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Abstract We provide conditions guaranteeing the existence of Nash equilibrium in
games in which players’ preferences can be arbitrary binary relations. Our main result
generalizes Reny’s (Economic Theory, forthcoming) existence result for games with
ordered preferences and He and Yannelis’ (Economic Theory, forthcoming) existence
result for abstract economies with non-ordered preferences.
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1 Introduction

Since the pioneering works of Dasgupta and Maskin (1986) and Reny (1999), there
has been much progress regarding the problem of existence of equilibrium in games
with discontinuous preferences. For instance, McLennan et al. (2011) and Barelli
and Meneghel (2013) have considerably extended Reny’s (1999) result. Barelli and
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Meneghel’s (2013) result has in turn been extended by Carmona and Podczeck (2014)
to games with a measure space of players, by Reny (2013) to ordinal games with
ordered preferences (i.e., preferences described by complete pre-orders), and by He
and Yannelis (2014) and Scalzo (2015) to abstract economies (i.e., generalized games)
with non-ordered preferences.1

In this paper, we establish the existence of Nash equilibrium in ordinal games
where players’ preferences can be arbitrary binary relations. For instance, a class of
preferences which is not covered by the known results from the literature on existence
of Nash equilibrium, but is covered by our results, is that of discontinuous preferences
that are reflexive and complete but need not be transitive. Reflexive and complete
but non-transitive preferences can emerge by aggregation when a player is not one
individual but represents a group of individuals.2

The key condition of our existence result is called point target security, or, on some
more general level, correspondence target security. It can be roughly described as
replacing the value function which appears in several results for games with discon-
tinuous payoff functions by a map which sets targets in ordinal terms.

Our existence result has two particular implications. First, both the existence results
in the tradition of Reny (1999) for discontinuous games and those in the tradition of
Shafer and Sonnenschein (1975) for abstract economies are covered.3 In particular,
our existence result generalizes that obtained in Reny (2013) for games with ordered
preferences and those obtained in Scalzo (2015) andHe andYannelis (2014) for games
with non-ordered preferences.

Second, our existence result applies whenever a game is such that for each player,
besides of the strategy set being compact and convex, the best-reply correspondence
has a well-behaved sub-correspondence, where “well-behaved” means “closed with
non-empty convex values.” Of course, existence of Nash equilibrium in this case is
part of the standard theory. Nevertheless, there is a point. In fact, the formulation and
the proof of Reny’s (2013) existence result requires a division into two cases: that in
which best-reply correspondences are well-behaved, and that in which this is not true.
So one may ask whether there is a deeper level of abstraction which integrates the two
cases. Our result gives an affirmative answer.

The paper is organized as follows. Section 2 introduces general notation and ter-
minology. Our notions of point target security and correspondence target security are
presented in Sect. 3. Our existence result is in Sect. 4. In Sect. 5 we relate our notions
of point and correspondence target security to other notions from the literature to deal
with discontinuous preferences in the context of ordinal games. Some concluding
remarks are in Sect. 6. The proofs of our results may be found in Sect. 7.

1 There has been many other recent developments; e.g., Allison and Lepore (2014), Bagh and Jofre (2006),
Balder (2011), Bich (2009), Bich and Laraki (2012), Carmona (2009, 2011), de Castro (2011), Nessah
(2011), Prokopovych (2011, 2013, 2015) and Reny (2009, 2011).
2 For an example in the context our paper, see Sect. 6.
3 Other papers in these traditions, which have not been mentioned before, are Borglin and Keiding (1976),
Yannelis and Prabhakar (1983), and Simon (1987).
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2 Notation and definitions

An (ordinal) game G = (Xi , Ri )i∈I is given by a finite set I = {1, . . . , n} of players,
and a pure strategy space Xi and a binary relation Ri on X for each i ∈ I , where
X = ∏

i∈I Xi . It is assumed that for all i ∈ I , Xi is a non-empty subset of a Hausdorff
locally convex space. As usual, given a player i ∈ I , the symbol “−i” means “all
players but i”; in particular, X−i = ∏

j �=i X j .
Given a game G = (Xi , Ri )i∈I , it is assumed that the set I of players is partitioned

into two sets Iw and I s where for each i ∈ Iw, x Ri y means x is at least as good as y
(i.e., Ri is a weak preference relation), while for each i ∈ I s , x Ri y means x is strictly
preferred to y (i.e., Ri is a strict preference relation). Now a Nash equilibrium of G
is an x∗ ∈ X such that (a) for each i ∈ Iw, x∗Ri (xi , x∗−i ) for all xi ∈ Xi , and (b), for
each i ∈ I s , there is no xi ∈ Xi such that (xi , x∗−i )Ri x∗. We let E(G) denote the set
of Nash equilibria of a game G = (Xi , Ri )i∈I .

We say that a game G = (Xi , Ri )i∈I is a game with ordered preferences if Ri is
a complete pre-order for each i ∈ I , in which case, of course, we take Iw = I , and
that the game G = (Xi , Ri )i∈I is a game with payoff functions if for each i ∈ I , Ri

has a utility representation ui : X → R. If the latter case occurs, and it is appropriate
to signify this, we will write G = (Xi , ui )i∈I instead of G = (Xi , Ri )i∈I .

Finally, we say that the game G = (Xi , Ri )i∈I is compact if Xi is compact for all
i ∈ I , and that the game is convex if Xi is convex for all i ∈ I . The game G is said to
have convex preferences if for all i ∈ I , Xi is convex and {x ′

i ∈ Xi : (x ′
i , x−i )Ri y} is a

convex set for any x, y ∈ X .

3 Correspondence target security

In this section we introduce our notion of correspondence target security. For sake of
illustration, we start in Sect. 3.1 by looking at the stronger but easier notion of point
target security.

3.1 Definition of point target security

The definition of point target security is as follows.

Definition 1 A game G = (Xi , Ri )i∈I is point target secure if for each compact set
K ⊆ E(G)c there is a function π = (π1, . . . , πn): X → X I such that for all x ∈ K
there is an open neighborhood O of x and, for each i ∈ I , an x̃i ∈ Xi such that

(a) (i) (x̃i , x ′−i )Riπ
i (x ′) for all x ′ ∈ O ∩ K and all i ∈ I , and (ii) there exists an

i ∈ I such that xi /∈ co
({wi ∈ Xi : (wi , x−i )Riπ

i (x)});
or

(b) there exists an i ∈ I such that (i) (x̃i , x ′−i )Riπ
i (x ′) for all x ′ ∈ O ∩ K , and (ii)

x ′
i /∈ co

({wi ∈ Xi : (wi , x ′−i )Riπ
i (x ′)}) for all x ′ ∈ O ∩ K .

Some comments are in order. A central notion in conditions for existence of Nash
equilibrium in games with discontinuous payoff functions is that of the value function
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of a player, i.e., the function which assigns to each strategy profile the supremum of
payoffs the player can obtain by unilaterally changing his strategy. This notion is, in
general, not available in the context of ordinal games. The functions π i may be viewed
as a surrogate, specifying targets in ordinal terms. In this sense, the above definition
says that whenever x ∈ X is a non-equilibrium point, then every player i can reach
his target on some neighborhood of x by means of the same strategy x̃i , and there is
a player i for whom the target is non-trivial at x , i.e., who does not reach his target
at x (this is (a)), or there is at least one player who can reach his target on some
neighborhood of x by means of the same x̃i , but for whom the target is non-trivial in
the stronger sense that it cannot be reached at any point in some neighborhood of x
(this is (b)).

Note that there are elements of reciprocity and security in the definition of point
target security. Reciprocity is present in (ii) of both (a) and (b) because different players
may be involved at different non-equilibrium strategy profiles. Security is present in
(i) of (a) and (b) because with strategy x̃i player i obtains an outcome better than
π i (x ′) for any strategy profile x ′ in some neighborhood of x (whether such outcome
is weakly or strictly better than π i (x ′) depends on whether Ri is a weak or a strict
preference relation).

It might appear more natural to formulate the notion of point target security so as
to involve just one target function that is defined on all of E(G)c. However, having
a family of target functions, each being defined on some compact subset of E(G)c,
adds some extra generality, and in particular gives a notion that is weaker than Reny’s
(2013) point security (see Sect. 5.1).

3.2 Definition of correspondence target security

Here is the definition of correspondence target security.

