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Abstract Indeterminate equilibria are known to exist for overlapping generations
models, though recent research has been limited to deterministic settings in which all
equilibria converge to a steady state in the long run. This paper analyzes stochastic
overlapping generations models with three-period-lived representative consumers and
adopts a novel computational algorithm to numerically approximate the entire set of
competitive equilibria. In a stochastic setting with incomplete markets, indeterminacy
has real effects in the long run. Our numerical simulations reveal that indeterminacy is
an order of magnitude more important than endowment shocks in explaining long-run
consumption and asset price volatility.
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1 Introduction

Stochastic versions of the overlapping generationsmodel of Allais (1947) and Samuel-
son (1958) can be useful models for macroeconomic policy making, but not before the
theoretical and quantitative implications of indeterminacy are properly accounted for.
In deterministic versions of the model, indeterminacy may exist (Gale 1973; Balasko
andShell 1980;Geanakoplos andPolemarchakis 1984;Kehoe andLevine 1984;Kehoe
et al. 1991), but it has no effects in the long run as all equilibria converge to one of
the steady states (Kehoe and Levine 1990; Spear et al. 1990; Wang 1993; Feng 2013).
This paper considers stochastic versions of the model and decomposes indeterminacy
into two types: one characterized by the initial conditions and one characterized by
incomplete financial markets. We introduce a numerical algorithm to compute the
entire set of competitive equilibrium.We use simulations to approximate the volatility
of consumption across cohorts and the volatility of asset prices. Our findings show
that indeterminacy has long-run effects and is an order of magnitude more important
than endowment shocks in explaining long-run consumption and asset price volatility.

In deterministic overlapping generations (OLG) models, a sufficient condition for
a determinate equilibrium is the property of gross substitution in consumption (Gale
1973; Balasko and Shell 1980; Geanakoplos and Polemarchakis 1984; Kehoe and
Levine 1984; Kehoe et al. 1991).1 This property is implausible given the empirical
findings of Mankiw et al. (1985). In the same setting, Spear et al. (1990) and Wang
(1993) have conjectured that even if the equilibrium set is indeterminate, all equilibria
in that set converge in the long run to one of the steady states. This conjecture has
been numerically verified for a handful of canonical economies in Kehoe and Levine
(1990) and Feng (2013), where the former log-linearized the equilibrium system of
equations and the latter numerically approximated the entire equilibrium set.2

In stochastic overlapping generations (SOLG) models, the properties of existence
and Pareto inefficiency of recursive equilibria have been analyzed in Citanna and
Siconolfi (2010) andHenriksen and Spear (2012), respectively.3 However, very little is
known about indeterminacy in SOLGmodels. Several papers have provided examples
showing the existence of a continuum of recursive (stationary Markov) equilibria
(Spear et al. 1990; Farmer and Woodford 1997; Benhabib and Farmer 1999), but
conditions for either the existence or nonexistence of indeterminacy are unavailable.
The present paper focuses on the indeterminacy of competitive equilibria and studies

1 Galor and Ryder (1989) and Galor (1992) study equilibrium properties in deterministic OLG models.
2 Gomis-Porqueras and Haro (2003) and Gomis-Porqueras and Haro (2007) introduced techniques to
characterize all equilibrium manifolds, but their method cannot extend to the stochastic models considered
in the present paper.
3 Citanna and Siconolfi (2010) proves generic existence of recursive equilibria, a complement to the nonex-
istence examples provided in Kubler and Polemarchakis (2004). Henriksen and Spear (2012) prove that
even with sequentially complete markets (number of assets equals number of states), the recursive equilib-
rium allocation is not (interim) Pareto efficient. This complements (Demange 2002), which shows that the
recursive equilibrium allocations are Pareto efficient if markets are sequentially complete and a long-lived
real asset in positive net supply (land) is traded.

123



Indeterminacy in stochastic overlapping generations... 561

its impact on the aggregate economy, specifically on the consumption and asset price
volatility.4

In deterministic OLG models, equilibrium indeterminacy arises whenever a con-
tinuum of endogenous initial period variables is consistent with equilibrium. Each
equilibrium is indexed by the vector of initial period variables which are typically
asset prices or portfolio choices, though this paper looks at shadow prices of invest-
ment. Feng (2013) characterizes the entire set of initial period variables consistent
with equilibrium and demonstrates that each numerically approximated equilibrium
converges to one of the steady states. Although the equilibrium set is indeterminate,
there are no effects in the long run.

This paper considers a SOLGmodel and characterizes two types of indeterminacy:
initial condition indeterminacy and incomplete markets indeterminacy. Initial condi-
tion indeterminacy is identical to the indeterminacy described in deterministic settings
and is indexed by the endogenous variables in the initial period. Incomplete markets
indeterminacy is a new type of indeterminacy that arises in stochastic settings. As the
name suggests, incomplete markets is a necessary condition for incomplete markets
indeterminacy. Long-run effects only occur in the presence of incomplete markets
indeterminacy.

Consider a simple incomplete markets setting with a 3-period-lived representative
consumer born every period, a risk-free bond (one asset), and two states of uncertainty
each period. The three periods of a consumer’s life are denoted young, middle-aged,
and old. The equilibrium variables consist of the vector of asset prices and portfolio
choices. In any node, only two consumers participate in the bond market: the young
and the middle-aged. By market clearing, we only consider the portfolio choice of
the middle-aged. An equilibrium is characterized by Euler equations for the young
and middle-aged (recall we already internalized the market clearing condition). We
use the Euler equations for the middle-aged to determine the portfolio choice for the
middle-aged, reducing the system to only Euler equations for the young and the asset
prices.

In the initial period t = 0, the initial middle-aged and the initial old are endowed
with a wealth vector. If we fix these parameters and the initial period shock, the young
agents affected by the initial conditions are only those born in periods t = 0 and
t = 1. There exists one equilibrium equation for the young born in period t = 0 and
two for the young born in period t = 1 (1 for each node in period t = 1). Denoting
q (s0, . . . , st ) as the asset price in period t for the history of shocks (s0, . . . , st ), the
equilibrium equations are written in the form (where the subscript “y” denotes the
Euler equation for the young):

eey
(
q (s0) , (q (s0, s1))s1∈{1,2}

) = 0,

eey
(
q (s0, s1) , (q (s0, s1, s2))s2∈{1,2}

) = 0 for s1 ∈ {1, 2} .

These equations are in terms of seven asset price variables, one for each node in periods
t = 0 through t = 2.

4 Farmer (2015) uses indeterminacy in stylized economies to construct asset price volatility.
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562 Z. Feng, M. Hoelle

As we can see, the number of variables exceeds the number of equations. This
captures the dimension of the initial condition indeterminacy. If we denote S as the
number of states of uncertainty each period and J as the number of assets, there are
J (1 + S) equations and J (1 + S + S2) asset price variables, implying J S2 degrees
of freedom. In the deterministic case, S = J = 1, there exists one degree of freedom,
which is consistent with what (Kehoe and Levine 1990) would find for a real asset
economy.5

As stressed above, the presence of this form of indeterminacy in a stochastic set-
ting is not novel, but merely an extension of the indeterminacy analyzed by Kehoe and
Levine (1990) for the case of real assets. Magill and Quinzii (2003) analyze indetermi-
nacy in stochastic OLGmodels with 2-period-lived representative consumers. In such
amodel, one needs to introduce an infinitely lived asset that pays no dividends (usually
called fiat money) to facilitate intergenerational trade. Hence, this model only captures
nominal indeterminacy. Kehoe and Levine (1990) consider a deterministic settingwith
3-period-lived consumers. They show that indeterminacy can still exist without fiat
money. We restrict ourselves to an analysis of real indeterminacy by only including
real assets in a stochastic OLGmodel with 3-period-lived consumers.6 Including nom-
inal assets in a stochastic setting with 3-period-lived consumers would lead to even
greater indeterminacy than what we find in the present paper.

