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Abstract Existing models of intertemporal choice such as discounted utility (also
known as constant or exponential discounting), quasi-hyperbolic discounting and gen-
eralized hyperbolic discounting are not monotone: A decision maker with a concave
utility function generally prefers receiving $1m today plus $1m tomorrow over receiv-
ing $2m today. This paper proposes a new model of intertemporal choice. In this
model, a decision maker cannot increase his/her satisfaction when a larger payoff is
split into two smaller payoffs, one of which is slightly delayed in time. The model can
rationalize several behavioral regularities such as a greater impatience for immediate
outcomes. An application of the model to intertemporal consumption/saving reveals
that consumersmay exhibit dynamic inconsistency. Initially, they commit to saving for
future consumption, but, as time passes, they prefer to renegotiate such a contract for
an advance payment. Behavioral characterization (axiomatization) of themodel is pre-
sented. The model allows for intertemporal wealth, complementarity and substitution
effects (utility is not separable across time periods).
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786 P. R. Blavatskyy

1 Introduction

Intertemporal choice involves payoffs to be received at different points in time.
Samuelson (1937) proposed a classical model of intertemporal choice that is known
as discounted utility or constant (exponential) discounting. The model is parsimo-
nious and analytically convenient, but its descriptive validity has been questioned.
For instance, Thaler (1981, p. 202) argued that some people may prefer one apple
today over two apples tomorrow, but, at the same time, they may prefer two apples in
1year plus 1day over one apple in 1year. Discounted utility cannot account for such
a switching choice pattern. The descriptive limitations of discounted utility motivated
the development of alternative models such as quasi-hyperbolic discounting (Phelps
and Pollak 1968) and generalized hyperbolic discounting (Loewenstein and Prelec
1992). These models replaced a constant (exponential) discount factor in discounted
utility with a more general discount function.

Discounted utility and its subsequent generalizations such as quasi-hyperbolic
and generalized hyperbolic discounting may produce rather counterintuitive results
which are seldom discussed in the literature. These models may violate intertemporal
monotonicity when utility function is concave (as usually assumed in economics).
For example, consider a decision maker who receives 1million dollars now as well
as 1million dollars at a later moment of time t (with a convention that t = 0 denotes
the present moment).1 According to the above-mentioned models, this decision maker
behaves as if maximizing utility

u
(
$1m

) + D (t) u
(
$1m

)
(1)

where u(·) is utility function and D(·) is a discount function. According to the same
models, receiving 2million now yields utility u($2m). For a decision maker with a
concave utility function u(·) and enough patience (i.e., with a discount function D(t)
sufficiently close to one), utility (1) is greater than u($2m) due to Jensen’s inequality.
Moreover, in a continuous time framework, for any decision maker with a concave
utility function u(·) it is always possible to find a moment of time t sufficiently close
to the present moment such that utility (1) is greater than u($2m) due to the property
limt→0 D (t) = 1 (cf. Figure 1 in Loewenstein and Prelec 1992, p. 581). In other
words, the above-mentioned models predict that a decision maker with a concave
utility function prefers receiving 1million now plus 1million at a later moment of
time t over receiving 2million immediately.

More generally, according to the existing models of intertemporal choice, the desir-
ability of any payoff may increase if this payoff is split into two smaller payoffs one of
which is slightly delayed in time. Such an implication is clearly testable in a controlled
laboratory experiment. Yet, readers would probably agree with my tentative conjec-
ture that very few people are likely to reveal such a preference. Most people would
find no real tradeoff in receiving the same sum of money sooner rather than later, no
matter whether they have patient or impatient time preferences. The failure of a model

1 This example is also given in Blavatskyy (2015, p. 143).
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A monotone model of intertemporal choice 787

of intertemporal choice to accommodate such a preference is akin to the violation of
first-order stochastic dominance in a theory of decision making under risk.

This paper considers an intuitive analogy between intertemporal choice and choice
under risk/uncertainty. When intertemporal payoffs are framed as payoffs in an uncer-
tain future and risk preferences are represented by rank-dependent utility, we obtain a
new model of intertemporal choice that does not violate intertemporal monotonicity.
The main contribution of this paper is to show that rank-dependent utility with plau-
sible parameters (inverse S-shaped probability weighting function and concave utility
function) can be successfully used for rationalizing behavioral regularities in intertem-
poral choice. Thus, economists could benefit from one unified theory for choice under
risk and over time. This contrasts with the current trend of developing alternative mod-
els that deal either with intertemporal choice (e.g., Frederick et al. 2002, Section 5, p.
365) or with choice under risk (e.g., Starmer 2000). A unified theory of choice under
risk and over time brings the benefits of consistency in economic modeling (e.g., we
avoid the violations of monotonicity described above) and allows viewing separate
behavioral regularities from a larger perspective (e.g., violations of independence in
choice under risk and a greater impatience for immediate outcomes in intertemporal
choice may be two sides of the same coin).

The remainder of the paper is organized as follows. Section 2 presents our model of
intertemporal choice and discusses its properties. Section 3 applies this model to the
problem of intertemporal consumption/savings. Behavioral characterization (axiom-
atization) of the model is presented in Sect. 4. Section 5 concludes with a general
discussion.

2 A model of uncertain future

We first consider intertemporal choice in a discrete time framework, which is later
extended into a continuous time framework. Consider a decision maker who receives
payoffs xt ≥ 0 in moments of time t ∈ {0, 1, 2, . . .} with a convention that t = 0
denotes the present moment. For an intuitive understanding of our proposed model, it
may be helpful to think about intertemporal choice in the following manner. The main
difference between the payoff received in the current moment of time and payoffs to
be received in the subsequent moments of time is that the future payoffs cannot be
counted upon with certainty. One way of modeling this uncertain future is to assume
that there is a survival probability β ∈ (0, 1). With probability β the decision maker
“survives” to the next moment of time and enjoys the receipt of any payoffs due in
that moment. With probability 1−β, the decision maker “dies” and receives no future
payoffs. The probability 1 − β does not necessarily reflect the likelihood of physical
death. For example, it may reflect the likelihood that the standard contracts are no
longer implementable due to force majeure (e.g., a Russian invasion). For parsimony,
we assume that β is constant at all moments of time. Probability β is a subjective
parameter of the model.

Given probability β, we can reframe the problem of intertemporal choice as choice
under risk. Let t ∈ {0, 1, 2, . . .} denote a state of the world when the decision maker
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788 P. R. Blavatskyy

Table 1 States of the world, probabilities and the associated payoffs

State of the world 0 1 2 . . . t . . .

Probability 1 − β β (1 − β) β2 (1 − β) … βt (1 − β) …

Payoff x0 x0 + x1 x0 + x1 + x2 …
∑t

s=0 xs …

“dies” at a moment of time t . Table 1 shows the probabilities of the states of the world
as well as the associated payoffs.

If the decision maker maximizes expected utility, then there is a (Bernoulli) utility
function u(·) such that a stream of payoffs {x0, x1, x2, . . .} received in moments of
time t ∈ {0, 1, 2, . . .} yields utility (2).

U ({x0, x1, x2, . . .}) = (1 − β)

∞∑

t=0

β t u

(
t∑

s=0

xs

)

(2)

It is relatively straightforward to rearrange utility formula (2) into formula (3).

U ({x0, x1, x2, . . .}) = u (x0) +
∞∑

t=1

β t

[

u

(
t∑

s=0

xs

)

− u

(
t−1∑

s=0

xs

)]

(3)

If utility function u(·) is linear, then formula (3) simplifies into classical discounted
linear utility (4).

U ({x0, x1, x2, . . .}) =
∞∑

t=0

β t xt (4)

Thus, if Bernoulli utility function u(·) is approximately linear (e.g., when payoffs
are small), then model (3) practically coincides with the classical model of Samuelson
(1937) with a discount factor β.

If Bernoulli utility function u(·) is nonlinear (e.g., when payoffs are large), then
model (3) diverges from the classical model of Samuelson (1937). Samuelson (1937)
assumed that a decisionmaker behaves as ifmaximizing the sum of discounted utilities
of future payoffs. Thus, hismodel is also knownas discounted utility. In contrast,model
(3) assumes that a decision maker behaves as if maximizing the sum of discounted
incremental utilities of future payoffs.Adecisionmaker aggregates the stock of payoffs
and subsequent future payoffs are evaluated by their contribution to the overall utility
of this stock. Thus, if we consider parameter β to be a discount factor rather than a
survival probability, then model (3) can be called “discounted incremental utility.”

