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Abstract We develop an overlapping generations model with leveraged investment
in speculative asset bubbles. Financial intermediaries use borrowed funds to speculate
on a risky asset bubble, which promises high returns as long as it does not collapse.
They can, however, default on their debt and shift the losses to lenders when the
bubble collapses. This risk shifting leads to welfare-reducing (or “toxic”) rational
asset bubbles. We then analyze a set of often discussed policy interventions: pricking
bubbles, macroprudential regulations, and leverage restriction.
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1 Introduction

Financial crises tend to follow dramatic booms in asset prices and their collapses
(Reinhart and Rogoff 2009), especially when the booms are driven by debt financ-
ing (Minsky 2008; Kindleberger and Aliber 2011; Jordà et al., forthcoming). The
global financial crisis of 2007–2009 that began in the USA is an illustration of such
a phenomenon in which financial intermediaries are left relatively unchecked to use
borrowed funds to invest in risky assets such as real estate and the associated subprime

B Toan Phan
phan@unc.edu

Daisuke Ikeda
daisuke.ikeda@boj.or.jp

1 Financial System and Bank Examination Department, Bank of Japan, Tokyo, Japan

2 University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00199-015-0928-1&domain=pdf


242 D. Ikeda, T. Phan

mortgage-backed securities (Reinhart and Rogoff 2009; Rajan 2011; Stiglitz 2012).
The role played by the combination of credit and speculation in the build-up to the
crisis in the USA has also been documented by Angelides et al. (2011), Mian and Sufi
(2011), and Barlevy and Fisher (2012).

In this paper, we analyze the booms and busts of asset bubbles—assets whose
prices are inflated beyond their fundamental values—and their implications to welfare
and policy. We develop a tractable rational bubble model that features an interplay
of debt financing and speculation on risky asset bubbles. Our starting point is an
overlapping generations model pioneered by Samuelson (1958), Diamond (1965),
and Tirole (1985), in which an aggregate shortage of storage leads to the emergence
of bubbles—assets which pay no dividend but have positive value. To this, we add
two ingredients, both of which are relevant to the recent US housing bubble episode:
(i) leveraged bubble investment: Bubble investment is financed by borrowing, and (ii)
defaultable debt: Borrowers raise funds via a standard debt contract. These ingredients
lead to risk shifting: Borrowers shift the risk of a bubble to lenders by defaulting on
the debt if the bubble collapses. To manifest this idea in the simplest possible way, we
assume that households cannot directly invest in the financial market; instead, they
lend to financial intermediaries (“bankers”), who then use the borrowed money either
to invest in physical capital or to speculate on a bubble asset that has an exogenous
risk of collapse. However, credit markets are incomplete: Bankers’ borrowing is in
the form of a non-contingent standard debt contract and is defaultable. This setup of
financial intermediation is similar to that used by Allen and Gale (2000) and Barlevy
(2012) and allows us to model leveraged bubble investment with default risk in a
tractable manner.

As a result of bankers’ risk shifting, welfare-reducing asset bubbles (or “toxic asset
bubbles”) emerge when the risk of bubble collapse is high enough. Intuitively, because
bankers do not fully internalize the consequence of the collapse of a bubble, they have
an incentive to chase higher returns from a risky asset bubble. This leveraged specu-
lation leads to bubble equilibria in which social welfare is worse than in a bubble-less
equilibrium. The existence of toxic rational asset bubbles due to leveraged speculation
is our first contribution.

Next, we analyze a set of policies that have often been discussed among scholars
and policymakers. In the first step, we consider a case in which a policymaker can
observe bubbles and bubble investment. In this case, an ex-post unanticipated policy
that pricks a bubble can improvewelfare if it is combinedwith a redistribution from the
non-bubble holders to the bubble holders. This policy is equivalent to using tax revenue
from non-bubble holders for purchasing a toxic asset bubble in order to remove it from
themarket.Next,we consider two types of ex-ante anticipated policy:macroprudential
policy that taxes bubble speculation and a macroprudential banking regulation that
places a constraint on the share of a risky asset in bankers’ balance sheets. For each
policy, our analysis shows that the riskier a bubble, the stricter is the optimal policy,
i.e., the higher is the optimal tax or the tighter is the optimal constraint on bankers. In
addition, both policies can eliminate toxic asset bubbles. However, these policies have
a drawback in practicality: They hinge on the strong assumption that the policymaker
can observe bubbles and bubble investment. We thus consider a case in which the
policymaker can neither observe bubbles nor bubble investment. In this case, a leverage
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restriction on bankers, i.e., a constraint on the debt-to-equity ratio, can prevent toxic
asset bubbles, although with a trade-off of reducing overall financial intermediation.
The analyses of these bubble policies are our second contribution.

Related literature. Our paper is related to a large literature on rational bubbles.
Much of the literature has focused on a positive analysis of bubbles. In particular,
a common theme in this literature is that rational bubbles emerge to reduce some
inefficiency in the financial market, such as an aggregate shortage of assets for storage
as in the classic framework in Tirole (1985), or a credit market imperfection, as in the
recent work by Miao and Wang (2012, 2015b), Martin and Ventura (2012), Farhi and
Tirole (2012), Hirano and Yanagawa (2014), Ikeda and Phan (2014), and Zhao (2015).

Regarding policy analyses that are related to our paper, Saint-Paul (1992), Gross-
man and Yanagawa (1993), and King and Ferguson (1993) show that, in the presence
of externality in capital accumulation, the emergence of bubbles on an unproductive
asset would inefficiently divert resources from investment, and thus, there is room for
regulating bubbles. Similarly, Hirano et al. (2015) show that taxing oversized bubbles
is optimal because they marginally crowd out productive investment. Caballero and
Krishnamurthy (2006) show in a small open economy framework that bubbles can
marginally crowd out domestic savings and cause a shortage of liquid international
assets. Finally, Miao et al. (2014) show that bubbles can crowd in investment exces-
sively rather than crowding it out. While these papers highlight a potential inefficiency
of rational bubbles through their negative externality on aggregate productive invest-
ment, our paper highlights a different source of inefficiency: bankers’ risk shifting
due to debt financing. More broadly, our paper is related to an emerging literature on
macroprudential policies.1

Outside the rational bubble literature, our paper benefits from an insight fromAllen
and Gorton (1993), Allen and Gale (2000), and Barlevy (2012), who show how risk
shifting pushes the price of a risky asset above its fundamental value in a two- or
three-period model without rational bubbles. We further develop this insight into an
overlapping generations model with rational bubbles. Likewise, Doblas-Madrid and
Lansing (2014)2 embeds risk shifting in a model that follows Abreu and Brunnermeier
(2003)’s framework. This framework is different from the rational bubble framework
in many aspects, one of which is heterogeneous information as a main driving force of
bubbles. By contrast, our model does not feature asymmetric information and provides
a more tractable environment for policy analyses.

Finally, it is worth mentioning the limitations of an overlapping generations model,
although it provides a tractable framework for policy analyses and thus has beenwidely
adopted by the rational bubble literature. In such a model, the traditional interpretation
of a period as twenty or thirty years is not appropriate for analyzing standard business
cycle fluctuations. Instead, we adopt the convention in the financial friction literature
such as Bernanke and Gertler (1989), interpret the entry and exit of finite-lived agents
in our model as representing the entry and exit of investors or firms from the credit
market, and interpret a period as the length of a typical financial contract such as a loan

1 See Galati and Moessner (2013) for a review of the literature.
2 For a related near-rational bubble model of bubbles in equity price, see Lansing (2012).
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contract. However, the finite horizon setting still assumes away potentially interesting
forward-looking behaviors of agents with an infinite horizon. Recent developments
in the literature using an infinite horizon model include Kocherlakota (2009), Hirano
and Yanagawa (2014), Miao and Wang (2012, 2014, 2015a, b), Miao et al. (2013a, b,
2014). Among them,Miao andWang (2012, 2014, 2015b) develop a novel framework
of stock price bubbles, while Miao and Wang (2015a) develop a model of bubbles in
the value of banks andMiao et al. (2014) develop a model of housing bubbles. Finally,
Miao et al. (2013b) provide the first dynamic stochastic general equilibrium (DSGE)
model of bubbles, which can be estimated by Bayesian methods. For a survey of
the recent bubble literature in an infinite horizon model and its differences from an
overlapping generations model, see Miao (2014).

The plan for the rest of the paper is as follows. Section 2 provides the useful
benchmarkmodelwith no risk shifting. Section 3 introduces ourmainmodel. Section 4
provides robustness checks. Section 5 conducts policy analyses. Section 6 concludes.
All proofs are in the “Appendix.”

