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Abstract Consider a symmetric common-value Tullock contest with incomplete
information in which the players’ cost of effort is the product of a random variable and
a deterministic real function of effort, d. We show that the Arrow–Pratt curvature of
d, Rd , determines the effect on equilibrium efforts and payoffs of the increased flex-
ibility/reduced commitment that more information introduces into the contest: If Rd

is increasing, then effort decreases (increases) with the level of information when the
cost of effort (value) is independent of the state of nature.Moreover, if Rd is increasing
(decreasing), then the value of public information is nonnegative (nonpositive).

Keywords Tullock contests · Common values · Value of public information

JEL Classfication C72 · D44 · D82

1 Introduction

We study how changes in the information available to the players of a symmetric
common-value Tullock contest with incomplete information affect their equilibrium
payoffs and their incentives to exert effort. In a Tullock contest a player’s probability
of winning the prize is the ratio of the effort he exerts and the total effort exerted by all
players—see Tullock (1980). In a symmetric common-value contest with incomplete
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information, players have a common state-dependent value for the prize and a common
state-dependent cost of effort, and all players have the same information.

There are a variety of economic settings (rent-seeking, innovation tournaments,
patent races) inwhich agents face a game strategically equivalent to aTullock contest—
see Baye and Hoppe (2003). Tullock contests may also arise by design, e.g., in sport
competition or internal labormarkets—seeKonrad (2008) for a general survey. Skaper-
das and Gan (1995) and Clark and Riis (1998) provide alternative axiomatizations of
Tullock contests.

In our setting, players’ uncertainty about their common value and common cost is
described by a probability space, and players’ information is described by a subfield of
the field onwhich players’ commonprior is defined.Representing players’ information
as a σ -subfield (rather than as a partition) allows us to capture situations in which,
for example, players’ value and/or cost are continuous random variables and players’
information comes from observing a continuous signal. (In the setting considered by
Wasser (2013), for which we derive results in Proposition 5.2, players are uncertain
about their constant marginal cost of effort, which is the realization of a continuous
randomvariable. If players observe a noisy public signal of theirmarginal cost, thenwe
may not be able to represent their information as a partition.) In this model, changes
in the level of information are conveniently represented as changes in the subfield
describing the players’ information. (When players’ uncertainty can be represented
as a partition, our model is equivalent to Harsanyi’s model—see Jackson (1993) and
Vohra (1999).)

We begin by showing that every contest in which players’ cost of effort is a twice
differentiable, strictly increasing, and convex function in every state has a unique
equilibrium in pure strategies, which is symmetric and interior. We establish this
result by first showing along lines of the proof of Szidarovszky and Okuguchi (1997)’s
Theorem 1 that the complete information game defined by the realized state of nature
has a unique equilibrium, which is symmetric and interior. (Establishing this result
when the cost function is convex, rather than strictly convex, allows as to deal with the
linear case.) Then, we construct an equilibrium of the Bayesian game of incomplete
information associated with the contest appealing to the argument of Theorem 3.1
in Einy et al. (2003)—EMS (2003) henceforth. Our existence result implies those
obtained by Warneryd (2003) and Wasser (2013), which deal with the two polar cases
in which players have either full information or just the prior information. Einy et al.
(2015) have recently established a general existence theorem for Tullock contests with
incomplete information when the private information of each player is described by
a countable partition of the space of states of nature, and have provided conditions
for uniqueness of equilibrium. These results do not apply to our setting, in which the
players’ information may not be generated by a countable partition of the space of
states of nature.

There is awell-known formal equivalence betweenTullock contests and theCournot
model. This equivalence allows us to use some auxiliary results obtained in EMS
(2003), which studies the value of public information in a Cournot duopoly. Unlike
EMS (2003), however, we do not assume that the cost function is linear, but allow
instead for any convex function. Also, our results apply to generalized Tullock contest,
for which a player’s probability of wining the prize is the ratio between her score and
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the sum of the scores of all the players, provided the score is a twice differentiable,
increasing, and concave function of effort. In contrast, EMS (2003) assumes that
the demand function, whose role in the Cournot model is akin to that of the contest
success function in a Tullock contest, is log concave. Also, unlike EMS (2003), we
allow for any finite number of players instead of just two, and we derive results about
the impact of information on players’ equilibrium expected efforts as well as on their
payoffs—EMS (2003) is concerned exclusively with the value of public information.

For the class of contests in which equilibrium is unique and symmetric, the question
“how changes in the level of information available to the players affects their equilib-
rium expected payoffs and efforts” is well posed. We are able to provide an answer to
this question when the players’ cost of effort is a multiplicative function, that is, when
it is the product of a random variable and a deterministic real-valued function d of the
player’s effort. Following EMS (2003), given a function d and a pair of random vari-
ables (v,w) describing, respectively, the players’ common value and common cost,
which are the uncertain elements of the contest, we define a binary relation that ranks
information subfields according to the level of information they contain: A subfield
H is more informative than some other subfield G if the predictions of the value and
cost are the same whether players’ information is given by H or by the aggregate
information in H and G.

