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Abstract What is theminimal structure that is needed to perform equilibrium analysis
in large extensive form games? To answer this question, this paper provides conditions
that are simultaneously necessary and sufficient for the existence of a subgame perfect
equilibrium in any well-behaved perfect information game defined on a large game
tree. In particular, the set of plays needs to be endowed with a topology satisfying two
conditions. (a) Nodes are closed as sets of plays; and (b) the immediate predecessor
function is an open map.
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Large extensive form games · Perfect information
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1 Introduction

Extensive form games with large action spaces and/or an infinite horizon are pervasive
in economics. Examples include oligopoly models à la Cournot (1838), Bertrand
(1883), or von Stackelberg (1934), infinite bilateral bargaining (Rubinstein 1982), or
stochastic games (Shapley 1953). By contrast, the theory of games is best understood
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when the representation of the game is finite. When it is not, because of large action
spaces and/or an infinite horizon, then one is forced to add structure. For instance,
in repeated games, one assumes identical action sets at each stage as well as utility
functions that are additively separable across stages.

Suppose no particular class of games is given. What is a reasonable criterion to
identify which structure needs to be added? The goal here is to provide necessary
conditions that need to be imposed if one takes as a postulate the existence of subgame
perfect equilibria in well-behaved perfect information games. This is in contrast to
the more popular exercise of proving existence of equilibrium for certain classes of
games. In fact, sufficient conditions for existence of subgame perfect equilibria in
perfect information games (Kuhn 1953) have been provided for different classes of
large extensive form games by Fudenberg and Levine (1983), by Harris (1985b), by
Hellwig and Leininger (1987), and recently also by ourselves in a companion paper
(Alós-Ferrer and Ritzberger 2016). Necessary conditions have not received attention
so far.

Yet, for the purpose of deducing structure from an abstract postulate, a necessity
result strikes us asmore important. The analysis of sufficient conditions amounts to the
development of existence theorems, which the applied analyst will ultimately rely on.
Without a necessity result, however, it is unclearwhich conditions are crucial andwhich
conditions havebeen added for analytical convenience and could eventually bedropped
(leading to amore powerful result).A result onnecessity identifies crucial assumptions,
which the analyst simply cannot do without if existence is to obtain. To give just one
analogy, suppose one wishes to study games where mixed and behavior strategies are
equivalent. Assuming perfect information is sufficient to obtain this equivalence. But
perfect information is unnecessarily restrictive, for, as Kuhn’s theorem (Kuhn 1953)
shows, it can be weakened to perfect recall and the equivalence still obtains. The
most important part of Kuhn’s theorem, however, states that if mixed and behavior
strategies are equivalent for a given game, then the game needs to satisfy perfect recall.
It is this necessity that leads the analyst to adopt the assumption of perfect recall in
applications, because this condition has been identified as the weakest possible one.

Therefore, this paper aims at identifying the minimal topological conditions that
guarantee equilibrium existence. The focus on topological conditions is natural. For,
equilibrium has two aspects: individual optimization and pasting together individual
decisions to obtain an outcome. The identification of individual maxima is of course
an order-theoretic issue, but the topological approach to optimization has proven pow-
erful, and it is routinely assumed if one focuses on continuity to ensure existence
of maxima. It will be shown that pasting together individual optimization problems
can also be reduced to a topological problem in a particularly relevant case, namely
perfect information games. The reason is that under perfect information, every player
holds the same views as an outside observer, and there are no simultaneous decisions.
Hence, no issues regarding subjective beliefs arise.

Of course, care has to be taken in order not to trivialize the problem. It is easy to
construct examples where no equilibrium exists, for instance, when preferences are not
continuous. Hence, we will restrict the analysis to “well-behaved” perfect information
games. Those are games where all players’ preferences are continuous and decision
points are suitably assigned (see Definition 3 below) to ensure that local optimization
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problems are well posed. Yet, even for such well-behaved games, compactness and
continuity of preferences are not enough. If the structure of the tree is irregular enough,
existence may fail even if compactness holds and all preferences are continuous, as
illustrated by the following example.

Example 1 Consider a two-player perfect information game, where player 1 picks
at the root of the tree either a pair (a, b) ∈ [0, 1]2 with a < 1 or sets a = 1 and
gives the move to player 2. In the former case (a < 1), the game ends with payoffs
U1 (a, b) = ab and U2 (a, b) = 1 − b. In the latter case (a = 1), player 2 receives
the opportunity to choose b ∈ [0, 1] and, once b has been selected, the game ends
with payoffs U1 (1, b) = b and U2 (1, b) = 1 − b. The set W of possible outcomes
(plays) can be identified with the unit square W = [0, 1]2 and endowed with the
relative Euclidean topology of the plane. ThenW is compact, and payoff functions are
continuous. Since player 2, if called upon to move, will always choose b = 0, player
1’s “value” function has no maximum and the game no subgame perfect equilibrium.

In this example, preferences are continuous and the space of outcomes (or plays)
is compact, yet existence of equilibrium fails. (The example also illustrates a few
other points to which we will return below.) This means that asking for existence
of subgame perfect equilibrium in perfect information games defined on a given tree
does constrain the topological structure imposedon the domain of players’ preferences,
i.e., on plays of the tree. Therefore, the task is to identify, for a given arbitrarily large
game tree, theminimal added (topological) structure needed for existence of subgame
perfect equilibria in all perfect information games defined on this tree. In other words,
the objective is to provide topological conditions on the set of outcomes (plays) of
the game which are necessary and sufficient for the existence of (subgame perfect)
equilibria. Sufficiency is the familiar exercise. It means that, given a game tree and
a topology satisfying certain conditions, every (well-behaved) game defined on that
tree has an equilibrium. Necessity is the novel and arguably more important part of
the analysis. It means that, given a game tree, if a topology on outcomes admits an
equilibrium for everywell-behaved game defined on that tree, then the topology fulfills
our conditions. In other words, the existence theorem derived from the sufficiency part
cannot be generalized any further in the topological dimension. This is the sense in
which the conditions are minimal.

It will be shown that there are precisely two conditions that are necessary and
sufficient, and both are in terms of hownodes and plays are related in the game tree. The
first is simply that nodes in the tree are closed as sets of plays. The second demands that
the function assigning to each (finite) node of the tree its immediate predecessor is an
open map in the appropriate topology on nodes. Equivalently, as shown in Alós-Ferrer
and Ritzberger (2016, Lemma 5), the correspondence, which assigns to each move
its immediate successors, is lower hemi-continuous. Henceforth, topologies satisfying
these two conditions are called “tree topologies.” The present results show that tree
topologies provide a characterization of the statement that subgame perfect equilibria
exist for every well-behaved perfect information game on a given tree. Hence, they
capture precisely the structure that needs to be added in order to do equilibriumanalysis
in large (extensive form) games (of perfect information).
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The virtue of a characterization is that it pins down precisely which conditions are
needed and which are not. For example, the present result shows that no condition on
upper hemi-continuity of the successor correspondence is needed to establish existence
of subgame perfect equilibrium, neither are specific topological separation properties
(as, e.g., the assumption of Hausdorff action spaces) on the “stages” of a game. Both
of these properties have indeed been assumed in previous existence theorems (e.g.,
Harris 1985b).

Sufficiency has been established in a companion paper (Alós-Ferrer and Ritzberger
2016) in the form of an existence theorem. The present paper is devoted to the arguably
more important task of identifying necessary conditions. That is, it will be shown that
without a tree topology, there exists a (well-behaved) perfect information game that
has no subgame perfect equilibrium, even though the game is well-behaved in the
sense that preferences are continuous and the assignment of decision points ensures
that local optimization problems are well posed.

Section 2 introduces the basic objects of analysis, discrete game trees, (well-
behaved) perfect information games, and topologies that admit equilibrium analysis.
Section 3 presents the result on the necessity of tree topologies (Theorem 1). An
application of the existence result in Alós-Ferrer and Ritzberger (2016) yields the
characterization (Theorem 2). Section 3.2 is devoted to the proof of Theorem 1. Sec-
tion 4 discusses a few fine points, and Sect. 5 concludes.

2 Perfect information games

Many alternative definitions of extensive form games have been introduced in the
literature. Since the goal is to consider topological properties of preferences, and
preferences are defined on ultimate outcomes of the game, it is convenient to follow
the original approach of von Neumann and Morgenstern (1944, Section 8). Although
Kuhn (1953) later popularized the “graph approach” where trees are viewed as graphs
on abstract nodes, in the original approach by von Neumann and Morgenstern (1944)
extensive form games are defined on trees, but the latter are not seen as graphs. Rather,
trees are viewed as collections of (nonempty) subsets of an underlying set of outcomes
(also called plays). That is, a node is simply a collection of outcomes. The relation
between both approaches is simple: A node should be seen as the set of outcomes
which are still available when a player decides at that node. In that way, a node
precedes another node if and only if the latter node is properly contained in the for-
mer. Intuitively, decisions discard possible outcomes and hence reduce the size of the
nodes. Alós-Ferrer and Ritzberger (2005, 2013) provided “translations” between both
approaches in the form of equivalence theorems.

Though Kuhn’s approach by graphs has become popular for textbook expositions
(especially for the case of finite games), other models were used in the literature, in
particular when large games were at stake. For example, Harris (1985b) proposed
a sequence-approach that was later popularized by Osborne and Rubinstein (1994).
The following subsection illustrates why the set-tree approach by von Neumann and
Morgenstern (1944) is most convenient for the present purposes.
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2.1 Nodes as sets versus plays as sequences

We begin with a simple example that illustrates the relations between different for-
malizations of extensive form games.