2 Benchmark model with no risk shifting

This section provides the benchmark model with no financial intermediation and thus
no risk shifting. Time is discrete, denoted by t = 0, 1, 2, . . .. There are overlapping
generations of households. Each household lives for two periods, young and old ages,
and each generation has a constant unit population. For simplicity, we assume house-
holds are risk neutral and consume only in old age. Households have no initial asset
and supply one unit of labor inelastically to firms when they are young.

There is a constant unit population of competitive firms. A representative firm
produces output Yt by combining capital Kt and labor Lt according to the Cobb–
Douglas production function: Yt = K α

t (At Lt )
1−α with 0 < α < 1. The labor-

augmenting productivity At ≡ gt grows at a constant exogenous rate of g ≥ 1. For
simplicity,we assumecapital depreciates completely after one period.Wealso assume:

α < 1/2. (1)

Aswill be shown later in this section, this condition corresponds to the classic dynamic
inefficiency condition in Tirole (1985), which guarantees the existence of bubble equi-
libria.

Let Rk
t and Wt denote the rental rate of capital and the wage rate, respectively.

For each variable Xt , denote xt as the detrended variable: xt ≡ Xt/At (for example,
wt ≡ Wt/At ). Firms’ profit maximization and the labor market-clearing condition
(Lt = 1) yield standard marginal pricing for factor prices:

wt = (1 − α)(Kt/At )
αL−α

t = (1 − α)kα
t (2)

Rk
t = α(Kt/At )

α−1L1−α
t = αkα−1

t . (3)

We now introduce a bubble. As in Tirole (1985), consider an asset in fixed unit
supply that pays no dividend in any period. Thus, the only reason any agent purchases
the asset is because he or she expects to be able to sell it later. The asset is called a

123



Toxic asset bubbles 245

bubble if its price is positive. FollowingWeil (1987), we model a stochastic bubble by
assuming that in each period, the bubble bursts (i.e., the price permanently collapses
to zero) with an exogenous and constant probability λ ∈ [0, 1). Formally, the price
process {P̃t }t≥0 of a bubble satisfies: if P̃t = Pt > 0,

P̃t+1 =
{
0 with probability λ

Pt+1 > 0 with probability 1 − λ
(4)

where Pt denotes the price of the bubble conditional on the event that the bubble has
not bursted. In addition, once a bubble is collapsed, it will never emerge in the future:
Pr(P̃t+1 = 0|P̃t = 0) = 1.

There are two cases to be considered: a case in which a bubble persists and another
case in which a bubble bursts. First, consider the former case, i.e., P̃t = Pt > 0. Each
young household directly chooses a savings portfolio consisting of capital Kt+1 ≥ 0
and bubble bt ≥ 0 to maximize the expected consumption in old age, Et [Ct+1(P̃t+1)],
subject to budget constraints in young and old ages, P̃t bt + Kt+1 = Wt and
Ct+1(P̃t+1) = P̃t+1bt + Rk

t+1Kt+1, respectively. Given P̃t = Pt > 0, the first-order
conditions of the problem imply a no-arbitrage condition: Rk

t+1 = (1 − λ)Pt+1/Pt .
Detrending the condition yields:

Rk
t+1 = (1 − λ)g

pt+1

pt
. (5)

This condition implies that households are indifferent between investing in the capital
stock or in the bubble asset. The detrended budget constraint for young households
and the consumption in old age in period t are written, respectively, as:

pt + gkt+1 = wt = (1 − α)kα
t , (6)

ct = pt + Rk
t kt . (7)

Next, consider a case in which a bubble has bursted, i.e., P̃t = 0. Then the house-
hold’s problem is trivial, and each young household simply saves all of the wage
income Wt into capital investment so that Kt+1 = Wt . The equilibrium dynamics is
summarized by the following two equations:

gkt+1 = wt = (1 − α)kα
t (8)

ct = Rk
t kt . (9)

We are now in a position to define equilibria.

Definition 1 (Equilibria with no risk shifting)

1. Given an initial capital stock k0 > 0, a no-bubble equilibrium consists of allocation
{kt+1, ct }∞t=0 and prices {Rk

t+1, wt }∞t=0 that satisfy (2), (3), (8) and (9). A no-bubble
steady state consists of allocations {knb, cnb} and prices {Rk

nb, wnb} that satisfy the
same conditions but without time subscript t .
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2. Given an initial capital stock k0 > 0, an initial bubble price p0 > 0, and a stochastic
process for a bubble asset (4), a stochastic bubble equilibrium with self-investment
consists of allocations {kt+1( p̃t ), ct ( p̃t )}∞t=0 and prices {Rk

t ( p̃t ), wt ( p̃t ), p̃t }∞t=0
such that (i) conditions (2) and (3) are satisfied; (ii) if p̃t = pt > 0, then condi-
tions (5), (6), and (7) are satisfied; (iii) if p̃t = 0, then conditions (8) and (9) are
satisfied. A stochastic bubble steady state with self-investment consists of alloca-
tions {kself , cself } and prices {Rk

self , wself , pself } that satisfy the conditions (i) and
(ii) of a bubble equilibriumwith self-investment where time subscript t is removed.

As in the rational bubble literature, there are two types of bubbles: asymptotic bubbles
and transitory bubbles. Given p0 > 0, an asymptotic bubble is such that the limit of
the price of the unburst bubble is positive, i.e., limt→∞ pt > 0. A transitory bubble is
such that the price of the unburst bubble converges to zero, i.e., limt→∞ pt = 0. As
in the standard bubble literature, we focus on asymptotic bubble equilibria.

The following Lemma states the conditions under which bubble equilibria exist,
and shows the uniqueness of an asymptotic bubble equilibrium. Because an asymptotic
bubble equilibrium coincides with a stochastic bubble steady state if an initial capital
stock is given by k0 = kself , we define social welfare as the expected utility in a
stochastic bubble steady state.

Lemma 1 (Existence of equilibria with no risk shifting)

1. There is a unique no-bubble equilibrium for each initial k0 > 0. In steady state,

capital and prices are given by: knb = [(1 − α)/g] 1
1−α , Rk

nb = αg/(1 − α), and

wnb = (1 − α)kα
nb. Consumption (welfare) is given by cnb = α[(1 − α)/g] α

1−α .

2. There exist bubble equilibria if and only if dynamic inefficiency condition (1) holds,
and the risk of bursting λ is not too large: λ < λ ≡ (1 − 2α)/(1 − α).

3. When bubbles exist, there is a unique asymptotic equilibrium. In stochastic bubble

steady state, capital and prices are given by: kself = {α/[(1 − λ)g]} 1
1−α , Rk

self =
(1−λ)g, wself = (1−α)kα

self , and pself = [1−α −α/(1−λ)]kα
self . The expected

consumption (welfare) is given by:

ceself = (1 − λ)

(
1 − α

1 − λ

)
kα
self︸ ︷︷ ︸

c if bubble persists

+λ Rk
selfkself︸ ︷︷ ︸

c if bubble collapses

= (1 − λ)(1 − α)

[
α

(1 − λ)g

] α
1−α

.

We then have the following benchmark result regarding welfare:

Lemma 2 In the economy with self-investment, a bubble improves welfare: ceself >

cnb.

Lemma 2 restates the standard result in the rational bubble literature that bubbles
improve welfare. Intuitively, a bubble improves welfare since it mitigates the shortage
of storage that generates inefficiency in the financial market. In the next section,
we overturn this result by extending the benchmark model to incorporate imperfect
financial intermediation.
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Fig. 1 Model of bubbles with risk shifting

3 Model of bubbles with risk shifting

3.1 Bubbles with risk shifting

We now introduce risk shifting to the benchmark model. In this model, young house-
holds cannot directly invest in capital or a bubble asset. Instead, they put their savings
in financial intermediaries (“bankers”) who invest on their behalves. Figure 1 summa-
rizes this setup. The setup captures the fact that in practice most households do not
directly manage their wealth and delegate wealth management to financial interme-
diaries. Similar to households, bankers exist for two periods, and in each period, the
population of new bankers is unity.We assume that households lend to bankers through
a standard debt contract as in Jensen and Meckling (1976), Stiglitz andWeiss (1981),
Allen and Gorton (1993) and Allen and Gale (2000).3 In particular, new bankers offer
a non-contingent debt contract to young households at the interest rate Rd

t+1, take
deposits of young households, Dt , and use the deposits to invest in capital and a bub-
ble asset. However, bankers have an option to default on their debt obligation. If a bank
defaults (i.e., declares bankruptcy), all of its assets are seized and distributed equally
to its depositors. Each new banker in period t chooses its portfolio to maximize the
expected profit in period t + 1:

max
bt ,Kt+1≥0

Et [Πt+1(P̃t+1)] = Et max{P̃t+1bt + Rk
t+1Kt+1 − Rd

t+1Dt︸ ︷︷ ︸
no default

, 0︸︷︷︸
default

} (10)

subject to Dt = P̃t bt + Kt+1. Profit function Πt+1(P̃t+1) captures the nature of a
standard debt contract: If the return on investment, P̃t+1bt +Rk

t+1Kt+1, is smaller than
the amount owed plus interest, Rk

t+1Dt , then a bank defaults on its debt and households
seize all of the bank’s assets. As a consequence, bankers do not fully internalize the
downside risk of its investment, causing an agency problem. Household consumption
in old age is given by:

Ct+1 = min{Rt+1Dt︸ ︷︷ ︸
no default

, P̃t+1bt + Rk
t+1Kt+1︸ ︷︷ ︸

default

} (11)

3 “Microfoundation for standard debt contract” inAppendix provides amicrofoundation for this assumption
by using costly state verification, as in Townsend (1979).
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Bankers’ optimization problem is solved by guessing and verifying that bankers
default on their promised payment if and only if the bubble bursts. Given this guess,
their expected profit is given by:

Et [Πt+1(P̃t+1)] = (1 − λ)(Pt+1bt + Rk
t+1Kt+1 − Rd

t+1Dt ) + λ × 0. (12)

Profit maximization yields the following no-arbitrage conditions: Rd
t+1 = Rk

t+1 and
Pt+1/Pt = Rk

t+1. Detrending the later condition yields:

g
pt+1

pt
= Rk

t+1, (13)

Compared with the benchmark model presented in the previous section, the only
difference between the no-arbitrage conditions regarding the choice of a bubble asset,
(5) and (13), lies in the absence of the probability of bubble bursting λ in (13). This is
the manifestation of risk shifting in this model: Because bankers can default and avoid
negative profit when the bubble bursts, they focus only on the high return when the
bubble sustains and ignore the loss when the bubble bursts. As a consequence, bankers
shift the bubble’s risk of bursting to households, and the households’ consumption
drops when the bubble bursts as shown in (11).

The no-arbitrage conditions imply that competitive bankers earn zero profit even
when the bubble does not burst. On the other hand, each bank’s profit would be
negative if the bank repaid their debt after the bubble bursted: Πt+1(P̃t+1 = 0) =
Rk
t+1Kt+1 − Rd

t+1(Ptbt +Kt+1) = −Rk
t+1Ptbt < 0. Therefore, bankers default when

the bubble bursts, as previously guessed.
We now define a stochastic bubble equilibrium with risk shifting and a stochastic

bubble steady state with risk shifting in the same manner as in Definition 1, except
that the no-arbitrage condition (13) replaces that in the benchmark model (5), and the
deposit amount and the deposit interest rate are given by dt = wt and Rd

t+1 = Rk
t+1,

respectively. As in the previous section, we focus on an asymptotic bubble equilibrium
and its stochastic steady state. Note that a no-bubble equilibrium in this model is the
same as that in the benchmark model.

The following Proposition summarizes the properties of the bubble equilibria with
risk shifting:

Proposition 3 (Bubble equilibria with risk shifting)

1. The bubble equilibria exist if and only if condition (1) holds, irrespective of the
bubble’s risk of bursting λ.

2. In the stochastic bubble steady state, capital and prices are given by: kb =
(α/g)

1
1−α , Rk

b = Rd
b = g, wb = (1 − α)kα

b , and pb = (1 − 2α)kα
b . The expected

steady-state consumption (welfare) is given by:

ceb = (1 − λ) (1 − α)

(
α

g

) α
1−α

︸ ︷︷ ︸
c if bubble persists

+ λ α

(
α

g

) α
1−α

︸ ︷︷ ︸
c if bubble collapses

.
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Intuitively, because bankers ignore the risk of bubble burst due to their debt financ-
ing, bankers’ no-arbitrage condition (13) does not involve the bubble’s probability of
bursting λ. As a consequence, unlike in the benchmark model, λ does not affect the
existence condition of bubble equilibria.

The fact that the bankers ignore the risk of bubble burst and shift the risk to house-
holds have an interesting implication for the size of bubble, as stated in the following
corollary.

Corollary 4 The size of the bubble in the stochastic bubble steady state with risk
shifting is larger than that with no risk shifting:

pb > pself .

Intuitively, risk shifting induces bankers to chase the high upside return from the risky
bubble and leads to a high demand for the bubble asset, which inflates the size of the
bubble.

3.2 Toxic asset bubbles

Now we are in a position to analyze the welfare implications of bubbles. Recall from
Proposition 3 that the expected consumption in the bubble steady statewith risk shifting
is

ceb = (1 − λ) (1 − α)

(
α

g

) α
1−α

︸ ︷︷ ︸
≡cb

+ λ α

(
α

g

) α
1−α

︸ ︷︷ ︸
≡cLb

, (14)

where cb is the consumption if the bubble persists and cLb is the consumption if the
bubble collapses. On the one hand, assumption (1) implies that cb is higher than cLb .
Indeed, cb is the first-best steady-state consumption level in this economy.4 On the
other hand, assumption (1) implies that cLb is lower than the consumption in the no-
bubble steady state, cnb. Hence, fromEq. (14), the expected consumption in the bubble
steady state is lower than that in the no-bubble steady state, ceb < cnb, if and only if
the probability of bubble burst λ is higher than λ̄, where:

λ ≡ 1 − α

1 − 2α

[
1 −

(
α

1 − α

) 1−2α
1−α

]
, (15)

which is the solution to equation (1 − λ)cb + λcLb = cnb. Assumption (1) ensures
0 < λ < 1; for example, λ = 0.379 when α = 0.4. Thus, with risk shifting, there exist
equilibria with excessively risky bubbles that reduce welfare, that is, an asymptotic
bubble equilibria with ceb < cnb.

4 Formally, following Diamond (1965), we consider a benevolent planner who allocates consumption and
capital investment to maximize steady-state consumption, subject to resource constraint c + gk = f (k).
The optimization problem is: maxk≥0 f (k) − gk. The solution, which is known as the “golden rule,” is

kgold = (α/g)
1

1−α = kb and cgold = cb .
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In the economy with self-investment, however, no welfare-reducing bubbles exist.
To see this, recall that the existence of bubble equilibria with self-investment requires
λ to be lower than λ (Lemma 1). But assumption (1) implies λ > λ. Thus, there do
not exist self-investment equilibria with bubbles whose risk is larger than λ.

Intuitively, in the self-investment economy, agents fully internalize the risk of a bub-
ble, as shown in no-arbitrage condition (5), and thereby a bubble is welfare improving.
However, when bankers can shift risks to households, they do not internalize the risk
of a bubble and only care about the high return when the bubble grows, as shown in
no-arbitrage condition (13). This equation implies that bankers behave as if the bub-
ble would last forever. Ironically, households enjoy the first-best consumption if the
bubble does not burst. Yet, the consumption drops sharply when the bubble collapses,
because bankers default on their debt and avoid the loss caused by the bubble burst.
Hence, regardless of the bubble’s risk, there exist bubble equilibria. In particular, there
exist bubble equilibria with toxic bubbles.

Throughout the rest of the paper, we call a bubble “toxic” if its risk of bursting
satisfies λ > λ. The analysis above shows that welfare with bubble is smaller than
welfare with no bubble if and only if the bubble is toxic. The following proposition
summarizes the results regarding toxic asset bubbles:

Proposition 5 (Toxic asset bubbles)

1. In the economy with risk shifting, there exist equilibria with toxic bubbles, i.e.,
bubbles with λ > λ. Such bubbles reduce welfare in steady state: ceb < cnb.

2. In the economy with self-investment, equilibria with toxic bubbles do not exist.

4 Robustness checks

This section shows that our results are robust to alternative assumptions.

4.1 n-period overlapping generations

For tractability, we have adopted the standard two-period overlapping generation setup
as in the classic Samuelson–Diamond–Tirole framework. Indeed, our main results are
robust to generations with longer horizons. “n-period overlapping generations” in
Appendix extends the model to an environment in which each household lives for
n-periods, having lifetime utility Et (c1,t + βc2,t+1 + · · · + βn−1cn,t+n−1), and saves
a fraction s of its wealth in each of the first n − 1 periods of their life.