More information allows the contest’s participants more flexibility when choosing
how much effort they want to exert, but reduces their ability to commit to exert a
low effort when, e.g., the value of the prize is high. We define two auxiliary real-
valued functions, S and U , which provide the equilibrium expected effort and payoff,
respectively, in a contest in which v and w are positive constant random variables and
players have full information (i.e., their information field is the field on which the
common prior is defined). It turns out that the curvature of these functions determines
the effect on equilibrium expected effort and payoff, respectively, of the increased
flexibility/reduced commitment that more information introduces into the contest: If
S is convex (concave), then the players’ expected effort increases (decreases) with the
level of information. Likewise, if U is convex (concave), then the players’ expected
payoff increases (decreases) with the level of information, i.e., the value of public
information is nonnegative (nonpositive).Moreover, the conditions leading to either of
these functions been either concave or convex are related to theArrow–Pratt curvature
of the function d, the deterministic component of the cost function. (In expected utility
theory, the Arrow–Pratt curvature of an individual’s utility function is a measure of
his relative risk aversion.)

Using our results relating the curvature of the auxiliary functions S and U to the
effect of changes in information on equilibrium expected efforts and payoffs, we show
that if the Arrow–Pratt curvature of d is increasing, then the equilibrium expected
effort decreases with the level of information in contests in which the cost of effort
is independent of the state of nature, and increases with the level of information
in contests in which the value is independent of the state of nature. Moreover, if
the Arrow–Pratt curvature of d is increasing (decreasing), then the value of public
information is nonnegative (nonpositive) in every symmetric common-value Tullock
contest with incomplete information in the class defined by the function d.
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An interesting implication of our results is that if players’ efforts are monetary,
i.e., if the function d is the identity, then the Arrow–Pratt curvature of d is constant,
and therefore the value of information is zero (i.e., payoffs are invariant to changes
in information). If the cost of effort is independent of the state of nature, then the
equilibrium expected effort is also invariant to changes in information, whereas if the
common value is independent of the state of nature, then the equilibrium expected
effort increases with the level of information—see Example 5.4.

In contrast, if d is a convex quadratic cost function, for example, then the Arrow–
Pratt curvature of d is increasing, and therefore the value of information is nonnegative.
If in addition the cost of effort is independent of the state of nature, then players exert
less effort the better informed they are. It is not difficult, however, to find examples
in which the cost of effort is state-dependent, and players exert more effort the better
informed they are—see Example 5.4.

The impact of public information on the equilibrium expected payoffs and efforts in
Tullock contests has been seldom studied in the literature. For two-player generalized
Tullock contests, in which the prize is allocated using some score function g, and
efforts are monetary (i.e., the cost of effort is independent of the state of nature and
d is the identity), Warneryd (2003) studies the equilibrium expected efforts for two
polar information structures: When players’ information about the value is just their
common prior, and when they observe the value. Warneryd (2003) finds that whether
the equilibrium expected effort is greater or less for one or the other information
structure depends on whether the ratio g/g′ is a concave or convex function. This
result is easily derived in our setting and extended to contests with any number of
players and arbitrary information structures. Moreover, we are able to evaluate as
well the impact of changes in the level of information on the equilibrium payoffs of
generalized Tullock contests—see Proposition 5.3.

Wasser (2013) studies Tullock contests in which the players’ constant marginal
cost of effort is uncertain—see also Myerson and Warneryd (2006). For symmetric
contests,Wasser (2013)’s Proposition3 shows thatwhenplayers’ information about the
common marginal cost is just their prior information, they exert less effort than when
they observe the marginal cost. We show that this conclusion, which is an implication
of our results, extends to any two comparable information structures. Moreover, we
show that in these contests, the value of public information is zero, i.e., equilibrium
payoffs are invariant to changes in the level of information—see Proposition 5.2.

Other relatedwork includesMorath andMünster (2013) andKovenock et al. (2013),
who study the incentives for information acquisition and information sharing, respec-
tively, in all-pay auction contests, and Denter et al. (2011), who identify conditions
under which a mandated transparency policy on lobbying leads to an increase in
efforts. Of course, there is a large literature studying the value of information and the
incentives for information acquisition in auctions.

2 Symmetric common-value Tullock contests

In a Tullock contest, a group of players N = {1, . . . , n}, with n ≥ 2, compete
for a prize by choosing a level of effort in R+. Given a profile of players’ efforts
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x ∈ R
n+\{0}, the prize is allocated to player i ∈ N with probability ρ̄i (x) = xi/x̄,

where x̄ ≡ ∑N
j=1 x j , whereas if x = 0, i.e., if players exert no effort, then the prize

is allocated using some predetermined probability vector ρ̄(0) ∈ �n . We assume that
players are uncertain about their common value for the prize and their common cost
function. This uncertainty is described by a probability space (�,F , p), where � is
the set of states of nature,F is a σ -field of subsets of�, and p is σ -additive probability
measure on F . We interpret p as the players’ common prior belief about the realized
state of nature. The players’ value of the prize is described by an integrable function
v : � → R++. The player’s cost is described by a function c : � × R+ → R+ such
that for every integrable function s : � → R+, c(·, s(·)) is integrable. The players’
information about the state of nature is described by aσ -subfield ofF ,G, specifying the
event observed by players following each realization of the state of nature.We therefore
identify a symmetric common-value Tullock contest with incomplete information with
a collection T = (N , (�,F , p), v, c,G). (The description of a Tullock contests omits
any reference to the probability distribution ρ̄(0) used to allocate the prize when
players exert no effort since, as we show in the proof of Lemma 6.1 in the Appendix,
under our assumptions the unique equilibrium of T is independent of ρ̄(0).)