To illustrate model (3), let us return to the first example from the introduction.
Consider a decision maker who receives 2million at a moment of time T ≥ 0 and
nothing in all other periods. For simplicity, let us normalize the utility of zero to zero.
Utility (3) of the 2million to be received at a moment of time T is then given by (5),
which resembles the formula of discounted utility.
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A monotone model of intertemporal choice 789

U
(
xT = $2m

) = βT u
(
$2m

)
(5)

Consider now the same decision maker who receives 1million at a moment of time
T as well as 1million at a moment of time T + τ, τ ≥ 0 (and nothing in all other
periods). Utility (3) of this stream of payments is then given by (6), which differs from
the formula of discounted utility.

U
(
xT = $1m; xT+τ = $1m

) = βT u
(
$1m

) + βT+τ
[
u

(
$2m

) − u
(
$1m

)]
(6)

In the limit, as τ goes to zero, utility value (6) converges to utility value (5), as one
should expect from a continuous utility function. Thus, utility (3) avoids violations
of temporal continuity. Moreover, for all τ > 0 utility value (6) is strictly smaller
than utility value (5) provided that the Bernoulli utility function u(·) is monotone. In
other words, irrespective of the subjective parameters of a decision maker (survival
probability/discount factor β and the curvature of utility function u), he or she always
prefers to receive the same amount of money sooner rather than later.

Model (3) assumes that discount factor/survival probability β is constant at all
moments of time. Such a model is ideally suited for dealing with payoffs that are
received at regular time intervals (moments of time are equally spaced in time).When a
decisionmaker receives outcomes at irregular points in time, itmay bemore convenient
to consider a continuous time line instead of discrete time periods. In this case, it is
conventional to switch from a discount factor/survival probability β to a continuously
compounded discount rate δ ∈ (0, 1). Specifically, if m ∈ N denotes the number of
compounding periods, then we replace β with formula (7).

β = lim
m→∞

(
1 − δ

m

)m

= e−δ (7)

Given a continuous time line t ∈ R+, payoffs are described by payoff function
x :R+ → R+ so that x(t) denotes a payoff received at a moment of time t . With this
notation, model (3) becomes Eq. (8).

U (x) = u ◦ x (0) +
∑

t>0

e−δt

[

u

(
∑

s≤t

x (s)

)

− u

(
∑

s<t

x (s)

)]

(8)

If payoff function x(·) is continuous, then payoffs received between the present
moment of time (t = 0) and a future moment of time t > 0 are given by cumulative
payoff function (9).

y (t) =
t∫

0

x (s) ds (9)
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790 P. R. Blavatskyy

Payoffs received between the present moment (t = 0) and a future moment T > 0
then yield utility (10).

U (x) =
T∫

0

e−δtdu ◦ y (t) (10)

If utility (10) function u(·) is differentiable, then utility (10) can be written as (11).

U (x) =
T∫

0

e−δt u′
⎛

⎝
t∫

0

x (s) ds

⎞

⎠ x (t) dt (11)

If utility function u(·) is linear (i.e., u′(y) = 1 for all y ∈ R+), then model (11)
simplifies into a standard formula (12) of a discounted present value—a special case
of the Samuelson (1937) model with linear utility. However, for a nonlinear utility
function u(·), model (11) diverges from the discounted utility model of Samuelson
(1937).

U (x) =
T∫

0

e−δt x (t) dt (12)

Our model of intertemporal choice is analogous to expected utility theory of
choice under risk/uncertainty. One of the cornerstones of expected utility theory is the
independence axiom. Yet, empirical studies found systematic violations of the inde-
pendence axiom such as the common consequence effect (e.g., Allais 1953, p. 527;
Blavatskyy 2013a) and the common ratio effect (e.g., Kahneman and Tversky 1979,
Problem 3, p. 266; Blavatskyy 2010). In response to these empirical findings, several
generalizations of expected utility theory were proposed in the literature (see Starmer
2000, for a review). One such popular generalized nonexpected utility theory that fits
well to experimental data is Quiggin (1981) rank-dependent utility. As the next step,
we generalize “discounted incremental utility” to rank-dependent discounted utility,
which is analogous to rank-dependent utility in choice under risk/uncertainty.

We begin by reconsidering the problem of intertemporal choice in a discrete time
setting. A decisionmaker receives payoffs xt ≥ 0 inmoments of time t ∈ {0, 1, 2, . . .}.
As before, for an intuitive understanding of the model it may be helpful to think
about discount factor β ∈ (0, 1) as a survival probability. The problem of intertem-
poral choice can be then reframed as choice under risk/uncertainty: a decision maker
receives payoff

∑t
s=0 xs with probability β t (1 − β), for all t ∈ {0, 1, 2, . . .}. If risk

preferences are represented by rank-dependent utility, then a decision maker behaves
as if maximizing utility

U ({x0, x1, x2, . . .}) = u (x0) +
∞∑

t=1

w
(
β t)

[

u

(
t∑

s=0

xs

)

− u

(
t−1∑

s=0

xs

)]

(13)
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A monotone model of intertemporal choice 791

where w: [0, 1] → [0, 1] is a strictly increasing weighting function satisfying w(0) =
0 and w(1) = 1. In a special case, when this function is linear, i.e., w(p) = p for all
p ∈ [0, 1], model (13) becomes model (3).

To illustrate the behavioral implications of model (13), let us consider several well-
known behavioral regularities in intertemporal choice. We begin with the common
difference effect (Loewenstein and Prelec 1992, section II.1, p. 574). Some people
may prefer $110 in 31days over $100 in 30day,s and, at the same time, they may
prefer $100 today over $110 tomorrow (e.g., Frederick et al. 2002, p. 361). According
to model (13), a decision maker prefers $100 today over $110 tomorrow if inequality
(14) holds (utility of $0 is normalized to zero and β is a daily discount factor).

u
(
$100

)
> w (β) u

(
$110

)
(14)

The same decisionmaker prefers to receive $110 in 31days rather than $100 in 30days
if (15) holds.

w
(
β31

)
u

(
$110

)
> w

(
β30

)
u

(
$100

)
(15)

Thus, a decision maker reveals dynamically inconsistent preferences when inequality
(16) is satisfied.

w (β) <
u

(
$100

)

u
(
$110

) <
w

(
β31

)

w
(
β30

) (16)

If weighting function w(·) is linear, the leftmost-hand side of inequality (16) is
equal to the rightmost-hand side of inequality (16). In other words, model (3), like
the model of Samuelson (1937), cannot account for the common difference effect.
Yet, if function w(·) is nonlinear, the leftmost-hand side of inequality (16) can be
smaller than the rightmost-hand side of inequality (16) and a decision maker can
exhibit a greater impatience for immediate rewards.Moreover, for an inverse S-shaped
function w(·) that is concave near zero and convex near one, which is often elicited
in experimental studies (e.g., Abdellaoui 2000, pp. 1507–1508), the leftmost-hand
side of inequality (16) is smaller than the rightmost-hand side. For example, Table 2
shows the values of the leftmost-hand and the rightmost-hand side of inequality (16)
for several values of parameter β ∈ (0, 1) and the weighting function (17) proposed
by Tversky and Kahneman (1992, p. 309) with γ = 0.61 (a median parameter elicited
in the experiment of Tversky and Kahneman 1992, p. 312).

w (q) = qγ

(qγ + (1 − q)γ )
1
γ

(17)

Thaler (1981) provides another (related) example of dynamically inconsistent pref-
erences. Consider a decision maker who is indifferent between receiving $15 now and
$z in t quarters. Using equation β t z = 15, we can infer an implicit discount factor
β ∈ (0, 1) that would apply if this decision maker were to maximize the discounted
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792 P. R. Blavatskyy

Table 2 The leftmost-hand and the rightmost-hand side of inequality (16) for function (17), γ = 0.61

β 0.99999 0.9999 0.999 0.99 0.9 0.8 0.5

w (β) 0.9985 0.9941 0.9766 0.9116 0.7117 0.6074 0.4206

w
(
β31

)

w
(
β30

) 0.9998 0.9991 0.9968 0.9907 0.9466 0.8756 0.6552

present value. For instance, Thaler (1981) found a median value of $z to be $30 when
a delay t is one quarter, $60 when a delay t is 1year and $100 when a delay t is
3years. In this case, using formula β = t

√
15/z, an implicit quarterly discount factor

would be 0.5 for payoffs in one quarter, 0.250.25 ≈ 0.707 for payoffs in 1year, and
0.151/12 ≈ 0.854 for payoffs in 3years. Thus, it appears as if a decision maker used
a higher discount factor for payoffs in the more distant future—a phenomenon that
some authors call hyperbolic discounting (e.g., Frederick et al. 2002, section 4.1, p.
360).