4.2 Risk-averse households in old age

This subsection allows old households to be risk averse instead of being risk neutral.
Our result is in fact strengthened if old households are risk averse: A toxic bub-
ble reduces social welfare even more when old households are risk averse. Suppose
households’ utility of consumption in old age is u(ct ), where u(·) is strictly increasing
and strictly concave. We still maintain the simplifying assumptions that households
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do not consume in young age and bankers are risk neutral. It is straightforward to
show that both the bubble steady state with financial intermediation and the no-bubble
steady state are not affected by households’ risk aversion. In particular, the existence
condition for bubbles under risk shifting is the same dynamic inefficiency condition
(1). Thus, Proposition 3 continues to hold. However, not surprisingly, the threshold
λ for toxic bubble risk in Proposition 5 is lowered, i.e., a risky bubble is more likely
to be toxic, due to risk aversion. This threshold is defined implicitly by the following
equation: (1−λ)u(cb)+λu(cLb ) = u(cnb). Because the consumption in the stochastic
bubble steady state drops sharply in the case of bubble burst, the more risk averse are
the households in old age, the larger is the loss from the bubble burst, and the smaller
is λ. As numerical examples with u(c) = c1−σ /(1 − σ), the thresholds are λ̄ = 0.33
when σ = 1 and λ̄ = 0.25 when σ = 3, both of which are smaller than 0.38 in the
case of linear utility.

4.3 Risk-averse households in both periods of life

Now suppose households are risk averse and consume in young age as well. The
expected lifetime utility of a generation born in period t is given by log(Cy

t ) +
βEt log(Co

t+1)whereC
y
t is consumption in young age andCo

t+1 is consumption in old
age. The existence condition for bubbles under risk shifting in Proposition 3 becomes
α < β/(1 + 2β) which corresponds to a dynamic inefficiency condition in this envi-
ronment, and is again independent of the risk of bubble burst. “Risk-averse households
in both periods of life” in Appendix derives this result and shows that Proposition 5 is
robust to this extension, with a different threshold λ for toxic bubbles. As a numerical
example, the threshold is λ̄ = 0.14 when α = 0.3 and β = 1.5

4.4 Varying bubble risk λ

Wehavemaintained the assumption that the risk of bubble burstλ is constant.However,
the size of a bubble could affect the risk of bubble burst (Filardo 2009). This possibility
can be taken into account by assuming that λ is a function of the size of a bubble. That
is, if a bubble has not bursted in t−1, then the probability of bubble burst in period t is
λ(Pt ), where λ(P) is an exogenous function that is increasing in P . However, agents
do not internalize the effect of their actions on the aggregate size of the bubble Pt
because they are infinitesimal. Thus, not surprisingly, Proposition 3 and Proposition 5
still apply.6

5 If α = 0.4 instead as in the previous numerical examples, bubbles do not exist because the existence
condition in this case is α < 1/3.
6 The equilibrium quantities kb, R

k
b , wb, pb in Proposition 3 are unaffected, while the expected consump-

tion is slightly different and given by:

ceb,t = [1 − λ(pbk
α
b g

t )](1 − α)

(
α

g

) α
1−α + λ(pbk

α
b g

t )α

(
α

g

) α
1−α

.

The condition for toxic bubbles, λ > λ̄, is equivalent to pbk
α
b g

t > λ(−1)(λ̄), where λ(−1)(x) is the inverse
function of λ(x).
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4.5 Aggregate shocks

So far we have assumed no aggregate shocks. Assume instead that At = at gt , where
at is identically and independently distributed on [a, a] ⊂ (0,∞) over time with its
mean normalized to one. In addition, to introduce bankers’ net worth in a simple way,
assume that bankers work in the first period of their lives as households do; in the
first period of their lives, each banker supplies ε units of labor inelastically and each
household supplies 1 − ε units of labor inelastically. Thus, each banker’s net worth
is εWt . Assume the fluctuations in at is sufficiently small relative to the net worth
of bankers, so that a negative productivity shock is not enough to cause bankers to
default when the bubble persists, and a positive productivity shock is not enough to
prevent bankers from defaulting when the bubble bursts. This assumption captures the
idea that it is the collapses of bubbles that trigger crises rather than regular business
cycle fluctuations. “Aggregate shocks” in Appendix shows that Propositions 3 and 5
are robust to this extension with an aggregate shock.

5 Policy analysis

We have shown how toxic bubbles can emerge in an economy with risk shifting. This
market failure warrants policy interventions. Themodel presented in Sect. 3 provides a
tractable framework for policy analyses. In this section, we explore three sets of policy
that are often discussed among scholars and policymakers: ex-post bubble pricking,
ex-ante tax or restriction on bubble investment, and ex-ante leverage restriction. The
first two sets of policy assume that the government can observe bubbles and bubble
investment. The last policy assumes that the government can neither observe bubbles
nor bubble investment.

5.1 Pricking a bubble

An important policy question is whether it is optimal for the government to “prick” a
bubble when it already exists. Our model can provide an answer to this question.

Suppose that the economy is in the stochastic bubble steady state with risk shifting,
and consider an ex-post unanticipated policy that makes the bubble collapse in period
T .7 Because bubbles are assumed not to re-emerge, it follows that from period T
onward, the economy converges to the steady state with no bubble. For t ≥ T , the
transitional dynamics of consumption and capital follow the dynamics of the no-bubble
equilibrium: kt+1 = [(1−α)/g]kα

t and ct = αkα
t for all t ≥ T , and kT = kb. Because

of the transitional dynamics, instead of looking at steady-state expected utility as social
welfare, we look at the expected utility of each generation, starting with the generation
born in period T − 1. If the bubble is sufficiently risky, then pricking the bubble in
period T can improve the expected utility of all generations born in periods t ≥ T .

7 Such a bubble pricking policy includes outright banning the trading of the bubble asset and a tax on trading
the bubble asset. For the latter policy, see Proposition 7, which shows that high tax effectively eliminates
bubble equilibria.
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At the same time, however, pricking the bubble obviously hurts the current bubble
holders, i.e., the old households in period T , as their consumption drops below the
level they enjoyed in the bubble period: cT = αkα

b < ceb. We formalize this result in
the first part of Proposition 6 below.

A natural question then emerges: Is there a policy that improves the expected utility
of all generations? The answer is yes. Such a policy combines pricking the bubble
with a one-time redistribution in the same period. The redistribution is implemented
by a lump-sum tax on young households who benefit from the pricking and a lump-
sum transfer to old households who are hurt by the pricking. Note that this policy is
equivalent to a policy where the government uses revenues from taxing the current
young households to purchase the bubble from the current old households, in order
to remove the “toxic asset” from the financial market. We formalize this result in the
second part of the following proposition:

Proposition 6 (Pricking bubble) Consider the bubble steady state with risk shifting.

1. If the bubble is sufficiently risky:

λ > λ̌ ≡ 1 − α

1 − 2α

[
1 −

(
α

1 − α

)1−α
]

∈ (
λ, 1

)
, (16)

then an unanticipated policy that pricks the existing bubble improves the expected
utility for all generations except for the current old generation (who holds the
bubble).

2. If the bubble is sufficiently risky:

λ ≥ λ̂ ≡ 1 − α

2 − α

⎡
⎣( 1−α

α

)1−α − α
1−α

1 + ( 1−α
α

)1−α

⎤
⎦ ∈ (λ̌, 1),

then an unanticipated policy that pricks the existing bubble, combined with a one-
time lump-sum redistribution of θ = αkα

b −ceb from the current young households’
wage income to the current old households, is a Pareto improvement.

As a numerical illustration, if α = 0.4, then the thresholds are λ̌ = 0.648 and λ̂ =
0.802. For simplicity, we have considered lump-sum taxation. If we instead consider
a distortionary tax such as a labor income tax with an endogenous labor decision, the
threshold of bubble risk that warrants bubble pricking would increase, as taxation has
a distortionary cost.

5.2 Regulation on speculation

The next two subsections analyze two ex-ante policies respectively. First, as in Hirano
and Yanagawa (2014), we consider macroprudential policy that imposes a tax τ per
units of bubble speculation. The tax revenue is transferred in a lump-summanner to the
current old for consumption. Suppose that the government can observe the bubble’s
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risk λ and set the tax τ as a function of λ. Then, the optimization problem of bankers
is given by:

max
bt≥0,kt+1≥0

Et

[
max

{
(1 − τ)P̃t+1bt + Rk

t+1Kt+1 − Rd
t+1(Ptbt + Kt+1), 0

}]

The government chooses τ in period t = 0 to maximize the expected utility in the
stochastic bubble steady state with risk shifting. The tractability of themodel allows us
to find a closed-form solution to this problem. The following proposition summarizes
this result:

Proposition 7 The optimal macroprudential tax on bubble speculation is:

τ ∗(λ) = min

{
1 − 2α

1 − α
,

αλ

α + (1 − λ)(1 − α)

}
.

Note that the optimal tax is increasing in the bubble’s risk λ, as one would expect. In
particular, if the bubble becomes too risky, then the optimal tax policy is to shut down
the market for bubble completely, i.e., to make pt = 0 by imposing the highest tax of
τ ∗ = (1 − 2α)/(1 − α). Interestingly, the optimal tax is positive even if the bubble’s
risk is small so that the bubble is not toxic. This feature has to do with Corollary 4
that shows pb > pself . The optimal tax addresses the inflated asset bubble caused by
the banks’ risk shifting.