A symmetric common-value Tullock contest with incomplete information T =
(N , (�,F , p), v, c,G) defines a Bayesian game G(T ) in which the set of actions of
each player is R+, and the payoff function of each player i ∈ N is ui : � × R

n+ → R

given for every ω ∈ � and x ∈ R
n+ by

ui (ω, x) = ρ̄i (x)v(ω) − c (ω, xi ) .

In this game, a pure strategy of player i ∈ N is an integrable G-measurable function
si : � → R+ specifying player i’s effort in each state of nature. (Requiring that
a strategy be G-measurable restricts the events on which a player may condition her
actions to those that she observes.) Given a strategy profile s = (s1, . . . , sn),wedenote
by s−i the profile obtained from s by suppressing the strategy of player i ∈ N .A (pure
strategy) Bayesian Nash equilibrium of a symmetric common-value Tullock contest
T is a (pure strategy) Bayesian Nash equilibrium of G(T ). Throughout the paper,
we restrict attention to pure strategy equilibria. An explicit definition of equilibrium
follows.

Let T = (N , (�,F , p), v, c,G) be a symmetric common-value Tullock with
incomplete information. If X is an integrable random variable on (�,F , p), and
H is a σ -subfield of F , we write E[X | H] for the conditional expectation of X with
respect to H. A profile of strategies s∗ = (s∗

1 , . . . , s∗
n ) is Bayesian Nash equilibrium

of T if for every player i ∈ N , every pure strategy si of player i , and almost allω ∈ �,

E[ui (·, s∗ (·)) | G](ω) ≥ E[ui (·, s∗−i (·) , si (·)) | G](ω).

Our first result establishes conditions implying the existence and uniqueness of a
pure strategy equilibrium in symmetric common-value Tullock contests with incom-
plete information.
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Theorem 2.1 A symmetric common-value Tullock contest with incomplete infor-
mation in which the players’ cost function c(ω, ·) is twice differentiable, strictly
increasing, convex, and satisfies c(ω, 0) = 0 for all ω ∈ � has a unique (pure
strategy) Bayesian Nash equilibrium, s∗. Moreover, s∗ is symmetric and interior, i.e.,
s∗
1 (ω) = s∗

2 (ω) = . . . = s∗
n (ω) > 0 for all ω ∈ �.

Proof For every ω ∈ �, define the n-person complete information game G(ω, T ) in
which the set of pure strategies of every player is R+ and the payoff function of each
player i ∈ N , hi (ω, ·) : R

n+ → R+, is given for x ∈ R
n+ by

hi (ω, x) = E[ui (·, x) | G](ω).

The game G(ω, T ) has a unique Nash equilibrium t∗(ω) = (t∗1 (ω), . . . , t∗n (ω)), which
is symmetric and interior, i.e., t∗1 (ω) = t∗2 (ω) = . . . = t∗n (ω) > 0. (We establish this
result in the Appendix, Lemma 6.1, along the lines of Szidarovszky and Okuguchi
(1997)’s Theorem 1.) Using an argument analogous to that of the proof in Theorem
3.1 in Einy et al. (2003), one can show that the strategy profile s∗ ∈ Sn given for
ω ∈ � by s∗(ω) = t∗(ω) is a Bayesian Nash equilibrium of the Bayesian game G(T ).
Uniqueness, symmetry, and interiority follow from the fact that for all ω ∈ �, the
profile t∗(ω) ∈ R

n+ is the unique Nash equilibrium of G(ω, T ), and t∗1 (ω) = t∗2 (ω) =
. . . = t∗n (ω) > 0. �	

Theorem 2.1 holds on a broader class of generalized symmetric common-value
Tullock contests with incomplete information in which the prize is allocated according
to a contests success function ρ : � × R

n+ → �n given for (ω, x) ∈ � × R
n+\{0} and

i ∈ N by

ρi (ω, x) = g(ω, xi )
∑n

j=1 g(ω, x j )
,

where g : � × R+ → R+ is a score function such that for all ω ∈ �, g(ω, ·)
is twice differentiable, strictly increasing and concave, and satisfies g(ω, 0) = 0.
In the Bayesian game defined by a generalized Tullock contest, (T, g), where T =
(N , (�,F , p), v, c,G), the payoff function of each player i ∈ N is given for all
(ω, x) ∈ � × R

n+ by

ui (ω, x) = ρi (ω, x)v(ω) − c(ω, xi ).

Hence, there is a bijection between the equilibrium sets of this contest (T, g) and the
Tullock contest T̂ = (N , (�,F , p), v, ĉ,G), in which the cost function is ĉ(ω, ·) =
g−1(ω, ·) ◦ c(ω, ·) for all ω ∈ � . The next remark, which makes precise this relation,
will be useful to derive the implications for generalized Tullock contests of the results
obtained in Sects. 3 and 4 for Tullock contests.