Example 2 Player 1 decides a ∈ [0, 1] at the root and, after observing a, player
2 decides b ∈ [0, 1]. Following von Neumann and Morgenstern (1944), the root
corresponds to a node encompassing thewhole set of potential outcomes,W = [0, 1]2.
At this node, player 1 decides, which amounts to picking a smaller subset, a node of
the form {a}×[0, 1]where a has been selected but b remains to be decided. At each of
these intermediate nodes, player 2 decides, choosing a final node of the form {(a, b)},
which contains only one outcome. The game then ends. Hence, the representation of
the game in our approach relies on a set of nodes N which collects all the sets (nodes)
described above,

N = {
W, ({a} × [0, 1])a∈[0,1] , ({w})w∈W

}

and is ordered by set inclusion. For this example, the “graph approach” is merely a
representation of the approach above, with the sets being interpreted as abstract nodes.
But the cardinality of the example prevents a graphical illustration (see Alós-Ferrer
and Ritzberger 2005 for details on the equivalence). The “sequence approach” would
consider the root as a null sequence, the intermediate nodes as length-one sequences of
the form (a), and the final nodes as length-two sequences (a, b). The correspondence
to the approach above is straightforward.

The next example shows how distinct formal approaches can lead to substantial dif-
ferences, not only when modeling games, but also when analyzing them. The example
is a game that is easily captured by our approach and where subgame perfect equilibria
always exist (for continuous preferences). However, if the game is modeled by other
approaches, the result is a less natural construction that creates formal difficulties. Even
worse, as a consequence of those, existence results from the literature fail to apply.

Example 3 Two players jointly decide a real number a ∈ [0, 1] and a natural number
n ∈ {1, 2, 3, 4}. The rules are as follows. Player 1 can either choosea < 1 and let player
2 choose b ∈ {1, 2, 3, 4}, or fix a = 1 and simultaneously choose “Low” or “High.”
In the latter case, if player 1 chooses Low, player 2 will be able to choose b ∈ {1, 2},
while if player 1 chooses High, player 2 will be able to choose b ∈ {3, 4}. The natural
set of outcomes is W = [0, 1] × {1, 2, 3, 4}, which can be endowed with the relative
Euclidean topology (which coincides with the product of the Euclidean topology
on [0, 1] and the discrete topology on {1, 2, 3, 4}). The set of nodes is also easy to
construct. The root is simply W itself. The “terminal” nodes are those of the form
{(a, n)} with (a, n) ∈ W . There is a continuum of intermediate nodes (where player
2 decides). Those are the nodes of the form {{a} × {1, 2, 3, 4} | a < 1 }, plus the two
distinguished nodes xL = {(1, 1), (1, 2)} and xH = {(1, 3), (1, 4)}. The set of nodes is

N = {
W, xL , xH , ({a} × {1, 2, 3, 4})a∈[0,1) , ({w})w∈W

}

once again ordered by set inclusion.
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The sequence approach is cumbersome in this example. Following the pioneer-
ing work in this approach (Harris 1985b), one examines each stage of the game and
endows each player with a fixed universal set of actions for that stage. In Harris’s
(1985b) approach, this is without loss of generality, because a later restriction reduces
the resulting product set to the subset of plays, incorporating all constraints given by
the game. In the present example, the natural choice of the (compact) action set for
player 1 is A1 = [0, 1] × {Low,High}, since this player may (but need not) choose
both a and either High or Low. For player 2, the natural choice is A2 = {1, 2, 3, 4}.
This results in the product space A = A1 × A2 = [0, 1] × {Low,High} × {1, 2, 3, 4},
which is strictly larger than the actual set of outcomes W . Again following Harris
(1985b), the structure of the game is recovered by restricting attention to the set H of
plays, a subset of A. First, all plays must be included where player 1 sets a < 1, which
yields the subset H1 = {((a,Low), n) | a < 1 }. In this set, the coordinate Low is
merely a marker which does not constrain the future choices of player 2. (We could
instead use High as a marker, or a third marker which would complicate things even
further, but some marker is needed because the sequence approach is based on a prod-
uct construction.) Second, all plays must be included where player 2 sets a = 1, which
must then incorporate the appropriate constraint on player 2’s choice. This yields the
set H2 = {((1,Low, 1), (1,Low, 2), (1,High, 3), (1,High, 4)}. The set of plays is
the subset of [0, 1] × {Low,High} × {1, 2, 3, 4} given by H = H1 ∪ H2.

The fact that the sequence approach results in artificially enlarged product sets
creates a conceptual difficulty in games which do not have a straightforward stage
structure, as Example 3. In his existence theorem, Harris (1985b) assumes that the
action sets Ai are compact and separated, which is unproblematicwith the construction
given above and the (natural) Euclidean topologies on the sets Ai . Yet, a further, crucial
assumption requires the set H to be a closed subset of A. This property is not guaranteed
by the construction. Consider the sequence wn = ((an,Low) , 4) with 0 ≤ an < 1
for all n = 1, 2, . . . and an →n→∞ 1. Then wn ∈ H for all n = 1, 2, . . ., but
wn →n→∞ ((1,Low) , 4) /∈ H . Hence, the existence theorem in Harris (1985b) does
not apply because its assumptions are not fulfilled: Compactness has been lost purely
because of the construction. However, this game has a subgame perfect equilibrium
for any assignment of continuous payoffs to players. This can be shown by applying
the existence theorem in Alós-Ferrer and Ritzberger (2016), whose assumptions do
cover this example. We show it here directly.

Let U1 and U2 be continuous payoff functions for players 1 and 2. For each
a ∈ [0, 1] (including a = 1), let F(a) be the number n that maximizes U2 in the
set {(a, 1), (a, 2), (a, 3), (a, 4)}. The correspondence F : [0, 1] �→ {1, 2, 3, 4} is
u.h.c. by the maximum theorem. Further, since both the domain and the codomain are
metrizable and compact, the graph of F is a closed subset of W , hence compact. Let
(a∗, n∗) maximize the continuous functionU1 on the graph of F . Let f be a selection
from F such that f (a∗) = n∗. Further, let nLow ∈ {1, 2} and nHigh ∈ {3, 4} maximize
U2(1, n) on the sets {1, 2} and {3, 4, }, respectively.

Note that f (1) ∈ {nLow, nHigh}. Suppose f (1) = nLow (the argument if f (1) =
nHigh is symmetric). Hence, U1(a∗, n∗) ≥ U1(1, nLow). Suppose U1(a∗, n∗) ≥
U1(1, nHigh). Then there is a subgame perfect equilibrium where player 1 chooses
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a∗ and player 2 chooses f (a) for each a < 1, nLow after (1,Low), and nHigh after
(1,High). Alternatively, suppose U1(a∗, n∗) < U1(1, nHigh). Then there is a sub-
game perfect equilibrium where player 1 chooses (1,High) and player 2 chooses as
above.

Example 3 illustrates that the sequence approach can artificially enlarge the relevant
set in such a way that seemingly technical conditions are violated and the analysis
of a game becomes unnecessarily complex. This may lead to a failure of existence
theorems based on the sequence approach, even though existence holds and is readily
obtained under our approach (this example is covered by the existence theorem in
Alós-Ferrer and Ritzberger 2016). The next example revisits Example 1 and shows
that the problems of the sequence approach can actually lead to the consideration of
artificial product sets that are far larger than the relevant outcome sets.

Example 4 Recall Example 1. Player 1 can either decide on the whole pair (a, b)with
a < 1 or fix a = 1, and let player choose b. Constructing the set of nodes is again
simple. Let again W = [0, 1]2 be the set of plays. The root and the “terminal” nodes
are as in the previous example, but this time there is only one intermediate node (player
2’s only decision point), namely the set {1} × [0, 1] where a = 1 has been fixed but b
remains to be decided. The set of nodes is hence

N = {
W, {1} × [0, 1] , ({w})w∈W

}

again ordered by set inclusion.
The sequence approach is again cumbersome in this example. Following Harris

(1985b), the natural choice of the action set for player 1 is A1 = [0, 1]2, since this
player may (but need not) choose both a and b. For player 2, the action set is clearly
A2 = [0, 1]. This results in the product space A = A1 × A2 = [0, 1]3. That is,
the sequence approach turns a two-dimensional object into a three-dimensional one.
To recover the structure of the game, we must consider the set H of plays (viewed as
sequences) as a subset of A. In the present case, thismust include all playswhere player
1 has fixed both a and b, and player 2 does not get to choose. This requires the subset
H1 = {((a, b1) , b2) | b1 = b2, a < 1 } to be one part of the set of plays. The fact that
player 2 does not decide on b is incorporated in H1 by the restriction that b2 = b1. The
set H ⊆ A must also include all plays where player 1 has chosen a = 1 and player 2
decides on b ∈ [0, 1]. This gives the set H2 = {((a, 0) , b) | a = 1, b ∈ [0, 1] }. The
coordinate 0 in (a, 0) is an arbitrary marker indicating that player 1 does not actually
decide on b. Any other marker would also do, but it would be incorrect to write (a, b),
because if a = 1, player 2’s choice of b is unconstrained by player 1’s decision. The
set of plays finally is the subset of [0, 1]3 given by H = H1 ∪ H2.