Next,we consider amacroprudential banking regulation that limits bankers’ holding
of the bubble asset:

Ptbt ≤ κKt+1,∀t (17)

where 0 ≤ κ ≤ 1 is a required bubble–capital ratio set by the government in period
t = 0. The optimization problem of bankers is then:

max
bt≥0,kt+1≥0

Et

[
max

{
P̃t+1bt + Rk

t+1Kt+1 − Rd
t+1(Ptbt + Kt+1), 0

}]

subject to constraint (17). The government chooses κ in period t = 0 to maximize
the expected utility in the stochastic bubble steady state with risk shifting. Again, the
parsimoniousmodel allows us to find a closed-form solution for the optimal regulation.
The following proposition summarizes our finding:

Proposition 8 The optimal regulation on a bubble–capital ratio is given by:

κ∗ = max

{
(1 − λ)/α

1 − λ + α
1−α

− 1, 0

}
.

Note that the optimal regulation κ∗ is decreasing in the bubble’s risk λ, so that the
optimal regulation becomes tighter as the bubble’s risk becomes higher. In addition, if
the bubble is too risky, then the optimal regulation completely shuts down the bubble
market by setting κ∗ = 0. As in the case of the optimal tax, when the bubble’s risk is
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positive, the optimal regulation in the form of constraint (17) is always binding so that
the regulation restricts the bubble investment to address the inflated bubble caused by
the banks’ risk shifting.

5.3 Leverage restriction

All of the policy exercises above make the strong assumption that the government can
perfectly observe bubbles and target bubble investment. In this subsection, we relax
this assumption and consider a case in which the government can observe neither
bubbles nor bubble investment. Herewe consider the often discussed policy of leverage
restriction.8

Consider a modified version of the model presented in Sect. 3. In this model, the
government can impose a limit on bankers’ leverage, which is defined as the ratio of
debt over net worth. To introduce bankers’ net worth, we use the setup used in Sect. 4.5
such that each banker is endowed with ε units of time, works and earns εWt and uses
the wage income as the net worth. The government imposes the following constraint
on leverage:

Dt

εWt
≤ φ

where the left-hand side is the leverage of the banking sector, and φ > 0 is the
restriction chosen by the government.

In practice, there is a trade-off associatedwith leverage restriction. On the one hand,
it reduces the banking sector’s risk taking. On the other hand, it reduces useful financial
intermediation, as the financial system is usually more efficient than households at
investing. To introduce this trade-off in a simple manner, we maintain the assumption
that households cannot directly invest in the bubble asset, but relax the assumption that
households cannot directly invest in capital. Instead, we assume that households can
invest in capital, but they are less productive than bankers at doing so. In particular,
while each banker can turn one unit of the consumption good into one unit of capital,
each household can turn one unit of the consumption good into only 1 − ξ < 1 units
of capital.

The optimization problem of a representative bank is:

max
bt ,Kt+1≥0

Et [Πt+1(P̃t+1)] = Et max{P̃t+1bt + Rk
t+1K

b
t+1 − Rd

t+1Dt︸ ︷︷ ︸
no default

, 0︸︷︷︸
default

}

subject to P̃t bt +Kb
t+1 = εWt +Dt and Dt ≤ φ εWt , where Kb

t+1 denotes the amount
of capital invested by the bank. We focus on the case of binding leverage restriction so
that it puts a limit on bank borrowing that can be used for investing in the bubble asset.
Thus, if the leverage restriction is tight enough, bankers do not have enough funds at
hand to support bubbles. The tight restriction, however, comes at a cost. It reduces

8 See, e.g., Shin (2011) on Basel III framework.
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bank intermediation and increases unproductive capital investment by households.
Then, which is better in terms of welfare, a bubble equilibrium without a leverage
restriction or a bubble-less equilibrium with a tight leverage restriction? If the bubble
is sufficiently risky, then a tight leverage restriction improves welfare. The following
result formalizes this intuition:

Proposition 9 In an asymptotic bubble equilibrium, the price of the bubble asset is
given by pb = {[1− ξ(1− ε(1+ φ))](1− α) − α}(α/g)

α
1−α and is increasing in φ. If

a leverage restriction is sufficiently stringent such that φ ≤
α

1−α
−(1−ξ)

εξ
− 1, then there

is no bubble equilibrium. Furthermore, if the bubble is sufficiently risky:

λ >
(1 − α) − 1−ε−ξ(1−ε(1+φ))

1−ε
[1 − ξ(1 − ε(1 + φ))]−

1−2α
1−α α

1−2α
1−α (1 − α)

α
1−α

1 − α − α
1−ε

,

then preventing bubbles by setting leverage restriction φ ≤
α

1−α
−(1−ξ)

εξ
− 1 improves

welfare.

Proposition 9 implies that the government can eliminate toxic bubbles if it sets a
sufficiently tight leverage restriction. It is straightforward to show that this result is
robust when there are small aggregate shocks, as in the robustness check in Sect. 4.5.

6 Concluding remarks

We have developed an overlapping generations model of welfare-reducing asset
bubbles in a general equilibrium with financial intermediation. The model features
leveraged bubble investment and defaultable debt within a standard rational bubble
framework. Because debt is defaultable, leveraged borrowers do not fully internalize
the downside risk of bubble investment and are thus willing to speculate on excessively
risky bubbles that give high upside returns. Our setup with limited-liability bankers
as borrowers provides a simple and intuitive illustration of this mechanism.

For tractability, we have abstracted away from the expansionary (or crowd-in) effect
of bubbles on investment and output, which is now well known thanks to many recent
papers such as Martin and Ventura (2011, 2012), Farhi and Tirole (2012), Ikeda and
Phan (2014), and Miao and Wang (2015b). Introducing the expansionary effect of
bubbles would lead to two opposing effects of bubbles on welfare. On the one hand,
as these papers point out, bubbles improve the efficiency of the allocation of resources
in the economy as long as they persist. On the other hand, as our paper points out,
if bubble investment is leveraged, bubbles can generate excessive volatility in the
economy due to their risk of bursting. Our goal is to illustrate the latter effect in the
clearest possible model, and a full analysis of the two opposing effects of bubbles is
left for future work.

In concluding the paper, we find it useful to relate our paper to the US housing
bubble episode in the 2000s. In the boom phase, more households with low income
purchased houses with loans made by financial intermediaries. The intermediaries, in
turn, financed their lending by securitizing the mortgage loans as mortgage-backed
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securities (MBS) and selling the securities to others. TheMBS rating was high overall,
and newly supplied MBS met an increase in demand for safe assets by intermediaries
such as institutional investors and mutual funds. While such securities were traded
many times, it was ultimately the financial sector that held the most of the securities.
The financial sector as a whole made mortgage lending, generated MBS, and financed
the lending collateralized by the securities from households and foreign investors
(Rajan 2011; Stiglitz 2012). Given this narrative, actual financial intermediaries had
an aspect of risk shifting similar to bankers in our model. The fact that most of MBS
were treated as safe assets in spite of their default risk implied that the financial sector
mis-priced the risk, helped fuel the credit-driven housing boom and aggravated the
bust in housing prices. While our model is so stylized that it abstracts from a housing
sector, securitization, and collateralization, it sheds light on how risk shifting can play
an important role in facilitating the risky US housing bubble episode in the 2000s. For
the literature on housing bubbles, see the empirical work of Mian and Sufi (2014), the
theoretical work of Zhao (2015), Bengui and Phan (2015) and references therein.

In summary, our model provides a tractable framework in which excessively risky
bubbles that reduce welfare can emerge and policy interventions are warranted. In
the hindsight of the financial crisis of 2007–2009, the economic profession has paid
significant attention to the normative question of how to address booms and busts in
asset prices. This paper aims to be a small building block toward that greater project.
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Appendix

Proofs

Proof of Lemma 1

First, in the no-bubble economy, the law of motion for capital is given by kt+1 =
[(1 − α)/g]kα

t and consumption is given by ct = αkα
t . These equations imply the

no-bubble steady-state values in part 1 of Lemma 1.
Next, we show the existence of bubble equilibria. Given k0 > 0, Eqs. (3), (5), and

(6) imply the following equilibrium dynamics for kt+1 and pt :

αkα−1
t+1 = (1 − λ)g

pt+1

pt
,

pt + gkt+1 = (1 − α)kα
t .

Let p∗
t denote a bubble–output ratio: p∗

t ≡ pt/kα
t . Then, combining these two equa-

tions, we obtain the law of motion for p∗
t :
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p∗
t+1 = 1

1 − λ

αp∗
t

1 − α − p∗
t
.

