, in statement 1 of Theorem, axiom A7 (second-stage uncertainty aver-
sion) is replaced with axiomA7∗ (second-stage uncertainty neutrality), then subjective
expected utility holds.

7 Second-order risk aversion

Strzalecki (2011), following Ergin and Gul (2009), referred to the following axiom as
second-order risk aversion:3

Axiom 7∗∗ (Second-order risk aversion) For all second-stage constant acts f, g ∈ A,
and second-stage events A ∈ ET , f ∼ g only if f Ag � f .

Second-order risk aversion considers acts f and g that may have first-stage
uncertainty, but no second-stage uncertainty. Considering the act f Ag, second-stage
uncertainty is introduced, but the first-stage uncertainty is somewhat smoothed, with
the overall change being preferable. Second-order risk aversion seems a more elegant
axiom than second-stage uncertainty aversion. The following theorem implies that if
X is suitably solvable, then axiom 7 can be replaced with axiom 7∗∗ in Theorem 5:

Theorem 7 Assume preferences � satisfy axioms 1–6 (weak ordering, monotonicity,
nondegeneracy, weak comparative probability, Archimedeanity, and the second-stage
sure-thing principle), second-stage solvability holds, and all acts have certainty equiv-
alents. Then, axiom 7 (second-stage uncertainty aversion) holds if and only if axiom
7∗∗ (second-order risk aversion) holds.

3 Translating the notation of that paper: �a amounts to our second-stage events ET and �b to our first-
stage events ES , �a -measurability is here called first-stage constant, and �b-measurability is here called
second-stage constant.
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130 C. S. Webb

Preferences � have a second-order expected utility representation (Ergin and Gul
2009) if acts are evaluated as follows:

f �→
∫
S

ψ

( ∫
T
u( f (s, t))dq(t)

)
dp(s)

where p is a probability measure over first-stage events ES , q is a probability measure
over second-stage events ET , u:X → R is a strictly �-increasing utility function and
ψ :R → R is strictly increasing and continuous. Theorem 2 of Strzalecki (2011) gives
the equivalence of concave ψ and second-order risk aversion. Our theorem 7 shows
the equivalence of concavity of the φ obtained in Theorem 2 and second-order risk
aversion.

8 Maxmin expected utility

Preferences � have a subjective maxmin expected utility (MEU) representation if acts
are evaluated as follows:

f �→ min
p∈C

( ∫
S

∫
T
u( f (s, t))dp(s)dq(t)

)

where q is a convex-valued probability measure over second-stage events ET , u:X →
R is a strictly �-increasing utility function and C ⊆ PS is a convex set of probability
measures. They are a special case of variational preferences, seen by taking c that is
zero on C and infinite outside of C . Hence, the axioms of Theorem 5 are necessary
but not sufficient for MEU. An additional axiom is required, as follows:

Axiom 8 (Second-stage constant independence) For all acts f, f̃ , g, g̃ ∈ A, and
outcome x ∈ X , with f̃ a second-stage act average of f and x and g̃ a second-stage
act average of g and x , f ∼ g only if f̃ ∼ g̃.

We now state the following foundation for purely subjective maxmin expected
utility:

Theorem 8 Assume second-stage solvability. Then, preferences � over A satisfy
axioms 1–8 (weak ordering, monotonicity, nondegeneracy, weak comparative proba-
bility, Archimedeanity, the second-stage sure-thing principle, second-stage uncertainty
aversion and second-stage constant independence) if andonly if they admit a subjective
maxmin expected utility representation. In such a representation, utility u is cardinal,
the set of priors C is unique, and the probability measure q is unique.

9 Discussion of frameworks of uncertainty

The main results of this paper have been to characterise existing ambiguity models
in a framework different to their original axiomatisations. This section discusses the
frameworks commonly employed inmodelling choice under uncertainty, to justify and
clarify the contribution of this paper. Choice under uncertainty is now a vast field with
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various frameworks employed. Let us restrict attention to frameworks that employ, as
primitives, a set of states S, with σ -algebra of events ES , and a set of outcomes X .
States and outcomes are primitives in the sense that, once these objects are understood,
all other constructions can be made only in terms of these objects. For example, an
act is a function from S to X , the set of acts is A ⊆ SX , and a preference relation is
a subset �⊆ SX × SX . The following frameworks are well known:

The savage framework Acts are measurable functions from S to X . S has a rich
structure (solvability). X is an arbitrary set.