Remark 2.2 Asymmetric common-value generalizedTullock contestwith incomplete
information ((N , (�,F , p), v, c,G), g) in which the players’ cost function satisfies
the assumptions of Theorem 2.1 and the score function g(ω, ·) is twice differen-
tiable, strictly increasing and concave, and satisfies g(ω, 0) = 0 for all ω ∈ � has
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a unique (pure strategy) Bayesian Nash equilibrium ŝ∗ . Moreover, ŝ∗ is symmetric
and interior, and is given for all ω ∈ � by ŝ∗(ω) = g−1(ω, s∗(ω)), where s∗ is the
unique BayesianNash equilibrium of the Tullock contest (N , (�, F, p), v, ĉ,G),with
ĉ(ω, ·) = g−1(ω, ·) ◦ c(ω, ·) for all ω ∈ �.

In order to study the effect of information on equilibrium efforts and payoffs,
we restrict attention to the class of symmetric common-value Tullock contests with
incomplete information in which for all (ω, x) ∈ � × R+ , the players’ cost is

c(ω, x) = w(ω)d(x),

where w is a nonnegative integrable random variable, i.e., w ∈ L1+(�,F , p), and d
is a deterministic real-valued function.

Let d be a twice differentiable, strictly increasing, and convex function such that
d(0) = 0. We denote by T (d) the family of all symmetric common-value Tullock
contests with incomplete information, (N , (�,F , p), v,wd,G), defined by a pair of
nonnegative integrable random variables (v,w) ∈ L1+(�,F , p)× L1+(�,F , p), and
a σ -subfield of F , G.

Let (v,w) ∈ L1+(�,F , p)×L1+(�,F , p), and let G andH be any two σ -subfields
of F . We say that H is weakly more informative than G, and we write H � G, if

E(v | H) = E(v | G ∨ H) and E(w | H) = E(w | G ∨ H),

where G ∨ H is the smallest σ -subfield of F that contains both G and H. That is,
H is weakly more informative than G if the predictions of the value and the cost
(the uncertain elements of the contest) are the same whether players’ information is
given by H or it is given by the aggregate information in G and H. Note that H � G
whenever H is finer than G.

For any σ -subfield of F , G, we denote by s∗
G and u∗

G the equilibrium strat-
egy and payoff of every player in the Bayesian Nash equilibrium of the contest
T = (N , (�,F , p), v,wd,G) ∈ T (d). (These mappings are well defined because
by Theorem 2.1 each contest has a unique and symmetric equilibrium.) Let T =
(N , (�,F , p), v,wd,G) ∈ T (d). We say that the value of public information in T
is nonnegative (nonpositive) if for every contest (N , (�,F , p), v,wd,H) ∈ T (d),

H � G ⇒ E(u∗
H) ≥ E(u∗

G) (E(u∗
H) ≤ E(u∗

G)).

Also, we say that the equilibrium expected effort is decreasing (increasing) with the
level of information in T if for every contest (N , (�,F , p), v,wd,H) ∈ T (d),

H � G ⇒ E(s∗
G) ≥ E(s∗

G) (E(s∗
H) ≤ E(s∗

G)).

3 Information and effort

We study the effect of changes in the level of information on the equilibrium expected
effort. For each (a, b) ∈ R

2++, we denote by s(a, b) the strategy of each player in the
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unique Bayesian Nash equilibrium of the contest (N , (�,F , p), a1�, (b1�) d,F)

and write
S(a, b) := E(s(a, b)) (1)

for the equilibrium expected effort. Proposition 3.1 establishes an auxiliary result
relating the effect of changes in the level of information on the equilibrium expected
effort to the curvature of the function S (specifically, whether it is convex or concave).
We omit the proof of this proposition since it is identical to that of Proposition 3.3 in
EMS (2003), which establishes this result by a simple argument involving the Law of
Iterated Expectations and Jensen’s Inequality.

Proposition 3.1 Assume that d is twice differentiable, strictly increasing, and convex,
and such that d(0) = 0. If the function S is convex (concave) on R

2++, then the
equilibrium expected effort increases (decreases) with the level of information in every
symmetric common-value Tullock contest with incomplete information T ∈ T (d).

Let d be a twice differentiable, strictly increasing, and convex function satisfying
d(0) = 0. For all (a, b) ∈ R

2++ the contest (N , (�,F , p), a1�, (b1�) d,F) has a
unique symmetric Bayesian Nash equilibrium by Theorem 2.1. In this equilibrium,
the strategy of every player satisfies s(a, b) > 0. Therefore,

ρ̄i (s(a, b)(ω), . . . , s(a, b)(ω)) = 1

n
(2)

for all i ∈ N and ω ∈ �, i.e., in equilibrium all players win the prize with the same
probability. Moreover, since s(a, b) maximizes

E [ui (·, s(a, b), . . . , s(a, b), xi ) | G] (ω)=E

[
xi

(n−1)s(a, b)+xi
a−bd(xi ) | G

]

(ω)

for all ω ∈ �, the first-order condition

E

[
a (n − 1)

n2s(a, b)
| G

]

(ω) = bE
[
d ′(s(a, b)) | G]

(ω)

holds for all ω ∈ �. Since s(a, b) is G -measurable, then

s(a, b)d ′(s(a, b)) = n − 1

n2b
a. (3)

Proposition 3.2 provides conditions under which the curvature of the deterministic
component of the players’ cost (specifically the sign of the second derivative of the
product xd ′(x)) determines the effects of changes in the level of information on the
equilibrium expected effort. For all a, b ∈ R++, let

S̄(a) := S(a, 1), and Ŝ(b) := S(1, b).
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The functions S̄ and Ŝ identify the equilibrium expected effort of every player in the
uniqueBayesianNash equilibriumof the contests (N , (�,F , p), a1�, (1�) d,F) and
(N , (�,F , p), 1�, (b1�) d,F), respectively.