According to our proposed model (13), however, a decision maker behaves as if
using a discount factor β that is implicitly defined by Eq. (18).

w
(
β t) u

(
$z

) = u
(
$15

)
(18)

As an illustration, let us consider a probability weighting function (17) proposed by
Tversky and Kahneman (1979, p.309) and a power utility function u

(
$x

) = xα , with
parameter values γ = 0.56 and α = 0.225 that Camerer and Ho (1994, p. 188)
estimated from experimental data reported in eight studies of decision making under
risk. Under this parameterization, a quarterly discount factor implicitly defined by
Eq. (18) would be 0.9852 for payoffs in one quarter, 0.9854 for payoffs in 1year, and
0.9905 for payoffs in 3years. Thus, a discount factor inferred from Eq. (18) may be
almost constant over time if we use an inverse S-shaped weighting function w(·) and
a concave utility function u(·). At the same time, an inferred discount factor would be
increasing over time if we used a misspecified model with a linear weighting function
and a linear utility function.2

Another example from Thaler (1981) illustrates the so-called absolute magnitude
effect (cf. Loewenstein and Prelec 1992, section II.2, p. 575; Frederick et al. 2002,
section 4.2.2, p. 363). Consider a decision maker who is indifferent between receiving
$250 now and $y in t quarters. Thaler (1981) found that a median value of $y is $300
when a delay t is one quarter, $350 when a delay t is 1year and $500 when a delay
t is 3years. If a representative decision maker maximized the discounted present
value, then his or her implicit quarterly discount factor would be β = t

√
250/y.

Thus, an inferred discount factor would be 6/7 ≈ 0.8571 for payoffs in one quarter,

2 It seems that an inverse S-shaped weighting function rather than a concave utility function is the main
driving force behind an apparent “hyperbolic” discounting. For example, consider discount factors implicitly
defined by Eq. (25) with a weighting function (24) with parameter γ = 0.56 and a linear utility function.
In this case, a quarterly discount factor would be 0.7115 for payoffs in one quarter, 0.6559 for payoffs in
1year, and 0.7855 for payoffs in 3years.
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A monotone model of intertemporal choice 793

0.750.25 ≈ 0.9306 for payoffs in 1year, and 0.51/12 ≈ 0.9439 for payoffs in 3years.
As in the previous example, these discount factors increase over time—it appears as if
a decision maker is more impatient for payoffs that are closer to the present moment.
Moreover, discount factors inferred from the indifference between $250 now and $y
in t quarters exceed the corresponding discount factors inferred from the indifference
between $15 now and $z in t quarters. In other words, a decision maker appears to
be more impatient when dealing with small payoffs (i.e., small payoffs are apparently
discounted at a relatively higher rate compared to large payoffs).

Yet, if a decision maker maximizes utility (13), then his or her discount factor is
implicitly defined by w

(
β t

)
u

(
$y

) = u
(
$250

)
. For illustration, let us consider the

same parametric form ofmodel (13) as in the previous example: theweighting function
(17) and a power utility function with parameters estimated by Camerer and Ho (1994,
p. 188). In this case, an inferred discount factor would be 0.9988 for payoffs in one
quarter as well as in 3years and 0.9990 for payoffs in 1year. Two observations are
apparent. First, as in the previous example, these discount factors are almost identical
(do not increase over time horizon). Second, they are similar to the corresponding
discount factors inferred from Eq. (18) under the same parameterization of model
(13). Thus, model (13) with a constant discount factor β can generate behavior that
looks like hyperbolic discounting (a greater impatience for immediate payoffs) and
an absolute magnitude effect (a greater impatience for small payoffs) when we ignore
nonlinear weighting and utility functions.

3 An application: the problem of intertemporal consumption/savings

Model (13) can be applied to finding an optimal consumption/savings plan. This prob-
lem can be summarized as follows. At the current moment of time t = 0, a decision
maker receives income Y > 0, which can be interpreted as a discounted present value
of a total lifetime income. A decision maker decides how to split this income Y for
consumption at T+1moments of time, T ≥ 2. Any saved income that is not consumed
at moment of time t ∈ {0, 1, 2, . . .T − 1} is transferred to the subsequent moment of
time multiplied by an interest rate R > 1. Any income that is not consumed at the last
moment of time t = T perishes (alternatively, a decision maker “dies” after the last
moment of time T ).

LetYt ∈ [0,YRt ]denote total incomedisposable atmoment of time t ∈ {0, 1, . . .T }.
Let Ct ∈ [0,Yt ] denote consumption at moment of time t ∈ {0, 1, . . .T }. Then we
must have Y0 = Y and for all t ∈ {1, 2, . . .T }:

Yt = (Yt−1 − Ct−1) R = YRt −
t−1∑

s=0

Cs R
t−s (19)

Since all unconsumed income perishes after the last moment of time T , a decision
maker with any monotone utility function consumes all disposable income at the last
moment:CT = YT . Knowing this, at the penultimatemoment of time a decisionmaker
who maximizes utility (13) solves problem (20).
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794 P. R. Blavatskyy

max
CT−1∈[0,YT−1]

[1 − w (β)] u (CT−1) + w (β) u (YT−1R − CT−1 (R − 1)) (20)

3.1 Case 1: consumption of all disposable income at the current moment of time
and no savings

Let us consider first a situation when a decision maker chooses to consume all dispos-
able income immediately and saves nothing for the later moment of time. Consuming
all disposable income at the penultimate moment of time (and consuming nothing at
the last moment of time) yields utility u(YT−1). Thus, utility u(YT−1) must be greater
than the objective function in (20) for all CT−1 < YT−1 in order for zero savings to
be an optimal solution.3 This condition can be written as inequality (21).

[1 − w (β)]
u (YT−1) − u (CT−1)

YT−1 − CT−1
> w (β) (R − 1)

u (YT−1R − CT−1 (R − 1)) − u (YT−1)

(YT−1 − CT−1) (R − 1)
(21)

The ratio on the left-hand side of inequality (21) denotes the slope of utility function
between CT−1 and YT−1 > CT−1. The ratio on the right-hand side of inequality (21)
denotes the slope of utility function betweenYT−1 andYT−1R−CT−1(R−1) > YT−1.
One of the properties of a concave utility function is a declining slope, i.e., the ratio
on the left-hand side of (21) is strictly greater than the ratio on the right-hand side
of (21) for all CT−1 ∈ [0,YT−1). Thus, inequality (21) always holds if 1 − w(β) is
greater than or equal to w(β)(R − 1), which can be rewritten as condition (22). Note
that condition (22) is always satisfied as interest rate R is lowered to one—savings are
never optimal when they bring no interest.

w(β) ≤ 1

R
(22)

If utility function is differentiable, then inequality (22) is not only a sufficient
condition for zero savings but a necessary condition as well. The necessity follows
from the following observation. For a differentiable utility function, in the limit as
CT−1 goes to YT−1, the ratio on the left-hand side of (21) converges to the ratio on
the right-hand side of (21). Thus, if inequality (22) does not hold, so that 1− w(β) is
less than w(β)(R− 1), then it is possible to find CT−1 sufficiently close to YT−1 such
that inequality (21) does not hold as well.

Condition (22) is rather intuitive. If a decisionmaker is sufficiently impatient (so that
w(β) ≤ 1/R), then it is optimal to consume all disposable income at the penultimate
moment of time without saving anything for the last moment of time. In fact, such a
decision maker would even prefer to run into a debt (to have a negative consumption
at the last moment) if debts were allowed.

3 Alternatively, we can make an additional assumption that utility function is differentiable and investigate
when the first derivative of the objective function in (32) is strictly positive for all CT−1 ∈ [0, YT−1].
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Table 3 The upper bound imposed by condition (22) on a subjective discount factor β for various values
of an interest rate R and several weighting functions w(·)
Weighting function w(·) Interest rate R

1.001 1.01 1.02 1.03 1.05 1.1 1.2

Linear, i.e., f -n (17) with γ = 1 0.99900 0.9901 0.9804 0.9709 0.9524 0.9091 0.8333

Function (17) with γ = 0.61 0.99999 0.9998 0.9993 0.9986 0.9966 0.9895 0.9674

Function (17) with γ = 0.56 0.999998 0.9999 0.9997 0.9993 0.9983 0.9942 0.9800

For a linear weighting function, condition (22) simply requires a discount factor
not to exceed 1/R, i.e., a decision maker must not be very patient. For an inverse
S-shaped weighting function (that is convex in the neighborhood of one), the upper
bound imposed by condition (22) on a subjective discount factor is even higher than
1/R. Table 3 shows the upper bound on β imposed by condition (22) for weighting
function (17) with parameter γ = 0.61 (elicited in the experiment of Tversky and
Kahneman 1992, p. 312) and γ = 0.56 (estimated by Camerer and Ho 1994, p. 188).
For example, if income increases by 10% from one moment of time to another, a
decision maker with weighting function (17) and γ = 0.61 chooses not to save at the
penultimate moment of time if β ≤ 0.9895.