TheWakker frameworkActs aremeasurable functions fromS toX .S is an arbitrary
set. X has a rich structure (topologically connectedness or algebraic solvability).

TheAnscombe–Aumann frameworkActs aremeasurable functions fromS toΔ(X ).
S is an arbitrary set. X is an arbitrary set. Δ(X ) is the set of lotteries over X .

The trade-off between the Savage and Wakker frameworks is quite clear. The Sav-
age framework retains complete flexibility with the outcome set X ; hence, theories
developed in that framework are applicable for monetary outcomes, health outcomes,
nondivisible goods, and so on. This price of this flexibility with X is the requirement
that S has a rich structure.4 Conversely, in the Wakker framework, the richness is
bourne by X , allowing for complete flexibility of the state space. Hence, the Wakker
framework allows for monetary outcomes (X = R) and finitely many states, highly
relevant for economic theory. Of course, requiring richness ofX rules out applications
to nondivisible goods, and so on.

In a sense, the Anscombe–Aumann (AA) framework retains the nicest properties
of both the Savage and Wakker frameworks. The AA framework allows both S and
X to be arbitrary. However, the axiomatic derivation of expected utility, with cardinal
utility and a unique subjective probability measure, requires additional structure. The
AA framework’s additional structure comes in two parts:

1. There are two stages of uncertainty.
2. The second stage of uncertainty is characterised by objective probabilities.

The additional structure imposed is very convenient.5 Axioms and proofs developed
in the AA framework are more transparent. Clearly, however, this additional structure
has some costs involved. Fishburn (1970:167) refers to the AA framework as one
that employs extraneous probabilities. Ther term “extraneous” seems, at least to this
author, to be carefully chosen. If one is describing the assumption that some objective
probabilities are assumed, the more usual term would be “exogenous”. Fishburn’s
use of the term “extraneous” seems to refer to both the fact the AA framework takes
probabilites as exogenously given and the opinion that such objects are “surplus to
requirement”. Regarding the use of two stages, while there are many occasions where
multiple sources of uncertainty are present, it is a restrictive assumption. Trautmann

4 Certainly, in Savage’s expected utility, S must be infinite. It is not necessarily uncountable.
5 Anscombe and Aumann (1962) actually assumed three stages of uncertainty and reduced it to two stages.
The presentation follows the modern interpretation. Also, the AA framework has also been used to describe
the assumption simply thatX is convex, without necessarily committing to the lottery interpretation. In this
paper, we maintain the interpretation of a set of lotteries.
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and Wakker (2015) and others have criticised the use of backward induction implicit
in the two-stage evaluation commonly used in the AA framework. Inspired in part by
these concerns, further frameworks have been developed. Sarin and Wakker (1997),
for example, cleverly avoided the use of two-stage acts. Instead of uncertainty followed
by risk, they assume uncertainty alongside risk; hence, acts are either uncertain or are
risky lotteries.
The Sarin and Wakker framework Acts are either measurable functions from S to
X , or elements of Δ(X ). S is an arbitrary set. X is an arbitrary set.

Ergin and Gul (2009), and this paper, retain the two-stage feature of the AA frame-
work, and all of its criticisms, but dispense with the requirement that the second stage
of uncertainty is quantified by objective probabilities:

The Ergin and Gul framework Acts are measurable functions from S × T to X . S
and T have rich structures (solvability). X is an arbitrary set.

The specific two-stage formulation of the Ellsberg paradox used in Sect. 2 is an
example of the Ergin and Gul framework. In this paper, we have assumed that both
stages are subject to subjective uncertainty, but only the first stage is subject to ambigu-
ity. That is, subjective uncertainty that cannot necessarily be quantified by a subjective
probabilitymeasure. Uncertainty aversion here refers to the dislike of subjective uncer-
tainty that the decision maker finds too “ambiguous” to confidently assign any unique
probability. The distinction between first and second stage is made a priori, rather than
revealed by preferences. This limitation has been discussed by Klibanoff, Marinacci
and Mukerji (2005: 1872–1875). A decision maker, when presented with the Ells-
berg choices, may well entertain any belief about the composition, have second-order
beliefs about such beliefs, have beliefs about the experiment in general, and so on. We
have imposed a very specific set of assumptions. In certain applications, the distinc-
tion can be quite clear, in particular if the decision maker has certain competences. For
example, one might reasonably expect that an expert political commentator is more
confident in his beliefs about the next US presidential election than his beliefs about
the outcome of the Kentucky Derby. Of course, if the decision maker is a horse racing
pundit, the converse is more reasonable. This connection between competence and
ambiguity is supported by experimental evidence (Heath and Tversky 1991; Fox and
Tversky 1995). Nevertheless, this remains a limitation of the approach used here.