The point of this example is that the phenomenon illustrated in Example 3 is not
peculiar to that example. The sequence approach unnecessarily blows up the relevant
outcome space into a potentially large product set (even requiring additional dimen-
sions). Ultimately, the reason for the difficulties above is that the sequence approach
naturally leads to a Tychonoff construction, which first identifies the action sets at each
stage, then imposes topological constraints on those, and finally takes the product set.
The construction then needs to be “patched up” by adding additional assumptions
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which need not be guaranteed in well-behaved examples. In Example 3, existence
of equilibria holds, but previous existence theorems do not apply, because the con-
struction seems to destroy compactness (even though the set of plays is compact in
the natural topology). In Example 4, an analogous argument shows that the set H is
not a closed subset of A. Indeed, consider the sequence wn = ((an, 1) , 1/2) with
0 ≤ an < 1 for all n = 1, 2, . . . and an →n→∞ 1. Then wn ∈ H for all n = 1, 2, . . .,
but wn →n→∞ ((1, 1) , 1/2) /∈ H . Hence, the approach of Harris (1985b) does not
work. However, this obscures the fact that failure of compactness is not the reason
for the failure of existence in Example 4. Compactness assumptions are immediately
fulfilled under our approach, for the outcome spaceW = [0, 1]2 is compact under the
natural topology, and this is the set of interest. As will be discussed below, the reason
for the failure of existence in this example is the failure of a completely different
condition that concerns the structure of the tree and not of the outcome space. In sum-
mary, what Example 4 shows is that the search for necessary topological conditions is
better undertaken under our approach, for otherwise one needs to consider additional,
extraneous conditions relating the product set of actions and the set of plays viewed
as a subset thereof. An analysis of which conditions are necessary cannot be carried
out under the sequence approach, because artificial conditions have been introduced
there that obscure the analysis.

2.2 Extensive form games of perfect information

For the reasons pointed out above, we follow the original approach by von Neumann
and Morgenstern. In its generalized form, this approach is already well established in
the literature. We have used it in our previous work on large extensive form games,
in particular Alós-Ferrer and Ritzberger (2005, 2008, 2013, henceforth AR1, AR2,
and AR3, respectively). These papers develop the concept of a game tree, show that
viewing nodes as sets of plays ordered by set inclusion is without loss of generality
(AR1), characterize the class of game trees for which every pure strategy combination
induces an outcome and does so uniquely (AR2; see also Alós-Ferrer et al. 2011),
and characterize discrete game trees and the associated extensive forms (AR3). In this
paper, however, a relatively small part of the formalism is needed, because only games
of perfect information are considered, and those are relatively simple.

Formally, weworkwith discrete game trees as introduced inAR3,which are defined
as follows (see also Ritzberger 2001, Definition 3.1).1

Definition 1 A discrete (rooted and complete) game tree (N ,⊇) is a collection of
nonempty subsets x ∈ N (the nodes) of a given setW (of plays or outcomes) partially
ordered by set inclusion such that W ∈ N , {w} ∈ N for all w ∈ W , and
(GT1) h ⊆ N is a chain2 if and only if there is w ∈ W such that w ∈ ∩x∈hx ,

1 Definition 1 is equivalent to Definition 5 of AR3 plus the added property that {w} ∈ N for all w ∈ W ,
which is called completeness in that work andmeans that (the singleton sets of) plays/outcomes are included
in the formalism as nodes, even if they are “reached” only after infinitely many decisions. AR3 (Proposition
4) shows that assuming completeness is without loss of generality.
2 A nonempty subset of a partially ordered set is called a chain if it is completely ordered.
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(GT2) every chain in the set X = N\ {{w}}w∈W (of moves) has a maximum, and
it either has an infimum in the set E = {{w}}w∈W (of terminal nodes) or it has a
minimum.3

Property (GT1) requires that if two nodes have a nonempty intersection, then one
contains the other (“Trivial Intersection”), and that all chains have a nonempty inter-
section (“Boundedness”). Property (GT2) is discreteness. Its first part (the existence
of maxima) essentially states that nodes have immediate successors, which are the
maxima of maximal chains of successors (AR2, p. 235). This property is called “up-
discreteness” and is necessary for every pure strategy combination to induce a unique
play/outcome (AR2, Theorem 6 and Corollary 5; see also Alós-Ferrer et al. 2011). Its
second part (the existence ofminima or infima) implies that everymove is reached after
finitely many decisions (AR3, Theorem 1). This property, called “down-discreteness,”
is satisfied in all standard applications and greatly simplifies the formalism, without
excluding large action spaces or an infinite horizon. (Property (GT2) excludes games
in continuous time, though.)

For each node x ∈ N define the up-set (“the past”) ↑ x and the down-set (“the
future”) ↓x by

↑x = {y ∈ N |y ⊇ x } and ↓x = {y ∈ N |x ⊇ y } . (1)

By the if-part of (GT1), ↑x is a chain for all x ∈ N . A play is a chain of nodes
h ⊆ N that is maximal in N , i.e., there is no x ∈ N\h such that h ∪ {x} is a chain.
Intuitively, a play is a complete history of all events along the tree, from the beginning
(the rootW ∈ N ) to the “end”—if there is an end: Since infinite histories are allowed,
plays need not be finite.

The advantage of game trees is that the set of plays can be one-to-one identified
with the underlying set W (AR1, Theorem 3(c)). That is, for every ultimate outcome
w ∈ W , the set ↑{w} is a play, and for every play h, there exists a unique outcome
w such that h =↑{w}, or, equivalently, ∩x∈hx = {w}. Therefore, one can identify
outcomes and plays. That is, an element w ∈ W can be seen either as a possible
outcome (element of some node) or as a play (maximal chain of nodes). Henceforth,
we will not distinguish between plays and outcomes. A node can then be identified
with the set of plays passing through it, and the underlying set W represents all plays.

For a discrete game tree (N ,⊇), let (by a slight abuse of notation) W : N � W
denote the correspondence4 that assigns to every node, viewed as an element of the
tree, the set of its constituent plays, that is, the node itself viewed as a set of plays, i.e.,
W (x) = x for all x ∈ N . For a set Y ⊆ N of nodes, write W (Y ) = ∪x∈Y x ⊆ W for
the union, and refer to W (Y ) as the plays passing through Y .

In an extensive form game, every node which has proper successors corresponds
to a decision point where some player is active. In contrast, nodes (if any) “at the
end” of the tree do not capture decisions. Formally, for a discrete game tree, (N ,⊇)

3 Maximum, minimum, and infimum of a chain are with respect to set inclusion. Henceforth, ⊆ denotes
weak set inclusion, and ⊂ denotes proper inclusion.
4 Even though the same symbol serves for the map and its codomain, no confusion can arise, because the
argument will always be specified.
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a node x ∈ N is terminal if ↓ x = {x}. A node is a move if it is not terminal. It
can be shown (see AR2, Lemma 1, and AR3, Lemma 3(b)) that a node x ∈ N in a
discrete game tree is terminal if and only if there is w ∈ W such that x = {w}. Hence,
the set E = {{w}}w∈W introduced in (GT2) coincides with the set of terminal nodes.
Likewise, the set X = N\E is the set of moves.

In discrete game trees, no move is reached “in the limit” after infinitely many
decisions. That is, if a node is at the end of an infinite chain of decisions (as, e.g., in the
case of an infinite horizon), it is necessarily a terminal node. Yet, some terminal nodes
can also be reached after finitely many decisions. These properties were demonstrated
in AR3 using the concept of finite and infinite nodes. A node x ∈ N\ {W } is finite if
↑x\ {x} has a minimum and infinite if x = inf ↑x\ {x}. By Proposition 3 of AR3 in
a discrete game tree, every node is either finite or infinite. By Theorem 1(c) of AR3,
all moves are finite (equivalently, every infinite node is terminal).

Denote by F (N ) the set of finite nodes together with the root W ∈ N . On this
set, a function p : F (N ) → X can be defined that assigns to every finite node its
immediate predecessor. Namely, for each x ∈ F (N ) \ {W } let

p (x) = min↑x\ {x} (2)

and p (W ) = W by convention. Hence, x ⊂ p (x) = ∩ {y |y ∈↑ x\ {x} } for all
x ∈ F (N ) \ {W }.

Since every move is a finite node, the nodes of a discrete game tree (N ,⊇)

with set W of plays can be partitioned as follows. Namely, let Y0 = {W } and
Yt = {

x ∈ N
∣
∣pt−1 (x) ⊂ pt (x) = W

}
for all t = 1, 2, . . . Nodes in the slice Yt

are pairwise disjoint: For, if x ∩ y �= ∅, then by the if-part of (GT1) either y ⊂ x or
x ⊆ y, so that either y ∈ Yt implies x ∈ Yt−k for some k > 0 or x ∈ Yt implies either
y = x or y ∈ Yt−k for some k > 0.5 Infinite (terminal) nodes do not belong to any
slice.

For instance, in Example 1, the slice Y1 consists of terminal nodes {(a, b)} ∈ N with
a < 1 plus the move {1}× [0, 1]. The slice Y2 consists of the terminal nodes {(1, b)} ∈
E only. In Example 3, the slice Y1 consists of moves of the form {a}×{1, 2, 3, 4}with
a < 1 plus the two distinguished nodes xL = {1} × {1, 2} and xH = {1} × {3, 4}.

In order to define general extensive form games, one needs the concept of choices
and the derived concept of information sets. That framework has been developed in
AR1 and AR2 and specialized to discrete trees in AR3. However, since this paper
deals only with perfect information, it is sufficient to determine a game by the tree,
the set of players, their decision points, and their preferences on W .