An impatient decision maker with w(β) ≤ 1/R chooses to consume all income
Y already at the current moment t = 0 leaving nothing for consumption at all future
moment of time t ∈ {1, 2, . . .T }. This conclusion follows from the following observa-
tion.We already established thatCT = 0 andCT−1 = YT−1 ifw(β) ≤ 1/R. Knowing
this, a decision maker faces problem (23) at the before-penultimate moment T − 2.

max
CT−2∈[0,YT−2]

[1 − w (β)] u (CT−2) + w (β) u (CT−2 + YT−1) (23)

Using budget constraint (19), we can transform problem (23) into a problem that is
equivalent to problem (20). Since we deal with the case w(β) ≤ 1/R, the optimal
solution to (23) is then CT−2 = YT−2 so that YT−1 = (YT−2 − CT−2)R = 0 and,
consequently, CT−1 = 0. Iterating this argument for all preceding moments of time,
we come to the conclusion that a decision maker with w(β) ≤ 1/R always chooses to
consume all disposable income as soon as possible (leaving nothing for consumption
at the subsequent moments). Thus, such a decision maker consumes all income Y
already at the current moment t = 0.

Impatient consumers with w(β) ≤ 1/R would never voluntarily hold any savings
(and even try to accumulate a credit card debt if it were possible). Such decision
makers prefer to consume all income immediately and “starve” in the subsequent
periods. To prevent such behavior, a social planner can either increase an interest
rate (so that condition w(β) ≤ 1/R is rarely satisfied) or introduce restrictions on
the intertemporal movement of income (e.g., a system of social security). The latter
option appears to be more effective. Table 3 shows that a large increase in the interest
rate is required for any substantial decrease in the upper bound on β when weighting
function w(·) is inverse S-shaped.
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3.1.1 Dynamic inconsistency with a nonlinear weighting function

Consumerswith a nonlinearweighting functionw(·)may be dynamically inconsistent.
At the current moment t = 0, they can commit to a consumption path that saves a
part of a disposable income for consumption in the future periods. Yet, at a later time
moment t > 0 they prefer to renegotiate such a contract in order to get an advance
payment. For example, consider the problem of intertemporal consumption/savings
when a decision maker has to choose a consumption path at moment t = 0 (and it
cannot be changed at the subsequentmoments). Amaximizer of utility (13) then solves
problem (24).

max
C1,...,CT−1≥0

T−1∑

t=0
Ct RT−t≤Y RT

T−1∑

t=0

[
w

(
β t) − w

(
β t+1

)]
u

(
t∑

s=0

Cs

)

+w
(
βT

)
u

(

YRT −
T−1∑

t=0

Ct

(
RT−t − 1

)
)

(24)

Using an argument analogous to the one presented above for problem (20) without
the possibility of pre-commitment, we can show that a decision maker with a concave
utility function decides to pre-commit at the currentmoment t = 0 to zero consumption
at the last moment t = T if condition (25) holds. Condition (25) is not only sufficient
but also necessary if the utility function is differentiable. Note that condition (22),
which we derived before for a situation without commitment, can be viewed as a
special case of condition (25) when T = 1 (a commitment only for one period).

w
(
βT

)

w
(
βT−1

) ≤ 1

R
(25)

If weighting function w(·) is linear, then condition (25) is identical to condition
(22) for all T ≥ 2 (in this case both conditions simplify to β ≤ 1/R). In other words,
consumers with a linear weighting function do not have the problem of dynamic
inconsistency that we described above. If such decision makers optimally decide not
to save at the penultimatemoment of time, then they also pre-commit to such a decision
at any earlier moment of time.

For an inverse S-shaped weighting function w(·) condition, (25) is stronger than
condition (22). In this case, inequality (25) may be violated even though condition
(22) is satisfied. For example, Table 4 shows the upper bound imposed by condition
(25) on a subjective discount factor β when T = 50 for weighting function (17) with
parameter γ = 0.61 (elicited in the experiment of Tversky and Kahneman 1992, p.
312) and γ = 0.56 (estimated by Camerer and Ho 1994, p. 188).

A comparison of the corresponding cells in Tables 3 and 4 shows the scope of
dynamic inconsistency. Consider the case when income increases by 10% from one
moment of time to another and a decision maker has a weighting function (17) with
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Table 4 The upper bound imposed by condition (25) on a subjective discount factor β when T = 50 for
various values of the interest rate R and two weighting functions w (·)
Weighting function w(·) Interest rate R

1.001 1.01 1.02 1.03 1.05 1.1 1.2

Function (17) with γ = 0.61 0.99982 0.9821 0.9600 0.9435 0.9160 0.8536 0.7416

Function (17) with γ = 0.56 0.99989 0.9785 0.9540 0.9367 0.9077 0.8414 0.7221

γ = 0.61. Without the possibility of commitment, the decision maker chooses not
to save at the penultimate moment of time iff β ≤ 0.9895. This decision maker pre-
commits to the same zero-savings decision 50 periods in advance iffβ ≤ 0.8536. Thus,
consumerswith adiscount factorβ ∈ (0.8536, 0.9895] are dynamically inconsistent—
at the current moment they would pre-commit to a positive consumption at the last
moment of time; but after 50 periods, they would try to empty their savings account
at the penultimate moment of time.

Whereas w(β) ≤ 1/R is a condition for zero savings not only at the penultimate
moment of time but also at all earlier moments of time as well, the corresponding
condition with the possibility of commitment may differ from inequality (25). At
t = 0, a decision maker with a concave utility function decides not to save at moment
of time k ∈ {0, 1, . . .T − 1}, i.e., he or she pre-commits to zero consumption from
moment k + 1 ∈ {1, 2, . . .T } onwards, if condition (26) holds. Condition (26) is not
only sufficient but also necessary when the utility function is differentiable. Condition
(25) is a special case of condition (26) when k = T − 1. Condition (26) is the same
as condition (25) and condition (22) when weighting function w(·) is linear. For an
inverse S-shaped weighting function, condition (26) gets progressively stronger as k
decreases to zero.

w
(
βT

)

w
(
βk

) ≤ 1

RT−k
(26)

Without the possibility of commitment, a decision maker chooses to consume all
income at the current moment t = 0 when w(β) ≤ 1/R. At the same time, this
decision maker pre-commits at t = 0 to consuming all income at the same moment of
time only when w(βT ) ≤ 1/RT . These two conditions are identical when weighting
function w(·) is linear. Yet, for an inverse S-shaped weighting function w(·) these two
conditions can vastly differ, particularly for a large T . For example, consider the case
when income increases by 10% from one moment of time to another, T = 50 and a
decision maker has a weighting function (17) with γ = 0.61. Without the possibility
of commitment, the decision maker chooses to consume all income at the current
moment of time t = 0 iff β ≤ 0.9895. This decision maker pre-commits at t = 0 to
such a decision iff β ≤ 0.0004. Thus, a decision maker with a wide range of discount
factors β ∈ (0.0004, 0.9895] exhibits some form of dynamic inconsistency (he or she
may pre-commit to zero savings close to the last moment t = T but not close to the
current moment t = 0).
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3.2 Case 2: saving of all disposable income for the next moment of time and no
consumption

When is it optimal to save all disposable income for the next moment of time so that
there is no consumption except at the last moment of time T ? If a decision maker
consumes nothing at t = T − 1, then all disposable income YT−1 is transferred to
the last moment of time. Thus, consumption at the last moment of time is YT−1R and
utility (13) of consumption at moments of time T − 1 and T is given by

[1 − w (β)] u (0) + w (β) u (YT−1R) (27)

Utility (27) must be greater than the objective function in (20) for all CT−1 > 0 in
order for 100%-savings to be an optimal solution. This condition can be written as
inequality (28).

w (β) (R − 1)
u (YT−1R) − u (YT−1R − CT−1 (R − 1))

CT−1 (R − 1)

> [1 − w (β)]
u (CT−1) − u (0)

CT−1
(28)

The ratio on the right-hand side of inequality (28) denotes the slope of utility
function between 0 and CT−1 > 0. For a concave utility function u(·), this slope
decreases in CT−1. Thus, the right-hand side of inequality (28) attains its highest
possible value in the limit as CT−1 converges to zero.

The ratio on the left-hand side of (28) denotes the slope of utility function between
points YT−1R − CT−1(R − 1) and YT−1R. For a concave utility function u(·), this
slope decreases as YT−1R − CT−1(R − 1) approaches YT−1R (from below). Thus,
the left-hand side of inequality (28) attains its lowest possible value in the limit as
YT−1R − CT−1(R − 1) approaches YT−1R, i.e., as CT−1 converges to zero. Hence,
inequality (28) holds for all CT−1 > 0 if and only if it holds in the limit as CT−1
converges to zero.