Suppose that condition (1) does not hold. Then, the law of motion for p∗
t implies

that for any λ ∈ [0, 1), p∗ < 0 in steady state, and this cannot be an equilibrium.
This shows the necessity of condition (1) for the existence of bubble equilibria. Next,
suppose that condition (1) holds. Then, the law of motion for p∗

t implies that as long
as λ is less than λ ≡ 1−2α

1−α
, there exists a unique stochastic steady state p∗

self > 0,
given by:

p∗
self = 1 − α − α

1 − λ
.

The lawofmotion also implies that (p∗
t+1/p

∗
t )|p∗

t >p∗
self

> 1and0 < (p∗
t+1/p

∗
t )|p∗

t <p∗
self

< 1. Thus, any initial bubble that satisfies 0 < p∗
0 ≤ p∗

self constitutes an equilibrium.
In particular, an initial bubble 0 < p∗

0 < p∗
self is a transitory bubble as it converges

to zero (as long as it does not collapse), and an initial bubble p∗
0 = p∗

self constitutes
an asymptotic bubble as it remains at p∗

t = p∗
self (as long as it does not collapse). For

p∗
0 > p∗

self , p
∗
t diverges to infinity (as long as it does not collapse), which cannot be an

equilibrium. This shows the sufficiency of condition (1) for the existence of bubbles.
This also shows that a asymptotic bubble equilibrium is unique and coincides with the
stochastic bubble steady state.

The allocation and prices in the stochastic bubble steady state are calculated as
follows. From (3) and (5), the return on capital is given by Rk

self = (1 − λ) g. From

(3), the capital stock is given by kself = {α/ [(1 − λ) g]} 1
1−α . Because the bubble–

output ratio is p∗
self = 1− α − α/ (1 − λ), the bubble is given by pself = p∗

selfkself =
[1 − α − α/ (1 − λ)] kself .With kself and pself at hand, the wage and the consumptions
are given by (2) and (6), respectively. Finally, the expected consumption ceself is given
by ceself = (1 − λ)pself + Rk

selfkself because the consumption in the next period is
pself + Rk

selfkself if the bubble sustains, while it is R
k
selfkself if the bubble bursts. The

exact expression for ceself is obtained after substituting out pself and kself :

ceself = (1 − λ)(1 − α)

(
α

(1 − λ)g

) α
1−α

.

Proof of Lemma 2

The existence condition, λ < λ ≡ (1 − 2α)/(1 − α), implies:

ceself = (1 − λ)
1−2α
1−α (1 − α)α

α
1−α g− α

1−α

>

(
1 − 1 − 2α

1 − α

) 1−2α
1−α

(1 − α)α
α

1−α g− α
1−α

= α

(
1 − α

g

) α
1−α = cnb.
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Proof of Proposition 3

The bubble steady state exists if and only if pb = (1 − α)(kb)α − gkb > 0. The
arbitrage condition (13) implies Rk

b = g. From (3), the capital stock is given by
kb = (α/g)1/(1−α). Substituting the expression for kb into the condition of pb > 0
yields the result: pb > 0 if and only if α < 1/2, which is the dynamic inefficiency
condition (1). Because the consumption in the next period is pb + Rk

bkb if the bubble
sustains, while it is Rk

bkb if the bubble bursts, the expected consumption is given by:

ceb = (1 − λ) (1 − α)

(
α

g

) α
1−α

︸ ︷︷ ︸
cons if bubble survives

+ λ α

(
α

g

) α
1−α

︸ ︷︷ ︸
cons if bubble collapses

Proof of Corollary 4

Immediate from Lemma 1 and Proposition 3.

Proof of Proposition 5

First, we show ceb < cnb if and only if λ > λ̄. From Eq. (14) and part 1 of Lemma 1,
we know that:

ceb
cnb

= (1 − λ)

(
1 − α

α

) 1−2α
1−α + λ

α

1 − α

Thus, ceb/cnb < 1 if and only if λ > λ̄, where λ̄ is given by (15). The threshold λ̄

satisfies 0 < λ < 1:

λ̄ = 1 − α − α
1−2α
1−α (1 − α)

α
1−α

1 − 2α
>

1 − α − (1 − α)
1−2α
1−α (1 − α)

α
1−α

1 − 2α
= 0,

λ̄ = 1 − α − α
1−2α
1−α (1 − α)

α
1−α

1 − 2α
<

1 − α − α
1−2α
1−α (α)

α
1−α

1 − 2α
= 1,

where assumption (1) has been used in deriving the above inequalities.
Next, we shall show that λ̄ is greater than λ. The difference between λ̄ and λ is:

λ̄ − λ = 1 − α − α
1−2α
1−α (1 − α)

α
1−α

1 − 2α
− 1 − 2α

1 − α

= (1 − α)2 − α
1−2α
1−α (1 − α)

1
1−α − (1 − 2α)2

(1 − 2α)(1 − α)
.
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The denominator is positive because of assumption (1: α < 1/2). The numerator is:

(1 − α)2 − α
1−2α
1−α (1 − α)

1
1−α − (1 − 2α)2 = 2α − 3α2 − α

1−2α
1−α (1 − α)

1
1−α

= α
[
2 − 3α − α− α

1−α (1 − α)
1

1−α

]

= α

1 − α

[
2 −

(
1 − α

α

) α
1−α − α

1 − α

]

Let us denote δ ≡ α/(1 − α). Because 0 < α < 1/2, we have 0 < δ < 1. The above
expression now can be written as

α

1 − α

[
2 −

(
1 − α

α

) α
1−α − α

1 − α

]
= δ

(
2 − δ−δ − δ

)
= δ

[
2 − δ

(
1 + δ1−δ

)]
> 0.

The strict inequality follows from δ1−δ < 1 because 0 < δ < 1. Therefore, λ̄−λ > 0.

Proof of Proposition 6

The expected utility of households born in period T (in which the bubble col-
lapses) is given by cT+1 = αkα

T+1, where kT+1 = [(1 − α) /g]kα
b . Note that

cT+1 can be expressed as cT+1 = α(cgold/g)α , while ceb is expressed as ceb =
[1 − λ + λα/ (1 − α)] cgold, where cgold is the first-best (golden rule) consumption
defined in Footnote 4. On the other hand, the expected utility of households born in
period t > T comes from the dynamics in the no-bubble equilibrium. Their expected
utility is greater than that of the generation born in period T , because from period
T onward, the economy converges from the post-collapse levels of capital and con-
sumption to the levels in the no-bubble steady state. Hence, the expected utility of
households who are born in periods t ≥ T is greater than the expected utility in the
bubble steady state ceb if and only if condition 16 holds. This proves the first part of
the Proposition.

Next, consider the second part of the Proposition. Old households (the generation
born in period T − 1) are not hurt by the policy if and only if the consumption
when the bubble is pricked is equal or greater than that when the bubble is sustained:
cT = αkα

b + θ ≥ ceb. Setting θ such that the old households are indifferent between
the two events, cT = ceb, yields θ = αkα

b − ceb. With such a transfer, the net income
of young households in period T changes to wT − θ when a bubble is pricked. The
young households’ welfare is given by its consumption in the next period, or, cT+1 =
α(wT − θ)α . Solving cT+1 ≥ ceb for λ yields the following condition:

λ ≥ λ̂ ≡ 1 − α

2 − α

⎡
⎣( 1−α

α

)1−α − α
1−α

1 + ( 1−α
α

)1−α

⎤
⎦ ∈ (0, 1).
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It is straightforward to algebraically verify that the threshold λ̂ is greater than λ̌.

Proof of Proposition 7

In a stochastic bubble equilibrium with bubble speculation tax τ , the first-order con-
ditions of bankers imply the following no-arbitrage condition:

Rk
t+1 = Rd

t+1 = (1 − τ)Pt+1

Pt
.

Hence, in stochastic bubble steady state:

Rk = Rd = (1 − τ)g.

Thus, the capital stock in stochastic bubble steady state is:

k =
(

α

(1 − τ)g

) 1
1−α

.

The resource constraint in steady state is the same as before:

p + gk = w = (1 − α)kα.

Hence,

p = (1 − α)kα − gk

=
[
(
1 − α

α
)(1 − τ) − 1

] (
α

(1 − τ)g

) 1
1−α

g.

Thus, p > 0 if and only if ( 1−α
α

)(1 − τ) − 1 > 0, or

τ <
1 − 2α

1 − α
. (18)

In other words, there can be a stochastic bubble steady state if and only if τ < 1−2α
1−α

.

Recall that all bubble tax in each period is redistributed to old households. Then,
the expected consumption in the stochastic bubble steady state is given by

E(c) = (1 − λ)p + Rkk.