Proposition 3.2 Assume that d is thrice differentiable, strictly increasing and convex,
and satisfies d(0) = 0, and let T ∈ T (d) be a symmetric common-value Tullock
contest with incomplete information.

(3.2.1) If w is constant on � and
(
xd ′(x)

)′′
is nonpositive (nonnegative) on R+,

then the equilibrium expected effort increases (decreases) with the level of
information in T .

(3.2.2) If v is constant on � and
(
xd ′(x)

)′′
is nonpositive on R+, then the equilibrium

expected effort increases with the level of information in T .

Proof We prove Proposition 3.2.1. Differentiating Eq. (3) with respect to a we get

(
sd ′(s)

)′
(a, b)sa(a, b) = n − 1

n2b
.

Hence,

sa(a, b) = n − 1

n2b (sd ′(s))′ (a, b)
> 0, (4)

i.e., the equilibrium effort increases with the players’ common value of the prize, a.
Differentiating this expression we get

saa(a, b) = −n − 1

n2b

(
sd ′(s)

)′′
(a, b)sa(a, b)

(
(sd ′(s))′ (a, b)

)2 = −
(
sd ′(s)

)′′
(a, b)

(sd ′(s))′ (a, b)
(sa(a, b))2 . (5)

W.l.o.g. assume that w(·) = 1 on �. Since sa(a, 1) > 0 by (4), then Eq. (5) implies

saa(a, 1) � 0 ⇔ (
sd ′(s)

)′′
(a, 1) � 0.

Hence, (
sd ′(s)

)′′
(a, 1) ≥ 0 ⇒ S̄′′(a) = E(saa(a, 1)) ≤ 0,

and (
sd ′(s)

)′′
(a, 1) ≤ 0 ⇒ S̄′′(a) = E(saa(a, 1)) ≥ 0.

Therefore, the conclusion of Proposition 3.2.1 follows from Proposition 3.1.
We prove Proposition 3.2.2. Differentiating (3) with respect to b we get

sb(a, b) = − (n − 1)a

n2

1

(sd ′(s))′ (a, b)

1

b2
< 0, (6)

i.e., the equilibrium effort decreases with b (hence with the cost of effort). Differenti-
ating this expression with respect to b again yields

sbb(a, b) = (n − 1)a

n2

1

b2
1

(sd ′(s))′ (a, b)

(
2

b
+

(
sd ′(s)

)′′
(a, b)sb(a, b)

(sd ′(s))′ (a, b)

)

. (7)
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W.l.o.g. assume that v(·) = 1 on �. Since sb(1, b) < 0 as shown in (6), then

(
sd ′(s)

)′′
(1, b) ≤ 0 ⇒ sbb(1, b) > 0 ⇒ Ŝ′′(b) = E(sbb(1, b)) > 0,

where the first implication follows from Eq. (7). Thus, the equilibrium expected effort
increases with the level of information in T by Proposition 3.1. �	

For any twice differentiable strictly increasing function d : R+ → R+, the Arrow–
Pratt curvature of d is given for x ∈ R+ by

Rd(x) = xd ′′(x)

d ′(x)
.

In expected utility theory, −Rd is interpreted as a measure of relative risk aversion for
an individual with preferences represented by a concave von Neumann–Morgenstern
utility function d. In our setting, however, d is the deterministic component of the
players’ cost and is assumed to be convex (rather than concave) to assure that an equi-
librium exists (by Theorem 2.1). Also, the players’ utility function is state-dependent.
Thus, interpreting Rd as a measure of relative risk aversion would be a stretch. Nev-
ertheless, as Proposition 3.3 below shows, the derivative of Rd identifies conditions
on the curvature of d which allow us to determine the impact of changes in the level
of information on the equilibrium expected efforts (as well as on payoffs, as we shall
see in the next section).

Proposition 3.3 Let d be a thrice differentiable, strictly increasing, and convex func-
tion satisfying d(0) = 0. If Rd is increasing, then in every symmetric common-value
Tullock contest with incomplete information T ∈ T (d) in which v (respectively, w) is
constant on �, the equilibrium expected effort increases (decreases) with the level of
information.

Proof For all x ∈ R+,

(1 + Rd(x))′ =
(
2d ′′(x) + xd ′′′(x)

)
d ′(x) − (d ′(x) + xd ′′(x))d ′′(x)

(d ′(x))2

= (xd ′(x))′′ − d ′(x)d ′′(x) − x
(
d ′′(x)

)2

(d ′(x))2
.

If Rd is increasing, then

R′
d(x) = (1 + Rd(x))′ ≥ 0 ⇒ (xd ′(x))′′ ≥ d ′(x)d ′′(x) + x

(
d ′′(x)

)2 ≥ 0,

and therefore by Proposition 3.2.1, the equilibrium expected effort decreases with the
level of information in T whenever w is constant on �.