Continuing with our example, the progression to a new node in period t ≥ 2
introduces three Euler equations for the newborn young, but two of these are period
t + 1 middle-aged Euler equations, which are used to determine the two middle-aged
bond choices in period t + 1. There is only one new equation, the Euler equation in
period t for the newborn young, together with two new asset price variables, one for
each of the two nodes that can arise in period t + 1:

eey
(
q (s0, . . . , st ) , (q (s0, . . . , st , st+1))st+1∈{1,2}

)
= 0.

With two new variables and only one new equation, there exists one degree of freedom.
Using the previous notation, each new node introduces J new Euler equations and SJ
new asset price variables, implying J (S − 1) degrees of freedom. In the deterministic
case, S = J = 1, there are zero degrees of freedom, consisting with the findings
in Kehoe and Levine (1990) and Feng (2013). Under sequentially complete markets
(S = J ), there exist S (S − 1) degrees of freedom,which is consistentwith the findings
from Henriksen and Spear (2012) for the S = J = 2 case.7

5 The comparable economy considered in Kehoe and Levine (1990) is one in which the initial endowment
of the nominal asset (money) is fixed. For these economies, the authors find one degree of freedom.
6 Our asset structure is most similar to the asset structures in Citanna and Siconolfi (2010) and Henriksen
and Spear (2012), who analyze the properties of existence (of recursive equilibrium) and Pareto efficiency,
respectively.
7 In stochastic OLG settings with consumers living for at least three periods, the concept of complete and
incomplete markets is more complicated than simply comparing the number of assets to the number of
possible states of uncertainty in the subsequent period. Even with sequentially complete markets (J = S),
the asset structure is not complete in the sense that it is unable to support an interim Pareto efficient allocation
in equilibrium (Henriksen and Spear 2012). There are several ways to modify the asset structure in order
to complete the markets. Demange (2002) and Henriksen and Spear (2012) suggest that a sequentially
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Our decomposition of indeterminacy into two types is stark as the indeterminacy
that we refer to as incomplete markets indeterminacy can only arise in economies
with uncertainty. In that sense, it is quite different than initial condition indeterminacy,
which captures the entirety of the indeterminacy that is found in deterministic models.
Furthermore, only the former can lead to long-run effects. Our objective in this paper is
not only to characterize the conditions under which incomplete markets indeterminacy
arises, but also to estimate the effects of such indeterminacy on simulated time paths
of equilibrium variables.

Formally, incomplete markets indeterminacy is present when the dimension of the
image of the equilibrium transition correspondence is strictly positive. With such an
equilibrium correspondence, there exists a continuum of next-period endogenous state
variables that are consistent with equilibrium. This form of indeterminacy is closely
related to the concept of initial condition indeterminacy that occurs in the deterministic
setting. If we consider the vector of variables in any period t , some of the variables
are state variables chosen in period t − 1 and others are determined by the policy
correspondence (in terms of the state variables). When you analogize period t state
variables to the initial conditions (period t = 0) and the period t policy variables
to the initial period variables (period t = 0), then, by definition, indeterminacy in
period t is only possible if it was possible in the initial period. We have defined initial
condition indeterminacy to capture this latter effect, making it a necessary condition
for incomplete markets indeterminacy.

Our main theoretical result shows that initial condition indeterminacy and incom-
plete markets are sufficient conditions for incomplete markets indeterminacy (and
hence long-run effects).

The fact that incomplete markets indeterminacy exists is of limited importance
unless it is combined with an estimation of the effects of this indeterminacy. We apply
the numericalmethod developed by Feng (2013) to numerically approximate the entire
set of competitive equilibrium. In economies with incomplete markets indeterminacy,
by definition, there exists a continuum of continuation values consistent with equilib-
rium. In our numerical simulations, we adopt a consistent means to select continuation
values from this continuum. We consider a variety of different selection rules, where
we run each simulation using a consistent selection rule throughout. The choice of
the selection rule has real effects, so we are thorough in considering a broad range of
different selection rules.

In each simulation, we generate a simulated vector of equilibrium variables over
time. We are particularly interested in two simulated moments: consumption volatil-
ity and asset price volatility. The consumption volatility is the standard deviation of
consumption across cohorts (holding fixed the age of consumption). The asset price
volatility is the standard deviation of asset prices across time.Our initial findings reveal
that both of these simulated volatility measures are an order of magnitude larger than

Footnote 7 continued
complete set of short-lived assets together with a long-lived real asset in positive net supply (such as land)
suffice to support an interim Pareto efficient equilibrium allocation. In this paper, we verify that such a
complete asset structure would remove both types of indeterminacy analyzed in this paper. The analysis in
the present paper focuses on incomplete markets as the conditions for complete markets are quite restrictive
and unlikely to be observed in reality.
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what is predicted from the endowment volatility alone. Further, when we compute the
simulated consumption volatilities after conditioning on the shock realization, we find
that the conditional consumption volatilities are on average more than 90% as large
as the unconditional volatilities.

Next, we numerically approximate the equilibrium set in a sunspot economy.
The sunspot economy is identical to our original economy, except that the states
of uncertainty are now states of extrinsic uncertainty, meaning that the endowments
are independent of the shock realization. As before, we generate simulated vectors of
equilibrium variables and compute the simulated consumption and asset price volatil-
ities. For both variables, the simulated volatilities for the sunspot economy are on
average more than 90% as large as the simulated volatilities in the original economy
with endowment risk.

Our interpretation is to attribute any volatility in equilibrium variables that cannot
be explained by fundamentals to the effects of indeterminacy. Our numerical results
suggest that indeterminacy is an order of magnitude more important in explaining
consumption and asset price volatility than endowment risk.

The remainder of the paper is organized as follows. Section 2 introduces the
model and defines the competitive equilibrium concept. Section 3 introduces an
equivalent recursive formulation called Markov equilibrium, which is important for
subsequent computation and simulation. Section 4 applies the computational algorithm
and presents the simulation results. Section 5 concludes, and the Appendix contains
the proofs of our main results and further details on the algorithm.

2 The economic model

In this section, we first introduce the economic environment and then provide the
competitive equilibrium definition.

2.1 Economic environment

Time is discrete t = 0, 1, 2, . . . At every date t , a new cohort of consumers enters
the economy. Each cohort consists of a representative consumer that remains in the
economy for 3 periods.

At every date t , the economy is hit by a shock s. The shock follows a Markov
chain over a finite set S = {1, . . . , S} as described by the Markov transition matrix
Π with elements π (s, σ ) for all s, σ ∈ S. The observed shock in period t is st . The
initial shock s0 is known to all consumers in the economy. The history of shocks
up to and including period t is st = (s0, s1, . . . , st ). The history of shocks uniquely
characterizes the location of the economy in the space of time and uncertainty and is
often called a date-event or node. We use the notation (st , σ )σ∈S to refer to the set of
nodes that immediately succeed the node st and the notation (st , σ, σ ′)σ,σ ′∈S2 to refer
to the set of nodes that follow 2 periods after the node st .

At each node, a single consumption good is traded.
The consumers are identified by the node at birth and the age a ∈ {0, 1, 2} in

the current node. The parameter ea(st+a) is the endowment of a consumer of age
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a in node st+a . This means that the consumer was born in node st . A consumer’s
individual endowments follow a Markov process governed by the stationary function
e : {0, 1, 2} × S → R++, such that for all a ∈ {0, 1, 2} and all nodes st , ea(st+a) =
ea(st+a).

Similarly, the variable ca(st+a) is the consumption of a consumer of age a in node
st+a .

In the initial node s0, there exists an age a = 0 consumer, an age a = 1 consumer,
and an age a = 2 consumer. The age a = 2 consumer has the consumption c2 (s0)
and utility function u(c2 (s0)). The age a = 1 consumer has the consumption vector(
c1 (s0) , (c2 (s0, σ ))σ∈S

)
and utility function

u(c1 (s0)) + β
∑

σ∈S
π (s0, σ ) u(c2 (s0, σ )).

For a consumer born in node st , define the lifetime contingent consumption vector as

c(st ) =
(
c0(st ),

(
c1(st , σ )

)
σ∈S ,

(
c2(st , σ, σ ′)

)
(σ,σ ′)∈S2

)
∈ R

1+S+S2+ . The consumer

preferences are assumed to be identical and are represented by the time-separable

utility function U : R1+S+S2+ → R ∪ {−∞} defined as

U (c(st )) = u(c0(s
t )) + β

∑

σ∈S
π(st , σ )u(c1(s

t , σ ))

+ β2
∑

σ,σ ′∈S2
π(st , σ )π(σ, σ ′)u(c2(s

t , σ, σ ′)).