Substituting values for k and p into this equation, we obtain:

E(c) =
(
1 + (1 − τ)

1 − α

α

)
(1 − τ)1−

1
1−α − (1 − λ)(1 − τ)−

1
1−α .
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By taking the first-order condition with respect to τ , we find that the local optimum
is:

τ = αλ

α + (1 − λ)(1 − α)
. (19)

Combining (18) and (19), we conclude that the optimal bubble tax is:

τ ∗ = min

{
1 − 2α

1 − α
,

αλ

α + (1 − λ)(1 − α)

}
.

Proof of Proposition 8

We assume that bankers default if the bubble bursts and then later verify that this is
the case in equilibrium. Then, the Lagrangian associated with bankers’ optimization
problem can be written as:

(1 − λ)(Rk
t+1Kt+1 + Pt+1bt − Rd

t+1Kt+1 − Rd
t+1Ptbt ) + μt (κKt+1 − Ptbt )

whereμt ≥ 0 is theLagrangemultiplier associatedwith constraint (17). Thefirst-order
conditions are:

(1 − λ)(Rk
t+1 − Rd

t+1) + μtκ = 0

(1 − λ)(Pt+1 − Rd
t+1Pt ) − μt Pt = 0.

These conditions imply:

Rk
t+1 = Rd

t+1 − μtκ

1 − λ
(20)

(1 − λ)Pt+1

Pt
= (1 − λ)Rk

t+1 + (1 + n)μt . (21)

Equation (20) implies that Rk
t+1 ≤ Rd

t+1. Hence, when the bubble bursts, the profit if
bankers do not default is:

Rk
t+1Kt+1 − Rd

t+1(Kt+1 + Ptbt ) < 0.

Therefore, it is in fact optimal for bankers to default if the bubble bursts. Equation
(21) implies that in the stochastic bubble steady state:

Rk = g − 1 + κ

1 − λ
μ.
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Therefore, equations that determine the stochastic bubble steady state are:

Rk = g − 1 + κ

1 − λ
μ

p + gk = (1 − α)kα

p ≤ κgk

μ(κgk − p) = 0 (complementary slackness)

μ ≥ 0.

We assume that κ is sufficiently small so that the constraint is binding (otherwise, the
regulation has no effect on welfare). Then, the Lagrange multiplier in the stochastic
bubble steady state is:

μ = g(1 − λ)

(
1

1 + κ
− α

1 − α

)
.

Thus, the constraint is strictly binding, i.e., μ > 0, when κ < (1 − 2α)/α. The
steady-state bubble is:

p =
(
1 − α

α
Rk − g

)
k

=
[
1 − α

α

(
g − 1 + κ

1 − λ
μ

)
− g

]
k

Thus, p > 0 if and only if:

1 − 2α

α
g >

1 − α

α

1 + κ

1 − λ
μ

= 1 − α

α

1 + κ

1 − λ
g(1 − λ)

(
1

1 + κ
− α

1 − α

)

= 1 − α

α
g

[
1 − (1 + κ)

α

1 − α

]

or equivalently:

1 − 2α

1 − α
> 1 − (1 + κ)

α

1 − α

or κ > 0, which is always true. Hence, given that the regulation constraint is binding,
there is always a stochastic bubble steady state.

Welfare, or the expected consumption in the stochastic bubble steady state, is:

E(c) = (1 − λ)p + αkα

= (1 − λ)[(1 − α)kα − gk] + αkα
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= [(1 − λ)(1 − α) + α]kα − (1 − λ)gk

= g1−
1

1−α (1 − α)
1

1−α[(
1 − λ + α

1 − α

)
(1 + κ)1−

1
1−α − (1 − λ)(1 + κ)−

1
1−α

]
.

From the first-order condition with respect to κ , we find that the local optimum is:

κ = (1 − λ)/α

1 − λ + α
1−α

− 1. (22)

Note that κ < (1 − 2α)/α when λ > 0 so that the optimal regulation is always
binding if the risk of bubble burst is positive. Also, Eq. (22) implies κ < 0 when
λ = 1. Therefore, the optimal regulation is:

κ∗ = max

{
(1 − λ)/α

1 − λ + α
1−α

− 1, 0

}
.

Proof of Proposition 9 and Welfare Implications

We focus on a case inwhich a bank defaults when a bubble bursts. Because the leverage
restriction is binding, the flow budget constraint of the bank implies pt + gkbt+1 =
(1 + φ)ε(1 − α)kα

t , where the variables are detrended and bt = 1 is imposed. The
aggregate capital is given by kt+1 = kbt+1+kw

t+1,where k
w
t+1 is the amount of detrended

capital invested by the household in period t . The household has (1−ε)wt , lends φεwt

to the bank, and invests the remaining amount [1 − ε(1 + φ)]wt in capital, where
ε(1 + φ) < 1 is assumed. Because the household incurs the cost ξ per unit of capital
investment, kw

t+1 is given by gk
w
t+1 = (1−ξ)[1−ε(1+φ)]wt .Thus, the capital invested

by the bank is given by kbt+1 = kt+1−kw
t+1 = kt+1−g−1(1−ξ)[1−ε(1+φ)](1−α)kα

t .

Substituting this expression into the flow budget constraint yields:

pt = [1 − ξ(1 − ε(1 + φ))](1 − α)kα
t − gkt+1.

In an asymptotic bubble equilibrium, Rk
b = g, kb = (α/g)

1
1−α , and pb = {[1− ξ(1−

ε(1 + φ))](1 − α) − α}kα
b . Thus, pb > 0 if and only if the leverage restriction is not

tight enough to satisfy:

φ >

α
1−α

− (1 − ξ)

εξ
− 1.

When the bubble persists, the households consume Rk
b[1−ε − ξ(1−ε(1+φ))]wb/g.

When the bubble bursts, the household consumes Rk
bkb. Thus, the expected consump-

tion is given by:

ceb = (1 − λ)[1 − ε − ξ(1 − ε(1 + φ))](1 − α)

(
α

g

) α
1−α + λα

(
α

g

) α
1−α

.
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In the bubble-less equilibrium, the law of motion for capital is given by

gkt+1 = [1 − ξ(1 − ε(1 + φ))](1 − α)kα
t .

In steady state, knb = {[1−ξ(1−ε(1+φ))](1−α)/g} 1
1−α . The consumption is given

by:

cnb = [1 − ε − ξ(1 − ε(1 + φ))] [1 − ξ(1 − ε(1 + φ))]−
1−2α
1−α α

(
1 − α

g

) α
1−α

.

Thus, the bubble is toxic, i.e., ceb < cnb if and only if

λ >
(1 − α) − [1 − ξ(1 − ε(1 + φ))]−

1−2α
1−α α

1−2α
1−α (1 − α)

α
1−α

(1 − α) − α
1−ε−ξ(1−ε(1+φ))

.

Suppose that a regulator sets a leverage restriction so that a bubble does not emerge.
Then, the welfare in the bubble-less steady state is greater than the welfare in the
asymptotic bubble equilibrium in which there is no leverage restriction if and only if

λ >
(1 − α) − 1−ε−ξ(1−ε(1+φ))

1−ε
[1 − ξ(1 − ε(1 + φ))]−

1−2α
1−α α

1−2α
1−α (1 − α)

α
1−α

1 − α − α
1−ε

,

as desired.

Extensions and robustness checks

This appendix provides the details of the series of robustness check exercises in Sect. 4.

n-period overlapping generations

Assume each household lives for n periods. The expected lifetime utility of a household
born in period t is:

Et (c1,t + βc2,t+1 + · · · + βn−1cn,t+n−1).

With linear utility, the savings decision is either indeterminate or at a corner solution.To
avoid this, we adopt an assumption in the classic Solow growth model that households
save an exogenous fraction s of their wealth and consume the remaining fraction in
each period of their life, except for the last period in which they consume everything.
Also, for simplicity, we assume that each household, with its size given by 1/(n − 1),
supplies one unit of labor inelastically in each of the earlier n − 1 periods of their life
and does not work in the last period of their life. The aggregate labor is 1 and wage
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rate earned by each household in period t is Wt/(n − 1). Thus, the aggregate savings
in each period is:

St = sWt .

These aggregate savings are deposited in bankers, whose optimization problem is as
in Sect. 3 in the main text. In equilibrium, the no-arbitrage condition of bankers is the
same as Eq. (13). The steady-state bubble is:

pb = s(1 − α)(kb)
α − gkb,

while the capital stock is given by kb = (α/g)1/(1−α). Hence, pb > 0 if and only
if s(1 − α) > α, which is the dynamic inefficiency condition in this environment.
This existence condition of bubbles is again independent of the risk of bursting of the
bubble. Thus, the intuition that risk shifting enables the existence of excessively risky
bubbles applies. The rest of the arguments about toxic asset bubbles similar to those
in Propositions 3 and 5 apply.