Assume that v is constant on �, and w.l.o.g. set v(·) = 1. Taking log in Eq. (3)
yields

ln s(a, b) + ln d ′(s(a, b)) = ln
n − 1

n2 + ln a − ln b.
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for all (a, b) ∈ R
2++. Setting a = 1 and differentiating with respect to b yields

−1

b
= sb(1, b)

s(1, b)
+ sb(1, b)d ′′(s(1, b))

d ′(s(1, b))
= sb(1, b)

s(1, b)
(1 + Rd(s(1, b)) .

Hence, sb(1, b) < 0. Differentiating with respect to b again yields

1

b2
= sbb(1, b)s(1, b) − sb(1, b)2

s(1, b)2
(1 + Rd(s(1, b)) + sb(1, b)

s(1, b)
(1 + Rd(s(1, b))′ .

If Rd is increasing, then the second term in the right-hand side is nonpositive, and
therefore the first term is positive, i.e.,

sbb(1, b) >
sb(1, b)2

s(1, b)
> 0.

Hence,
Ŝ′′(b) = E(sbb(1, b)) > 0,

and thus the equilibrium expected effort increases with the level of information in T by
Proposition 3.1. �	

4 The value of public information

In this section we study the value of public information. Let d be a twice differentiable,
strictly increasing, and convex function satisfying d(0) = 0. For each (a, b) ∈ R

2++,
we write U (a, b) for the expected equilibrium payoff in the unique Bayesian Nash
equilibrium of the contest (N , (�,F , p), a1�, (b1�) d,F). Proposition 4.1 estab-
lishes an auxiliary result relating the curvature of the function U to the sign of the
value of information. This result on the value of public information is the counterpart
of Proposition 3.1. Its proof is also omitted.

Proposition 4.1 Assume that d is twice differentiable, strictly increasing and convex,
and satisfies d(0) = 0, and let T ∈ T (d) be a symmetric common-value Tullock
contest with incomplete information. If the function U is convex (concave) on R

2++,
then the value of public information in T is nonnegative (nonpositive).

Our main result in this section establishes that the Arrow–Pratt curvature of the
deterministic component of the cost function determines the value of information in a
symmetric common-value Tullock contest with incomplete information. In establish-
ing this result, the homogeneity of degree one of U plays a key role.

Theorem 4.2 If d is thrice differentiable, strictly increasing and convex, and such
that d(0) = 0 and Rd is increasing (decreasing), then the value of public information
in every symmetric common-value Tullock contest with incomplete information T ∈
T (d) is nonnegative (nonpositive).
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Proof For (a, b) ∈ R
2++ the unique equilibriumof the contest (N , (�,F , p), a1�, (b1�)

d,F) is symmetric and interior by Theorem 2.1. Hence, in equilibrium all players win
the price with the same probability (see Eq. (2)), and therefore

U (a, b) = a

n
− bE(k(a, b)), (8)

where
k(a, b) := d(s(a, b)).

Let λ ∈ R++. Since the payoff function of a player in the Bayesian game associated
with the contest (N , (�,F , p), λa1�, (λb1�) d,F) is

ui (ω, x) = ρ̄i (x)λa − λbd(xi ) = λ[ρ̄i (x)a − bd(xi )],

then s(λa, λb) = s(a, b) andU (λa, λb) = λU (a, b), i.e., s is homogeneous of degree
zero and U is homogeneous of degree one on R

2++. Hence, U is convex (concave) if
and only if Uaa(a, b) ≥ 0 (Uaa(a, b) ≤ 0)—see Lemma 6.2 in the Appendix.

Differentiating (8) we get

Uaa(a, b) = −bE(kaa(a, b)).

We show below that
kaa(a, b) � 0 ⇔ R′

d � 0.

Hence,
R′

d ≥ 0 ⇒ E(kaa(a, b)) ≤ 0 ⇒ Uaa(a, b) ≥ 0,

and
R′

d ≤ 0 ⇒ E(kaa(a, b)) ≥ 0 ⇒ Uaa(a, b) ≤ 0,

which completes the proof by Theorem 4.2.
Differentiating k, we get

ka(a, b) = d ′(s(a, b))sa(a, b).

Differentiating again and using Eq. (5), we get

kaa(a, b) = d ′′(s(a, b)) (sa(a, b))2 + d ′(s(a, b))saa(a, b)

=
(

d ′′(s(a, b)) − d ′(s(a, b))

(
sd ′(s)

)′′
(a, b)

(sd ′(s))′ (a, b)

)

(sa(a, b))2 .

Hence,

kaa(a, b) � 0 ⇔ d ′′(s(a, b))

d ′(s(a, b))
−

(
sd ′(x)

)′′
(a, b)

(sd ′(x))′ (a, b)
� 0

⇔ (
ln d ′(s(a, b))

)′ −
(
ln

(
sd ′(s)

)′
(a, b)

)′
� 0
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⇔
(

ln

(
sd ′(s)

)′
(a, b)

d ′(s(a, b))

)′
� 0

⇔
((

sd ′(s)
)′

(a, b)

d ′(s(a, b))

)′
� 0

⇔
(

1 + s(a, b)d ′′(s(a, b))

d ′(s(a, b))

)′
� 0

⇔ R′
d(s(a, b)) � 0.