The one-period utility u satisfies the following conditions:

Assumption 1 The one-period utility function u : R+ → R∪ {−∞} is C2, differen-
tiably strictly increasing (i.e., uc (c) > 0 ∀c > 0), differentiably strictly concave (i.e.,
ucc (c) < 0 ∀c > 0), and satisfies the Inada condition (i.e., lim

c→0
uc (c) = +∞).

For each node st , there exist J short-lived numeraire assets with fixed payouts in
terms of the consumption good. The J assets are indexed by a superscript j ∈ J =
{1, . . . , J }. The equilibrium price of asset j in node st is denoted q j (st ). The prices
for all assets traded in node st are collected in the row vector q(st ) = (

q j (st )
)
j∈J.

The asset payouts follow a Markov chain such that the payouts in the nodes(
st , σ

)
σ∈S for the asset j traded in node st are given by the column vector r j =(

r j (σ )
)
σ∈S. Additionally, define r (σ ) = (

r j (σ )
)
j∈J as the row vector of portfolio

payouts for the current shock σ . The asset payouts can be collected into the S × J
payout matrix

R =
(
r1, . . . , r J

)
= (r (s))s∈S .

Assumption 2 The payout matrix is a nonnegative and full rank matrix.
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566 Z. Feng, M. Hoelle

Let θ j
a (st ) denote the amount of asset j purchased by a consumer of age a in node

st . The assets pay out in the following period, specifically in the nodes
(
st , σ

)
σ∈S.

The column vector θa(st ) =
(
θ
j
a (st )

)

j∈J contains the entire portfolio of all assets

positions of the consumer of age a in node st . The payout of the portfolio in node(
st , σ

)
is r (σ ) θa(st ).

In the initial node s0, both the age a = 1 consumer and the age a = 2 consumer enter
the period with a portfolio of assets from a previous (unmodeled) period. We can refer
to this previous (unmodeled) period as period t = −1. The portfolios carried into the
initial node s0 are parameters of the model. The portfolio for the age a = 1 consumer

in node s0 is denoted θ0(−1) =
(
θ
j
0 (−1)

)

j∈J as an age a = 1 consumer in node

s0 would have age a = 0 in the previous (unmodeled) period t = −1. Likewise, the

portfolio for the age a = 2 consumer in node s0 is denoted θ1(−1) =
(
θ
j
1 (−1)

)

j∈J as
an age a = 2 consumer in node s0 would have age a = 1 in the previous (unmodeled)
period t = −1.

Market clearing for assets traded in node st is given by:

2∑

a=0

θ
j
a (st ) = 0 ∀ j ∈ J.

For any given θ1(−1) and q(s0), the household problem for the age a = 2 consumer
in the initial node s0 is given by:

max
c2(s0)

u (c2 (s0))

subj. to c2 (s0) + q(s0)θ2(s0) ≤ e2(s0) + r (s0) θ1(−1).

For any given θ0(−1) and
(
q (s0) , (q(s0, σ ))σ∈S

)
, the household problem for the

age a = 1 consumer in the initial node s0 is given by:

max
c1(s0),θ1(s0),(c2(s0,σ ))σ∈S

u(c1 (s0)) + β
∑

σ∈S
π (s0, σ ) u(c2 (s0, σ ))

subj. to c1 (s0) + q(s0)θ1(s0) ≤ e1(s0) + r (s0) θ0(−1)
c2 (s0, σ ) + q(s0, σ )θ2(s0, σ ) ≤ e2(σ ) + r (σ ) θ1(s0) ∀σ ∈ S.

For simplicity, define θ(st ) = (
θ0(st ),

(
θ1(st , σ )

)
σ∈S

) ∈ R
J (1+S) as the entire vec-

tor of lifetime contingent portfolios for a consumer born in node st . Given asset prices(
q(st ),

(
q(st , σ )

)
σ∈S ,

(
q(st , σ, σ ′)

)
σ,σ ′∈S

)
, the household problem for a consumer

born in node st is given by:
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max
c(st ),θ(st )

U (c(st ))

subj. to c0(st ) + q(st )θ0(st ) ≤ e0(st )
c1(st , σ ) + q(st , σ )θ1(st , σ ) ≤ e1(σ ) + r (σ ) θ0(st )∀σ ∈ S

c2(st , σ, σ ′) + q(st , σ, σ ′)θ2(st , σ, σ ′) ≤ e2(σ ′) + r
(
σ ′) θ1(st , σ )∀ (

σ, σ ′) ∈ S2.

(1)

2.2 Equilibrium

We define a sequential competitive equilibrium (SCE) as follows.

Definition 1 A SCE is a collection of prices and choices of consumers
{
q(st ), θ(st ),

c(st )
}
such that: (i) For each st , taking as given the prices

(
q(st ),

(
q(st , σ )

)
σ∈S ,

(
q(st ,

σ, σ ′)
)
σ,σ ′∈S

)
, a consumer born in st solves (1). (ii) Commodity market clearing for

each st:
2∑

a=0

ca(s
t ) =

2∑

a=0

ea(st ). (2)

(iii) Asset market clearing for each st:

2∑

a=0

θa(s
t ) = 0. (3)

The existence of a SCE can be verified using standard methods (Balasko and Shell
1980; Schmachtenberg 1988). Moreover, Balasko and Shell (1980) and Schmachten-
berg (1988) prove that every sequence of equilibrium asset prices

{
q

(
st

)}
is bounded.

Under Assumption 1, the equilibrium asset holdings θ2(st ) = 0 in all date-events.
In all date-events, the old-age consumers will not carry asset holdings into the future.
In the (unmodeled) period t = −1, young-age and middle-age consumers receive
the portfolios that they carry into the initial period t = 0. The young-age consumers
in period t = −1 are middle-age consumers in period t = 0, and the middle-age
consumers in period t = −1 are old-age consumers in period t = 0. Market clearing
must hold for the (unmodeled) period t = −1, meaning that the parameters θ0(−1)
and θ1(−1) must satisfy:

θ
j
0 (−1) + θ

j
1 (−1) = 0 ∀ j ∈ J.

3 Markov equilibrium and indeterminacy

In this paper, we characterize the entire set of recursive (Markov) equilibrium in
SOLG by adopting the methodology of Feng (2013). We then identify the existence
of indeterminacy by examining the set of recursive equilibrium. In the next section,
we also study the impact of indeterminacy on long-run economy by simulating the
models.
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3.1 Markov equilibrium

First, we will economize on notation. Recall that market clearing in any node st is
such that θ0(st ) = −θ1(st ). Define the portfolio payout for the age a = 2 consumer
in node st as ω

(
st

) = r (st ) θ1(st−1) ∈ R. This implies that the portfolio payout for
the consumer a = 1 consumer in node st is −ω

(
st

)
. Using these facts, we can rewrite

the budget constraints faced by all consumers alive in node st :

c0(s
t ) − q(st )θ1(s

t ) ≤ e0(st ), (4)

c1(s
t ) + q(st )θ1(s

t ) ≤ e1(st ) − ω
(
st

)
, (5)

c2(s
t ) ≤ e2(st ) + ω

(
st

)
. (6)

One can define the recursive equilibrium on the natural state space consisting of the
current shock st , and the portfolio payout ω

(
st

)
. However, as shown in Kubler and

Polemarchakis (2004), such equilibriummay not exist. To restore the recursive formu-
lation of SCE, we enlarge the state space to include the shadow values of investment
as an additional state variable. Using the framework of Duffie et al. (1994), Kubler
and Schmedders (2003), and Feng et al. (2014), we develop an iterative procedure to
characterize the recursive equilibrium on this enlarged state space.