There is an ever-present trade-off involved in choosing a framework tomodel uncer-
tainty. In terms of applicability, realism and simplicity, no one framework seems to be
dominant in all aspects. Worse still, whichever framework is chosen, there are always
assumed objects that simply must be regarded as hypothetical. For example, both the
existence of constant acts for all outcomes, and the assumption that preferences are
defined over all conceivable acts, even those counterfactual to any plausible reality,
are highly questionable. One might claim that if some aspects of each framework are
necessarily hypothetical, then surely it does not matter if a hypothetical randomisation
device is also used. Given this, it is reasonable to ask, at this point, does the choice
of framework really matter? After all, subjective expected utility can be derived in all
of the above frameworks, and this involves constructing objects with the same prop-
erties as a randomisation device. When we know it is not really necessary, the use of
a hypothetical randomisation device that greatly simplifies the axiomatic work seems
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to be quite acceptable. For ambiguity models, further reassurance has been provided
by Ghirardato et al. (2003), who show how many results developed with a hypotheti-
cal randomisation device can be recovered in the Wakker framework. However, their
approach, based on a weak biseparability assumption, does not apply to variational
preferences. Although a hypothetical randomisation device can be suitably defended,
it would be concerning if a model simply could not be derived without such a device.
This paper has addressed this concern for the variational preferences model.

10 Closing comments

This paper characterises variational preferences in a purely subjective framework.
The key assumption was that, as in the Anscombe and Aumann (1963) approach,
there are two stages of uncertainty. Even without the linear structure delivered by
a randomisation device, multiple stages of uncertainty seem to be useful for utility
measurement.6

Savage’s expected utility axioms were extended to this framework, and axioms
introduced: the second-stage sure-thing principle, second-stage uncertainty aversion,
and second-stage constant independence. It is not claimed here that this paper fully
solves the open problem reported by Alon and Schmeidler (2014: 397). Progress is
made here only by imposing additional conditions on the Savage (1954) framework.

Acknowledgements I am grateful for the comments of an anonymous reviewer. The usual disclaimer
applies.

Appendix

Proof of Theorem 2

The necessity of the axioms follows from substituting the preference functional and
elementarymanipulations; hence, the details are omitted here.We show the sufficiency
of the axioms for the representation. The standard axioms for subjective expected
utility hold for induced preferences over second-stage acts. Hence, subjective expected
utility holds over second-stage acts, for some utility u and convex-valued probability
measure q over ET . Let U ( fs) = ∫

S∈ u( fs(t))dq(t) denote the subjective expected
utility of a second-stage act. LetS = {s1, . . . , sn}. LetU ( f ) := (U ( fs1), . . . ,U ( fsn ))
and U (A) := {U ( f ) ∈ R

n : f ∈ A}. For α ∈ [0, 1] and acts f, g ∈ A, define
αU ( f ) + (1 − α)U (g) pointwise, so that:

αU ( f )+(1 − α)U (g) = (αU ( fs1)+(1 − α)U (gs1), . . . , αU ( fsn )+(1 − α)U (gsn )).