�	

5 Applications and examples

Our next proposition derives the implications of our results for classicTullock contests,
in which the players’ marginal cost is equal to one independently of the state, i.e.,
for contests in the class T = N , (�,F , p), v, (1�)d̄,G) ∈ T (d̄), where d̄ is the
identity function. Since R ′̄

d
(x) = (

xd̄ ′(x)
)′′ = 0 for all x ∈ R+, these results follow

immediately from Proposition 3.2.1 and Theorem 4.2.

Proposition 5.1 In every symmetric common-value classic Tullock contest with
incomplete information the value of public information is zero, and the equilibrium
expected effort is invariant to changes in the players’ information.

Wasser (2013) studies symmetric common-value Tullock contest with incom-
plete information in which the players’ value is v(·) = 1 on �, and their
constant marginal cost of effort is a random variable, i.e., contests in the class
T = (N , (�,F , p), 1�,wd̄,G) ∈ T (d̄). Wasser (2013)’s Proposition 3 establishes
that players exert less effort when their information about their constant marginal cost
of effort is just their prior than when they observe it. Proposition 5.2, which follows
immediately from Proposition 3.2.2 and Theorem 4.2, extends this result to general
information structures, e.g., to the case in which players observe a noisy public signal
of their common constant marginal cost of effort, and also establishes results about
the value of public information in these contests.

Proposition 5.2 In every symmetric common-value Tullock contest T ∈ T (d̄) in
which the value v is constant on � the equilibrium expected effort increases with the
level of information, and the value of public information is zero.

Warneryd (2003) studies two-player generalized Tullock contests in which the
players’ cost of effort is c(ω, x) = x for all ω ∈ �, and shows that if the score
function is a state-independent, thrice differentiable, increasing, and concave func-
tion g : R+ → R+ such that g(0) = 0, then players’ exert less (more) effort when
their information about the value is just their prior than when they observe the value
whenever the function g/g′ is convex (concave). Proposition 5.3 derives this result,
extends it to contests with more than two players and general information structures,
and establishes results about the value of public information.
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Proposition 5.3 Let g : R+ → R+ be a thrice differentiable, strictly increasing, and
concave function satisfying g(0) = 0, and let ((N , (�,F , p), v, (1�)d̄,G), g) be a
symmetric common-value generalized Tullock contest with incomplete information. If
the function g/g′ is concave (convex), then the equilibrium expected effort increases
(decreases) with the level of information, and the value of public information is non-
negative (nonpositive).

Proof Let a ∈ R+.By Remark 2.2, the contest T = ((N , (�,F , p), a1�, (1�)d̄,G),

g) has a unique equilibrium. Denote by s̃(a) the strategy of every player in this equi-
librium. Since s̃(a) maximizes

E

[
g(xi )

(n − 1)g(s̃(a)) + g(xi )
a − xi | G

]

(ω),

for all ω ∈ �, the first-order condition

E

[
n − 1

n2

g′(s̃(a))

g(s̃(a))
a | G

]

(ω) = 1

holds for all ω ∈ �. Since s̃(a) is G -measurable, then

g(s̃(a))

g′(s̃(a))
= n − 1

n2 a.

Differentiating this equation we get

(
g(s̃(a))

g′(s̃(a))

)′
s̃′(a) = n − 1

n2 .

Since g is concave, then s̃′(a) > 0, i.e., the equilibrium effort increases with the
players’ common value of the prize, a. Differentiating again yields

(
g(s̃(a))

g′(s̃(a))

)′
s̃′′(a) +

(
g(s̃(a))

g′(s̃(a))

)′′
s̃′(a) = 0.

Hence, (
g(s̃(a))

g′(s̃(a))

)′′
� 0 ⇔ s̃′′(a) � 0.

Thus, S̃(a) := E[s̃(a)] is convex (concave) whenever g/g′ is concave (convex), and
therefore the equilibrium expected effort increases (decreases) with the level of infor-
mation by Proposition 3.1.

Moreover, s̃(a) > 0 by Remark 2.2, and therefore since d̄ is the identity, the
equilibrium expected payoff is

Ũ (a) := a

n
− E(s̃(a)).
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Hence, Ũ (a) is convex (concave) whenever g/g′ is convex (concave), and thus the
equilibrium payoff increases (decreases) with the level of information by Proposi-
tion 4.1, i.e., the value of information is nonnegative (nonpositive). �	

We conclude discussing examples that illustrate other interesting features.

Example 5.4 Consider two-player Tullock contests in which � = {ω1, ω2}, F =
{∅,�, {ω1}, {ω2}}, p(ω1) = p(ω2) = 1/2, and d(x) = x2/2 + βx, where β ≥ 0.
Hence, R′

d(x) > 0 if β > 0, and R′
d(x) = 0 if β = 0. We calculate the equilibria in

contests in which players’ information is F and G = {∅,�}, and the value and the
random component of the cost are (v̂, ŵ) and (ṽ, w̃) described in the following table

ω1 ω2 E(·)
v̂, ŵ 1, 1/4 3, 1/4 2, 1/4
ṽ, w̃ 2, 1/8 2, 3/8 2, 1/4

The table below describes the equilibrium efforts and payoffs for β = 2.