In line with Feng et al. (2014), the state variables we consider include the current
shock st , the portfolio payout ω

(
st

)
, and the shadow values of investment m

(
st

) =(
m j

(
st

))
j∈J for the age a = 1 consumer in the current node:

m j (st
) = q j (st )uc(c1(s

t )). (7)

Denote the state space as S × R × R
J+ with typical element (s, ω,m) ∈ S × R × R

J+.
The policy function is defined as f : S × R × R

J+ → R
J+ × R

J such that (q, θ1) =
f (s, ω,m) satisfies the following equations:

m j = q juc [e1(s) − qθ1 − ω] ∀ j ∈ J, (8)

m j = β
∑

σ∈S
π(s, σ )uc [e2(σ ) + r (σ ) θ1] r

j (σ ) ∀ j ∈ J, (9)

where Eq. (8) is the definition of the shadow value of investment and (9) represents
the Euler equation for the consumer of age a = 1.8

The expectations correspondence g : S × R × R
J+ ⇒

(
R × R

J+
)S

is a mapping
from the current-period state variables (s, ω,m) to the next-period state variables(
ω′(σ ),m′ (σ )

)
σ∈S, where

(
ω′(σ ),m′ (σ )

) ∈ R × R
J+ ∀σ ∈ S. By definition,

(
ω′(σ ),m′ (σ )

)
σ∈S ∈ g (s, ω,m)

8 Additionally, define the projections fq : S × R × R
J+ → R

J+ and fθ : S × R × R
J+ → R

J .
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iff for (q, θ1) = f (s, ω,m) and
(
q ′ (σ ) , θ ′

1 (σ )
) = f

(
σ, ω′(σ ),m′ (σ )

) ∀σ ∈ S the
following conditions are satisfied:

ω′(σ ) = r (σ ) θ1 ∀σ ∈ S, (10)

q juc [e0(s) + qθ1] = β
∑

σ∈S
π(s, σ )

m′ j (σ )

q ′ j (σ )
r j (σ ) ∀ j ∈ J, (11)

where Eq. (10) is the definition of the portfolio payout and (11) represents the Euler
equation for the consumer of age a = 0.

Definition 2 Markov equilibrium is defined by the policy correspondence V∗ :
S × R ⇒ R

J+ and the transition correspondence F : graph(V∗) ⇒
(
R × R

J+
)S

satisfying the following two properties:

1. For all (s, ω,m) ∈ graph(V∗), F (s, ω,m) ⊆ g (s, ω,m).
2. For all (s, ω,m) ∈ graph(V∗) and all σ ∈ S, (σ,Fσ (s, ω,m)) ⊆ graph(V∗),

where Fσ : graph(V∗) ⇒ R × R
J+ is the projection onto the shock σ state

variables.

We refer to V∗ as the Markov equilibrium policy correspondence and F as the
Markov equilibrium transition correspondence.

Theorem 1 A Markov equilibrium is a SCE.

Proof See Sect. 1. �

Theorem 2 A Markov equilibrium exists.

Proof See Sect. 1. �

3.2 Indeterminacy

Given the Markov equilibrium policy correspondence V∗ and transition correspon-
dence F, the SCE for a given vector of initial conditions can be determined. The initial
conditions are s0 ∈ S, θ1(−1) ∈ R

J , and m (s0) ∈ R
J+. While both s0 and θ1(−1)

are parameters of the model, the shadow prices m (s0) ∈ V∗ (s0, r (s0) θ1(−1)) are
endogenous state variables.

– In period t = 0, given ω (s0) = r (s0) θ1(−1), the vector

(q (s0) , θ1 (s0)) = f (s0, ω (s0) ,m (s0))

is determined as the unique solution to Eqs. (8) and (9). The variables
(ω(s0, σ ),m (s0, σ ))σ∈S ∈ F (s0, ω (s0) ,m (s0))must be consistent with the tran-
sition correspondence.
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– In period t > 0, given
(
st , ω

(
st

)
,m

(
st

))
, the vector

(
q

(
st

)
, θ1

(
st

)) = f
(
st , ω

(
st

)
,m

(
st

))

is determined as the unique solution to Eqs. (8) and (9). The variables(
ω(st , σ ),m

(
st , σ

))
σ∈S ∈ F

(
st , ω

(
st

)
,m

(
st

))
must be consistent with the tran-

sition correspondence.

From the above discussion, we find that there are two types of indeterminacy: (i)
initial condition indeterminacy and (ii) incomplete markets indeterminacy.

Definition 3 Initial condition indeterminacy occurs if dim (V∗ (s, ω)) > 0 for some
(s, ω) ∈ S × R.

Initial condition indeterminacy is indexed by m (s0) ∈ V∗ (s0, ω (s0)), meaning
that if the image of V∗ is determinate, initial condition indeterminacy does not arise.

Definition 4 Incomplete markets indeterminacy occurs if dim (F (s, ω,m)) > 0 for
some (s, ω,m) ∈ S × R × R

J+.

Theorem 3 Initial condition indeterminacy is a necessary condition for incomplete
markets indeterminacy.

Proof This follows by definition. �
The relation between the two types of indeterminacy depends upon properties of

the asset structure.

Definition 5 Markets are sequentially complete if J = S and sequentially incomplete
if J < S.

As seen in Demange (2002) and Henriksen and Spear (2012), sequential complete-
ness does not suffice for (interim) Pareto efficiency. Recall from Demange (2002) that
a feasible allocation is

{
c(st )

} ≥ 0 such that the resource constraints (2) are satisfied
in all date-events. An allocation

{
c(st )

}
is (interim) Pareto efficient if there does not

exist another feasible allocation
{
c̃(st )

}
such that for all possible histories st and all

periods t :

U (c̃(st )) ≥ U (c(st ))

with strict inequality for at least one history st .9

Definition 6 The asset markets are complete if for each initial shock s0, there exists
initial wealthω (s0) such that the resulting SCE allocation is (interim) Pareto efficient.

As seen in Henriksen and Spear (2012), complete markets is a stronger condition
than sequentially complete markets. While sequentially complete markets is not nec-
essary for incomplete markets indeterminacy, we find that the stronger condition of
complete markets is necessary.

9 The definition includes the corresponding conditions for the initial middle-aged and the initial young
consumers.
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Theorem 4 Incomplete markets is a necessary condition for both initial condition
indeterminacy and incomplete markets indeterminacy.

Proof See Sect. 1. �
Our main theoretical result provides a partial converse, namely that incomplete

markets and a stronger notion of initial condition indeterminacy are sufficient for
incomplete markets indeterminacy.

Definition 7 Strong initial condition indeterminacy occurs if dim (V∗ (s, ω)) > 0 for
all equilibrium (s, ω) ∈ S × R.

Theorem 5 An economy with strong initial condition indeterminacy and incomplete
markets will also have incomplete markets indeterminacy.

Proof See Sect. 1. �

4 Computation and simulation

Knowing that an economy exhibits incomplete markets indeterminacy is of limited use
for welfare analysis. In this section, we consider a stochastic economy with incom-
plete markets and conduct numerical analysis to approximate the long-run effects
of incomplete markets indeterminacy. To approximate the long-run effects, we use
the methodological contribution in Feng (2013) and Feng et al. (2014) to compute a
numerical approximation of the Markov equilibrium correspondences.

4.1 Numerical specifications

We consider an economywith one asset (J = 1) and two states of uncertainty (S = 2).
There is an exogenous shock that affects the endowments of the household. Given the
shock realization, the endowment of the age a = 2 consumer changes, while the other
endowments remain unchanged. Specifically, we assume that

e0(s) = 3, ∀s ∈ {1, 2}
e1(s) = 12, ∀s ∈ {1, 2}
e2(1) = 1 + ε, ε = 0.05
e2(2) = 1 − ε.

The transition matrix that governs the Markov chain is given by

Π =
[
0.95 0.05
0.05 0.95

]
.

The utility function is given by: u(c) = c1−b−1
1−b , where the coefficient of relative risk

aversion is b = 4. We set the discount factor β = 0.5.
We borrow these parameter values from Kehoe and Levine (1990), which provides

greater details on the justification of the parameter values chosen for the economy.
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To summarize their justification, let one period represent 20years, meaning that the

discount factor of β = 0.5 corresponds to an annual discount factor of 0.966 = 0.5
1
20 .