Risk-averse households in both periods of life

Assume lifetime utility of a household is log(Cy
t )+βEt log(Co

t+1). Young households
decide how much of their wage income Wt to save and how much to consume. Let St
denote an individual household’s savings, and let St denote the aggregate economy’s
savings. Households deposit their savings with bankers, who then invest in a portfolio
consisting of capital and bubbles. As in the main text, when a bank defaults, all of
its assets are seized and distributed equally among its depositors. Hence, the optimal
saving decision of a young household in period t solves:

max
{Cy

t ,Co
t+1,St }

log(Cy
t ) + βEt log(C

o
t+1)

subject to:

Cy
t = Wt − St

Co
t+1 =

{
Rt+1St if no default

(Rt+1Kt+1 + P̃t+1bt )
St
St

if the bank defaults
.

Thus, the equilibrium St solves:

max
St≥0

log(Wt − St ) + β

[
(1 − λ) log(Rt+1St ) + λ log((Rt+1Kt+1 + P̃t+1bt )

St
St

)

]

The solution is St = β
1+β

Wt . Hence, the steady-state bubble is given by

pb = β

1 + β
(1 − α)(kb)

α − gkb,
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while the capital stock is given by kb = (α/g)1/(1−α). Thus, pb > 0 if and only if

α <
β

1 + 2β
,

which is the dynamic inefficiency condition in this environment. This existence con-
dition of bubbles is again independent of the risk of bursting of the bubble, as in
Proposition 3. The rest of the arguments follows through. The expected lifetime utility
(welfare) is given by:

Vb ≡ log

(
1

1 + β
(1 − α)

(
α

g

) α
1−α

)

+β(1 − λ) log

(
g

β

1 + β
(1 − α)

(
α

g

) α
1−α

)
+ βλ log

(
gα

(
α

g

) α
1−α

)

In the bubble-less equilibrium, the equilibrium dynamics with log–log preferences
are:

Kt+1 = β

1 + β
Wt = β

1 + β
(1 − α)A1−α

t K α
t

C y
t = 1

1 + β
Wt

Co
t+1 = Rk

t+1Kt+1.

Thus, the steady-state capital stock and marginal product of capital are:

knb =
(

β

1 + β

1 − α

g

) 1
1−α

Rnb = 1 + β

β

α

1 − α
g

and thus, the lifetime utility in steady state is:

Vnb ≡ log

(
1

1 + β
(1 − α)

(
β

1 + β

1 − α

g

) α
1−α

)
+ β log

(
gα

(
β

1 + β

1 − α

g

) α
1−α

)

Hence, the expected lifetime utility is worse in the bubble steady state if and only if:

Vnb − Vb > 0.

Algebraic manipulations show that this inequality is equivalent to λ > λ where λ ≡
1− 1+β

β
α

1−α
> 0. In summary, Propositions 3 and 5 are robust when households have

log–log preferences.
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Aggregate shocks

A representative household works and earns (1−ε)Wt in the first period of their lives.
A representative banker works and earns εWt in the first period of their lives and com-
bines it with borrowing from households to invest in capital and an bubble asset. With
aggregate TFP shocks, the marginal product of capital is Rk

t+1 = At+1αK
α−1
t+1 . Since

Et (At+1) = Et (at+1)gt+1 = gt+1 and the banker is risk neutral, the portfolio prob-
lem of the banker is essentially unchanged from (10). Apply the same guess and verify
method as in the main text: We guess that a banker defaults if and only if the bubble
bursts. Then, the portfolio optimization problem is the same as (12). Thus, we have
the same set of first-order conditions. In an asymptotic bubble equilibrium, the bank
defaults when a bubble bursts if and only if Rk

bgkb − Rd
b db < 0 for all at+1, i.e., ā <

1+ pb−εwb
gkb

= (1−α)(1−ε)

gk1−α
b

. The bank does not default when a bubble persists if and only

if Rk
b(gkb+ pb)−Rd

b db ≥ 0, i.e., a ≥ 1− εwb
gkb

= 1− ε(1−α)

gk1−α
b

. Then the rest of the argu-

ments in the proofs of Propositions 3 and 5 carry through in a straightforward manner.

Microfoundation for standard debt contract

We provide a microfoundation of a debt contract assumed in the main text. The
microfoundation is standard and is based on asymmetric information and costly state
verification à la Townsend (1979). In this setting, the environment of bankers remains
the same. In a bubble equilibrium, the bankers invest in both capital and a bubble asset.
Bankers return is high or low depending on the event of bubble burst. The environment
of a households sector differs from that in the main text. In particular, households do
not observe bankers ex-post return without a cost. The households can observe the
return only when they conduct costly auditing. No stochastic auditing is allowed. In
addition, the households cannot make a contract which specifies the portfolio of cap-
ital and a bubble asset. The assumption of asymmetric information implies that the
households do not observe the event of bubble burst when they receive the return.

In the model, there are only two states: h and l, where h denotes a high return (when
a bubble sustains) and l denotes a low return (when a bubble bursts). The households do
not observe the state without conducting costly auditing, but they know the probability
of low return, λ . Without loss of generality, we restrict our attention to a truth-telling
contract in which bankers truthfully reveal the state s ∈ {h, l}. In this setting, the
households decide three objects which depend on state s. First, they make an auditing
decision, δ (s) ∈ {0, 1}, where 0 indicates no auditing and 1 indicates auditing. Second,
they choose the amount of repayment from bankers per unit of deposit when they
audited bankers, Rk

a (s). Third, they choose the amount of repayment from bankers
per unit of deposit when they did not audit bankers, r (s). The households’ objective
is to maximize the expected repayment per unit of deposit:

(1 − λ)
{
δ (h)

[
Rk
a (h) − ε

]
+ [1 − δ (h)] r (h)

}
+ λ

{
δ (l)

[
Rk
a (l) − ε

]
+ [1 − δ (l)] r (l)

}
, (23)
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where ε > 0 denotes the auditing cost per unit of loan. Bankers are competitive and
protected by a limited-liability law. The resulting participation constraints of bankers
are: For s ∈ {h, l}

s − r (s) ≥ 0, s − Rk
a (s) ≥ 0, (24)

where the left-hand side in each inequality denotes the profit of bankers per unit of
deposit in case of no-monitoring and monitoring, respectively. Two incentive con-
straints are required to make bankers reveal a state truthfully. First, if the households
do not audit bankers in the both states, the repayment has to be the same:

r (h) = r (l) if δ (h) = δ (l) = 0. (25)

Otherwise, bankers will always report a state with lower repayment. Second, if the
households audit bankers in a low state but not in a high state, the repayment in a low
state is equal or less than that in a high state:

Rk
a (l) ≤ r (h) if δ (l) = 1 and δ (h) = 0. (26)

Otherwise, bankers would report a high state and pay less when they are in a low state.
A contact that maximizes the return received by the households has two features.

First, the households audit onlywhenbankers report a low state: δ(h) = 0 and δ(l) = 1.
This auditing is enough to prevent bankers to fake a state. If bankers in a high state
faked to be in a low state, the households would audit bankers and confiscate all
bankers’ assets. Thus, bankers have no incentive to fake when they are in a high state.
If the households did not audit when bankers report a low state, bankers in a high
state would fake to be in a low state and thus the households return would be lower.
Auditing in a high state as well would not change the repayment, but the return would
be low because of an additional auditing cost. Second, the participation constraints
(24) are binding: r(s) = s if δ(s) = 0 and Rk

a(s) = s if δ(s) = 1. Otherwise, the
households can increase the return by raising the repayment.

From (23) the households expected return under the contract is given by

(1 − λ)h + λ(l − ε). (27)

So far, the returns, h and l, have been taken as given. In themodel presented in themain
text, h and l are endogenously determined by bankers portfolio choice. In particular,
in the model, h and l are corresponding to:

h = Pt+1bt + Rk
t+1Kt+1

Dt
, l = Rk

t+1Kt+1

Dt
.

By assumption, the households cannot write a contract which depends on bankers port-
folio choice between capital and a bubble asset, {Kt+1, bt }. The households arrange
the contact so as to make bankers to choose the portfolio to maximize (27). Under
the contract such that the households confiscate all bankers assets in case of auditing,
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however, bankers do not take into account the earning in a low state. Thus, the house-
holds arrange the contract to maximize bankers earning in a high state. Given that
bankers are competitive, one way to maximize h is to offer a debt contract with inter-
est rate Rd

t+1. The resulting financial arrangement is exactly the same as in the main
text except the presence of auditing costs ε. The model in the main text corresponds
to a limiting case where ε → 0.
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