Note that, because q is convex valued, we are assured that U (A) is a convex subset
R
n . By finiteness of X , there is a best outcome x and worst outcome x . By eventwise

monotonicity, it can be shown that, for all f ∈ A, x � f � x . Normalise U so that

6 A similar idea forms the basis of conjoint measurement (Krantz et al. 1971).
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U (x) = 1 and U (x) = 0. Consider an act f ∈ A. By second-stage solvability, there
is a A ∈ ET such that f ∼ x Ax . If h = x Ax , notice that that U (hs) = q(A) for all
s ∈ S. Define utility function for acts φ:Rn → R as follows: φ(U ( f )) := {U (hs) :
f ∼ x Ax = h} for all f ∈ A. Preferences � over acts A are represented by the map
f �→ φ(U ( f )).
We now show that φ satisfies three properties:monotonicity,mixture continuity and

vertical invariance. Call φ monotone if U ( fi ) � U (gi ) for all i = 1, . . . , n implies
φ(U ( f )) � φ(U (g)). Monotonicity of φ follows immediately from monotonicity,
axiom 2. If, for all acts f, g, h ∈ A, the sets {α ∈ [0, 1] : φ(αU ( f )+ (1−α)U (g)) �
φ(U (h))} and {α ∈ [0, 1]:φ(αU ( f )+ (1−α)U (g)) � φ(U (h))} are closed in [0, 1],
then φ is mixture continuous. The derived U is known to be mixture continuous7 in
that, for all f, g, h ∈ A, the sets {α ∈ [0, 1]:αU ( f ) + (1 − α)U (g) � U (h)} and
{α ∈ [0, 1]:αU ( f )+(1−α)U (g) � U (h)} are closed in [0, 1]. Then, bymonotonicity,
φ inherits mixture continuity.

If, for all acts f, g ∈ A, first-stage constant act h ∈ A and α ∈ [0, 1], we have
φ(αU ( f ) + (1 − α)U (h)) = φ(αU ( f )) + (1 − α)φ(U (h)), then φ is vertically
invariant. An act h ∈ A is first-stage constant if, for all s, s̃ ∈ S, the second-stage
acts hs and hs̃ coincide. Consider any act f and first-stage constant act h, f, h ∈ A and
event A such that q(A) = α, where q is the subjective probability measure obtained
above. Using solvability, it can be shown that there exists a first-stage constant act g
such that f Ah ∼ gAh. This holds if and only if:

φ(U ( f Ah)) = φ(αU ( f ) + (1 − α)U (h)) = φ(U (gAh))

= φ(αU (g) + (1 − α)U (h)).

Because g and h are first-stage constant, gAh is first-stage constant and, letting f̃ =
gAh,

φ(U (gAh)) = U ( f̃s) = αU (gs) + (1 − α)U (hs) = αφ(U (g)) + (1 − α)φ(U (h)).

By the second-stage sure-thing principle, axiom 6, f Ah ∼ gAh only if f Ax ∼ gAx ,
which holds if and only if (recall U (x) = 0):

φ(U ( f Ax)) = φ(αU ( f )) = φ(U (gAx)) = φ(αU (g)) = αφ(U (g)).

Therefore, collecting the above results, φ(αU ( f )+(1−α)U (h)) = φ(αU ( f ))+(1−
α)φ(U (h)); hence, φ is vertically invariant. This completes the proof of Theorem 1.

��

Proof of Theorem 5

Axioms 1-6 have been shown, in Theorem 2, to be equivalent to preferences admitting
an invariant second-stage expected utility representation. If, for all acts f, g ∈ A and

7 See, for example, Machina and Schmeidler (1992: 774-775).
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α ∈ [0, 1]we have φ(αU ( f )+(1−α)U (g)) � αφ(U ( f ))+(1−α)φ(U (g)), then φ

is concave. We show that second-stage uncertainty aversion is equivalent to concavity
of φ.

Take any acts f, g ∈ Awith f ∼ g, so that φ(U ( f )) = φ(U (g)). By second-stage
solvability, there exists A(s) such that fs ∼ (x A(s)x)s and there exists C(s) such
that fs ∼ (xC(s)x)s , for all s ∈ S. This holds if and only if U ( fs) = q(A(s)) and
U (gs) = q(C(s)) for all s ∈ S. Because q is convex valued, we can find, for all
s ∈ S, second-stage events B(s) such that q(B(s)) = 1

2q(A(s)) + 1
2q(C(s)). Notice

that, for all s ∈ S, B(s) is a second-stage event average of A(s) and C(s). Then, an
act h with hs = (x B(s)x)s for all s ∈ S is a second-stage act average of f and g with
U (h) = 1

2U ( f ) + 1
2U (g). By second-stage uncertainty aversion, axiom 7, h � f ,

which holds if and only if φ(U (h)) = φ
( 1
2U ( f )+ 1

2U (g)
)