Let u′(YT−1R) denote the limit of the ratio on the left-hand side of (28) as CT−1
converges to zero (i.e., themarginal utility of consumption at YT−1R). Let u′(0) denote
the limit of the ratio on the right-hand side of (28) as CT−1 converges to zero (i.e.,
the marginal utility of consumption at zero). A necessary and sufficient condition for
100%-savings at the penultimate moment is then (29).

w (β) >
1

1 + (R − 1) u′(YT−1R)
u′(0)

(29)

The intuition behind condition (29) is rather simple—a decision maker saves all
disposable income at the penultimate period of time if he or she is sufficiently patient
so thatw(β) is greater than a certain threshold. Note that this threshold [the right-hand
side of (29)] converges to one as an interest rate R is lowered to one. Sincew(β) cannot
exceed one, saving all disposable income is never an optimal strategy if those savings
bring a very low interest rate R.
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If utility function is linear, then the marginal utility of consumption is constant at
all levels, i.e., u′(YT−1R) = u′(0). In this case, condition (29) simplifies to w(β) >

1/R, which is a complementary condition to inequality (22). Thus, for a linear utility
only two optimal solutions are possible—either a decision maker is impatient and
consumes all disposable income [inequality (22) holds] or he/she is patient and saves
all disposable income [inequality (29) holds]. This aligns with a standard solution for
Samuelson (1937) discounted linear utility (a maximization of the discounted present
value).

If condition (29) is satisfied, then a decision maker is very patient and consumes
nothing at the penultimate moment of time T − 1 postponing all consumption to the
last moment of time T . With this knowledge, such a decision maker faces problem
(30) at the before-penultimate moment of time T − 2.

max
CT−2∈[0,YT−2]

[
1 − w

(
β2

)]
u (CT−2) + w

(
β2

)
u

(
YT−1R

2 − CT−1

(
R2 − 1

))

(30)

Problem (30) is the same as problem (20) with a squared discount factor and a
squared interest rate. Thus, a decision maker optimally chooses to consume nothing
in period T − 2 if condition (31) holds.

w
(
β2

)
>

1

1 + (
R2 − 1

) u′(YT−2R2)
u′(0)

(31)

Iterating this argument for all preceding periods, we come to the conclusion that a
decisionmaker postpones all consumption to the lastmoment of time T (and consumes
nothing at all previous moments of time) if and only if condition (32) is satisfied for
all s ∈ {1, 2, . . .T }.

w
(
βs) >

1

1 + (Rs − 1)
u′(Y RT )
u′(0)

(32)

For a linear utility function (with a constant marginal utility of consumption at
all levels), condition (32) simplifies to w(βs) > 1/Rs for all s ∈ {1, 2, . . .T }. If
weighting function is linear as well, then this condition simplifies further to β > 1/R,
which is a complementary inequality to inequality (22). This is a standard result—a
decision maker, who maximizes discounted present value, consumes all income either
at the present moment t = 0 (when β ≤ 1/R) or at the last moment t = T (when
β > 1/R).

This result also holds for a linear utility function and a nonlinear weighting function
that is convex in the neighborhood of one that contains values {β, β2, . . ., βT }. In this
case, condition (32) imposes the highest lower bound on a subjective discount factor
β when s = 1. In other words, if condition (32) is satisfied for s = 1, then it is also
satisfied for all s ∈ {2, 3, . . .T }. Thus, condition (32) again simplifies tow(β) > 1/R.
A decision maker with a linear utility function and a weighting function that is convex
in the neighborhood of one (such as an inverse S-shaped function often found in
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empirical studies) consumes all income either at the present moment t = 0 (when
w(β) ≤ 1/R) or at the last moment t = T (when w(β) > 1/R). Thus, when it comes
to a small income (where utility function is approximately linear), consumers either
spend it straight away or deposit it in their savings account.

Condition (32) is stronger for a concave utility function (with a declining marginal
utility) than for a linear utility. In the limiting case, when a marginal utility of income
Y RT is infinitesimally small compared to the marginal utility of zero consumption,
the right-hand side of (32) becomes one, i.e., condition (32) is always violated. In such
a case, a decision maker never saves all disposable income for the next moment of
time and consumes at least some portion of it. For example, this happens if a decision
maker has a constant relative risk aversion utility function u(x) = x1−r/(1 − r) for
x ≥ 0 and r �= 1.

In an economy with a low or moderate interest rate, only a small range of discount
factors (very close to one) satisfies condition (32) for 100%-savings, but a wide range
of discount factors satisfies condition (22) for 0%-savings (cf. Table 3). This fits well
with a stylized fact that few people over-save but many people over-consume. A social
planner who wants to eliminate both excessive savings and excessive consumption
can achieve the two goals by lowering an interest rate and introducing restrictions on
the movement of income to early periods (such as social security).

3.3 Optimal consumption path with a possibility of a debt (negative
consumption)

In Sect. 3.1, we established that consumers with w(β) ≤ 1/R choose to consume all
disposable income as soon as possible if there is no possibility of pre-commitment to a
consumption plan that saves a part of their income for consumption at future moments
of time. Yet, this result depends on the restriction that consumers cannot borrow (have
a negative consumption at later moments). This section considers a modification of
the problem of optimal consumption/saving when consumers can have a negative
consumption at some moments of time. An intertemporal budget constraint remains
intact—the discounted present value of all consumption must not exceed income Y
available at t = 0.

At the penultimate moment of time, a decision maker then faces problem (20)
without the restriction that consumption CT−1 must be between zero and YT−1. In
case when w(β) < 1/R, it becomes optimal to consume more than the income that
is disposable at the moment t = T − 1. A decision maker effectively “borrows”
from the consumption at the last moment of time, which becomes negative. For an
illustration, let us consider a decision maker with a constant absolute risk aversion
(CARA) utility function u(x) = a − be−dx , where a ∈ R and b, d > 0; d is the
Arrow–Pratt coefficient of absolute risk aversion. In this case, a solution to problem
(20) with an unrestricted CT−1 is given by (33).4

4 When negative consumption is not possible (i.e., CT−1 is restricted to be between zero and YT−1),
Eq. (33) is a solution to problem (20) only when constrains (22) and (29) are violated, i.e., when 1

R ≤
w (β) ≤ 1

1+ R−1

eYT−1Rd
.
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Fig. 1 Optimal consumption path with a possibility of a debt (negative consumption) for a consumer
with CARA utility function (the Arrow–Pratt coefficient d = 10−5) and Tversky and Kahneman (1992)
weighting function (T = 50, R = 1.02)

CT−1 = YT−1 − 1

Rd
ln

R − 1

1/w (β) − 1
(33)

Frombudget constraint (19), it follows that the optimal consumption at the lastmoment
t = T is (34).

CT = 1

d
ln

R − 1

1/w (β) − 1
(34)

Optimal consumption at the precedingmoments t ∈ {1, 2, . . .T−1} is then recursively
defined by (35).5

Ct = 1

d
ln

⎛

⎝eCt+1d + R − 1

1 − w (β)
w

(
βT−t+1

)
⎡

⎣e
−d

T∑

s=t+1
Cs − e

−d
T−1∑

s=t+1
Cs

⎤

⎦

⎞

⎠ (35)

Finally, consumption at the present moment t = 0 is given byC0 = Y −∑T
t=1 Ct R−t .

With a possibility of a debt (a negative consumption at later periods), the optimal
consumption path defined by (34)–(35) has an interesting pattern. Figure 1 plots con-
sumption path (34)–(35) for Tversky and Kahneman (1992) weighting function (17)
with parameters γ = 1 (a linear function), γ = 0.61 (elicited in the experiment of
Tversky and Kahneman 1992, p. 312) and γ = 0.56 (estimated by Camerer and Ho
1994, p. 188). We fix T = 50, R = 1.02 and the Arrow–Pratt coefficient d = 10−5.

Figure 1 shows that optimal consumption is nearly constant at the initial moments
of time (if T is sufficiently large). This is a standard result. The problem faced by a
consumer at one of the early moments is not much different from the problem faced
at the subsequent moment (provided that the number of future periods is very large).
Thus, the optimal solution does not change much either.

5 When t = T − 1, recursive Eq. (35) becomes CT−1 = 1
d ln

(
eCT d + R−1

1−w(β)
w

(
β2

) [
e−CT d − 1

])
.
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Optimal consumption, however, starts to decline at the later moments of time. There
is practically no consumption at the penultimate moment of time and a debt (negative
consumption) at the last moment of time. Impatient decision makers (with a low β)
have a higher level of constant consumption at the initial moments and a higher level
of debt at the last moment. Compared to this effect, a change in the curvature of
the weighting function has a relatively modest effect. As the weighting function (17)
converges to a linear function (i.e., parameter γ increases to one), a decision maker
consumes less at the initial moments of time and has a lower debt at the last moment
of time.