Definition 2 A game G = (Xi , Ri )i∈I is correspondence target secure if for each
compact set K ⊆ E(G)c there is a correspondence π = (π1, . . . , πn): X � X I such
that for all x ∈ K there is an open neighborhood O of x , and, for each i ∈ I , a closed
correspondence ψi : O � Xi , with non-empty and convex values, such that

(a) (i) ψi (x ′) ⊆ co
(⋃

v∈π i (x ′){wi ∈ Xi : (wi , x ′−i )Riv}) for all x ′ ∈ O ∩ K and
all i ∈ I , and (ii) there exists an i ∈ I such that xi /∈ co

(⋃
v∈π i (x){wi ∈

Xi : (wi , x−i )Riv}),
or

(b) there exists an i ∈ I such that (i)ψi (x ′) ⊆ co
(⋃

v∈π i (x ′){wi ∈ Xi : (wi , x ′−i )Riv})
for all x ′ ∈ O ∩ K , and (ii) x ′

i /∈ co
(⋃

v∈π i (x ′){wi ∈ Xi : (wi , x ′−i )Riv}) for all
x ′ ∈ O ∩ K .

The difference between the conditions of point target security and correspondence
target security is just that in the latter there is a target correspondence instead of a target
function and that the securing strategy is allowed to vary along some correspondence,
rather than having to be fixed; modulo this, there is the same interpretation.
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Remark 1 A sufficient condition for a game G = (Xi , Ri )i∈I to be correspondence
target secure is: There is a function π = (π1, . . . , πn): X → X I such that (1) for all
x ∈ X and all i ∈ I , xi /∈ co

({wi ∈ Xi : (wi , x−i )Riπ
i (x)}), and (2) for each x ∈

E(G)c there is a player i ∈ I , an open neighborhood O of x , and a non-empty-valued
correspondence ψi : O � Xi such that coψi is closed and for all x ′ ∈ O ∩ E(G)c,
ψi (x ′) ⊆ {wi ∈ Xi : (wi , x ′−i )Riπ

i (x ′)}.
The condition inRemark 1 is tailored for the casewhere the Ri ’s are strict preference

relations, and will be used in the proof of Theorem 4 below.
If the actions sets Xi are metrizable, we will also consider the following weakening

of the notion of correspondence target security.

Definition 3 A game G = (Xi , Ri )i∈I is weakly correspondence target secure if for
each compact K ⊆ E(G)c there is a correspondence π = (π1, . . . , πn): X � X I

such that for each x ∈ K there is a player i ∈ I , an open neighborhood O of x , and a
closed correspondence ψi : O � Xi , with non-empty and convex values, such that:

(i) ψi (x ′) ⊆ co
(⋃

v∈π i (x ′){wi ∈ Xi : (wi , x ′−i )Riv}) for all x ′ ∈ O ∩ K ;
(ii) xi /∈ co

(⋃
v∈π i (x){wi ∈ Xi : (wi , x−i )Riv}).

4 Existence of equilibrium

In this section we state our main result on the existence of Nash equilibrium.

Theorem 1 Let G = (Xi , Ri )i∈I be a compact and convex game. Suppose that one
of the following conditions is true: (i) G is correspondence target secure; (ii) G is
weakly correspondence target secure and X is metrizable. Then E(G) �= ∅.

In view of Theorem 3 in Sect. 5.2, Theorem 1 generalizes the main existence result
of Reny (2013) by allowing for games with non-ordered preferences.4 It follows from
Remark 4 in that section that Theorem 1, in fact, strictly generalizes Reny’s (2013)
existence result, even when preferences are given by payoff functions. By what will
be pointed out in Sect. 5.3, Theorem 1 also generalizes the existence result in He and
Yannelis (2014, Theorem 1).

Correspondence target security is a weak condition, but is not necessary for the
existence of Nash equilibrium. This is illustrated by the following example.

Example 1 Let G = (Xi , ui )i=1,2 be a two-player game with X1 = X2 = [0, 1] and
with payoff functions defined by u1 ≡ 0 and

u2(x) =
⎧
⎨

⎩

1 if x1 < 1 and x2 = x1,
1 if x1 = 1 and x2 = 0,
0 otherwise.

4 Actually, Theorem 1 includes Theorem 4.2 in Reny (2013) when correspondence security is assumed to
hold with respect to the entire set of players. It is straightforward to define the notion of correspondence
target security with respect to a subset of players and to obtain a corresponding extension of Theorem 1, so
that Theorem 4.2 in Reny (2013) is covered without the above additional assumption; see Sect. 7.9.
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Clearly, E(G) = {x ∈ X : u2(x) = 1}. However, G is not weakly correspondence
target secure, therefore not correspondence target secure, regardless of thewayplayers’
preferences are represented (see Sect. 7.3 for a proof).

5 Implications

In this section we relate our target security notions and our main existence result to
corresponding notions and result from the literature.

5.1 Point security

Reny (2013) introduced the notion of point security. A game G = (Xi , Ri )i∈I is
point secure if whenever x ∈ E(G)c there is an x̂ ∈ X and an open neighbor-
hood U of x such that for each y ∈ U there is an i ∈ I such that yi /∈ co

({wi ∈
Xi : (wi , y−i )Ri (x̂i , x ′−i )}

)
for all x ′ ∈ U .

Theorem 2 shows that point secure games with ordered preferences are point target
secure.5

Theorem 2 Let G = (Xi , Ri )i∈I be a point secure game with ordered prefer-
ences. Then given any compact subset K of E(G)c there is a function π =
(π1, . . . , πn): X → X I such that for all x ∈ K there is an open neighborhood
O of x and an x̃ ∈ X such that

(i) (x̃i , x ′−i )Riπ
i (x ′) for all x ′ ∈ O ∩ K and all i ∈ I ;

(ii) for each y ∈ O there is an i ∈ I such that yi /∈ co
({wi ∈ Xi : (wi , y−i )Riπ

i (x)}).
In particular, there is a player i ∈ I for whom (ii) holds at x. Consequently, G is point
target secure.

Together with this theorem, the following example shows that point target security is
indeed strictly weaker than point security.

Example 2 LetG = (Xi , ui )i=1,2 be the two-player gamewith X1 = X2 = [0, 1] and
payoff functions u1 = 1{(1,1/2)} and u2 = 1D , where D = {(x1, x2) ∈ X : x2 = 1/2}.
Note that for each i = 1, 2, ui (·, x−i ) is quasiconcave for any x−i ∈ X−i . Evidently
E(G) = {(1, 1/2)}. To see that the game is point target secure, consider the functions
π1, π2 defined by setting π1(x) = (1, x2) and π2(x) = (x1, 1/2) for each x ∈ X , and
given x ∈ E(G)c, let O = X , x̃1 = 1, and x̃2 = 1/2. For this specifications, it is easily
seen that (a) in Definition 1 holds at each x ∈ K ⊆ E(G)c (for (a)(ii), consider i = 1 if
x2 = 1/2, and i = 2 if x2 �= 1/2). However,G is not point secure. To see this, note first
that yi /∈ co

({wi ∈ Xi : (wi , y−i )Ri (x̂i , x ′−i )}
)
is equivalent to ui (x̂i , x ′−i ) > ui (y) as

ui is own-strategy quasiconcave, i = 1, 2. Now let x = (1/2, 1/2) ∈ E(G)c. Then for
y = x , u2(y) ≥ u2(x̂2, x ′−2) for all x̂2 ∈ X2 and all x ′ ∈ X . Thus, as u1(x̂1, x ′−1) = 0
for all x̂1 ∈ X1 and all x ′ ∈ X such that x ′

2 �= 1/2, G is not point secure.

5 The proof of this result is analogous to that of Lemma 2 in Carmona (2014), which in turn builds on the
proof of Reny’s (2013) existence result.
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Remark 2 For fairness of comparison, we have shown that the game in Example 2
actually satisfies a version of point target security that is stronger than that in Defini-
tion 1 and which parallels Reny’s (2013) notion of point security: there is a function
π : X → Xn such that for all x ∈ E(G)c there is an open neighborhood O of x and,
for each i ∈ I , an x̃i ∈ X such that (i) (x̃i , x ′−i )Riπ

i (x ′) for all x ′ ∈ O and all i ∈ I ,
and (ii) there is an i ∈ I such that xi /∈ co

({wi ∈ Xi : (wi , x−i )Riπ
i (x)}).