The risk-aversion parameter b implies an intertemporal elasticity of substitution of
0.25. This is similar to the value chosen by Auerbach and Kotlikoff (1987). The life-
cycle earnings profile of the household is hump-shaped as in Gourinchas and Parker
(2002).

The asset is a real bond with payouts equal to 1 for both states s ∈ S. The initial
conditions of the economy are the initial period shock s0, the initial period bond payout
ω (s0) = θ1(−1), and the initial shadow value of investment m (s0).

4.2 Convergence results

We apply the numerical algorithm detailed in Feng (2013) to approximate the Markov
equilibrium policy correspondence V∗. The numerical approximation will be termed
the Markov policy correspondence V : S × 	 ⇒ R+, where 	 ⊆ R is the compact
set of portfolio payouts for consumers of age a = 1. Such a set is known to exist since
the set of SCE variables is contained in a compact set.

We iterate the algorithm until the Euler equation residuals are bounded above by
some small error bound ε > 0. Specifically, the Markov policy correspondence V :
S × 	 ⇒ R+ is defined such that for anym ∈ V(s, ω), there exists a vector of variables(
q, θ1,

(
ω′(σ ),m′ (σ )

)
σ∈S

)
satisfying (8) and (10) with the Euler equation residuals

from (9) and (11) bounded above by ε. For the numerical examples we consider, we
are able to compute the Markov policy correspondence V for any arbitrarily small
value ε > 0. Citing Theorems 2 and 3 from Feng et al. (2014), the operator B is
such that the fixed pointV of our numerical approximation converges uniformly to the
Markov equilibrium policy correspondence V∗ as a function of the discrete partition
of the state space. Further details about the discrete version of the operator B and the
numerical algorithm are contained in the “Appendix.”

4.3 Discussion of incomplete markets indeterminacy

For this numerical verification, we first compute the Markov policy correspondence
V, which is the numerical approximation to the Markov equilibrium policy corre-
spondence V∗. Given the Markov policy correspondence V, the Markov transition

correspondence F : graph(V) ⇒
(
R × R

J+
)S

is approximated such that Eqs. (10)
and (11) are satisfied (the latter with residuals bounded above by ε).

Figure 1 in the Appendix contains the graph of the Markov transition correspon-
denceF. Specifically, it contains the variables

(
s, ω,m,

(
m′ (σ )

)
σ∈S

)
(for both possible

shocks s ∈ {1, 2}, using the fact that ω is independent of the shock realization s) such
that

(
ω′ (σ ) ,m′ (σ )

)
σ∈S ∈ F (s, ω,m) ,

where ω′ (σ ) = fθ (s, ω,m). This numerical approximation includes Euler equa-
tion residuals bounded above by ε > 0 for any arbitrarily small ε. If the observed
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incompletemarkets indeterminacy is simply a result of numerical error, thenwe should
observe that the graphs in Fig. 1 are affected by changes in the errors bound ε and
the mesh size of the discretization. Our numerical experiments show that the graphs
in Fig. 1 do not change once we reach a certain level of precision, namely an error
bound ε = 10−10 and mesh size equal to 10−6. Applying Proposition 2 from Feng
(2013), we are able to numerically confirm that the economy exhibits initial condition
indeterminacy.

Consider the right panel of Fig. 1 in the Appendix, which displays the cross section
of the image of the Markov transition correspondence for both possible shocks s ∈
{1, 2}. For both shocks s ∈ {1, 2}, the possible values for the next-period shadowvalues
of investment

(
m′ (σ )

)
σ∈{1,2} belong to a continuum.The dimension of the image of the

Markov transition correspondence equals 1. This finding is consistent with Theorem
5 which implies that the economy has incomplete markets indeterminacy.

4.4 Simulation

Once we solve for the Markov equilibrium, we can generate (simulate) a sequen-
tial competitive equilibrium with the following procedure. First, we pick initial
condition (s0, ω (s0) ,m (s0)) ∈ graph (V∗). We solve for (q (s0) , θ1 (s0)) =
f (s0, ω (s0) ,m (s0)). Second, we use a random number generator to determine the
value of s1.10 By definition, ω (s0, s1) = r(s1)θ1 (s0). Third, we pick m (s0, s1) such
that (i)we satisfy our selection rule (describedbelow) and (ii) (ω (s0, σ ) ,m (s0, σ ))σ∈S
∈ F (s0, ω (s0) ,m (s0)). The final step is the iterative step in which

(
s1, ω (s0, s1) ,m

(s0, s1)
)
allows us to solve for (q (s0, s1) , θ1 (s0, s1)) = f (s1, ω (s0, s1) ,m (s0, s1)).

We continue this process for 5000 periods.
There is a continuum of choices of initial conditions in the image ofV∗ (s0, ω (s0)),

and this represents the initial condition indeterminacy. Holding fixed
(
ω

(
st

)
,m

(
st

))
,

the right panel of Fig. 1 graphs the projection of the transition correspondence
F

(
st , ω

(
st

)
,m

(
st

))
onto

(
m

(
st , σ

))
σ∈S as a function of st . The dashed line refers to

st = 1 and the solid one to st = 2. From Fig. 1, there is a continuum of
(
m

(
st , σ

))
σ∈S

consistent with the equilibrium, and this represents the incomplete markets indeter-
minacy.

Each of the selection rules specifies a certain property that the continuation variables(
m

(
st , σ

))
σ∈{1,2} must satisfy, and these properties are held constant for the entire

length of that simulation.11 We consider eight different selection rules:

1. Maximize difference in asset prices
Given the current-period state variables (s, ω,m), the selection rule chooses(
m′ (σ )

)
σ∈S such that (i)

(
ω′(σ ),m′ (σ )

)
σ∈S ∈ F (s, ω,m) and (ii) the differ-

ence
∣∣q ′ (σ̂

) − q
∣∣ is maximized for the realized shock σ̂ (as determined by the

10 We refer the reader to Limic (2009) for the details on the simulation of the Markov Chain.
11 Our selection rules reflect the state-of-the-art for equilibrium selection. To design a more disciplined
equilibrium selection process is undoubtedly interesting, but goes beyond the scope of the current paper
and is left for future research.
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random number generator), where (q, θ1) = f (s, ω,m), ω′(σ̂ ) = r(σ̂ )θ1, and(
q ′ (σ̂

)
, θ ′

1

(
σ̂
)) = f

(
σ̂ , ω′(σ̂ ),m′ (σ̂

))
.

2. Minimize difference in asset prices.
3. Maximize difference in bond holdings, i.e., the difference

∣
∣θ ′

1

(
σ̂
) − θ1

∣
∣ is maxi-

mized.
4. Minimize difference in bond holdings.
5. Maximize difference in young consumption, i.e., the difference

∣∣e0(s) + qθ1 − (
e0(σ̂ ) + q ′ (σ ) θ ′

1

(
σ̂
))∣∣

is maximized.
6. Minimize difference in young consumption.
7. Maximize difference in middle-age consumption, i.e., the difference

∣∣e1(s) − qθ1 − ω − (
e1(σ̂ ) − q ′ (σ̂

)
θ ′
1

(
σ̂
) − ω′(σ̂ )

)∣∣

is maximized.
8. Minimize difference in middle-age consumption.

Notice that we do not consider selections with respect to the old-age consumption
variable. Old-age consumption is e2(σ )+θ1. Indeterminacy does not play a role in this
value, as the only element that depends upon σ is the endowment parameter e2(σ ).

4.5 Simulation results

We choose the initial conditions so that θ1(−1) = 3.0 and the initial shock is s0 = 2,
meaning e2 (s0) = 1− ε. The initial shadow value of investment is m0 = 5.50, where
m0 ∈ V (s0, θ1(−1)).12 Simulations last for 5000 periods, where the first 1000 periods
are ignored when computing simulated moments and simulated conditional moments.