4 Behavioral characterization (axiomatization) of rank-dependent
discounted utility

There is a totally ordered nonempty set S that can be finite or infinite. An element
t ∈ S is called a moment of time. A total order on the set S is called a chronological
order. There is a sigma-algebra � of the subsets of S that are called time periods.
There is a connected set Y . An element y ∈ Y is called a cumulative outcome. A
program f : S → Y is a �-measurable function from S to Y . The set of all programs
is denoted by F . Aconstant program that yields one cumulative outcome y ∈ Y in all
moments of time is denoted by y ∈ F .

A decision maker has a preference relation � on F . The symmetric part of � is
denoted by ∼, and the asymmetric part of � is denoted by . The preference relation
� is represented by a function U :F → R if f � g implies U ( f ) ≥ U (g) and vice
versa for all f, g ∈ F . We assume that the preference relation � is a weak order
(Axioms 1 and 2).

Axiom 1 (Completeness) For all f, g ∈ F either f � g or g � f (or both).

Axiom 2 (Transitivity) For all f, g, h ∈ F if f � g and g � h, then f � h.

First, we derive utility representation when f (t) is a step function. Subse-
quently, this representation is extended to all other programs. Consider a partition
{T0, T1, . . ., Tn} of the time space S into n + 1 time periods for some n ∈ N (i.e.,
Ti ∈ � for all i ∈ {0, 1, . . ., n}, T0 ⋃

T1
⋃

. . .
⋃

Tn = S and Ti
⋂

Tj = ∅ for all
i, j ∈ {0, 1, . . ., n}, i �= j). We assume that time periods in partition {T0, T1, . . ., Tn}
are numbered in the chronological order, i.e., time period T0 is the earliest and time
period Tn is the latest. Let {y0, T0; y1, T1; . . .; yn, Tn} denote a step program that yields
a cumulative outcome yi ∈ Y at amoment of time t ∈ Ti , i ∈ {0, 1, . . ., n}.We assume
that cumulative outcomes do not become less desirable over time (in other words, a
decisionmaker receives only desirable payoffs over time). This assumption guarantees
that all step programs are rank-ordered (comonotonic), i.e., yn � yn−1 � · · · � y0 for
any partition {T0, T1, . . ., Tn} that is ordered in the chronological order.6 Let F ⊂ F
denote the set of all step programs.

6 If undesirable payoffs occur, then it is possible that f (t) � f (s) even though a moment of time t ∈ S
precedes a moment of time s ∈ S. In this case, we need to assume explicitly that all step programs are
comonotonic.
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For compact notation, let yTf ∈ F denote a step program that yields a cumulative
outcome y ∈ Y at all moments of time t ∈ T within a time period T ∈ �; and
outcome f (t)—at all other moments of time t ∈ S\T . A time period T ∈ � is null
(or inessential) if yTf � zTf for all y, z ∈ Y and all f : S\T → Y . Otherwise, a time
period is nonnull (or essential). If there is only one nonnull time period,we additionally
assume that Y is a separable set (i.e., Y contains a countable subset whose closure is
Y ). This assumption is needed for the existence of a continuous utility function within
one time period (cf. Debreu 1954, Theorem I, p.162).

Traditionally, a real-valued utility representation is derived through a connected
topology approach that assumes continuous preferences (Axiom 3 below). Yet, we
actually need only two implications of continuity that are known as solvability and
Archimedean property (Axioms 3a and 3b below). Thus, we can assume these two
properties directly, instead of assuming continuity. This alternative is known as an
algebraic approach (Wakker 1988; Köbberling and Wakker 2003, p. 398).

Axiom 3 (Step-continuity) For any partition {T0, T1, . . ., Tn} of the set S into
n + 1 time periods and any step program {y0, T0; y1, T1; . . .; yn, Tn} ∈ F the
sets { (z0, z1, . . ., zn) ∈ Yn+1: {z0, T0; . . .; zn, Tn} � {y0, T0; . . .; yn, Tn}} and
{(z0, z1, . . ., zn) ∈ Yn+1: {y0, T0; . . .; yn, Tn} � {z0, T0; . . .; zn, Tn}} are closed with
respect to the product topology on Yn+1.

Axiom 3a (Solvability) For all cumulative outcomes x, y ∈ Y , time period T ∈
�, f : S\T → Y and a step program g ∈ F such that xTf � g � yTf , there exists a
cumulative outcome z ∈ Y such that g ∼ zTf .

Axiom 3b (Archimedean Axiom) A sequence of cumulative outcomes {yi }i∈N such
that yiTg ∼ yi−1Tf and xTf � yiTf � zTf for some x, z ∈ Y is finite for all y0 ∈ Y ,
a nonnull time period T ∈ �, and f, g: S\T → Y such that either y0Tf  y0Tg or
y0Tg  y0Tf .

In choice under uncertainty, a separable utility representation is traditionally derived
from an axiom known as tradeoff consistency (Wakker 1984, 1989) or Reidemeister
closure condition in geometry (Blaschke and Bol 1938). Blavatskyy (2013b) recently
showed that this condition can be weakened to an axiom known as cardinal indepen-
dence or standard sequence invariance (e.g., Krantz et al. 1971, Section 6.11.2).

Axiom 4 (Cardinal independence) If xTf � yTg, xTg � zTf , and yAh � x Ak, then
x Ah � zAk for all x, y, z ∈ Y ; f, g: S\T → Y ; h, k: S\A → Y , any nonnull time
period T ∈ � and any time period A ∈ �.

Proposition 1 (Blavatskyy 2013b)Apreference relation� satisfies Axioms 1, 2, 4 and
either 3 or 3a and 3b if and only if it admits representation (36), where pi ∈ [0, 1] for
all i ∈ {0, 1, . . ., n}, p0 + p1 + · · · + pn = 1, and function u: Y → R is continuous.
Constants pi ∈ [0, 1] are unique except for the trivial case when all time periods
in {T0, T1, . . ., Tn} are null. Function u: Y → R is unique up to a positive affine
transformation if at least two time periods in {T0, T1, . . ., Tn} are nonnull.

U ({y0, T0; y1, T1; . . . ; yn, Tn}) =
n∑

i=0

pi · u (yi ) (36)
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The proof follows immediately from Proposition 1 in Blavatskyy (2013b) when
Axiom 3 is used, and Proposition 3 in Blavatskyy (2013b) when Axioms 3a and 3b
are used.

Formula (36) can be rewritten as (37) by introducing notation wi = ∑n
k=i pk for

all i ∈ {0, 1, . . ., n}. Since pi ≥ 0 for all i ∈ {0, 1, . . ., n} and p0+ p1+· · ·+ pn = 1,
we must have 1 = w0 ≥ w2 ≥ · · · ≥ wn = pn ≥ 0.

U ({y0, T0; y1, T1; . . . ; yn, Tn}) = u (y0) +
n∑

i=1

wi
[
u (yi ) − u (yi−1)

]
(37)

Consider a decision maker who receives a payoff x0 at the present moment t=0, a
payoff x1 at a later moment of time t = 1 and so forth till the last payoff xn at the latest
moment of time t = n, for some n ∈ N. If the time space S is R+, then this decision
maker receives a cumulative outcome y0 = x0 at any moment of time that belongs to
the time period T0 = [0, 1); a cumulative outcome y1 = x0 + x1 at any moment of
time that belongs to the time period T1 = [1, 2); and so forth till cumulative outcome
yn = x0 + x1 + · · · + xn at any moment of time in the time period Tn = [n,∞).
According to formula (37), the stream of payoffs {x0, x1, . . ., xn} received in moments
of time t ∈ {0, 1, . . ., n} then yields utility

U

({

x0, [0, 1) ; . . . ;
n∑

s=0

xs, [n,∞)

})

= u (x0) +
n∑

i=1

wi

[

u

(
i∑

s=0

xs

)

− u

(
i−1∑

s=0

xs

)]

(38)

Finally, if we introduce a functionw: [0, 1] → {w0, w1, . . ., wn} such thatw(β i ) =
wi for all i ∈ {0, 1, . . ., n} and some constant β ∈ (0, 1), then formula (38) coincides
with model (13).

Representation (37) for step programs can be extended to all other programs.
A standard method is to enclose any bounded program f ∈ F by step programs
that period-wise dominate (approximation from above) or are period-wise dominated
(approximation from below) by program f ∈ F . For this method to work, we need
the following Axioms 5–7 (cf. Lemma 2.3 in Wakker 1993).

Axiom 5 (Nontriviality) f � g holds not for all f, g ∈ F .

Axiom 6 (Monotonicity) For all f, g ∈ F if f (t) � g(t) for all t ∈ S then f � g.

Axiom 7 (Step-equivalence) For any program f ∈ F , there exists a step program
g ∈ F such that f ∼ g.