� φ(U ( f )). LetD be the
set ofdyadic rationals. Applying the abovefinitelymany times, it can be shown that, for
allα ∈ [0, 1]∩D,φ(U ( f )) = φ(U (g)) impliesφ(αU ( f )+(1−α)U (g)) � φ(U ( f )).
φ is mixture continuous; hence, φ is quasi-concave. By Lemma 25 of MMR, φ is
concave (see also Theorem 4 of Cerreia-Vioglio et al. (2014)). By Lemma 26 of
Maccheroni et al. (2006: 1476–1477), φ has the following representation:

φ(U ( f )) = min
p∈PS

( ∫
S
U ( f )dp(s) + c(p)

)

= min
p∈PS

( ∫
S

∫
T
u( f (s, t))dp(s)dq(t) + c(p)

)

where u : X → R is a strictly �-increasing utility function and c : PS → [0,∞] is
a grounded, convex and lower semicontinuous function. Therefore, preferences over
A satisfying the axioms of statement 1 of Theorem 5 are variational preferences. For
the uniqueness results, cardinality of u and uniqueness of q are well known. That c is
a ratio scale follows from MMR’s corollary 5. ��

Proof of Theorem 7

If preferences satisfy axioms 1–6, then, following the proof of Theorem 5, prefer-
ences are represented by a functional f �→ φ(U ( f )). We have established that φ

is monotonic, mixture continuous and vertically invariant, and φ is concave if and
only if preferences satisfy second-stage uncertainty aversion. Now assume certainty
equivalents exist for all acts. FixU (x) = 1 andU (x) = 0. Take any a = (a1, . . . , an)
and b = (b1, . . . , bn), with a, b ∈ [0, 1]n . For all ai , bi , i = 1, . . . , n, by convex val-
uedness of q, there exist events Ai and Bi with q(Ai ) = ai and q(Bi ) = bi . Let x(E)

denote the certainty equivalent of x E x , for E ∈ ET . Then, the act f with fsi = x(Ai )

for all i = 1, . . . , n has utility vector U ( f ) = a, and the act g with gsi = x(Bi )
for all i = 1, . . . , n has utility vector U (g) = b. Notice that f and g are second-
stage constant acts. By convex valuedness of q, there exists a second-stage event C
with q(C) = 1

2 . Then, the act fC g generates utility vector U ( fC g) = 1
2a + 1

2b.
Second-order risk aversion holds, hence f ∼ g only if fC g � f . Equivalently:
φ(U ( fC g)) = φ

( 1
2a + 1

2b
)

� φ(U ( f )) = φ(a). Because φ is mixture continuous,
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φ is quasi-concave. Monotonicity and vertical invariance have been shown. Hence,
under axioms 1–6 and existence of certainty equivalents, second-order risk aversion
holds if and only if φ is concave. ��

Proof of Theorem 8

The necessity of the axioms involves only substitution of the preference representation.
We prove the sufficiency of the axioms for the representation. Axioms 1–7 hold;
hence, preferences admit a representation f �→ φ(U ( f )), with φ monotonic, mixture
continuous, vertically invariant and concave. Second-stage constant independence
allows us to establish that φ is linearly homogeneous: For all f ∈ A and α ∈ [0, 1],
we have φ(αU ( f )) = αφ(U ( f )).

Let f ∈ A be an act and let g be a first-stage constant act such that f ∼ g,
or equivalently φ(U ( f )) = φ(U (g)). There exist acts f̃ and g̃ such that f̃ is a
second-stage act average of f and x and g̃ is a second-stage act average of g and
x . The second-stage constant independence axiom implies f̃ ∼ g̃, or equivalently
φ( 12U ( f )) = φ( 12U (g)) = 1

2φ(U (g)), where the second equality exploits that g
is first-stage constant. Hence, φ( 12U ( f )) = 1

2φ(U ( f )). The same technique can be
used iteratively to show that φ(αU ( f )) = αφ(U ( f )) for all α ∈ [0, 1] ∩ D. Linear
homogeneity follows as φ is mixture continuous. It follows from Lemma 3.5 of Gilboa
and Schmeidler (1989) that φ is a subjective maxmin expected utility representation.

��
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