4.5.1 Effects of the selection rules

We run simulations under each of the eight selection rules introduced previously. The
unconditional moments are reported in Tables 1 and 2 below. The first observation
from the data is that the choice of selection rule matters and has real effects. Among
all eight selection rules, the young consumptionmean is smallest (mean (c0) = 5.862)
and themiddle consumptionmean is largest (mean (c1) = 5.308) for the selection rule
that maximizes the difference in bond holdings. Diametrically, among all 8 selection
rules, the young consumption mean is largest (mean (c0) = 6.037) and the middle
consumption mean is smallest (mean (c1) = 5.293) for the selection rule that min-
imizes the difference in bond holdings. The means for the young consumption can
differ by as much as 3%, and the means for middle consumption can differ by as
much as 0.3%.

12 We perform robustness checks on the choice of initial conditions and find that this choice has no long-run
effects. Further details can be found in Sect. 4.5.3.
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Table 1 Simulated means

Simulation Statistics

mean (c0) mean (c1) mean (θ1) mean (q) mean (U )

1 Max
q 6.025 5.286 3.690 0.842 −0.0072

2 Min
q 6.026 5.295 3.680 0.828 −0.0071

3 Max
θ1 5.862 5.308 3.831 0.769 −0.0071

4 Min
θ1 6.037 5.293 3.670 0.833 −0.0071

5 Max
c0 5.926 5.305 3.769 0.798 −0.0071

6 Min
c0 6.030 5.294 3.677 0.830 −0.0071

7 Max
c1 5.896 5.304 3.800 0.784 −0.0071

8 Min
c1 6.029 5.294 3.677 0.830 −0.0071

Table 2 Simulated standard deviations

Simulation Statistics

std (c0) std (c1) std (θ1) std (q) std (U )

1 Max
q 0.431 0.176 0.403 0.226 9 × 10−4

2 Min
q 0.214 0.072 0.209 0.102 3 × 10−4

3 Max
θ1 0.474 0.168 0.475 0.195 5 × 10−4

4 Min
θ1 0.200 0.069 0.191 0.102 3 × 10−4

5 Max
c0 0.469 0.153 0.464 0.194 5 × 10−4

6 Min
c0 0.224 0.082 0.215 0.115 4 × 10−4

7 Max
c1 0.457 0.166 0.452 0.194 5 × 10−4

8 Min
c1 0.226 0.078 0.215 0.115 4 × 10−4

Comparing the simulation in which the asset price difference is maximized and
the simulation in which the asset price difference is minimized, the average lifetime
utility for the consumers is 3.96% higher under the latter, which corresponds to a
consumption equivalent gain of 1.3%.

4.5.2 Consumption volatility

Table 3 reports the simulated standard deviations conditional on either shock s = 1
or shock s = 2 being realized.

To assess the volatility of the young-age consumption (for age a = 0 consumers),
consider the six simulations that did not include young-age consumption c0(σ̂ ) =
e0(σ̂ )+q ′ (σ̂

)
θ ′
1

(
σ̂
)
in the objective function.Computing the averages across these six

simulations and both potential shocks s ∈ {1, 2}, the conditional standard deviations
for c0 are 92% as large as their respective unconditional standard deviations.

To assess the volatility of the middle-age consumption (for age a = 1 consumers),
consider the six simulations that did not include middle-age consumption c1(σ̂ ) =
e1(σ̂ )−q ′ (σ̂

)
θ ′
1

(
σ̂
)−ω′(σ̂ ) in the objective function. Computing the averages across
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Table 3 Simulated standard deviations (conditional)

Simulation Statistics

Shock s = 1 Shock s = 2

std (c0|1) std (c1|1) std (c0|2) std(c1|2)
1 Max
q 0.367 0.168 0.463 0.185

2 Min
q 0.176 0.069 0.199 0.075

3 Max
θ1 0.475 0.172 0.447 0.163

4 Min
θ1 0.142 0.063 0.195 0.074

5 Max
c0 0.257 0.094 0.284 0.101

6 Min
c0 0.179 0.082 0.210 0.082

7 Max
c1 0.445 0.161 0.453 0.170

8 Min
c1 0.179 0.074 0.214 0.081

these 6 simulations and both potential shocks s ∈ {1, 2}, the conditional standard
deviations for c1 are 94%as large as their respective unconditional standard deviations.

The simulation results (Tables 1, 2, 3) reveal three facts: (i) the unconditional
standard deviations for consumption volatility are an order of magnitude larger than
the endowment standard deviation, (ii) the conditional standard deviations are strictly
positive, and (iii) the conditional standard deviations are on average more than 90%
as large as the unconditional standard deviations.

These findings suggest that initial condition indeterminacy is present and that
endowment volatility is not of first-order importance for explaining consumption
volatility.

4.5.3 Robustness check on initial conditions

We also analyze the effects of the initial conditions on the behavior of the economy.
For each of the following experiments, we remain consistent by applying the same
selection rule (chosen from one of the eight possibilities previously introduced) for
both the benchmark economy and economies with different initial conditions. Recall
that the benchmark economy specifies {θ1(−1), s0,m0} = {3.0, 2, 5.50}. The first
experiment specifiesm0 = 5.10, the second specifies s0 = 1 such that e2 (s0) = 1+ε,
while the third specifies θ1(−1) = 4.3128. After we drop the first 1000 periods, the
simulated moments and simulated conditional moments are identical to those for the
benchmark economy.

4.6 Sunspot equilibria

To decompose the effects of incomplete markets indeterminacy and endowment
volatility on consumption and asset price volatility, we construct a sunspot equilib-
rium based on our benchmark economy. We maintain the same Markov chain, but the
shocks are now states of extrinsic uncertainty, meaning that the endowments remain
unchanged. The endowment process is given by
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Table 4 Simulated standard deviations (sunspots)

Simulation Statistics

std (c0) std (c1) std (θ1) std (q)

1 Max
q 0.430 0.180 0.395 0.233

2 Min
q 0.210 0.088 0.196 0.104

3 Max
θ1 0.497 0.168 0.502 0.189

4 Min
θ1 0.184 0.078 0.166 0.094

5 Max
c0 0.415 0.149 0.402 0.181

6 Min
c0 0.197 0.086 0.182 0.010

7 Max
c1 0.462 0.166 0.461 0.187

8 Min
c1 0.195 0.081 0.173 0.109

Table 5 Simulated standard deviations (conditional, sunspots)

Simulation Statistics

Shock s = 1 Shock s = 2

std (c0|1) std (c1|1) std (c0|2) std (c1|2)
1 Max
q 0.418 0.176 0.443 0.184

2 Min
q 0.200 0.088 0.221 0.088

3 Max
θ1 0.495 0.169 0.498 0.168

4 Min
θ1 0.166 0.072 0.200 0.083

5 Max
c0 0.239 0.096 0.269 0.098

6 Min
c0 0.198 0.088 0.196 0.083

7 Max
c1 0.459 0.165 0.498 0.168

8 Min
c1 0.184 0.080 0.205 0.081

e0(s) = 3, ∀s ∈ {1, 2}
e1(s) = 12, ∀s ∈ {1, 2}
e2(1) = 1 + ε, ε = 0
e2(2) = 1 − ε.

There still remain S = 2 states of uncertainty, and consumers need not have the
same price expectations for both states. If the price expectations differ, then any con-
sumption volatility is owing only to the incomplete markets indeterminacy, since the
fundamentals of the economy remain unchanged.

For each of the eight consistent selection rules, we run 5000 simulations as before
(where each simulation lasts for 5000 periods and the first 1000 periods are ignored
when computing simulated moments).

The results are presented in Tables 4 and 5.
Broken down by variable, the following subsections show that the volatility for any

of the variables (consumption, asset price, asset choice) is driven by the effects of
incomplete markets indeterminacy and not by the endowment shocks.
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4.6.1 Consumption volatility

To assess the volatility of young-age consumption, consider the six simulations that did
not include young-age consumption in the objective function. Averaged across these
six simulations, the standard deviations for young-age consumption in the sunspot
model (no endowment risk) are 97% as large as the standard deviations in the original
model with endowment risk. Similar patterns hold for middle-age consumption. If the
sunspot model accounts for 97% of the consumption volatility, then the volatility is
decomposed as 3% due to endowment shocks and 97% due to indeterminacy.