Another way of making the formulations of point target security and point security
be parallel is to weaken Reny’s (2013) notion of point security as follows: Whenever
K ⊆ E(G)c is compact and x ∈ K , there is an x̂ ∈ X and an open neighborhood
U of x such that for each y ∈ U ∩ K there is an i ∈ I such that yi /∈ co

({wi ∈
Xi : (wi , y−i )Ri (x̂i , x ′−i )}

)
for all x ′ ∈ U ∩ K . With this weakening of point security,

Theorem 2 still holds, as may be seen from the proof, and looking in Example 2 at
x = (1/2, 1/2) ∈ K = {z ∈ X : z1 = 1/2} ⊆ E(G)c shows that point target security
is still strictly weaker.

Remark 3 Our notion of point target security is more universal than that of point
security in the following sense. Consider a game G = (Xi , Ri )i∈I with ordered
preferences. For each i ∈ I , let R′

i be the asymmetric part of Ri . ThenG ′ = (Xi , R′
i )i∈I

is again a game according to our definition. Moreover, as each Ri is a complete pre-
order,G andG ′ are equivalent in the sense that an x∗ ∈ X is an equilibrium ofG if and
only if it is an equilibrium of G ′ (recall the equilibrium definition stated in Sect. 2).
Now point security and point target security as defined above may apply to both G
and G ′. However, it might happen that G ′ is point secure but that G ′, and hence also
G, has no equilibrium. For example, suppose G has the form G = (Xi , ui )i=1,2, with
X1 = X2 = [0, 1], u1 ≡ 0, and u2 being such that for each x1 ∈ X1 the problem
maxx2∈X2 u2(x1, x2) has no solution (e.g., for each x1 ∈ X1, take u2(x1, 1) = 0 and
u2(x1, x2) = x2 whenever 0 ≤ x2 < 1). Then G has no Nash equilibrium by the
choice of u2, but G ′ is point secure as R′

1 is empty by the choice of u1.
The example shows that for a game G with ordered preferences the game G ′ asso-

ciated withG according to the previous paragraph may be point secure, butG may fail
to have an equilibrium. This, however, cannot happen regarding point target security.
In fact, Theorem 1 above implies that for a game G with ordered preferences to have
a Nash equilibrium, it suffices that one of G or G ′ is point target secure, and it even
suffices that any game G ′′ is point target secure if G ′′ is constructed by replacing the
preference relation by its asymmetric part for each member of an arbitrary subset of
the players in G.

5.2 Correspondence security

In this section we show that correspondence target security covers Reny’s (2013)
correspondence security. A gameG = (Xi , Ri )i∈I is said to be correspondence secure
if whenever x ∈ E(G)c there is an open neighborhoodU of x and a non-empty-valued
correspondence ϕ:U � X such that coϕ is closed and, for each y ∈ U , there is
an i ∈ I such that yi /∈ co

({wi ∈ Xi : (wi , y−i )Ri (zi , x ′−i )}
)
for all x ′ ∈ U and

zi ∈ ϕi (x ′), where ϕi is the composition of ϕ with the projection of X onto Xi .
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Theorem 3 Every correspondence secure game with ordered preferences is corre-
spondence target secure.

Remark 4 The argument used to show that the game in Example 2 is not point secure
also shows that it is not correspondence secure.

5.3 The continuous inclusion property

In this section, we show that the scope of our notion of correspondence target secu-
rity encompasses abstract economies where players’ preferences have the continuous
inclusion property defined by He and Yannelis (2014). Following the tradition of
Shafer and Sonnenschein (1975), He and Yannelis (2014) specify an abstract econ-
omy as a list E = (Xi , Ai , Pi )i∈I where, for each i ∈ I , Xi is an action set, assumed
to be a non-empty subset of a Hausdorff locally convex space, Ai : X � Xi is a
constraint correspondence, assumed to be non-empty-valued, and Pi is a preference
correspondence Pi : X � Xi with the interpretation that x ′

i ∈ Pi (x) if and only if
player i strictly prefers (x ′

i , x−i ) to x . An equilibrium of E is x∗ ∈ X such that, for
each i ∈ I , x∗

i ∈ Āi (x∗) and Pi (x∗) ∩ Ai (x∗) = ∅. Here and below, Āi denotes the
correspondence sending each x ∈ X to the closure of Ai (x). Let E(E ) denote the set
of equilibria of E .

He and Yannelis (2014, Theorem 1) established the existence of an equilibrium for
abstract economies satisfying the following conditions:

(i) For each i ∈ I , Xi is non-empty, compact, convex and metrizable;
(ii) For each i ∈ I , Ai is non-empty and convex-valued;
(iii) For each i ∈ I , Āi is upper hemicontinuous;
(iv) For each i ∈ I and each x ∈ X with Pi (x) ∩ Ai (x) �= ∅, there exists an open

neighborhood O of x and a non-empty-valued correspondence Fi : O � Xi such
that co Fi is closed and Fi (x ′) ⊆ Pi (x ′) ∩ Ai (x ′) for any x ′ ∈ O;6

(v) For each i ∈ I , xi /∈ co(Pi (x) ∩ Ai (x)) for all x ∈ X .

We weaken conditions (iv) as follows.

Definition 4 Let E = (Xi , Ai , Pi )i∈I be an abstract economy, and for each x ∈ X ,
let I (x) = {i ∈ I : Pi (x) ∩ Ai (x) �= ∅}. We say that E has the weak continuous
inclusion property if for each x ∈ X such that I (x) �= ∅ and xi ∈ Āi (x) for all
i ∈ I , there is an i ∈ I , an open neighborhood O of x , and a non-empty-valued
correspondence Fi : O � Xi such that co Fi is closed and Fi (x ′) ⊆ Pi (x ′) ∩ Ai (x ′)
for each x ′ ∈ O ∩ E(E )c.

To see that this definition indeed weakens conditions (iv) in He and Yannelis (2014,
Theorem 1), note that it makes a requirement only at non-equilibrium points x where
xi ∈ Āi (x) for all i ∈ I , and only for some i ∈ I (x),7 rather than for all of them. That

6 In the terminology of He and Yannelis (2014), this means that Pi ∩ Ai has the continuous inclusion
property at x .
7 While our definition of the weak continuous inclusion property does not explicitly require such i to belong
to I (x), this is of course a consequence of the definition.
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this weakening actually has substance is pointed out in Remark 7 below. A further
weakening is obtained by requiring the condition “Fi (x ′) ⊆ Pi (x ′) ∩ Ai (x ′)” to hold
only at non-equilibrium points which, in particular, implies that the set of equilibria
need not be closed.

To an abstract economy E we associate a gameGE = (Xi , Ri )i∈I as follows. First,
we set I = I s (recall from Sect. 2 that this means that each Ri is interpreted as a strict
preference relation). Second, for each i ∈ I and x ∈ X , we set

P ′
i (x) =

{
Āi (x) if xi /∈ Āi (x),
Pi (x) ∩ Ai (x) otherwise,

and then Ri is defined by setting x ′Ri x if and only if x ′−i = x−i and x ′
i ∈ P ′

i (x); in
particular, for any i ∈ I and any x ∈ X , the upper section of Ri at x has the form
P ′
i (x) × {x−i }. It is easy to see that x∗ is an equilibrium of E if and only if x∗ is a

Nash equilibrium of GE .
Our next result shows that the game GE associated with an abstract economy E is

correspondence target secure if E has the weak continuous inclusion property and if,
as in He and Yannelis (2014, Theorem 1), the constraint correspondences in E satisfy
(ii) and (iii) above and the irreflexivity assumption (v) above holds.

Theorem 4 Let E = (Xi , Ai , Pi )i∈I be an abstract economy such that for each i ∈ I ,
Ai takes non-empty and convex values, Āi is closed, and xi /∈ co(Pi (x)∩Ai (x)) for all
x ∈ X. If E has the weak continuous inclusion property, then GE is correspondence
target secure.

Remark 5 The equilibrium existence result by He and Yannelis (2014, Theorem 1) for
abstract economies requires the assumption that players’ action sets be metrizable. In
contrast, combining Theorem 4 and Theorem 1 gives an equilibrium existence result
for abstract economies without that assumption.

Remark 6 If the action sets Xi are metrizable, it is sufficient for equilibrium existence
if, instead of “xi /∈ co(Pi (x) ∩ Ai (x)) for all x ∈ X and all i ∈ I ,” it is just assumed
that given any non-equilibrium point x ∈ X , xi /∈ co(Pi (x) ∩ Ai (x)) for some i ∈ I
for whom the weak continuous inclusion property holds at this x . Under this condition
it follows by arguments similar to those of the proof of Theorem 4 that the game is
weakly correspondence target secure, so that Theorem 1 applies with condition (ii) to
give an equilibrium.