Definition 2 An extensive form game with perfect information (EFPI) is a tuple(
T, I,X ,�

)
, where T = (N ,⊇) is a discrete game tree, I is the (possibly infinite)

set of players, X = (Xi )i∈I is a partition of the set of moves X of the tree T into the
sets of decision points for players i ∈ I , and �= (

�i
)
i∈I is a profile of complete,

reflexive, and transitive binary relations on the set of plays W of T , one preference
relation �i for each player i ∈ I .

5 A slice may contain terminal nodes. This is the reason to avoid the more popular term “stage.”
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In an EFPI at every move x ∈ X , the player, for whom x ∈ Xi , makes a decision
and selects an immediate successor6 y ∈ p−1(x). Moves of nature are ruled out. For
the present purpose, this is natural, because existence of subgame perfect equilibria
may be destroyed by the presence of chance moves (Luttmer and Mariotti 2003).

A pure strategy for player i ∈ I in an EFPI
(
T, I,X ,�

)
is a function si : Xi → N

such that p(si (x)) = x for all x ∈ Xi , i.e., a function that specifies which of the
immediate successors of each x ∈ Xi is chosen by player i . The set Si of all such
functions is player i’s pure strategy space. A (pure) strategy combination is a tuple
s = (si )i∈I ∈ S ≡ ×i∈I Si of pure strategies, one for each player.

A subgame of an EFPI is the perfect information game that starts at some move
x ∈ X . Under perfect information, every move x ∈ X is the root of a subgame. For
every x ∈ X , there is a function φx : S → x which assigns to the subgame starting
at x ∈ X the play φx (s) ∈ x that the strategy combination s ∈ S (uniquely) induces
in the subgame starting at x . Formally this follows from AR3, Theorem 3, and AR2,
Theorems 2 and 6, and Corollary 5.

Since every strategy combination induces a unique outcome, preferences on plays
induce preferences on strategy combinations. A (pure) Nash equilibrium is a pure
strategy combination s ∈ S such that no player has an incentive to deviate from it. A
(pure) subgame perfect equilibrium (SPE; Selten 1965) is a pure strategy combination
s ∈ S = ×i∈I Si that induces a Nash equilibrium in every subgame.

2.3 Well-behaved perfect information games

The description of an extensive form game entails two levels. The tree provides an
“objective” description of the potential events. Choices, the assignment of decision
points, and preferences bring in the decision makers and make the tree into a game.
Accordingly, an EFPI may fail to have an SPE for two sets of reasons. One has to do
with the topology τ on the set W of plays of the tree (the first level), the other with
the game (the second level). The former will be studied in detail in later sections. The
latter is readily explained here.

For instance, the preference relations may not be continuous.7 If a single player
chooses a ∈ [0, 1] from the unit interval (endowed with the relative Euclidean topol-
ogy) such that a ≺1 a′ ⇔ a < a′ for all a, a′ ∈ [0, 1), but 1 �1 ā for some ā < 1,
then there is no equilibrium. This existence failure is caused by the preferences �1.8

Alós-Ferrer and Ritzberger (2016) point out that a further problem, which poten-
tially prevents equilibrium existence, may arise from the assignment X = (Xi )i∈I of

6 A node y is an immediate successor of x if and only if x is the immediate predecessor of y. The set
of immediate successors of y is hence given by p−1(x) = {y ∈ N | x = p(y) }. Note that immediate
successors might include terminal nodes.
7 A preference relation � on a topological space (W, τ ) upper resp. lower semi-continuous if the upper
contour set

{
w′ ∈ W |w � w′} resp. the lower contour set

{
w′ ∈ W |w′ � w

}
is closed in τ for all w ∈ W .

The relation � on W is continuous if it is both upper and lower semi-continuous.
8 Example 3 of Solan and Vieille (2003) shows that a pure subgame perfect ε-equilibrium (ε ≥ 0) may
not exist if the players’ payoff functions are upper semi-continuous, but not lower semi-continuous. Purves
and Sudderth (2011) analyze ε-equilibrium existence (ε > 0) when only upper semi-continuity of payoff
functions is assumed and Flesch et al. (2010) when only lower semi-continuity is assumed.
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Fig. 1 Graphical representation
of Example 5. Player 1 chooses
a number a in [0, 1], then either
player 2 (if a < 1/2) or player 3
(if a ≥ 1/2) chooses another
number in [0, 1]

1

[0, 1/2[ [1/2, 1]

2 3

. . . . . .
[0, 1] [0, 1] [0, 1] [0, 1]

decision points. The associated example is as follows (Example 2 of Alós-Ferrer and
Ritzberger 2016).

Example 5 Let W = [0, 1]2 and N = {
W, ({a} × [0, 1])a∈[0,1] , ({w})w∈W

}
be the

set of plays and nodes, respectively, and for three players, I = {1, 2, 3}, let X1 =
{W }, X2 = {

({a} × [0, 1])a∈[0,1/2)
}
, and X3 = {

({a} × [0, 1])a∈[1/2,1]
}
(see Fig. 1).

Endow W with the relative Euclidean topology of the plane, making W compact
and all nodes closed. Preferences are represented by the continuous payoff functions
U1 (a, b) = a (1 − b), U2 (a, b) = −b, and U3 (a, b) = b, where w = (a, b) ∈ W .
Player 3 will optimally choose b = 1, and player 2 will choose b = 0. Thus, player
1’s value function yields a if a < 1/2 and zero if a ≥ 1/2 and has no maximum.

In this example, the union of the decision points for player 2 in the slice Y1 is not
closed, even though all individual nodes are closed. And this is the reason for why
there is no equilibrium.

In other words, the two objectsX and� that make a tree into an EFPI need to satisfy
conditions with respect to the topological space (W, τ ) in order to admit existence of
equilibrium. To isolate these conditions, they are summarized in the next definition of
a “well-behaved” perfect information game.

Definition 3 An EFPI
(
T, I,X ,�

)
is well behaved with respect to a topology τ on

W if

(WB1) for each t = 0, 1, . . . the nonterminal partYt\E of the sliceYt is partitioned
into finitely many nonempty cells of the form Yit = Xi ∩ Yt with i ∈ I such that
W (Yit ) is closed in τ for all i ∈ I ;
(WB2) for each player i ∈ I , the preference relation�i is continuous with respect
to the topology τ .

For instance, Example 5 fails (WB1), while Example 1 fulfills it, as the only move
other than the root, {1} × [0, 1] ∈ Y1, is a closed set of plays. Example 3 also fulfills
(WB1), because player 2 decides at all nodes in the intermediate slice Y1 andW (Y1) =
W .

The definition of well-behaved perfect information games restricts the analysis to
preferences that are continuous with respect to the topology τ , (WB2), and rules out
ill-behaved assignments of decision points, (WB1). Hence, both problems that could
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surface when the tree is turned into a game, with the preference relations � and with
the assignment of decision points X , are taken care of.

The objective here is to characterize the class of topologies on the set of plays of
a given tree such that all well-behaved perfect information games defined on that tree
admit a subgame perfect equilibrium. This is reflected by the following definition.

Definition 4 The topology τ on the set W of plays of a discrete game tree (N ,⊇)

admits equilibrium analysis if some well-behaved EFPI can be defined on it and
every EFPI that is well behaved with respect to τ has an SPE.

If a topology τ does not admit equilibrium analysis, then there will be a perfect
information game on this tree with this topology that does not have an equilibrium,
even though preferences are continuous and decision points are suitably assigned.
Thus, Definition 4 captures a minimal requirement on a topology. It is also natural
to require that a topology only admits equilibrium analysis if some well-behaved
EFPI can be defined on it. This is merely a nontriviality requirement. For, otherwise a
topology would trivially admit equilibrium analysis when no well-behaved EFPI can
be defined on it. This is illustrated in the following example.

Example 6 Let W = [0, 1]2 and (N ,⊇) be given by

N = {
W, ({a} × [0, 1])a∈[0,1/2) , ({w})w∈W

}
.

Denote by τ |W (Yt ) the topology τ relative to W (Yt ) for all t = 0, 1, . . .9 Here
this is the Euclidean topology relative to W (Y0) = W (Y1) = [0, 1]2 and W (Y2) =
[0, 1/2)×[0, 1]. ThenW (Y1 ∩ X) = [0, 1/2)×[0, 1] is not closed relative toW (Y1).
But by (WB1), themoves in this slice, Y1\E = Y1∩X , must be partitioned into finitely
many cells Yi1 with i ∈ I such that each W (Yi1) is closed, so that W (Y1 ∩ X) must
be closed as a finite union of closed sets—a contradiction.

3 Tree topology

There are precisely two conditions that a topology τ on the set W of plays has to
respect in order to admit equilibrium analysis. They are neither about preferences �
nor about the assignment X of decision points. Rather, they both reflect the relation
between nodes and plays.

Theorem 1 For a discrete game tree (N ,⊇) with set W of plays, every perfectly
normal10 topology τ on W that admits equilibrium analysis satisfies

(CN) W\x ∈ τ for all x ∈ N, and

9 That is, for a set U ⊆ Yt of nodes W (U ) ∈ τ |W (Yt ) if and only if there is u ∈ τ such that W (U ) =
u ∩ W (Yt ).
10 A topology τ is perfectly normal if it is T1 (i.e., for each pair of distinct points, each has a neighborhood
that does not contain the other) and any two disjoint closed sets can be precisely separated by a continuous
function; that is, if A, B are disjoint closed sets, there exists a continuous function with range [0, 1] such
that A = f −1(0) and B = f −1(1). Every metric space is perfectly normal.
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(OP) for all t = 0, 1, . . . and all sets V ⊆ Yt+1 of nodes, if W (V ) ∈ τ |W (Yt+1) ,
then W (p (V )) ∈ τ |W (Yt ) .