4.6.2 Asset price volatility

To assess the volatility of the asset prices, consider the six simulations that did not
include the asset price q ′ (σ̂

)
in the objective function. Averaged across these six

simulations, the unconditional standard deviations for q in the sunspot model (no
endowment risk) are 93%as large as their respective unconditional standard deviations
with endowment risk. The range for this ratio across all six simulations runs from 87
to 97%.

4.6.3 Asset size volatility

In the sunspot model, since c2
(
σ̂
) = e2(σ̂ ) + θ1 and the endowment value is equal

across states, then the old-age consumption volatility is identical to the asset size
volatility.

To assess the volatility of the asset holdings themselves, consider the six simulations
that did not include the asset choice θ ′

1

(
σ̂
)
in the objective function. Averaged across

these 6 simulations, the unconditional standard deviations for θ1 in the sunspot model
(no endowment risk) are 89% as large as their respective unconditional standard
deviations with endowment risk. The range for this ratio across all six simulations
runs from 81 to 100%.

4.7 Economies with initial condition determinacy

Asufficient condition for initial condition determinacy is the property of gross substitu-
tion in consumption. While sufficient, this property is not necessary. In a deterministic
setting, Kehoe and Levine (1990) and Feng (2013) find economies that do not satisfy
this sufficient condition and yet exhibit initial condition determinacy.

In a stochastic setting, finding the set of economies that lead to initial condition
determinacy remains just as relevant. We consider two experiments in which the econ-
omy parameters are changed. In the first experiment, the parameter for consumer risk
aversion is reduced from b = 4 to b = 3.2, with all other parameters held constant. In
the second experiment, the endowment process is changed from e = {3, 12, 1± 5%}
to e = {3, 8, 2 ± 5%}, with all other parameters held constant. The two endowment
processes are given by: For each of the two experiments, we compute simulated
moments as in the original economy. We numerically confirm that the two economies
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Endowment process

e = {3, 12, 1 ± 5%} e = {3, 8, 2 ± 5%}
e0(s) = 3 ∀s ∈ {1, 2}
e1(s) = 12 ∀s ∈ {1, 2}
e2(1) = 1 + ε ε = 0.05
e2(2) = 1 − ε

e0(s) = 3 ∀s ∈ {1, 2}
e1(s) = 8 ∀s ∈ {1, 2}
e2(1) = 2 + ε ε = 0.10
e2(2) = 2 − ε

Table 6 Simulated moments (determinacy)

Model mean (θ1) mean (q) std (θ1) std (q)

b = 3.2; e = {3, 12, 1 ± 5%} 5.030 0.331 0.0431 0.0132

b = 4; e = {3, 8, 2 ± 5%} 2.730 0.346 0.044 0.031

exhibit initial condition and incompletemarkets determinacy.We do not need to imple-
ment selection rules, since there exists a unique vector of state variables each period:(
ω′(σ ),m′ (σ )

)
σ∈S = F (s, ω,m).

The simulated moments are given in Table 6. For the first experiment (with b
changed from b = 4 to b = 3.2), the ratio std(θ1)

mean(θ1)
= 0.0085, which is 10% as large

as the average ratio across all simulations in the model with b = 4 (average across
all simulations is std(θ1)

mean(θ1)
= 0.088). In terms of prices, the ratio std(q)

mean(q)
= 0.0399,

which is 20% as large as the average ratio across all simulations in the model with
b = 4 (average across all simulations is std(q)

mean(q)
= 0.192).

For the second experiment (with e changed from e = {3, 12, 1 ± 5%} to e =
{3, 8, 2 ± 5%}), the ratio std(θ1)

mean(θ1)
= 0.0161, which is 20% as large as the average

across all 8 simulations in the model with e = {3, 12, 1± 5%}. In terms of prices, the
ratio std(q)

mean(q)
= 0.0896, which is 50% as large as the average across all 8 simulations

in the model with e = {3, 12, 1 ± 5%}.
Relative to the baseline economy, a reduction in the risk-aversion parameter or

a reduction in the volatility of the endowment process can lead to initial condition
determinacy. Initial condition determinacy implies incomplete markets determinacy
(Theorem 3), meaning that determinacy does not have long-run effects. The simulation
results in Table 6 reveal that economies with initial condition determinacy have asset
price and asset holding volatilities on the same order of magnitude as the endowment
volatility. Moreover, the asset price and asset holding volatilities for the determinate
economies are 10–50% as large as the corresponding volatilities for nearby economies
with incomplete markets indeterminacy.

4.8 Discussion of the example economy

Well-known empirical puzzles concerning asset price and consumption volatility doc-
ument that the observed volatility of both variables is higher than what is predicted
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from classical theory.13 This paper does not attempt to solve these empirical puzzles,
but rather to understand what role, if any, incomplete markets indeterminacy plays
in supporting asset price and consumption volatility. We study simple economies in
which the effects of indeterminacy on asset price and consumption volatility are easily
elicited, and thus only utilize a stylized calibration as in Kehoe and Levine (1990).

The cohorts in our economies consist of a unitmass of homogeneous households that
each live for three periods. This is the simplest setting inwhich asset trade is nontrivial.
The mechanism under which indeterminacy has real effects requires nontrivial asset
trade: households form beliefs about the asset prices in future periods, trade assets
based upon these beliefs, and use the asset payouts to smooth consumption. We view
each period as lasting for 20years and impose a life-cycle earnings profile consistent
with Auerbach and Kotlikoff (1987) and Gourinchas and Parker (2002).

Without a more realistic calibration, our numerical results provide an incomplete
answer to the question of whether incomplete markets indeterminacy in SOLG mod-
els provides a theoretical foundation for the asset price and consumption volatility
observed in the data. What we have learned is that incomplete markets indeterminacy
does matter; it has real effects, and these persist in the long run. The next step is to
evaluate the degree to which our numerical results extend to a more realistic setting.
Does the scale of the model matter? Both our theoretical results and computational
methodology are immediately applicable to a large-scale model, but in a large-scale
model, the relation between indeterminacy and volatility becomes blurred and the
computation becomes untractable.

In the current model, households live for 60years (the expected life span for adults),
but only receive three realizations of uncertainty during their lifetime. In a large-scale
model, households would continue to live for 60years, but would instead receive
realizations of uncertainty every year (or every quarter). The partition of uncertainty
will be finer, and households will be able to trade on this uncertainty with higher
frequency. We hypothesize that the effects of indeterminacy will be amplified with
higher frequency trading, as households havemore opportunities to form self-fulfilling
beliefs about asset prices in future periods.

5 Conclusion

In this paper, we analyze the effects of indeterminacy on consumption and asset price
volatility in SOLG models. We introduce the concept of incomplete markets inde-
terminacy and compute its effects by (i) approximating the entire set of competitive
equilibria and (ii) running simulations over a variety of selection rules. Our simulations

13 The excess volatility puzzle (LeRoy and Porter 1981; Shiller 1981) documents that asset price volatility
is much higher than what is predicted by classical theory with additively separable and CRRA utility for a
representative household. The closely related equity premium puzzle is based upon the recognition that it
is not possible to adjust the risk-aversion parameter and reconcile the model with both the equity premium
and the risk-free rate observed in the data (Mehra and Prescott 1985; Weil 1989). For further discussion
of asset pricing volatility, see Hansen and Jagannathan (1991) and Backus et al. (2014). Consumption
volatility refers to the fact that observed consumption volatility is much greater than what is predicted by
the Permanent Income Hypothesis, which can be interpreted as a setting with complete financial markets
(Krueger and Perri 2006).
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indicate that the choice of selection rule has welfare effects. Even for the selection
rules with the most conservative predictions, we find that indeterminacy is an order of
magnitude more important than endowment risk in explaining consumption and asset
price volatility.

These findings suggest that for economies in which indeterminacy is present, con-
sumers’ expectations of prices play an important role in the allocation of resources.
It is only in understanding how these expectations affect resource allocation that we
can implement welfare-improving policies. Analysis of specific welfare-improving
policies in this class of models is left for future research.

Appendix

Proof of Theorem 1

To show that a Markov equilibrium satisfies the SCE definition, the Euler Eqs. (9) and
(11)must be necessary and sufficient for household optimality.Necessity is immediate.
Sufficiency follows as households are finite-lived.