Remark 7 One may apply an equilibrium existence result for abstract economies to
get a result on existence of Walrasian equilibrium for exchange economies. In such
applications, the constraint correspondences Ai of the players are their budget corre-
spondences, where prices are set by an additional auctioneer-player, who ranks price
vectors according to the value they give to the excess demand resulting from the
choices of the consumers. However, if the endowments of the consumers may be on
the boundary of their consumption sets, this approach has problems if it is done using
the continuous inclusion property and, as in He and Yannelis (2014, Theorems 1), the
continuous inclusion property is required to hold in the form of condition (iv) above.
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In fact, as may easily be seen by simple examples, if the endowment of a consumer is
on the boundary of his consumption set and the price vector is such that there are no
cheaper points in his budget set, then, in general, condition (iv) fails at the endowment
point of this consumer. This is so evenwhen preferences and the aggregate endowment
are such that existence of aWalrasian equilibrium follows from the standard theory. In
contrast, it is not hard to see that if the continuous inclusion property is required only
in the form of Definition 4, then the standard results on existence of Walrasian equi-
librium for exchange economies are covered, including the case in which individual
endowments may be on the boundary of the consumption sets.

5.4 Games with well-behaved best-reply correspondences

In this section, we show that correspondence target security covers games with well-
behaved best-reply correspondences.

For a game G = (Xi , Ri )i∈I , with I = Iw we write BG,i : X−i � Xi for the best-
reply correspondence of i , i.e., BG,i (x−i ) = {yi ∈ Xi : (yi , x−i )Ri (x ′

i , x−i ) for all
x ′
i ∈ Xi }.We say thatG iswell-behaved if, for each i ∈ I , there exists a non-empty and
convex-valued closed correspondence bi : X−i � Xi such that bi (x−i ) ⊆ BG,i (x−i )

for all x−i ∈ X−i .

Theorem 5 Let G = (Xi , Ri )i∈I be a game with ordered preferences.

1. If G is well-behaved and BG,i is convex-valued for each i ∈ I , then G is corre-
spondence target secure.

2. Assume that Xi is metrizable, compact and convex for each i ∈ I . Then G is
well-behaved if and only if there exists a game G ′ = (Xi , ui )i∈I such that for each
i ∈ I , BG ′,i (x−i ) ⊆ BG,i (x−i ) for all x−i ∈ X−i , ui (X) ⊆ {0, 1}, ui is upper
semicontinuous, and ui (·, x−i ) is quasiconcave for all x−i ∈ X−i .

Games satisfying the properties noted for G ′ in part 2 of Theorem 5 are considered
inMcLennan et al. (2011, Section 6) andBarelli andMeneghel (2013, Proposition 4.1).
As shown in Example 2, such games need not be correspondence secure. However,
by Theorem 5, they are correspondence target secure.

6 Conclusion

We have obtained a general existence result that applies to games in which players’
preferences need not be complete pre-orders. The novelty of our approach consists
in the introduction of the notions of point target security and correspondence target
security. These conditions require the existence of a function or a correspondence
π from X to X I such that certain local properties hold (these local properties are
analogous to those in standard notions such as McLennan et al.’s (2011) C-security
or Barelli and Meneghel’s (2013) continuous security).

The generality of our approach arises because we do not fix such a π a priori.
Specific choices of π yield specific existence results. These include: (1) Reny’s (2013)
existence results for games with ordered preferences; for this, π i is constructed based
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on properties of point security or correspondence security; (2) He and Yannelis’s
(2014) existence result for abstract economies; for this case, π i is taken to be the
identity function; (3) the classical existence result for well-behaved games; for this
case π is defined from players’ best-reply correspondences.

We conclude with an example of a game that is covered by our existence result, but
not by any of those mentioned in the previous paragraph.

The set of players is I = {1, 2}, and the action sets are X1 = X2 = [0, 1]. The
preferences R2 of player 2 are given in terms of the utility function u2 = 1D , where
D = {x = (x1, x2) ∈ X : x2 = 1/2}.

Player 1 represents a group of two individuals h = k, l. Individual k has the utility
function uk = 1{(1,1/2)} + 1

21[1/2,1)×{1/2} + ρ, and individual l the utility function
ul = 1[1/2,1)×{1/2} + 1

21X\ ([1/2,1]×{1/2}) + ρ, where ρ: X → [0, 1/2) is given by
setting ρ(x) = x1 if x = (x1, x2) ∈ [0, 1/2) × {0}, and ρ(x) = 0 otherwise. The
preferences R1 of player 1 are given by aggregation according to the rule

x R1y ⇐⇒ uh(x) ≥ uh(y) for both h = l and h = k , or uh(x) > uh(y) for some h.

The asymmetric part R′
1 of R1 is then given by

x R′
1y ⇐⇒ uh(x) ≥ uh(y) for both h = l and h = k ,

and uh(x) > uh(y) for some h.

Clearly R1 is reflexive and complete, and R′
1 is transitive. But R1 is not transitive. To

see this, take x ∈ X\ ([1/2, 1]×{1/2}), let y = (1, 1/2), and take z ∈ [1/2, 1)×{1/2}.
Then x R1y, yR1z, but x R1z fails.

Let the functions π1, π2 from X to X I be defined by setting π1(x) = (3/4, x2) and
π2(x) = (x1, 1/2) for each x ∈ X . Let x̃1 = 3/4, and x̃2 = 1/2. Then for each x ′ ∈ X ,
(x̃i , x ′−i )Riπ

i (x ′) for both i = 1 and i = 2. Observe that the equilibrium set E(G)

of the game is [1/2, 1] × {1/2}. If x ∈ E(G)c with x2 �= 1/2, then by quasiconcavity
of u2, x2 /∈ co({w2 ∈ X2: (w2, x−2)R2π

2(x)}). If x ∈ E(G)c with x2 = 1/2, then
x1 ∈ [0, 1/2) and π1(x) = (3/4, 1/2); since {w1 ∈ X1: (w1, 1/2)R1(3/4, 1/2)} =
[1/2, 1] it follows that x1 /∈ co({w1 ∈ X1: (w1, x−1)R1π

1(x)}). Thus the game is
point target secure.

Reny’s (2013) existence result does not apply to this game, as preferences are not
transitive. At x2 = 0, the best-reply set of player 1 is empty, so the game is not
well-behaved in the sense of Sect. 5.4, and thus the standard theory does not apply.
In regard to the result of He and Yannelis (2014), define preference correspondences
Pi : X � Xi , i = 1, 2, by setting Pi (x) = {x ′

i ∈ Xi : (x ′
i , x−i )R′

i x} for x ∈ X (where,
as before, R′

i denotes the asymmetric part of Ri ). Note that for x = (1/4, 1/2),
P2(x) = ∅ and P1(x) �= ∅, but any neighborhood of x contains points x ′ with
x ′
2 �= 1/2 and x ′

2 �= 0, and thus points x ′ such that P1(x ′) = ∅. Thus the continuous
inclusion property fails at x = (1/4, 1/2) for both P1 and P2, so the result of He and
Yannelis (2014) has nothing to say to the situation. In fact, the same holds regarding
the weak continuous inclusion property defined above and our Theorem 4.
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7 Proofs

In this section, we present the proofs of our results. In Sect. 7.9, we present the notion
of correspondence target security with respect to a subset of players and an existence
result for games satisfying this condition.

7.1 Lemmas

Lemma 1 Let Z be a topological space, Y a compact convex subset of a Hausdorff
topological vector space, and for each h in a non-empty finite set H, letψh : Z � Y be
a closed correspondence with non-empty and convex values. Then the correspondence
ψ : Z � Y , defined by setting ψ(x) = co

(⋃
h∈H ψh(x)

)
for all x ∈ Z, is closed.

Proof Write Δ for the unit simplex in R
H and define f : Δ × Y H → Y by setting

f (α, y) = ∑
h∈H αh yh for (α, y) ∈ Δ × Y H . Define ψ ′: Z � Δ × Y H by setting

ψ ′(x) = Δ × ∏
h∈H ψh(x), x ∈ X . As each ψh takes convex values, we have ψ =

f ◦ ψ ′. Thus since Y is compact and f is continuous, the fact that the ψh’s are closed
implies that ψ is closed. ��

Lemma 2 Let X be a topological space, H a non-empty finite set, Yh a compact
convex subset of a Hausdorff topological vector space for each h ∈ H, and ψ : X �∏

h∈H Yh a correspondence with non-empty values such that coψ is closed. Then the
correspondence co projYh ◦ ψ : X � Yh is closed for each h ∈ H.