Before proceeding to the proof (in the next subsection), the two properties (CN) and
(OP) are briefly discussed. The “closed nodes” property (CN) requires that all nodes
are closed as sets of plays. If it fails, simple counterexamples to existence of SPE can
be constructed. For instance, if W = [0, 2] were endowed with the relative Euclidean
topology and N = {

W, [0, 1) , [1, 2] , ({w})w∈W
}
, then a single player maximizing

the continuous payoff function U1 (w) = w at the node [0, 1) ∈ N would not be able
to do so.

The “open predecessors” condition (OP) requires that if the union of a set of nodes in
a slice is open, then the union of its immediate predecessors is also open. Intuitively, if a
node y in a slice Yt+1 is slightly perturbed, then this translates into a slight perturbation
of its predecessor x = p (y). This is a “pasting condition” that can also be stated in a
topology on nodes.

Specifically, because nodes in a slice Yt are pairwise disjoint, the projection projt :
W (Yt ) → Yt is uniquely defined by w ∈ projt (w) for all w ∈ W (Yt ). The quotient
topology is the finest topology on Yt that makes the projection projt continuous when
W (Yt ) is endowed with the relative topology induced by τ . It is not difficult to show
that a set of nodes in a slice Yt is open in the quotient topology if and only if its union
is open as a set of plays (see Lemma 2 of Alós-Ferrer and Ritzberger 2016). Hence,
the quotient topology is a perfectly natural choice. With this topology on nodes in a
slice (OP) states that the function p : Yt+1 → Yt from (2) restricted to slices maps
open sets to open sets, i.e., it is an open map. Theorem 17.7 of Aliprantis and Border
(1999, p. 560) shows that this is equivalent to lower hemi-continuity of the immediate
successor correspondence.

Example 7 Recall Example 3. All nodes except the root are finite and, hence, (CN)
follows immediately sincewe adopt the (relative) Euclidean topology onW = [0, 1]×
{1, 2, 3, 4}. Consider condition (OP). ForY1 this condition is trivially fulfilled, since the
predecessor of any node in this slice is the root. Hence, (OP) only needs to be verified
for Y3. In this slice, all nodes are terminal, and W (Y3) = W (Y2) = W . Let V be a set
of nodes in Y3 such thatW (V ) is open. Condition (OP) requires that the setW (p(V ))

is also open. Let (a, n) ∈ W (p(V )) with a < 1. This implies that (a, n′) ∈ W (V )

for some n′. Since W (V ) is open in W , the projection of V on [0, 1] is an open set
and hence contains an open neighborhood B of (a, n′). Then B × {1, 2, 3, 4} is an
open neighborhood of (a, n) in W (p(V )). Let now (1, n) ∈ W (p(V )), and suppose
(1, n) ∈ xL = {(1, 1), (1, 2)} (the case where it is in xH is analogous). Hence, there is
(1, n′) ∈ W (V )∩xL . By an analogous argument as above, the projection of V on [0, 1]
is an open set, and hence it contains an open neighborhood B ′ of (a, n′) in that open set.
Then,

(
B ′ ∩ [0, 1))×{1, 2, 3, 4}∪{(1, 1), (1, 2)} is an open set contained inW (p(V ))

that contains (1, n). Therefore,W (p(V )) is open inW (Y2) = W , completing the proof
of (OP).

Example 8 Condition (OP) is what fails in Example 1 (recall also Example 4) when
the unit square W = [0, 1]2 carries the relative Euclidean topology. Consider the
set V = {{(1, b)}| 1/2 − ε < b < 1/2 + ε} ⊆ Y2, for some ε ∈ (0, 1/2), of terminal
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nodes reached after player 2 has decided. The setW (V ) ⊆ W (Y2) is clearly relatively
open; hence, V is open in the quotient topology on Y2. Its immediate predecessor set
p (V ), though, consists of the singleton {1} × [0, 1] ∈ X , which is not open. Hence,
(OP) fails in this example. This shows that the ultimate reason for the failure of
existence in this example is a violation of (OP), that is, a problemwith the specification
of the tree, and not a failure of compactness in a derived Tychonoff construction.

Some formof property (OP) has always been assumed, to the best of our knowledge,
in previous proofs of existence of SPE for perfect information games without much
ado, even though sometimes in disguised form. For instance, in the formalism of
Harris (1985b, p. 618, Assumption 4), it shows up as lower hemi-continuity11 of
the “action correspondence.” Harris (1985b, p. 618) calls this property “curious.”
Apparently it has not been recognized so far that (OP) is necessary for existence of
SPE. Further, the assumptions of Harris (1985b) also imply upper hemi-continuity
(and hence full continuity) of the action correspondence, which is not necessary in the
present setting (as shown by Example 7 of Alós-Ferrer and Ritzberger 2016).

A topology τ on the setW of plays of a discrete game tree (N ,⊇) that satisfies (CN)
and (OP) will henceforth be called a tree topology. With this terminology, Theorem 1
states that every perfectly normal topology that admits equilibrium analysis must be
a tree topology.

3.1 A characterization

In a companion paper (Alós-Ferrer and Ritzberger 2016), sufficient conditions were
established for the existence of SPE in well-behaved perfect information games. In
that paper, for a given game tree T = (N ,⊇), a compact topology that fulfills (CN)
is called T -admissible. The main result of the paper states that every separated12 T -
admissible topology that satisfies (OP) admits equilibrium analysis (Alós-Ferrer and
Ritzberger 2016, Theorem 1).

Even though this is the most general existence theorem in the literature for SPE
in perfect information games with continuous preferences, without Theorem 1 there
would still be the possibility that the frontier can be pushed further. The main result of
the present paper, though, makes sure that tree topologies are precisely what is needed
for equilibrium analysis in large games. The two main hypotheses of the theorem in
Alós-Ferrer and Ritzberger (2016), (CN) and (OP), are the conclusions in Theorem 1.

On the other hand, the sufficiency theorem uses one hypothesis that is neither a
conclusion nor a hypothesis in Theorem 1: compactness. One may guess that this is
actually also a necessary condition. Unfortunately, the underlying issue is undecidable,
aswill be discussed inmore detail in Sect. 4.2. Furthermore, the sufficiency result uses a
hypothesis that is implied by the hypothesis of Theorem1, since every perfectly normal

11 A correspondence Φ : (X, τ1) � (Y, τ2) between topological spaces (X, τ1) and (Y, τ2) is upper resp.
lower hemi-continuous if for every open set u ∈ τ2 in Y the upper preimageΦ+ (u) = {x ∈ X |Φ (x) ⊆ u }
resp. the lower preimage Φ− (u) = {x ∈ X |Φ (x) ∩ u �= ∅} is open in X (belongs to τ1).
12 A topological space is separated (T2 or Hausdorff) if any two distinct points can be separated by disjoint
neighborhoods.
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topology is separated.Adopting the stronger separation axiomplus compactness yields
the following characterization.

Theorem 2 Let T = (N ,⊇) be a discrete game tree with set W of plays and τ a
compact perfectly normal topology on W for which some well-behaved EFPI exists.
Then, τ admits equilibrium analysis if and only if it is a tree topology.

Theorem 1 does not invoke compactness and hence is stronger than the only-if
direction of Theorem 2. What is maintained is the separation axiom that τ is perfectly
normal. This is a rather weak assumption, though. For, in practice, one may want
to employ a topology that is, for instance, induced by a metric (as, e.g., in Hellwig
and Leininger 1987) and, therefore, satisfies a much stronger separation axiom. In
particular, every metric space is perfectly normal. Therefore, this hypothesis captures
the relevant cases.

Of course, counterexamples to existence of SPE are not enough to establish the
necessity of a tree topology, because the theorem says nothing about the tree nor
about the particular topology (except for perfect normality). Therefore, the following
subsection is devoted to the proof of Theorem 1.

3.2 Proof of Theorem 1

The proof proceeds by three lemmata and three propositions. The first step is to show
that in a given slice Yt , the sets of plays W (Yt ∩ E) ending at Yt and those that do
not, W (Yt ∩ X), are closed. (This lemma is also needed in the companion paper on
sufficiency, see Alós-Ferrer and Ritzberger 2016, Lemma 1.)

Lemma 1 Let τ be a topology on the set W of plays for a discrete game tree T =
(N ,⊇) such that a well-behaved EFPI can be defined. Then, the sets W (Yt ) and
W (Yt ∩ X) are closed in τ , for all t = 1, 2, . . .

Proof Suppose that some well-behaved EFPI with respect to τ can be defined. Then
the set Yt\E = Yt ∩ X is partitioned into finitely many cells of the form Yit = Xi ∩Yt
for i ∈ I . Since nodes in a slice are disjoint, it follows that W (Yt ∩ X) is partitioned
into finitely many cells of the form W (Yit ) for i ∈ I . Further, each W (Yit ) is closed.
Therefore, W (Yt ∩ X) is closed as a finite union of closed sets. That also W (Yt ) is
closed in τ follows from W (Y0) = W and W (Yt ) = W (Yt−1 ∩ X) for t = 1, 2, . . .

��
Lemma 1 implies that if the topology admits equilibrium analysis—thus, a well-

behaved EFPI can be defined—then, for a slice Yt , the subsetsW (Yt ) of plays passing
through nodes in Yt and W (Yt ∩ X) of plays passing through moves in Yt are closed.
The following is an immediate but important consequence of this fact.