β = 2 ω1 ω2 E(·)

ŝ∗
G

√
3 − 1

√
3 − 1

√
3 − 1

ŝ∗
F

√
2 − 1 1 1/

√
2

û∗
G 1/2 − √

3/4 3/2 − √
3/4 1 − √

3/4

û∗
F 5/8 − √

2/4 7/8 3/4 − √
2/8

s̃∗
G

√
3 − 1

√
3 − 1

√
3 − 1

s̃∗
F

√
5 − 1

√
7/3 − 1

√
7/12 + √

5/4 − 1
ũ∗
G 1 − √

3/8 1 − 3
√
3/8 1 − √

3/4

ũ∗
F 7/8 − √

5/8 9/8 − √
21/8 1 − (

√
5 + √

21)/16

Thus, E(ŝ∗
F ) < E(ŝ∗

G), and E(s̃∗
F ) > E(s̃∗

G), i.e., effort decreases with the level of
information in (N , (�,F , p), v̂, ŵd,G), and increases in (N , (�,F , p), ṽ, w̃d,G).

In both contests, consistently with Theorem 4.1, the value of information is positive.
The table below describes the equilibrium efforts and payoffs for β = 0.

β = 0 ω1 ω2 E(·)

ŝ∗
G

√
2

√
2

√
2

ŝ∗
F 1

√
3 1/2 + √

3/2
û∗
G 1/4 5/4 3/4

û∗
F 3/8 9/8 3/4

s̃∗
G

√
2

√
2

√
2

s̃∗
F 2 2/

√
3 1 + 1/

√
3

ũ∗
G 7/8 5/8 3/4

ũ∗
F 3/4 3/4 3/4
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Thus, E(ŝ∗
F ) < E(ŝ∗

G), and E(s̃∗
F ) > E(s̃∗

G), i.e., effort decreases with the level of
information in (N , (�,F , p), v̂, ŵd,G) and decreases in (N , (�,F , p), ṽ, w̃d,G).
In both contests, again consistently with Theorem 4.1, the value of information is zero.
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6 Appendix

Lemma 6.1 A symmetric common-value Tullock contest with complete information
in which the players’ cost of effort is a twice differentiable strictly increasing and
convex function c : R+ → R+ such that c(0) = 0 has a unique pure strategy Nash
equilibrium. Moreover, this equilibrium is symmetric and interior.

Proof In the game associated with a symmetric common-value Tullock contest with
complete information the set of pure strategies of every player is R+, and the payoff
function of each player i ∈ N is hi : R

n+ → R+ given for x ∈ R
n+\{0} by

hi (x) = xi

x̄
v − c(xi ),

where v > 0 is the players’ common value and x̄ = ∑n
j=1 x j , and

hi (0) = ρiv − c(0) = ρiv,

where ρ ∈ �n is predetermined. Thus, hi (·, x−i ) is twice differentiable and concave
on R++, and

∂hi (x)

∂xi
= x̄ − xi

x̄2
v − c′(xi ).

Let x∗ ∈ R
n+ be a pure strategy Nash equilibrium. Then, for all i ∈ N , player i’s

effort x∗
i solves the problem

max
xi ∈R+

hi
(
xi , x∗−i

)
,

i.e., (∂hi (x∗)/∂xi ) x∗
i = 0. Clearly, x∗ �= 0; since n ≥ 2, then ρi < 1 for some

i ∈ N , and therefore

hi (0, 0) = ρiv < v − c(ε) = hi (ε, 0)

for ε > 0 sufficiently small. Let k ∈ N be such that x∗
k > 0. Then,

∂hi (0, x∗−i )

∂xi
= v

x̄∗ − c′(0) >
x̄∗ − x∗

k

(x̄∗)2
v − c′(x∗

k ) = 0
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for all i ∈ N\{k}. Thus, x∗
i > 0, and therefore ∂hi (x∗)/∂xi = 0, i.e.,

x̄∗ − x∗
i

(x̄∗)2
v = c′(x∗

i )

for all i ∈ N . Hence, x∗
i = t∗ > 0 for all i ∈ N , where t∗ is the unique solution

(recall that c′′ ≥ 0) to the equation

(n − 1)

n2t
v = c′(t). (9)

Obviously, the profile (t∗, . . . , t∗), where t∗ is the solution to Eq. (9), is a pure
strategy equilibrium. Hence, the contest has a unique pure strategy Nash equilibrium,
which is symmetric and interior. �	
Lemma 6.2 Let f : R

2 → R be twice differentiable and homogeneous of degree one.
Then, f is convex (concave) on R

2 if and only if fxx (x, y) ≥ 0 ( fxx (x, y) ≤ 0) for
all (x, y) ∈ R

2.

Proof By Euler’s Theorem,

f (x, y) = x fx (x, y) + y fy(x, y).

Differentiating with respect to x on both sides on this equation and simplifying yields

x fxx (x, y) + y fyx (x, y) = 0. (10)

Likewise,
x fxy(x, y) + y fyy(x, y) = 0. (11)

Hence,
x2 fxx (x, y) = y2 fyy(x, y),

and therefore
fxx (x, y) � 0 ⇔ fyy(x, y) � 0.

Further, (10) and (11) imply

fxx (x, y) fyy(x, y) − fxy(x, y) fyx (x, y) = 0.

Thus, the eigenvalues of the Hessian matrix of f are nonnegative (nonpositive) when
fxx is a nonnegative (nonpositive) function on R

2. �	
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