Proof Note that co projYh ◦ ψ = projYh ◦ coψ . Using this fact, the lemma easily fol-
lows because the closed correspondence coψ takes values in the compact set

∏
h∈H Yh

and because projYh is continuous for each h ∈ H . ��

7.2 Proof of Theorem 1

Let G = (Xi , Ri )i∈I be a compact and convex game. Suppose (i) of the theo-
rem holds. Arguing by way of contradiction, suppose that E(G) = ∅. Choose
π , Ox , and (ψ x

i )i∈I , x ∈ X , according to the definition of correspondence tar-
get security (apply this definition with K = X ). For each x ∈ X let I x be the
(non-empty) set consisting of those i ∈ I for which ψ x

i (x ′) ⊆ co
(⋃

v∈π i (x ′){wi ∈
Xi : (wi , x ′−i )Riv}) for all x ′ ∈ Ox . Let 〈(V x ,Cx )〉x∈X be a family of subsets of X
such that for each x ∈ X , x ∈ V x ⊆ Cx ⊆ Ox , V x is open, and Cx is closed.
As X is compact, the family 〈(I x , V x ,Cx , Ox , 〈ψ x

i 〉i∈I )〉x∈X has a finite subfam-
ily 〈(I x j , V x j ,Cx j , Ox j , 〈ψ x j

i 〉i∈I )〉mj=1 such that 〈V x j 〉mj=1 is an open cover of X .
For each x ∈ X and each i ∈ I , let J (x) = { j ∈ {1, . . . ,m}: x ∈ V x j } and
Ji (x) = { j ∈ J (x): i ∈ I x j }. Similarly, let J̄ (x) = { j ∈ {1, . . . ,m}: x ∈ Cx j }
and J̄i (x) = { j ∈ J̄ (x): i ∈ I x j }. Clearly, for each x ∈ X and i ∈ I , J (x) ⊆ J̄ (x)
and Ji (x) ⊆ J̄i (x).
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For each i ∈ I , define ϕi : X � Xi by setting, for each x ∈ X ,

ϕi (x) =
⎧
⎨

⎩

co

(
⋃

j∈ J̄i (x)
ψ

x j
i (x)

)

if Ji (x) �= ∅,

Xi otherwise.

Clearly ϕi has non-empty and convex values. Moreover, ϕi is closed. To see this, write
A = {x ∈ X : Ji (x) �= ∅} and note first that A is open, because if x ′ ∈ A and j ∈ Ji (x ′),
then x ′ ∈ V x j and i ∈ I x j , and because i ∈ I x j implies that V x j is included in A.
Fix an x0 ∈ A. Observe that ψ

x j
i takes non-empty values on some neighborhood of

x0 for every j ∈ J̄i (x0). Using this fact and Lemma 1, we see that the correspondence
x �→ co

(⋃
j∈ J̄i (x0)

ψ
x j
i (x)

)
is closed at x0. Now we have J̄i (x) ⊆ J̄i (x0) for each x

in the neighborhood U = (
⋂

j∈ J̄ (x0) O
x j ) ∩ (

⋂
j∈{1,...,m}\ J̄ (x0)(C

x j )c) of x0, and it

follows that the correspondence x �→ co
(⋃

j∈ J̄i (x)
ψ

x j
i (x)

)
is closed at x0. As x0 ∈ A

was arbitrary, x �→ co
(⋃

j∈ J̄i (x)
ψ

x j
i (x)

)
is closed on A. As A is open, ϕi must be

closed.
It follows that the correspondence ϕ = ∏

i∈I ϕi has a fixed point x∗ say. Now
if Ji (x∗) �= ∅, then x∗

i ∈ co
(⋃

j∈ J̄i (x∗) ψ
x j
i (x∗)

)
, by the definition of ϕi . Also, if

j ∈ J̄i (x∗), then x∗ ∈ Ox j and i ∈ I x j , so that ψ
x j
i (x∗) ⊆ co

(⋃
v∈π i (x∗){wi ∈

Xi : (wi , x∗−i )Riv}). Consequently, for each i ∈ I such that Ji (x∗) �= ∅,

x∗
i ∈ co

⎛

⎝
⋃

v∈π i (x∗)
{wi ∈ Xi : (wi , x

∗−i )Riv}
⎞

⎠ . (1)

Suppose there is a j∗ ∈ J (x∗) such that (b) in Definition 2 holds at x j∗ . Let i∗ ∈ I
be chosen according to this condition. Then i∗ ∈ I x j∗ , so j∗ ∈ Ji∗(x∗). Consequently
(1) holds for i∗. But this is impossible by (b)(ii) in Definition 2, because j∗ ∈ J (x∗)
implies x∗ ∈ V x j∗ ⊆ Ox j∗ .

Thus (a) in Definition 2 must hold at x j for each j ∈ J (x∗). Thus, for each
i ∈ I , i ∈ I x j for all j ∈ J (x∗) so Ji (x∗) �= ∅. Thus (1) holds for all i ∈ I . But
this contradicts (a)(ii) in Definition 2, and we conclude that E(G) �= ∅ if (i) of the
theorem holds.

Suppose (ii) of the theorem holds. Again arguing by way of contradiction, suppose
E(G) = ∅. Choose π , i x , Ox , and ψ x

i x , x ∈ X , according to the definition of weak
correspondence target security. For each i ∈ I , let Ki be the set of those x ∈ X at
which i = i x , and let Oi = ⋃

x∈Ki
Ox .

Fix any i ∈ I . As X is metrizable, Oi is paracompact. Let 〈β i
s〉s∈Si be a locally finite

partition of unity subordinated to the open cover 〈Ox 〉x∈Ki of O
i (see Engelking 1989,

Theorem 5.1.9). For each s ∈ Si choose xis ∈ Ki so that (β i
s)

−1((0, 1]) ⊆ Oxis . Define

ϕi : X � Xi by setting ϕi (x ′) = ∑
s∈Si β i

s(x
′)ψ xis

i (x ′) if x ′ ∈ Oi , and ϕi (x ′) = Xi

otherwise. By choice of the correspondences ψ x
i x , ϕi is closed with non-empty convex

values (use the fact that Oi is open to see closedness).
Do this construction for each i ∈ I and let ϕ = ∏

i∈I ϕi . Then ϕ has a fixed
point, again say x∗. Now for player i = i x

∗
, we have x∗ ∈ Ki and thus x∗ ∈ Oi .
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By construction of the correspondence ϕ, and by choice of the correspondences ψ x
i x ,

it follows that x∗
i ∈ ϕi (x∗) ⊆ co

(⋃
v∈π i (x∗){wi ∈ Xi : (wi , x∗−i )Riv}) for i = i x

∗
.

But this gives a contradiction to (ii) in the definition of weak correspondence target
security. Thus E(G) �= ∅ and the proof of Theorem 1 is complete.

7.3 Proof that the game in Example 1 is not weakly correspondence target
secure

Let G be the game in Example 1. For each i = 1, 2, let Ri be either player i’s
ordered preference relation defined by ui , or its asymmetric part. Suppose that G
is weakly correspondence target secure. Let K be a compact subset of E(G)c such
that its projection onto X1 = [0, 1] includes an open neighborhood of 1; e.g., let
K = [1−ε, 1]×{1/2} for some 0 < ε < 1/2. Chooseπ and a family 〈i x , Ox , ψ x 〉x∈K
according to definition of weak correspondence target security. Fix x ∈ K . As u1 ≡ 0,
we must have i x = 2 (use (ii) in Definition 3 if 1 ∈ Iw, and (i) if 1 ∈ I s). If 2 ∈ I s ,
(i) in Definition 3 implies that u2(v) = 0 for some v ∈ π2(x), whereas if 2 ∈ Iw,
(ii) in Definition 3 implies that u2(v) = 1 for all v ∈ π2(x). In both cases, it follows

that co
(⋃

v∈π2(x){w2 ∈ X2: (x1, w2)R2v}
)

= {w2 ∈ X2: u2(x1, w2) = 1}. Hence,
if x ∈ K is such that x1 = 1 and x ′ ∈ Ox ∩ K , (i) in Definition 3 implies that
ψ x
2 (x ′) = {x ′

1} if x ′
1 < 1, and ψ x

2 (x ′) = {0} if x ′
1 = 1. Consequently, if x ∈ K

satisfies x1 = 1, then, given our choice of K , ψ x is not closed at x , contradicting
the choice of ψ x . This contradiction establishes that G is not weakly correspondence
target secure.