Lemma 2 If a topology τ on the set W of plays for a discrete game tree T = (N ,⊇)

admits equilibrium analysis, then any EFPI for which all moves in each slice are
assigned to the same player, Yt ∩ X = Yit for some i ∈ I for all t = 0, 1, . . ., satisfies
(WB1) from Definition 3.
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If τ admits equilibrium analysis, by Lemma 1 the plays passing through moves in
a slice Yt form a closed set in τ . Therefore, the set W (Yt ∩ E) of plays ending at the
slice Yt must be relatively open in τ . Yet, under the hypothesis of Theorem 1, that τ

admits equilibrium analysis implies that this set is also closed.

Proposition 1 If a perfectly normal topology τ on the set W of plays for a discrete
game tree T = (N ,⊇) admits equilibrium analysis, then the set W (Yt ∩ E) of plays
ending at slice Yt is closed, for all t = 1, 2, . . .

Proof Suppose that for some t = 0, 1, . . . the set of playsW (Yt ∩ E) passing through
the terminal nodes in Yt is not closed. This implies that Yt ∩X �= ∅, because otherwise
W (Yt ) = W (Yt ∩ E) would be closed by Lemma 1. It follows that there is a cluster
point w0 of W (Yt ∩ E) which does not belong to W (Yt ∩ E). Since W (Yt ∩ E) ⊆
W (Yt ) and the latter is closed by Lemma 1, it follows that w0 ∈ W (Yt ), and hence
w0 ∈ W (Yt ∩ X). Since w0 is a cluster point of W (Yt ∩ E), for every neighborhood
u ∈ τ of w0 ∈ u there is w ∈ u ∩ W (Yt ∩ E). Fix such a neighborhood u0 ∈ τ

of w0 ∈ u0. Because (W, τ ) is perfectly normal, Urysohn’s lemma (Aliprantis and
Border 1999, p. 45) implies that there is a continuous function f : W → [0, 1]
such that f −1 (0) = W\u0 and f −1 (1) = {w0}, because singletons are closed in a
perfectly normal (hence, in particular, T1) space.

Assign all moves before Yt to player 1, X1 = ∪t−1
k=0 (Yk ∩ X), and all moves from

Yt onward to player 2, X2 = ∪k≥t (Yk ∩ X). Preferences are represented by the con-
tinuous functions

U1 (w) = f (w) and U2 (w) = − f (w) for all w ∈ W.

By continuity of U1 and U2 and Lemma 2, this is a well-behaved EFPI.
For every λ ∈ [0, 1), player 1 can guarantee herself a payoff that is strictly larger

than λ. For, the strict upper contour set uλ = {w ∈ W |U1 (w) > λ } is an open
neighborhood of w0 by continuity and, hence, there is w′ ∈ uλ ∩ W (Yt ∩ E), that is,
there is

{
w′} ∈ Yt ∩ E such thatU1

(
w′) > λ. If player 1 picksw′ ∈ uλ ∩W (Yt ∩ E),

she obtains more than λ, since player 2 does not get to choose. Therefore, player 1
must obtain payoffU1 (w) = 1 in any Nash equilibrium.U1 (w) = 1 impliesw = w0,
yet {w0} /∈ Yt ∩E . Hence,w0 ∈ x0 for some x0 ∈ Yt ∩X = Yt ∩X2. Since x0 ∈ X and
E = {{w}}w∈W , there is w′ ∈ x0\ {w0} such that U2

(
w′) > −1 = U2 (w0). Because

player 2 controls all moves from Yt onward, picking w′ ∈ x0 constitutes a profitable
deviation for player 2. Therefore, there is no Nash equilibrium and in particular no
SPE. ��

It follows that for each slice Yt , the sets W (Yt ∩ X) of plays passing through
moves and W (Yt ∩ E) of plays ending at Yt are both open and closed (“clopen”) in
τ whenever τ admits equilibrium analysis. Hence, the set of plays W (Yt ) passing
through a slice Yt cannot be connected when it contains terminal nodes.13

The last lemma states the obvious. The existence of subgame perfect equilibria for
one-player EFPIs boils down to existence of maxima at every move.

13 A topological space is connected if its only subsets which are both open and closed are the empty set
and the full space. A subset that is a connected space with its relative topology is called connected.
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Lemma 3 If a topology τ on the set W of plays for a discrete game tree T = (N ,⊇)

admits equilibrium analysis, then every continuous preference relation � on W has a
maximum at every move.

Proof By Lemma 2 assigning all moves to a single player, i.e., X1 = X , endowed
with continuous preferences � yields a well-behaved EFPI. By hypothesis, an SPE
s∗ exists. Fix a move x ∈ X , and let w∗ = φx (s∗) be the play induced by s∗ in the
subgame starting at x . If w′ � w∗ for some w′ ∈ x , there is a strategy that picks
w′ � w∗ (since every play can be reached by some strategy profile by Theorem 4 of
AR2). Hence, w∗ is a maximum of � at x . ��

With this preparationout of theway,we are ready to prove thefirst part ofTheorem1,
the necessity of (CN).

Proposition 2 For a discrete game tree T = (N ,⊇) with set W of plays, every
perfectly normal topology τ on W that admits equilibrium analysis satisfies (CN).

Proof Suppose that for some t = 0, 1, . . . there is x ∈ Yt that is not closed. Then there
is w0 ∈ W\x (a cluster point of x) such that for every neighborhood u ∈ τ of w0 ∈ u
there is w ∈ u ∩ x . Fix such a neighborhood u0 ∈ τ of w0 ∈ u0. Because (W, τ )

is perfectly normal by hypothesis, Urysohn’s Lemma again implies that there is a
continuous function f : W → [0, 1] such that f −1 (0) = W\u0 and f −1 (1) = {w0},
as singletons are closed in a perfectly normal space. We claim that the preferences on
W represented by the continuous function U1 (w) = f (w) for all w ∈ W have no
maximum at the node x , in contradiction to Lemma 3.

To see the claim, it is enough to observe that for every λ ∈ [0, 1), the player can
guarantee herself a payoff that is strictly larger than λ. For, the strict upper contour
set uλ = {w ∈ W |U1 (w) > λ } is an open neighborhood of w0 by continuity and,
therefore, has a nonempty intersection with x . Choosing a play w ∈ uλ ∩ x , the player
obtainsmore than λ. But themaximal payoff 1 remains infeasible, becauseU1 (w) = 1
implies w = w0 /∈ x . Therefore, the payoff function has no maximum at x . ��

The last step is to establish the necessity of the open predecessor condition (OP).
This will then complete the proof of Theorem 1.

Proposition 3 For a discrete game tree T = (N ,⊇) with set W of plays, every
perfectly normal topology τ on W that admits equilibrium analysis satisfies (OP).

Proof If (OP) fails, then for some t = 0, 1, . . . there is a set V ⊆ Yt+1 of nodes
such that W (V ) ∈ τ |W (Yt+1) , but W (p (V )) /∈ τ |W (Yt ) , where p (V ) =
{p (y) |y ∈ V }. It follows that the set W ({y ∈ Yt+1 |p (y) /∈ p (V ) }) is not closed
in τ |W (Yt+1) . For, if it were, then its complement would be open in τ |W (Yt+1) ,
i.e., there would be v ∈ τ withW ({y ∈ Yt+1 |p (y) ∈ p (V ) }) = v ∩W (Yt+1). Since
W (Yt ∩ E) is closed by Proposition 1, v′ = v\W (Yt ∩ E) ∈ τ as the complement of
a closed set, hence,

W (p (V )) = W ({y ∈ Yt+1 |p (y) ∈ p (V ) }) = v ∩ W (Yt+1) = v′ ∩ W (Yt )
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would be open in τ |W (Yt ) , in contradiction to the hypothesis that W (p (V )) /∈
τ |W (Yt ) .

That W ({y ∈ Yt+1 |p (y) /∈ p (V ) }) is not closed implies that there exists some
w0 ∈ W ({y ∈ Yt+1 |p (y) ∈ p (V ) }) such that for every neighborhood v̂ ∈ τ of
w0 ∈ v̂, there is some w ∈ v̂\ {w0} with w ∈ W ({y ∈ Yt+1 |p (y) /∈ p (V ) }). Let
y0 = projt+1 (w0) ∈ Yt+1 be the unique node in Yt+1 such that w0 ∈ y0. Then
y0 does not belong to V , i.e., y0 /∈ V . For, if it did, then, with v̂ ∈ τ such that
v̂∩W (Yt+1) = W (V ), thatw0 ∈ y0 ⊆ v̂would imply that there is somew′ ∈ v̂\ {w0}
with p

(
projt+1

(
w′)) /∈ p (V ) even though w′ ∈ v̂ implies projt+1

(
w′) ∈ V , a

contradiction. On the other hand, w0 ∈ W ({y ∈ Yt+1 |p (y) ∈ p (V ) }) implies that
p (y0) ∈ p (V ), and the latter implies that there is some y1 ∈ V , y1 �= y0, such that
p (y1) = p (y0). Let x̄ = p (y0) = p (y1) ∈ Yt .

Choose w1 ∈ y1 ∈ p−1 (x̄) ∩ V , and recall that w0 ∈ y0 ∈ p−1 (x̄) \V . Because
(W, τ ) is separated, there are u0, û1 ∈ τ such that w0 ∈ u0, w1 ∈ û1, and u0 ∩
û1 = ∅, and the singletons {w0} and {w1} are closed. Setting u1 = û1 ∩ v ∈ τ ,
it follows that u1 ∩ W (Yt+1) ⊆ W (p (V )). Since W\u0 and W\u1 are closed as
complements of open sets, again by Urysohn’s lemma there are continuous functions
f1 : W → [0, 1] and f2 : W → [0, 1] such that f −1

1 (1) = {w0}, f −1
1 (0) =

W\u0, f −1
2 (1) = {w1}, and f −1

2 (0) = W\u1, as (W, τ ) is perfectly normal by
hypothesis.