For unbounded programs, either enclosure by step programs from above or from
below (or both) is not possible. We approximate unbounded programs by truncated
bounded programs defined as follows. For any f ∈ F and any y ∈ Y , let f<y ∈ F
denote a program that yields a cumulative outcome y at anymoment of time t ∈ S such
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that f (t)  y and cumulative outcome f (t) at all other moments of time. Furthermore,
let f>y ∈ F denote a program that yields a cumulative outcome y at any moment of
time t ∈ S such that y  f (t) and cumulative outcome f (t) at all other moments of
time. Axiom 8 below ensures the existence of truncated bounded programs.

Axiom 8 (Truncation richness) For all x ∈ Y and any f ∈ F , there exists y ∈ Y such
that y  x and f<y ∈ F , and there exists z ∈ Y such that x  z and f>z ∈ F .

Axiom 9 (Truncation continuity) For all f ∈ F and all g ∈ F if f  g, then there
exists x ∈ Y such that f<x ∈ F , f<x � g and if g  f , then there exists y ∈ Y such
that f>y ∈ F , g � f>y .

Proposition 2 (Wakker 1993) Preference relation � satisfies Axioms 1, 2, 4–9 and
either 3 or 3a and 3b if and only if it admits representationU ( f ) = ∫

S u ◦ f (t) dw (t)
where a (Bernoulli) utility function u: Y → R is continuous and determined up to an
increasing linear transformation; a capacityw: � → [0, 1] is unique; and the integral
is a Choquet integral with respect to capacity w.

The proof follows immediately from Proposition 1 and Theorem 2.5 in Wakker
(1993, p.463).

If payoffs received between t = 0 and a future moment of time t > 0 are described
by cumulative payoff function (9), then utility representation in Proposition 2 can be
written as

∫ ∞
t=0 w

(
e−δt

)
du ◦ y (t), where w: [0, 1] → [0, 1] is a strictly increasing

function, w(0) = 0 and w(1) = 1, and δ ∈ (0, 1) is a constant.

5 General discussion

Themain contribution of this paper is a newmodel of intertemporal choice that is anal-
ogous to rank-dependent utility in choice under risk/uncertainty. Recently, Blavatskyy
(2014) showed that a special case of rank-dependent utility with a linear utility7 and
a cubic weighting function is practically equivalent to the model of optimal portfolio
investment in finance that is based on a tradeoff between expected return, risk and
skewness of assets. This unexpected relationship together with the results of the cur-
rent paper demonstrate that it is possible to construct a unified microeconomic theory
for risk/uncertainty, finance and time under the umbrella of rank-dependent utility.

A rank-dependent utility representation appears rather naturally in intertemporal
choice when a decision maker receives only desirable payoffs over time. In this case,
cumulative outcomes are always rank-ordered (comonotonic) when time periods are
arranged in a chronological order. In contrast, in choice under risk/uncertainty there
is no such equivalent total order on the state space.

The situation is more complex when a decision maker may receive an undesirable
payoff at some moment in time. In this case, cumulative outcomes are not necessarily
rank-ordered (comonotonic) when time periods are arranged in a chronological order.
As a result, the behavior of a decision maker may differ when he or she faces desirable
and undesirable payoffs.

7 Rank-dependent utility with a linear utility function is also known as Yaari’s dual modal (Yaari 1987).
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Consider the following example from Thaler (1981). A representative individual
is indifferent between receiving $15 now and $30 in 3months as well as between
losing $15 now and losing $16 in 3months. If a representative individual maximized
discounted present value, then we would infer a quarterly discount factor β+ = 0.5
from a choice between desirable payoffs and a quarterly discount factor β− = 0.9375
from a choice between undesirable payoffs. Thus, it appears as if people discount
undesirable payoffs to a smaller extent than desirable payoffs (e.g., Frederick et al.
2002, section 4.2.1, p. 362; Loewenstein and Prelec 1992, section II.3, p. 575).

In order to apply our proposed model to undesirable payoffs, it may be helpful
once again to interpret a quarterly discount factor β as a survival probability. Thus,
a decision maker, who loses $15 now, loses $15 for sure, but a decision maker, who
loses $16 in 3months, loses $16 only with a probability β. A rank-dependent utility
maximizer is indifferent between these two optionswhenEq. (39) holds (for simplicity,
we normalized the utility of zero to zero).

u
(−$15

) = [1 − w (1 − β)] u
(−$16

)
(39)

A rank-dependent utility maximizer is indifferent between receiving $15 now and
receiving $30 in 3months when Eq. (18) holds for t = 1, z = 30. As an illustration,
let us consider a weighting function (17) proposed by Tversky and Kahneman (1992,
p. 309) and a power utility function u

(
$x

) = sign (x) ∗ |x |α , with parameter values
γ = 0.56 and α = 0.225 estimated by Camerer and Ho (1994, p. 188). In this case,
a quarterly discount factor inferred from Eq. (39) is β− = 0.9995 and a quarterly
discount factor inferred from Eq. (18) is β+ = 0.9852. Thus, a discount factor can be
very similar for gains and losses when we allow for a nonlinear weighting function
and a nonlinear utility even though gains appear to be discounted at a significantly
higher rate under the assumption of linear weighting and utility functions. Note that
this example does not even require different weighting functions for gains and losses
and/or the possibility of loss aversion as in cumulative prospect theory (Tversky and
Kahneman 1992).

Anymodel involves a tradeoff betweendescriptive realismandparsimony/analytical
convenience. In choice under risk/uncertainty, rank-dependent utility can rationalize
a wide range of behavioral regularities such as Allais (1953) common consequence
effect, the common ratio effect (e.g., Bernasconi 1994) and systematic violations of the
betweenness axiom (e.g., Camerer and Ho 1994). Yet, rank-dependent utility also fails
to accommodate some behavioral patterns such as the reflection example (Machina
2009; Blavatskyy 2013c) and the troika paradox (Blavatskyy 2012).8 Similarly, our
proposed model can rationalize numerous behavioral regularities in intertemporal
choice (and new examples from the introduction), but it cannot possibly accommodate
all of them.

Consider the following example of “subadditive” time preferences (Scholten and
Read 2010, anomaly 1, p. 928).9 A decisionmaker prefers to receive $100 in 19months

8 Typical parameterizations of rank-dependent utility also cannot resolve the classical St. Petersburg para-
dox (Blavatskyy 2005).
9 A similar example is also given in Rubinstein (2003, experiment 1, section 3.1, p. 1211).
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$100 $118 $136
u($100)

1.0139u($100)

1.0293u($100)

Fig. 2 The “least convex” utility function required for inequality (40) to hold for β = 0.999 and Tversky
and Kahneman (1992) weighting function (17) with a parameter γ = 0.56: utility of $118 must not exceed
1.0139 u($100) and utility of $136 must not fall below 1.0293 u($100)

rather than $118 in 22months. He/she also prefers to receive $136 in 22months rather
than $100 in 16months. Let β denote a monthly discount factor and let us normalize
the utility function so that u($0)=0. According tomodel (13) a decisionmaker reveals
the above-mentioned choice pattern if inequality (40) holds.

w
(
β16

)

u
(
$136

) <
w

(
β22

)

u
(
$100

) <
w

(
β19

)

u
(
$118

) (40)

If utility function u(·) is linear/concave, then inequality (40) holds only when
weighting function w(·) is sufficiently concave in the domain containing β16, β19

and β22. An inverse S-shaped weighting function, which is often found in empirical
studies, is concave only in the neighborhood of zero. Thus, for a typical parameteriza-
tion of rank-dependent utility with a concave utility and an inverse S-shapedweighting
function, inequality (40) can hold only when a discount factor β is sufficiently small
so that values β16, β19 and β22 are in the neighborhood of zero.10 Yet, such a low
monthly discount factor (that is close to zero when compounded over 16–22months)
does not appear to be realistic.

If utility function u(·) is convex, then inequality (40) can hold for a high discount
factor β (so that values β16, β19 and β22 are in the neighborhood of one where a
conventional inverse S-shaped weighting function is convex). For example, consider
weighting function (17) proposed by Tversky and Kahneman (1992) with a parame-
ter γ = 0.56 estimated by Camerer and Ho (1994, p.188). Let a monthly discount
factor be β = 0.999. In this case, inequality (40) holds when utility function u(·)
is sufficiently convex so that u($118)<1.0139u($100) but u($136)>1.0293u($100).
Figure 2 illustrates these bounds on a convex utility function u(·). Thus, our proposed
model (13) can accommodate “subadditive” time preferences found in Scholten and
Read (2010) if we allow for nonstandard parameters: either a low monthly discount
factor or a (slightly) convex utility function.