7.4 Proof of Theorem 2

Let G = (Xi , Ri ) be a point secure game with ordered preferences, and K a compact
subset of E(G)c. For each x ∈ K , choose (Ux , x̂ x ) according to the definition of
point security. Since K is compact, there exists a finite sub-collection 〈(Uk, x̂ k)〉mk=1
such that K ⊆ ⋃m

k=1U
k . Of course, we may assume that Uk is non-empty for all

k = 1, . . . ,m. Note that by the definition of point security,

for all k = 1, . . . ,m and y ∈ Uk, there exists i ∈ I such that

yi /∈ co
({wi ∈ Xi : (wi , y−i )Ri (x̂

k
i , x

′−i )}
)

for all x ′ ∈ Uk . (2)

Let 〈Ck〉mk=1 be a family of closed subsets of X such that Ck ⊆ Uk for each
k = 1, . . . ,m and K ⊆ ⋃m

k=1 C
k (cf. the proof of Theorem 1). For each x ∈ K , let

K (x) = {k ∈ {1, . . . ,m}: x ∈ Ck} and Ox = (
⋂

k∈K (x) U
k) ∩ (

⋂
k∈K (x)c (C

k)c).
For each i ∈ I , define a binary relation �i on {1, . . . ,m} by setting k′ �i k if for

all x ′ ∈ Uk′
there exists x ∈ Uk such that (x̂ k

′
i , x ′−i )Ri (x̂ ki , x−i ). Then�i is complete,

reflexive and transitive. For each x ∈ K and i ∈ I , let kxi be a greatest element of �i

in K (x), and set x̃ x = (x̂
kxi
i )i∈I .
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For each i ∈ I , x ∈ K , and k ∈ K (x), let

Ki (k, x) = {k′ ∈ {1, . . . ,m}: k′ �i k and x ∈ Uk′ },
and for k′ ∈ Ki (k, x) choose y(i, k′, k, x) ∈ Uk so that (x̂ k

′
i , x−i )Ri (x̂ ki ,

y−i (i, k′, k, x)).
Now to define the function π , for each i ∈ I let π i (x) = x if x ∈

Kc. If x ∈ K , let (x̂ ki , y−i (i, k, x)) be a least element for Ri in the set
{(x̂ ki , y−i (i, k′, k, x)) : k′ ∈ Ki (k, x)}, k ∈ K (x), and let π i (x) be a greatest element
for Ri in {(x̂ ki , y−i (i, k, x)) : k ∈ K (x)}.

Fix any x ∈ K . To see that (i) in the statement of the theorem hold, let x ′ ∈ Ox ∩K
and i ∈ I . Then K (x ′) ⊆ K (x) and x ′ ∈ Ukxi . Thus, for each k ∈ K (x ′), kxi ∈
Ki (k, x ′). This implies that

(x̃ xi , x ′−i ) = (x
kxi
i , x ′−i )Ri (x̂

k
i , y−i (i, k

x
i , k, x ′))Ri (x̂

k
i , y−i (i, k, x

′))

for each k ∈ K (x ′), and hence that (x̃ xi , x ′−i )Ri (x̂ ki , y−i (i, k, x ′)) for each k ∈ K (x ′).
As π i (x ′) ∈ {(x̂ ki , y−i (i, k, x ′)) : k ∈ K (x ′)}, it follows that (x̃ xi , x ′−i )Riπ

i (x ′). Thus
(i) holds.

As for (ii), let y ∈ Ox and k ∈ K (x) be given and note that y ∈ Uk . By (2) there is
an i ∈ I such that yi /∈ co

({wi ∈ Xi : (wi , y−i )Ri (x̂ ki , x
′−i )}

)
for all x ′ ∈ Uk . In partic-

ular, yi /∈ co{wi ∈ Xi : (wi , y−i )Ri (x̂ ki , y−i (i, k, x))} because y(i, k, x) ∈ Uk . Since
π i (x)Ri (x̂ ki , y−i (i, k, x)), it follows that yi /∈ co

({wi ∈ Xi : (wi , y−i )Riπ
i (x)}). Thus

(ii) holds. This completes the proof.

7.5 Proof of Theorem 3

Let G = (Xi , Ri ) be a correspondence secure game with ordered preferences, and
K a compact subset of E(G)c. We will show that there exists a non-empty-valued
correspondence π = (π1, . . . , πn): X � X I such that for every x ∈ K there is an
open neighborhood O of x and, for each i ∈ I , a non-empty-valued correspondence
ψi : O � Xi such that coψi is closed and

(i) for all i ∈ I , x ′ ∈ O ∩ K , and zi ∈ ψi (x ′), there is a v ∈ π i (x ′) such that
(zi , x ′−i )Riv;

(ii) for all y ∈ O there is an i ∈ I such that yi /∈ co
(⋃

v∈π i (x){wi ∈
Xi : (wi , y−i )Riv}).

Clearly, Theorem 3 then follows.
For each x ∈ K , choose (Ux , ϕx ) according to the definition of correspondence

security. Recall that ϕx
i denotes the composition of ϕx with the projection of X onto

Xi . By Lemma 2, the properties of ϕx imply that ϕx
i is non-empty-valued and coϕx

i
is closed for each x ∈ X and each i ∈ I .

Now since K is compact, there is a finite sub-collection 〈(Uk, ϕk)〉mk=1 such that
K ⊆ ⋃m

k=1U
k . We may assume thatUk is non-empty for all k = 1, . . . ,m. Note that

by the definition of correspondence security,
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for all k = 1, . . . ,m and y ∈ Uk, there exists i ∈ I such that

yi /∈ co
({wi ∈ Xi : (wi , y−i )Ri (zi , x

′−i )}
)

for all x ′ ∈ Uk and zi ∈ ϕk
i (x

′). (3)

As in the proof of Theorem 2, let 〈Ck〉mk=1 be a family of closed subsets of X such that
Ck ⊆ Uk for each k = 1, . . . ,m and such that K ⊆ ⋃m

k=1 C
k . For each x ∈ K , let

K (x) = {k ∈ {1, . . . ,m}: x ∈ Ck} and Ox = (
⋂

k∈K (x) U
k) ∩ (

⋂
k∈K (x)c (C

k)c).
For each i ∈ I , define a binary relation�i on {1, . . . ,m} by setting k′ �i k if for all

(x ′, z′i ) ∈ graph(ϕk′
i ) there exists (x, zi ) ∈ graph(ϕk

i ) such that (z′i , x ′−i )Ri (zi , x−i ).
Then �i is complete, reflexive and transitive. For each x ∈ K and i ∈ I , let kxi be a

greatest element of �i in K (x) and define ψ x
i : Ox � Xi by setting ψ x

i (x ′) = ϕ
kxi
i (x ′)

for all x ′ ∈ Ox . Note that the correspondence ψ x
i is non-empty-valued and such that

coψ x
i is closed, because ϕ

kxi
i has these properties by what has been noted above.

For each i ∈ I , x ∈ K , k ∈ K (x), and zi ∈ Xi , let

Ki (k, x, zi ) = {k′ ∈ {1, . . . ,m}: k′ �i k, x ∈ Uk′
and zi ∈ ϕk′

i (x)},

and choose points y(i, k′, k, x, zi ) ∈ Uk and wi (i, k′, k, x, zi ) ∈ ϕk
i (y(i, k

′, k, x, zi ))
for each k′ ∈ Ki (k, x, zi ), so that

(zi , x−i )Ri (wi (i, k
′, k, x, zi ), y−i (i, k

′, k, x, zi )).

Note that, for each i ∈ I ,

kxi ∈ Ki (k, x
′, zi ) for each x ∈ K , x ′ ∈ Ox ∩ K , k ∈ K (x ′) and zi ∈ ψ x

i (x ′). (4)

To see this, fix such x , x ′, k, and zi . By definition of Ox , we have K (x ′) ⊆ K (x), and
therefore kxi �i k by definition of kxi . Moreover, as kxi ∈ K (x), we have x ′ ∈ Ukxi ,

again by definition of Ox . Finally, we have zi ∈ ϕ
kxi
i (x ′) by definition of ψ x

i .
For each x ∈ K , let Zi (x) = {zi ∈ Xi : Ki (k, x, zi ) �= ∅ for each k ∈ K (x)}. Note

that Zi (x) �= ∅ for each x ∈ K , because x ∈ Ox and hence by (4), ψ x
i (x) ⊆ Zi (x),

and because the correspondence ψ x
i takes non-empty values.