Assign all moves before Yt to player 1, X1 = ∪t−1
k=0 (Yk ∩ X), and all moves from

Yt onward to player 2, X2 = ∪k≥t (Yk ∩ X), so that Yt\E ⊆ X2 but Yt−1\E ⊆
X1. Preferences for the two players i = 1, 2 are represented by the continuous
functions

U1 (w) = f1 (w) and U2 (w) = 1

2
f1 (w) + f2 (w) for all w ∈ W.

By Lemma 2 and continuity of Ui (i = 1, 2) this yields a well-behaved EFPI.
In an SPE, player 1 can guarantee herself a payoff that strictly exceeds λ for any

λ ∈ [0, 1). For, the strict upper contour set uλ = {w ∈ W |U1 (w) > λ } is open in τ by
continuity of U1 and a neighborhood of w0 ∈ uλ. Thus, there is wλ ∈ uλ\ {w0} such
that wλ ∈ W ({y ∈ Yt+1 |p (y) /∈ p (V ) }). Hence, there is yλ = projt+1 (wλ) ∈ Yt+1
such that p (yλ) ≡ xλ ∈ Yt\p (V ). Since u1 ∩ W (Yt+1) ⊆ W (p (V )) implies
W (Yt\p (V )) = W (Yt ) \W (p (V )) ⊆ W\u1 and U1 (w) = 2U2 (w) for all w /∈
u1, if player 1 chooses xλ, then (by subgame perfection) player 2 will choose w ∈
argmaxw′∈xλ

U2
(
w′) = argmaxw′∈xλ

U1
(
w′), which yields player 1 strictly more

than λ, because wλ ∈ yλ ⊂ xλ ⇒ wλ ∈ xλ ∩ uλ.
Therefore, player 1 must obtain payoff U1 (w) = 1 in each SPE. But U1 (w) = 1

implies w = w0 ∈ x̄ ∈ Y2t . Consider the subgame starting at x̄ ∈ Y2t . Since player 2
controls all moves from Yt onward, she can in particular choose w1 ∈ y1 ∈ V . This
gives her a payoff of at least 1 which is strictly more than what she can obtain outside
of u1, that is, argmaxw′∈x̄ U2

(
w′) ⊆ u1 ∩ W (Yt+1). But then player 1’s best payoff

from choosing x̄ ∈ Yt is zero. Hence, player 1’s value function has no maximum and
no SPE exists. ��
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4 Discussion

This section discusses a few fine points about the previous arguments. The first con-
cerns separation properties, specifically the assumption of a perfectly normal topology.
Without this assumption, there exist very weak (coarse) topologies that may admit
equilibrium analysis without satisfying (OP). The example below illustrates that such
topologies are of purely theoretic interest, because only very few preference relations
will be continuous with respect to them. The second point is the discussion about
the role of compactness that has been touched upon before. And the third concerns
topologies on the space of pure strategies.

4.1 The Fort example

Theorem 1 states that any topology τ on the set W of plays that admits equilibrium
analysis must be a tree topology. The result employs the hypothesis that (W, τ ) is
perfectly normal, though. Therefore, there could be very coarse topologies that admit
equilibrium analysis which are not tree topologies. Yet, if that is the case, it may
severely constrain the set of preferences that are still continuous with respect to such
a coarse topology. The following example is constructed to fail perfect normality in
such a way that (OP) fails, but the topology still admits equilibrium analysis. The price
paid for this is that the only functions that are continuous with respect to this topology
are those with countably many values.

Example 9 Let W = [−2,−1] ∪ [1, 2] and N = {W, ({−w,w})w∈W , ({w})w∈W }.
For any set of players I , let 1 ∈ I denote the player who chooses at the root. The
topology is the Fort topology, i.e., the open sets are those whose complements are
either finite or contain the point 1 ∈ W . (That is, a closed set is either a finite set or
contains 1 ∈ W .) This is a compact Hausdorff space that is not perfectly normal (see
Steen and Seebach 1978, p. 52).

To see (CN), note that all nodes except the root are finite sets, hence closed, and the
root contains 1 ∈ W . The Fort topology fails (OP), though. For, consider the terminal
node (singleton set) x = {−1}, which is open by 1 /∈ x . Its immediate predecessor is
p (x) = {−1, 1}, which contains 1 ∈ W but is not cofinite, and thereby not open.14

That is, while W ({x}) is open, W (p ({x})) is not, and (OP) fails.
Any continuous preference relation �i on W satisfies the following. First, for

every w ∈ W with 1 ≺i w, the upper contour set
{
w′ ∈ W

∣
∣w �i w′ } is finite,

because it must be closed, but cannot contain 1. Analogously, for every w ∈ W with
w ≺i 1, the lower contour set

{
w′ ∈ W

∣
∣w′ �i w

}
is finite. Hence, the indifference

sets
{
w′ ∈ W

∣
∣w′ ∼i w

}
are also finite for any w ∈ W with w ≺i 1 or 1 ≺i w. This

implies that the strict upper contour set
{
w′ ∈ W

∣
∣1 ≺i w′ } is countable. To see this,

consider the quotient space

14 The predecessor p (x) also fails to be a Gδ (a countable intersection of open sets), because any open set
containing {−1, 1} is cofinite and, therefore, contains uncountably many nodes of the form {−w,w}. The
terminal nodes {1} and {−1} are also not Gδs.
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Φ1 ≡ {w ∈ W |1 ≺i w } / ∼i .

This set can be enumerated (mapped one-to-one to a subset of the natural numbers)
by assigning to each class V ∈ Φ1 the (finite) number of elements of W which
are weakly preferred to the elements of V . Hence, Φ1 is countable. The strict upper
contour set

{
w′ ∈ W

∣
∣1 ≺i w′ } is the union of all elements of Φ1, hence a countable

union of finite sets and, therefore, countable. Analogously, the strict lower contour set{
w′ ∈ W

∣
∣w′ ≺i 1

}
is countable.

Let continuous preference relations�i for the players i ∈ I be given. At each move
{−w,w}, there is a best element for player i ∈ J ({−w,w}), who controls it, say
m (w), by finiteness. We claim that�1 is maximized on the set M = {m (w) |w �= 1 }.
Proceeding indirectly, suppose that there is no best element with respect to �1 on
M . It follows that w �1 1 for all w ∈ M , for otherwise taking any w ∈ M with
1 ≺1 w that

{
w′ ∈ W

∣
∣w �1 w′ } is finite would imply the existence of a best ele-

ment. If further w ≺1 1 would hold for all w ∈ M , then the uncountable set M were
a subset of the countable set

{
w′ ∈ W

∣
∣w′ ≺1 1

}
. Therefore, there must be w ∈ M

with w ∼1 1, but then w ∈ M is a best element with respect to �1, a contradic-
tion.

Let w∗ be a best element with respect to �1 in M . Then �1 is also maximized on
M ∪ {m (1)}, either at m (1) or at w∗ = m (w∗). There is an SPE where each player at
{−w,w} chooses m (w) and player 1 chooses {−1, 1} if w∗ ≺1 m (1) or {−w∗, w∗}
otherwise. It follows that the Fort topology admits equilibrium analysis, but violates
(OP).

If the setW = [−2,−1]∪ [1, 2] of plays from this example were endowed with the
more natural relative Euclidean topology, then (OP) would hold. That is, the failure of
(OP) is due to the choice of a coarse topology. (The coarseness of the Fort topology
is also responsible for the fact that so few functions are continuous with respect to
this topology.) This illustrates why the necessity conditions in Theorem 1 are indeed
stronger than the necessity conditions in analogous results would be if those only
assumed T1 or T2.

4.2 Is compactness necessary?

In Theorem 2, compactness is an added hypothesis for the characterization. Of course,
compactness is a mild assumption which is usually included in existence theorems
involving continuity of preferences without much ado. For, a priori existence of max-
ima for continuous preferences may fail in noncompact spaces. Hence, it is natural
to ask whether compactness can also be obtained as a necessary condition in Theo-
rem 1.

The answer to this question is surprising. It is closely related to a class of topological
spaces called “pseudocompact.”Apseudocompact topological space is onewhere each
real-valued continuous function is bounded. It is easy to show that this is equivalent to
the statement that every real-valued continuous function has maxima and minima. It
is known that every countably compact topological space is pseudocompact. Further,
for normal spaces (i.e., for spaces such that disjoint closed sets can be separated by
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disjoint open neighborhoods), the converse is true. Since perfect normality implies
normality, it follows that every pseudocompact perfectly normal space is countably
compact.

By Lemma 3, if a topological space admits equilibrium analysis, then it must be
pseudocompact. If pseudocompactness would imply compactness, then we would
conclude that compactness is necessary for equilibrium analysis.

Fedorchuck (1976) and Ostaszewski (1976) constructed (in the set-theoretic sense)
examples of countably compact (hence pseudocompact) and perfectly normal spaces
that are not compact. Hence, not every pseudocompact space is compact. Fur-
ther, for this space, every real-valued continuous function has maxima. Consider
a tree defined on this space (as set of plays) which includes only the root and
the singletons of plays. The only possible assignment of players to nodes is a
single player, who directly chooses a final outcome. It follows that for any con-
tinuous payoff function, this game has an SPE, even though the topology is not
compact.15 Hence, compactness is not a necessary condition for equilibrium analy-
sis.