10 For example, inequality (40) is satisfied when β = 0.8, utility function is u(x) = x0.4, and weighting
function is (17) with parameter γ = 0.3.
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$6,250 $8,250 $10,250

u($10250)

0.9463u($10250)

0.9077u($10250)

Fig. 3 The “least convex” utility function required for inequality (41) to hold for β = 0.99 and Tversky
and Kahneman (1992) weighting function (17) with a parameter γ = 0.56: utility of $6250 must exceed
0.9077 u($10,250) and utility of $8250 must fall below 0.9463 u($10,250)

Finally, let us consider an example of “superadditive” time preferences from
Scholten and Read (2010, anomaly 2, p. 929). A decision maker prefers to receive
$10,250 in 24months rather than $8250 in 12months. The same decision maker also
prefers to receive $6250 in 12months rather than $10,250 in 36months. Let β denote
an annual discount factor and let u($0)=0. Model (13) then represents the above-
mentioned “superadditive” time preferences if inequality (41) holds.

w
(
β3

)

u
(
$6250

) <
w (β)

u
(
$10,250

) <
w

(
β2

)

u
(
$8250

) (41)

For a linear or concave utility function u(·), inequality (41) holds only if weight-
ing function w(·) is concave on the domain that contains β, β2 and β3. Yet, for a
convex utility function, inequality (41) may hold when weighting function w(·) is
convex or linear on the domain that contains β, β2 and β3. For example, consider
weighting function (17) with γ = 0.56 and an annual discount factor β = 0.99. In
this case, inequality (41) holds when utility function u(·) is sufficiently convex so that
u($6250)>0.9077u($10,250), but u($8250)<0.9463u($10,250). Figure 3 illustrates
these bounds. Thus, model (13) can rationalize “superadditive” time preferences if we
allow for convex utility function.

A drawback of discounted utility as well as its subsequent generalizations such as
quasi-hyperbolic and generalized hyperbolic discounting is that these models assume
independence (cf. Postulate 3, Koopmans 1960, p. 292). This assumption can be sum-
marized as follows. If, at some point in time, all available choice alternatives yield the
same payoff, then a choice decision does not depend on such a payoff (e.g., Bleichrodt
et al. 2008, p. 342). Even though this assumption is quite problematic in intertemporal
choice, it is seldom discussed in the literature (cf. Frederick et al. 2002, Section 3.2,
p. 357). To illustrate the limitations of independence, let us consider a choice between

(A) One million in 2years
(B) Two million in 6years

as well as a choice between
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(C) Ten million now plus 1million in 2years
(D) Ten million now plus 2million in 6years

Some people may choose A over B, for example, because the marginal utility of
their first million is much higher than the marginal utility of their second million. At
the same time, they may choose D over C. Upon receiving 10million, the comparative
advantage of getting another million in 2years (in C) may fade away in front of the
investment possibility to double that amount in 4years (in D). In other words, there
may be an intertemporal wealth effect—a large payoff received in an earlier time
period may affect the decision maker’s preference between payoffs in the subsequent
periods.

Our proposed model can rationalize such intertemporal wealth effects. For simplic-
ity, let us consider model (13) with a linear weighting function w(·), i.e., we consider
“discounted incremental utility” model (3). According to model (3), a decision maker
prefers to receive 1million in 2years (option A) rather than 2million in 6years (option
B) if and only if inequality (42) holds (with β denoting an annual discount factor).

β2u
(
$1m

)
> β6u

(
$2m

)
(42)

At the same time, this decision maker prefers to receive (D) 10million now plus
2million in 6years rather than (C) 10million now plus 1million in 2years if and only
if inequality (43) holds.

u
(
$10m

) +β6 [
u

(
$12m

) − u
(
$10m

)]
> u

(
$10m

) +β2 [
u

(
$11m

) − u
(
$10m

)]

(43)

Inequalities (42) and (43) cannot hold simultaneously if utility function u(·) is lin-
ear. Yet, if the utility function is nonlinear, both inequalities are satisfied whenever
condition (44) is met.

u
(
$11m

) − u
(
$10m

)

u
(
$12m

) − u
(
$10m

) < β4 <
u

(
$1m

)

u
(
$2m

) (44)

For a concave utility function u(·), the ratio on the left-hand side of (44) is always
smaller than the ratio on the right-hand side of (44). In other words, a concave (convex)
utility function is necessary for systematic violations of independence when people
reveal greater patience (impatience) when receiving large outcomes in the present
period. Thus, model (3) predicts that a decision maker with a concave utility function
may have a systematic tendency to choose (A) over (B) but (D) over (C).

So far, we considered only monetary payoffs, but our proposed model can be also
applied to more general outcomes such as vectors of consumption goods/services
(i.e., when xt ∈ R

n for n ∈ N). For illustration, let us consider a choice between the
following plans for a summer vacation:

(E) France this year and Hawaii next year
(F) Hawaii this year and Hawaii next year
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as well as a choice between

(G) France this year and France next year
(H) Hawaii this year and France next year

Some people may find it boring to visit the same destination 2years in a row, even
if it is their favorite destination. Such decision makers would prefer plan (I) over plan
(J), but, at the same time, they would prefer plan (L) over plan (K), in violation of the
assumption of payoff independence. In other words, there may be an intertemporal
substitution effect. A stream of diversified intertemporal payoffsmay satisfy a decision
maker to a greater extent than a stream that yields the same payoff in every time period
(even if this payoff is the most desirable one in one-shot choice).

On the other hand, theremay be peoplewho prefer visiting the same destination year
after year. Such decision makers would prefer plan (J) over plan (I) and plan (K) over
plan (L) due to their habit formation. Again, such behavior violates the independence
assumption. Loewenstein and Prelec (1993, Example 4, p. 95) provide another similar
example of independence violation.

We shall denote outcomes as vectors with two elements. The first (second) element
denotes the number of summer vacations spent in France (Hawaii). Consequently,
the domain of utility function u(·) is R2. Finally, let β be an annual discount factor.
According to model (3), a decision maker prefers vacation plan (I) over vacation plan
(J) if inequality (45) is satisfied.

u (1, 0) + β [u (1, 1) − u (1, 0)] > u (0, 1) + β [u (0, 2) − u (0, 1)] (45)

At the same time, this decision maker prefers plan (L) over plan (K) if inequality (46)
holds.

u (0, 1) + β [u (1, 1) − u (0, 1)] > u (1, 0) + β [u (2, 0) − u (1, 0)] (46)

Inequalities (45) and (46) can hold simultaneously if and only if inequality (47) is
satisfied.

β [u (1, 1) − u (0, 2)] > (1 − β) [u (0, 1) − u (1, 0)] > β [u (2, 0) − u (1, 1)] (47)

A necessary condition for (47) to hold is inequality (48), which defines a concave
utility function u(·).

u (1, 1) >
u (2, 0) + u (0, 2)

2
(48)

Thus, a decision maker with a concave utility function u(·) can systematically
violate independence by choosing vacation plan (I) over vacation plan (J) as
well as vacation plan (L) over vacation plan (K). This is a standard result from
consumer choice—people with concave utility prefer a diversified consumption bas-
ket because substituting goods/commodities that are consumed in large quantities
with goods/commodities that are consumed in small quantities increases overall
satisfaction.
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Similarly, for a convex utility function u(·) the rightmost-hand side of inequality
(47) is greater than the leftmost-hand side of inequality (47). Thus, a decision maker
with a convex utility function can also systematically violate intertemporal indepen-
dence. In this case, however, the pattern of violations is different—a decision maker
prefers to visit the same destination year after year.

The above examples illustrate that “discounted incremental utility” can be used for
modeling a variety of time preferences. The model has the same number of parame-
ters as the discounted utility of Samuelson (1937). Yet, despite this parsimony, the
model can accommodate a large set of behavioral regularities including intertemporal
wealth, complementarity and substitution effects. Apparently, an improvement in the
descriptive realism does not sacrifice analytical convenience.

The separability of utility in intertemporal choicemay not be normatively appealing
because payoffs are notmutually exclusive. They aremerely received at different points
in time, and there stillmaybe strongwealth, complementarity or substitution effects (as
our examples above illustrate). Arguably, the separability of utility is more appealing
in choice under risk/uncertainty where payoffs occur in mutually exclusive states of
the world. Yet, even in this case, there are well-known violations of independence
(e.g., Allais 1953, p. 527; Kahneman and Tversky 1979, p. 266).

The classical work of Samuelson (1937) catalyzed economic modeling of intertem-
poral choice. Most of the subsequent developments in the literature adopted some
elements of Samuelson’s discounted utility. This paper tries to avoid such a legacy.
As a result, our proposed model of intertemporal choice avoids such problems as the
discontinuity of time preferences, increasing satisfaction from splitting payoffs across
two periods close in time and payoff independence.
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