Now to define the correspondence π , for each i ∈ I let π i (x) = {x} if x ∈ Kc.
If x ∈ K , define π i as follows. First, for each zi ∈ Zi (x) and each k ∈ K (x), let
(wi (i, k, x, zi ), y−i (i, k, x, zi )) be a least element for Ri in the set

{(wi (i, k
′, k, x, zi ), y−i (i, k

′, k, x, zi )) : k′ ∈ Ki (k, x, zi )};

then, for each zi ∈ Zi (x), let π i (x, zi ) be a greatest element for Ri in

{(wi (i, k, x, zi ), y−i (i, k, x, zi )) : k ∈ K (x)}, zi ∈ Zi (x);

finally, let

π i (x) = {
π i (x, zi ): zi ∈ Zi (x)

}
.

123



Existence of Nash equilibrium in ordinal games with... 473

Note that

y(i, k, x, zi ) ∈ Uk and wi (i, k, x, zi ) ∈ ϕk
i (y(i, k, x, zi )) (5)

for each k ∈ K (x) since y(i, k′, k, x, zi ) ∈ Uk and wi (i, k′, k, x, zi ) ∈
ϕk
i (y(i, k

′, k, x, zi )) for all k′ ∈ Ki (k, x, zi ).
Fix any x ∈ K . To see that statement (i) above holds, let x ′ ∈ Ox ∩ K , i ∈ I , and

zi ∈ ψ x
i (x ′) = ϕ

kxi
i (x ′). By (4), kxi ∈ Ki (k, x ′, zi ) for each k ∈ K (x ′), which implies

that zi ∈ Zi (x ′) and hence that π i (x ′, zi ) ∈ π i (x ′). Moreover, for each k ∈ K (x ′),
(
zi , x

′−i

)
Ri

(
wi (i, k

x
i , k, x ′, zi ), y−i (i, k

x
i , k, x ′, zi )

)

Ri
(
wi (i, k, x

′, zi ), y−i (i, k, x
′, zi )

)
.

Thus (zi , x ′−i )Ri (wi (i, k, x ′, zi ), y−i (i, k, x ′, zi )) holds for all k ∈ K (x ′), and it fol-
lows that (zi , x ′−i )Riπ

i (x ′, zi ). Hence, (i) above holds, as π i (x ′, zi ) ∈ π i (x ′).
We next establish (ii) above. Let y ∈ Ox and k ∈ K (x) be given, and note that

y ∈ Uk . It follows from (3) that there exists i ∈ I such that

yi /∈ co{wi ∈ Xi : (wi , y−i )Ri (zi , x
′−i )} for all x ′ ∈ Uk and zi ∈ ϕk

i (x
′). (6)

Arguing by contradiction, suppose yi ∈ co
(⋃

v∈π i (x){wi ∈ Xi : (wi , y−i )Riv}). Then
there exists J ∈ N, {v j }Jj=1 ⊆ π i (x) and {y j

i }Jj=1 ⊆ Xi such that (y j
i , y−i )Riv

j and

yi ∈ co{y j
i }Jj=1. Let v ∈ {v j }Jj=1 be such that v j Riv for all j = 1, . . . , J . Since

v ∈ π i (x), then v = π i (x, zi ) for some zi ∈ Zi (x). Thus, for each j = 1, . . . , J ,

(y j
i , y−i )Riπ

i (x, zi )Ri (wi (i, k, x, zi ), y−i (i, k, x, zi )),

and therefore yi ∈ co{wi ∈ Xi : (wi , y−i )Ri (wi (i, k, x, zi ), y−i (i, k, x, zi ))}. But
this contradicts (6), because by (5), y(i, k, x, zi ) ∈ Uk and wi (i, k, x, zi ) ∈
ϕk
i (y(i, k, x, zi )). This contradiction establishes that yi /∈ co

(⋃
v∈π i (x){wi ∈

Xi : (wi , y−i )Riv}). This completes the proof.

7.6 Proof of Theorem 4

Let E = (Xi , Ai , Pi )i∈I be an abstract economy such that the assumptions of The-
orem 4 are satisfied, and let GE = (Xi , Ri )i∈I be the associated game. Recall
that E(GE ) = E(E ). Define π by identifying π i with the identity on X for all
i ∈ I ; thus, for each x ∈ X and i ∈ I , {wi ∈ Xi : (wi , x−i )Riπ

i (x)} = {wi ∈
Xi : (wi , x−i )Ri x} = P ′

i (x), i.e., (zi , x−i )Riπ
i (x) is equivalent to zi ∈ P ′

i (x) for each
zi ∈ Xi . (The correspondences P ′

i were defined prior to the statement of Theorem 4.)
By hypothesis, xi /∈ co(Pi (x) ∩ Ai (x)) for all x ∈ X and all i ∈ I . Also by

hypothesis, for all x ∈ X and all i ∈ I , Ai (x) is convex, and hence so is Āi (x),
being the closure of Ai (x). Thus for all x ∈ X and all i ∈ I , xi /∈ co

(
P ′
i (x)

)
, by the

definition of P ′
i .
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Consider any x ∈ E(GE )c. By Remark 1 and what was pointed out so far in
this proof, we need to show that there is an i ∈ I , a neighborhood O of x , and a
correspondence ψi : O � Xi such that (1) coψi is closed and has non-empty values,
and (2) ψi (x ′) ⊆ P ′

i (x
′) for all x ′ ∈ O ∩ E(GE )c.

Now x ∈ E(GE )c means that x is not an equilibrium of the abstract economy E .
Thus we have two cases. The first is given when xi /∈ Āi (x) for some i ∈ I . For such
an i , since Āi is closed, there is an open neighborhood O of x such that x ′

i /∈ Āi (x ′)
for all x ′ ∈ O . By the definition of P ′

i , this means P ′
i (x

′) = Āi (x ′) for all x ′ ∈ O .
Thus, letting ψi : O � Xi be the restriction of Āi to O , (2) holds, and so does (1)
because, as noted above, Āi takes convex values.

The second case is given when xi ∈ Āi (x) for all i ∈ I . In this case, the fact that x
is not an equilibrium of E implies that the set I (x) in Definition 4 is non-empty; let i ,
O and Fi be chosen according to Definition 4, and setψi = Fi . In particular, (1) holds
for ψi . Moreover, for any x ′ ∈ O ∩ E(GE )c, ψi (x ′) ⊆ Pi (x ′) ∩ Ai (x ′) ⊆ Āi (x ′)
and thus (2) follows, because P ′

i (x
′) = Pi (x ′) ∩ Ai (x ′) or P ′

i (x
′) = Āi (x ′), by the

definition of P ′
i .

7.7 Proof of Part 1 of Theorem 5

Let G = (Xi , Ri )i∈I be as in the statement of the theorem, and for each i ∈ I ,
let bi : X−i � Xi be as in the definition of a well-behaved game. Define π i (x) =
{(yi , x−i ) ∈ X : yi ∈ bi (x−i )} for all i ∈ I and x ∈ X . Furthermore, for each
x ∈ E(G)c, let O = X and ψi (x ′) = bi (x ′−i ) for each x ′ ∈ O and i ∈ I . Then,
for each i ∈ I , x ′ ∈ O , and zi ∈ ψi (x ′) = bi (x ′−i ), we have (zi , x ′−i ) ∈ π i (x ′) and
(zi , x ′−i )Ri (zi , x ′−i ). Thus (a)(i) in the definition of correspondence target security
holds at each x ∈ E(G)c.

Let x ∈ E(G)c. Then xi /∈ BG,i (x−i ) for some i ∈ I . As Ri is transitive, we have
BG,i (x−i ) = ⋃

v∈π i (x){wi ∈ Xi : (wi , x−i )Riv}. As BG,i is convex-valued, it follows
that

⋃
v∈π i (x){wi ∈ Xi : (wi , x−i )Riv} = co

(⋃
v∈π i (x){wi ∈ Xi : (wi , x−i )Riv}).

Thus also (a)(ii) in the definition of target correspondence security holds at each
x ∈ E(G)c.