Alas, the constructions in Fedorchuck (1976) and Ostaszewski (1976) rely on more
than just the standard Zermelo–Fraenkel-Choice (ZFC) axioms, on which standard
set theory is based. They make use of an additional axiom known as Jensen’s Com-
binatorial Principle ♦, which is a consequence of Gödel’s Axiom of Constructibility
(V = F) and is stronger than the Continuum Hypothesis. This axiom is indepen-
dent of ZFC. Hence, what the result actually means is that there exists an extension
of ZFC such that compactness is not a necessary condition for equilibrium analy-
sis.

Weiss (1978) showed that if one assumes that the Continuum Hypothesis is false
(which is perfectly justified, as the ContinuumHypothesis is independent of ZFC) and
adds a further axiom toZFC, known asMartin’sAxiom,we obtain an alternative exten-
sion of the standard mathematical system where a remarkable result (known asWeiss’
Theorem) can be shown: Every countably compact perfectly normal space is compact.
Since under perfect normality countably compact is equivalent to pseudocompact, this
can be restated as follows: Every pseudocompact perfectly normal topological space is
actually compact. Martin’s Axiom is known to be implied by the ContinuumHypothe-
sis, but it is also consistent with its negation. Hence, we obtain a new extension of ZFC
in which, as argued above, whenever a topological space admits equilibrium analysis,
it must be compact.

In short, there exist extensions of the standard ZFC axiom system where compact-
ness is necessary for equilibrium analysis—and extensions where it is not. That is, the
question of whether compactness can be added as a necessary condition to our set of
properties has neither a negative nor a positive answer under ZFC. It is undecidable
(neither provable nor refutable) in the sense of Gödel (1931). Given this state of affairs,
we are content with adding compactness as a hypothesis for Theorem 2.

15 In order not to (further) complicate the discussion, we focus on equilibrium existence for continuous
payoff functions, rather than for continuous preference relations. Technically speaking, the implication
discussed here would remain open if we defined and focused on “ordinally pseudocompact spaces.”
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4.3 Topologies on strategies

In the above approach, the topological structure is imposed on the setW of plays for a
discrete game tree (N ,⊇). There is a way, of course, to translate this into a topology
on the strategy space S. In particular, theweak (or initial) topology on S is the weakest
(or coarsest) topology on S that makes the function φ : S → W , as identified in AR2
(Theorems 2 and 6, and Corollary 5), continuous when W is endowed with a tree
topology τ . This is the topology generated by the collection of sets

{
φ−1 (u) |u ∈ τ

}

as a subbasis. A basis for this topology is the collection of finite intersections of the
form∩n

k=1φ
−1

(
uk

)
with uk ∈ τ for all k = 1, . . . , n ∈ N. Interestingly, topologies on

strategies as generated by topologies on the set of plays have been productively used
in the previous literature, e.g., by Fudenberg and Levine (1983) and Harris (1985a).

5 Conclusions

This paper provides necessary conditions on the topology on the set of plays of a
potentially large discrete game tree such that every well-behaved perfect information
game defined on this tree has a subgame perfect equilibrium. A full characterization
is obtained for the class of compact and perfectly normal topologies: Such topologies
admit equilibrium analysis if and only if they are tree topologies. This characterization
rests on two stronger results. The conditions (CN) and (OP) are necessary under perfect
normality, but compactness is not required. The same conditions are sufficient for
compact topologies, even if those are only separated (Hausdorff).

Since the result is a characterization, the conclusion is that a tree topology is the
minimal structure that needs to be added when studying infinite games. As pointed
out in Alós-Ferrer and Ritzberger (2016), the two conditions are weaker than those
used in other existence results in the literature. For instance, (OP) is equivalent to
lower hemi-continuity of the “action correspondence” (the assignment of immediate
successors in the present setting), but upper hemi-continuity is not necessary. Further,
even if the game has a stage structure, Example 7 in Alós-Ferrer and Ritzberger
(2016) shows that (OP) and (CN) do not necessarily imply that the topologies on the
slices fulfill separation axioms, as, e.g., Hausdorff, which is frequently assumed in
the literature. Conceptually, a characterization has become possible only because the
present approach focuses on topologies on the set of plays (as a natural consequence of
the work started in Alós-Ferrer and Ritzberger 2005, 2008, 2013), rather than deriving
such topologies from assumptions on “stages” or local action sets.

In summary, the result goes beyond the existing literature, because we identify
conditions for equilibrium existence which turn out to be also necessary. That is, they
provide an answer to the question “How general can a topological existence theorem
for large extensive form games become?”

Acknowledgements The authors gratefully acknowledge helpful comments and suggestions by two anony-
mous referees, Larry Blume, Egbert Dierker, Michael Greinecker, Josef Hofbauer, Johannes Kern, Martin
Meier, Karl Schlag, Satoru Takahashi, and Walter Trockel, by seminar participants at Cornell, Princeton,
and Yale University, and at the Institute for Advanced Studies in Vienna, by participants in a semi-plenary
session at the World Congress of the Game Theory Society 2012, and by participants at the Workshop in

123



430 C. Alós-Ferrer, K. Ritzberger

honor of Harold Kuhn in Vienna 2012. We also thank the German Research Foundation (DFG) and the
Austrian Science Fund (FWF) for financial support under Projects Al1169/1 and I338-G16, respectively.

References

Aliprantis, C.D., Border,K.C.: InfiniteDimensionalAnalysis:AHitchhiker’sGuide. Springer, Berlin (1999)
Alós-Ferrer, C., Ritzberger, K.: Equilibrium existence for large perfect information games. J. Math. Econ.

62, 5–18 (2016)
Alós-Ferrer, C., Kern, J., Ritzberger, K.: Comment on ‘Trees and extensive forms’. J. Econ. Theory 146(5),

2165–2168 (2011)
Alós-Ferrer, C., Ritzberger, K.: Trees and decisions. Econ. Theory 25(4), 763–798 (2005)
Alós-Ferrer, C., Ritzberger, K.: Trees and extensive forms. J. Econ. Theory 43(1), 216–250 (2008)
Alós-Ferrer, C., Ritzberger, K.: Large extensive form games. Econ. Theory 52(1), 75–102 (2013)
Bertrand, J.: Théorie Mathématique de la Richesse Sociale. Journal des Savants 67, 499–508 (1883)
Cournot, A.A.: Recherches Sur les Principes Mathématiques de la Théorie des Richesses. Hachette, Paris

(1838)
Fedorchuck, V.: Fully closed mappings and the compatibility of some theorems in general topology with

the axioms of set theory. Mat. Sb. 99, 3–33 (1976)
Flesch, J., Kuipers, J., Mashiah-Yaakovi, A., Schoenmakers, G., Solan, E., Vrieze, K.: Perfect-information

games with lower-semicontinuous payoffs. Math. Oper. Res. 35(4), 742–755 (2010)
Fudenberg, D., Levine, D.K.: Subgame-perfect equilibria of finite and infinite horizon games. J. Econ.

Theory 31(2), 251–268 (1983)
Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I.

Monatsh. Math. Phys. 38, 173–198 (1931)
Harris, C.: A characterization of the perfect equilibria of infinite horizon games. J. Econ. Theory 33, 461–481

(1985a)
Harris, C.: Existence and characterization of perfect equilibrium in games of perfect information. Econo-

metrica 53, 613–628 (1985b)
Hellwig, M., Leininger, W.: On the existence of subgame-perfect equilibrium in infinite-action games of

perfect information. J. Econ. Theory 43, 55–75 (1987)
Kuhn, H.: Extensive games and the problem of information. In: Kuhn, H., Tucker, A. (eds.) Contributions

to the Theory of Games, vol. II. Princeton University Press, Princeton (1953)
Luttmer, E.G.J.,Mariotti, T.: The existence of subgame-perfect equilibrium in continuous gameswith almost

perfect information: a comment. Econometrica 71, 1909–1911 (2003)
Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)
Ostaszewski, A.J.: On countably compact, perfectly normal spaces. J. Lond. Math. Soc. 2, 505–516 (1976)
Purves, R.A., Sudderth, W.D.: Perfect-information games with upper-semicontinuous payoffs. Math. Oper.

Res. 36(3), 468–473 (2011)
Ritzberger, K.: Foundations of Non-cooperative Game Theory. Oxford University Press, Oxford (2001)
Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50, 97–109 (1982)
Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Z. Gesamte

Staatswiss. 121, 301–324, 667–689 (1965)
Shapley, L.: Stochastic games. Proc. Natl. Acad. Sci. USA 39, 1095–1100 (1953)
Solan, E., Vieille, N.: Deterministic multi-player Dynkin games. J. Math. Econ. 1097, 1–19 (2003)
Steen, L.A., Seebach Jr, J.A.: Counterexamples in Topology, 2nd edn. Springer, Berlin (1978)
von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press,

Princeton (1944)
von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Heidelberg (1934)
Weiss, W.: Countably compact spaces and Martin’s axiom. Can. J. Math. 30, 243–249 (1978)

123


	Characterizing existence of equilibrium for large extensive form games: a necessity result
	Abstract
	1 Introduction
	2 Perfect information games
	2.1 Nodes as sets versus plays as sequences
	2.2 Extensive form games of perfect information
	2.3 Well-behaved perfect information games

	3 Tree topology
	3.1 A characterization
	3.2 Proof of Theorem 1

	4 Discussion
	4.1 The Fort example
	4.2 Is compactness necessary?
	4.3 Topologies on strategies

	5 Conclusions
	Acknowledgements
	References