Proof of Theorem 2

From the standard arguments used to show the existence of a SCE, the set of shadow
prices of investmentm

(
st

)
belong to a compact set
 ⊆ R

J in all nodes. The iterative
construction begins with the correspondenceV0 : S × R ⇒ R

J+ such thatV0 (s, ω) =

 ∀ (s, ω) ∈ S × R.

Given a correspondence Vn : S × R ⇒ R
J+ for any n ≥ 0, define an operator B

that maps the correspondence Vn : S × R ⇒ R
J+ to a new correspondence Vn+1 :

S × R ⇒ R
J+ defined as follows:

Vn+1 (s, ω)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m ∈ 
 :
for (q, θ1) = f (s, ω,m) ,

there exists m′ (σ ) ∈ Vn (σ, r(σ )θ1) ∀σ ∈ S and(
q ′ (σ ) , θ ′

1 (σ )
) = f

(
σ, r(σ )θ1,m′ (σ )

) ∀σ ∈ S such that

q juc [e0(s) + qθ1] = β
∑

σ∈S
π(s, σ )

m′ j (σ )

q ′ j (σ )
r j (σ ) ∀ j ∈ J

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

The correspondences are defined recursively using this operator B :

Vn+1 = B (Vn) .

The Markov equilibrium policy correspondence is defined as follows:

V∗ (s, ω) = lim
n→∞B (Vn (s, ω)) ∀ (s, ω) ∈ S × R.
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Theorem 1 from Feng et al. (2014), reproduced below, guarantees the existence of
a Markov equilibrium policy correspondence.

Theorem 6 Let V0 be a compact-valued correspondence such that V0 ⊃ V∗. Let
Vn+1 = B (Vn) , n ≥ 0. Then, Vn → V∗ as n → ∞. Moreover, V∗ is the largest
fixed point of the operator B, i.e., if V = B(V), then V ⊂ V∗.

Proof of Theorem 4

Suppose, in order to obtain a contradiction, that themarkets are complete. This implies
that the allocation is (interim) Pareto efficient. The equilibrium allocation is station-
ary (Henriksen and Spear 2012). This implies that both V∗ and F are single-valued
correspondences.

Proof of Theorem 5

The transition correspondence F : graph(V∗) ⇒
(
R × R

J+
)S

defined by

F (s, ω,m)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ω′(σ ),m′ (σ )

)
σ∈S :

ω′(σ ) = r(σ )fθ (s, ω,m)

m′ (σ ) ∈ V∗ (
σ, ω′(σ )

)

q ′ (σ ) = fq
(
σ, ω′(σ ),m′ (σ )

)

q j uc [e0(s) + qθ1] = β
∑

σ∈S
π(s, σ )

m′k (σ )

q ′k (σ )
r j (σ ) ∀ j, k ∈ J

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

By definition of fq
(
σ, ω′(σ ),m′ (σ )

) :

m′k (σ )

q ′k (σ )
= m′1 (σ )

q ′1 (σ )
∀k.

This means that the J Euler equations given by:

q juc [e0(s) + qθ1] = β
∑

σ∈S
π(s, σ )

m′1 (σ )

q ′1 (σ )
r j (σ ) ∀ j ∈ J.

Suppose, in order to obtain a contradiction, that incomplete markets indeterminacy
does not hold. This implies that F (s, ω,m) is determinate (0-dimensional image)
for all state variables (s, ω,m). Under initial condition indeterminacy, V∗ (

σ, ω′(σ )
)

is indeterminate (strictly positive dimension) for all state variables (s, ω,m) (with
corresponding state variable

(
σ, ω′(σ ) = r(σ )fθ (s, ω,m)

)
). This implies that for

all state variables (s, ω,m), ∃! (ω′(σ ),m′ (σ )
)
σ∈S such that the Euler equations
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are satisfied.14 If
(
ω′(σ ),m′ (σ )

)
σ∈S is uniquely determined, then with q ′ (σ ) =

fq
(
σ, ω′(σ ),m′ (σ )

)
, the vector

(
m′1(σ )

q ′1(σ )

)

σ∈S is uniquely determined.

If
(
m′1(σ )

q ′1(σ )

)

σ∈S is uniquely determined, the Euler equations for both the young and

middle-aged consumers imply:
(
uc

[
e1(σ ) − ω′ (σ ) − q ′ (σ ) θ ′

1 (σ )
])

σ∈S
uc [e0(s) + qθ1]

=
(
uc

[
e2(σ ) + ω′ (σ )

])
σ∈S

uc [e1(s) − ω − qθ1]
.

For all state variables (s, ω,m), it is not possible to find a Pareto-improving real-
location. This means that the allocation is (interim) Pareto efficient, meaning that
markets are complete. This completes the argument.

5.1 Numerical algorithm

The vector of possible values for bond-holding and shocks are given by �̂ ={
θ
i1
0

}Nθ

i1=1
, Ŝ =

{
si20

}Ns

i2=1
. For each pair of the bond-holding and shock grids,

(
θ
i1
0 , si20

)
, we also define a finite vector of possible values for the image of the

correspondence: V̂μ,ε
0

(
θ
i1
0 , si20

)
=

{
mi1,i2, j

0

}Nv

j=1
.15 Notice, limNθ→∞ �̂ = �,

limNv→∞ V̂μ,ε
0

(
θ
i1
0 , si20

)
= Ṽμ,ε

0

(
θ
i1
0 , si20

)
. Finally, we construct the discrete version

of operator Bh,μ,N by eliminating points (in the Euler equation, for a predetermined
tolerance ε > 0) as follows:

1. Given
(
θ
i1
0 , si20

)
, pick a point mi1,i2, j

0 in the vector V̂μ,ε
0

(
θ
i1
0 , si20

)
. From mi1,i2, j

0 ,

we can determine the values of
(
θ

′i1,i2, j , qi1,i2, j
)
by solving for

mi1,i2, j
0 − qi1,i2, j · uc

(
e1(s

i2
0 ) + θ

i1
0 − qi1,i2, jθ

′i1,i2, j
)

= 0, (12)

mi1,i2, j
0 − β

∑

s′
π(s′|s0)uc

(
e2(s

′′i1,i2, j
)

= 0. (13)

Thus, if for all m′ ∈ V̂μ,ε
0 (θ

′i1,i2, j , s′) =
{
m

′l(θ
′i1,i2, j , s′)

}NV

l=1
we have

min
m′∈{m′l}NVl=1

∥
∥∥∥q

i1,i2, j · uc
(
e0(s

i2
0 ) − qi1,i2, jθ

′i1,i2, j
)
−β

∑
π(s′|si20 )

(
m′

q ′

)∥
∥∥∥ > ε

(14)

14 With multiple vectors
(
ω′(σ ),m′ (σ )

)
σ∈S satisfying the Euler equations, any vector in the convex hull

would also satisfy the Euler equations. The convex hull is a set with strictly positive dimension. This is
inconsistent with the initial supposition that F (s, ω,m) is determinate.
15 Notice that the portfolio of the household has S components in stochastic case. In the case of two shocks,
θ0 = (θ0,1, θ0,2).
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Fig. 1 Equilibrium set of
{{

m′(σ )
}
σ∈{1,2} ,m

}
at given {s, ω}

where the value of q ′ is determined by the same procedure in finding
(
θ

′i1,i2, j ,

qi1,i2, j
)
, then V̂μ,ε

1

(
θ
i1
0 , si20

)
= V̂μ,ε

0

(
θ
i1
0 , si20

)
− mi1,i2, j

0 .

2. Iterate over all possible values mi1,i2, j
0 ∈ V̂μ,ε

0

(
θ
i1
0 , si20

)
, and all possible

(
θ
i1
0 , si20

)
∈ �̂ × Ŝ.

3. Iterate until convergence is achieved sup
∥∥
∥V̂μ,ε

n − V̂μ,ε
n−1

∥∥
∥ = 0.

At the limit of the above algorithm, we have limn→∞ V̂μ,ε
n = V̂μ,ε∗

(Fig. 1).
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