7.8 Proof of Part 2 of Theorem 5

Suppose that G is well-behaved and, for each i ∈ I , let bi : X−i � Xi be as in the
definition of a well-behaved game. Fix i ∈ I and define, for each x ∈ X ,

ui (x) =
{
1 if xi ∈ bi (x−i ),

0 otherwise.

Then G ′ = (Xi , ui )i∈I is such that for each i ∈ I , BG ′,i = bi , ui is upper semicon-
tinuous, ui (X) ⊆ {0, 1}, and ui (·, x−i ) is quasiconcave for each x−i ∈ X−i . Note that
BG ′,i (x−i ) ⊆ BG,i (x−i ) for each x−i ∈ X−i because BG ′,i = bi .
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Conversely, suppose that G satisfies the condition in 2. We will show that for each
i ∈ I there exists a non-empty and convex-valued closed correspondence bi : X−i �
Xi such that bi (x−i ) ⊆ BG ′,i (x−i ) for all x−i ∈ X−i . Since BG ′,i (x−i ) ⊆ BG,i (x−i )

for all x−i ∈ X−i , this establishes that G is well-behaved.
Fix i ∈ I and let ϕi : X−i � Xi be any upper hemicontinuous correspondence

with non-empty and closed values that satisfies ϕi (x−i ) = {xi ∈ Xi : ui (xi , x−i ) = 1}
for all x−i ∈ Fi , where Fi = {x−i ∈ X−i : maxxi∈Xi ui (xi , x−i ) = 1}. That such a
correspondence exists can be seen as follows. If Fi = ∅, set ϕi (x−i ) = Xi for each
x−i ∈ X−i . Otherwise, let A = {x ∈ X : ui (x) = 1}. As ui is upper semicontinuous,
A is closed. Let d be a metric for the topology of X , and define f : X → R by setting
f (z) = − inf{d(z, z′): z′ ∈ A}, z ∈ X . Then f is continuous, and since X = X−i×Xi ,
the existence of a ϕi with the desired properties follows by Berge’s maximum theorem.

Note that BG ′,i (x−i ) equals Xi if x−i ∈ X−i \ Fi , and it equals ϕi (x−i ) if x−i ∈ Fi .
Thus ϕi (x−i ) ⊆ BG ′,i (x−i ) for all x−i ∈ X−i . Since ui (·, x−i ) is upper semicon-
tinuous and quasiconcave for each x−i ∈ X−i , BG ′,i has closed and convex values,
and it follows that coϕi (x−i ) ⊆ BG ′,i (x−i ) for all x−i ∈ X−i . By Theorem 17.35 in
Aliprantis and Border (2006), coϕi is closed. Set bi = coϕi .

7.9 Correspondence target security with respect to a subset of players

In this section, we present Reny’s (2013) notion of correspondence security with
respect to a subset of players and introduce the notion of correspondence target secu-
rity with respect to a subset of players. We then show that every game with ordered
preferences satisfying correspondence security with respect to a subset of players is
correspondence target secure with respect to the same subset of players, provided that
the best-reply correspondences of the remaining players are well-behaved.

Let G = (Xi , Ri )i∈I be a game. For J ⊆ I , let BJ denote the set of strat-
egy profiles at which every player i ∈ J c plays a best reply, i.e., BJ = {x ∈
X : x Ri (x ′

i , x−i ) for all i ∈ J c and x ′
i ∈ Xi }.

The following is Reny’s (2013) notion of correspondence security with respect to
a subset of players. A game G is correspondence secure with respect to J if for all
x ∈ E(G)c ∩ BJ there exists an open neighborhood U of x and a non-empty-valued
correspondence ϕ:U � X such that coϕ is closed and for all y ∈ U ∩ BJ there is a
player i ∈ J for whom yi /∈ co

({wi ∈ Xi : (wi , y−i )Ri (zi , x ′−i )}
)
for all x ′ ∈ U ∩ BJ

and zi ∈ ϕi (x ′).
Definition 5 AgameG = (Xi , Ri )i∈I is correspondence target secure with respect to
J if for each compact K ⊆ E(G)c there is a correspondence π = (π1, . . . , πn): X �
X I such that, for all x ∈ K ∩ BJ , there is an open neighborhood O of x and, for each
i ∈ I , a closed correspondenceψi : O � Xi , with non-empty and convex values, such
that

(a) (i) ψi (x ′) ⊆ co
⋃

v∈π i (x ′){wi ∈ Xi : (wi , x ′−i )Riv} for all x ′ ∈ O ∩ K ∩ BJ

and i ∈ I , and (ii) there exists an i ∈ I such that xi /∈ co
(⋃

v∈π i (x){wi ∈
Xi : (wi , x−i )Riv}),

or
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(b) there exists an i ∈ I such that (i)ψi (x ′) ⊆ co
(⋃

v∈π i (x ′){wi ∈ Xi : (wi , x ′−i )Riv})
for all x ′ ∈ O ∩ K ∩ BJ and (ii) x ′

i /∈ co
(⋃

v∈π i (x ′){wi ∈ Xi : (wi , x ′−i )Riv}) for
all x ′ ∈ O ∩ K ∩ BJ .8

We obtain the following result.

Theorem 6 Let G = (Xi , Ri )i∈I be a game with ordered preferences and J ⊆ I .
If G is correspondence secure with respect to J and, for each i ∈ J c, the best-reply
correspondence Bi is closed with non-empty and convex values, then G is target
correspondence secure with respect to J .

Proof Let G = (Xi , Ri )i∈I be as in the statement of the theorem. By Theorems 3
and 5, we may assume that J �= ∅ and J �= I .

Let K be a compact subset of E(G)c. Since for each i ∈ J c the best-reply correspon-
dence Bi is closed, BJ is compact. Hence K ∩BJ is compact, and Theorem 3, together
with Lemma2, implies that there exists a correspondenceπ = (π1, . . . , πn): X � X I

such that for all x ∈ K ∩ BJ there exists an open neighborhood O of x , and for each
i ∈ J , a non-empty-valued correspondence ψi : O � Xi such that coψi is closed and

(i′) for all i ∈ J , x ′ ∈ O ∩ K ∩ BJ and zi ∈ ψi (x ′), there exists v ∈ π i (x ′) such
that (zi , x ′−i )Riv, and
(ii′) for all y ∈ O , there is i ∈ J such that yi /∈ co

(⋃
v∈π i (x){wi ∈

Xi : (wi , x−i )Riv}).
Because J �= ∅, (i′) and (ii′) imply that condition (a) in the definition of correspon-

dence target security holds. As K was an arbitrary compact subset of E(G)c, G is
correspondence target secure with respect to J . ��

The notion of weak correspondence target secure with respect to a subset of players
is as follows.

Definition 6 A game G = (Xi , Ri )i∈I is weakly correspondence target secure
with respect to J if for each compact K ⊆ E(G)c there is a correspondence
π = (π1, . . . , πn): X � X I such that, for all x ∈ K ∩ BJ , there is a player i ∈ I , an
open neighborhood O of x and a closed correspondenceψi : O � Xi , with non-empty
and convex values, such that

(i) for all x ′ ∈ O ∩ K ∩ BJ , ψi (x ′) ⊆ co
(⋃

v∈π i (x ′){wi ∈ Xi : (wi , x ′−i )Riv});
(ii) xi /∈ co

(⋃
v∈π i (x){wi ∈ Xi : (wi , x−i )Riv}).

The following results extends Theorem 1.

Theorem 7 Let G = (Xi , Ri )i∈I be a compact and convex game and J ⊆ I be
such that, for each i ∈ J c, the best-reply correspondence Bi is closed with non-
empty and convex values. Suppose that one of the following conditions is true: (i) G
is correspondence target secure with respect to J ; (ii) G is weakly correspondence
target secure with respect to J and X is metrizable. Then E(G) �= ∅.

8 Note that the definition of correspondence target security with respect to J does not explicitly require the
player for whom conditions (a) and (b) in Definition 5 hold to belong to J . However, this may be shown to
be a consequence of the definition.
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Proof The proof is analogous to that of Theorem 1, and therefore we simply indicate
how one needs to change it to prove the above statement. For both part (i) and part
(ii), and for each i ∈ J c, change the definition of ϕi as follows: ϕi (x) = Bi (x) for all
x ∈ X .

The arguments in the proof of Theorem 1 still apply to show that ϕ has a fixed point
x∗. By the definition of BJ , we have x∗ ∈ BJ . Thus the proof can be completed in the
same way as the proof of Theorem 1. ��
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