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Abstract We study unanimity bargaining on the division of a surplus in the presence
of monotonicity constraints. The monotonicity constraints specify a complete order
on the players, which has to be respected by the shares in the surplus the players obtain
in any bargaining outcome. A player higher in the order should not receive a lower
share of the surplus. We analyze the resulting subgame perfect equilibria in stationary
strategies and show that they are characterized by the simpler notion of bargaining
equilibrium. Bargaining equilibria are shown to be unique and to have the property
that players ranked strictly higher obtain strictly higher shares in the surplus. The key
question is whether the bargaining advantage of a higher-ranked player persists when
the probability of breakdown of bargaining tends to zero. We argue that such is not
the case by showing that bargaining equilibria have a unique limit equal to an equal
division of the surplus. It then follows that the limit also coincides with the Nash
bargaining solution for this problem.
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1 Introduction

The path-breaking paper by Rubinstein (1982) on alternating offers bargaining has
spurred an extensive literature to explain the crucial factors that determine the division
of a surplus among a group of players. It is common in the literature to assume that
any division of the surplus among the players can be proposed. However, in many
applications there are monotonicity constraints on the proposed shares that have to be
respected, an important aspect which has been disregarded in the bargaining literature
so far.

Very often these monotonicity constraints are dictated by custom. If a team carries
out a joint project, it would be customary that the team leader should not be paid less
than the other team members. Similarly, if a team consists of workers with differing
experience, then more experienced workers would not be paid less than less experi-
enced workers. Although in the first example, it would technically be possible to pay
the team leader less than the other team members, making such a proposal could be
so inappropriate that it would severely affect the rest of the bargaining process and
therefore essentially such proposals are ruled out. In the second example, legal con-
straints or collective labor agreements could literally prevent proposals from violating
particular monotonicity constraints.

Monotonicity constraints also result often from incentive compatibility consider-
ations. When workers in a team are endowed with unobservable efficiency units of
labor, but produce observable output, then incentive compatibility would require that
workers with higher output should not receive a lower share of the total surplus gener-
ated. Similar monotonicity constraints arise in the theory of income taxation following
Mirrlees (1971), which we used as the main motivation in a previous version of this
paper, see Herings and Predtetchinski (2011b).

Monotonicity constraints also often serve as desirable normative principles, for
instance in bankruptcy problems as studied in the seminal paper by O’Neill (1982).
The bankruptcy problem is based on an example in the Talmud, where the estate left
behind by a deceased man is worth less than the claims of his wives. The question
is how the estate should be divided among the claimants. Based on Aumann and
Maschler (1985), the solution to a bankruptcy problem is said to be order-preserving
if a personwith a claim at least as large as another person receives at least asmuch as the
other person. Order preservation corresponds exactly to the monotonicity constraints
we study in this paper and is generally met by solutions proposed for bankruptcy
problems like the proportional rule, the constrained equal award rule, or the Talmud
rule, see Thomson (2003) for an overview of the literature.

We study unanimity bargaining on the division of a surplus in the presence of
monotonicity constraints. Monotonicity constraints specify a complete order on the
players, which has to be respected by the shares in the surplus offered to them in any
proposal. In the presence of monotonicity constraints, an equal division of the surplus
is still feasible and yields the lowest possible payoffs to the players in the highest
indifference class. The most extreme proposal in the other direction is to propose zero
to all players except those in the highest indifference class. Although such a proposal is
feasible, it will not be proposed by any player, not even the ones ranked highest, since
it is surely rejected by the other players. A proposal involving an equal division of
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the surplus will also not be proposed by the highest ranked players. The monotonicity
constraints imply that such players receive at least the average surplus in all proposals
and strictly more if they are proposing themselves.

We analyze the subgame perfect equilibria in stationary strategies of the model
and are mainly interested in the question to what extent players higher in the order
can exploit their favorable bargaining position, in particular for the case where the
bargaining breakdown probability tends to zero.

Subgame perfect equilibria in stationary strategies can be characterized by themore
elementary notion of a bargaining equilibrium. A bargaining equilibrium is a tuple of
proposals by the various players which are all unanimously accepted. Moreover, the
proposal of a player is the one giving him the highest payoff among all proposals that
are accepted by all players and that obey the monotonicity constraints.

Consider a bargaining equilibrium proposal by a particular player. All lower-ranked
players are offered their reservation payoff derived from the bargaining equilibrium. To
avoid rejection by higher-ranked players, also those have to be promised at least their
reservation payoff.Monotonicity constraints may force the proposing player tomake a
proposal strictly above their reservation payoff. In general, the bargaining equilibrium
proposal is such that all players ranked higher than the proposer up to some rank are
proposed the same amount as the proposer keeps for himself, and players ranked even
higher are proposed their reservation payoffs.

Monotonicity constraints would be satisfied by the set of alternatives as considered
in the more general frameworks of Banks and Duggan (2000) and Duggan (2011),
although the specification of the voting stages differs since they consider simultaneous
voting and restrict attention to equilibria with stage-undominated voting strategies. By
Theorem 2 inBanks andDuggan (2000), there exists such an equilibrium that is in pure
stationary strategies. In contrast to the results on the existence of stationary equilibria,
conditions for the uniqueness of stationary equilibria found in the literature do not
apply to our setup.

General conditions for the uniqueness of subgame perfect equilibria in stationary
equilibria in unanimity bargaining games are given by Merlo and Wilson (1995).
However, the monotonicity constraints we impose imply that their assumptions on the
set of feasible alternatives are violated. Other uniqueness results that have been derived
in the context of one-dimensional bargaining problems, see Imai and Salonen (2000),
Cho and Duggan (2003), Cardona and Ponsatí (2007), and Herings and Predtetchinski
(2010) or in the context of legislative bargaining problems as in Eraslan andMcLennan
(2013) do not apply either. In the presence of monotonicity constraints, we can show
that bargaining equilibria are unique by a contraction argument. As a by-product of
this result, we obtain equilibrium existence.

Consider a sequence of breakdown probabilities converging to zero and consider the
corresponding sequence of bargaining equilibria. It follows from a standard argument
that all playersmake the same proposal in the limit.We are interested in the uniqueness
and the characterization of the limit proposal. The literature on multilateral bargaining
with unanimous agreement has shown convergence of bargaining equilibrium propos-
als to the Nash bargaining solution, see Hart and Mas-Colell (1996), Laruelle and
Valenciano (2007), Miyakawa (2008), Kultti and Vartiainen (2010), and Britz et al.
(2010). Unfortunately, all these papers need differentiability assumptions with respect
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to the set of feasible alternatives, an assumption that is clearly violated in the pres-
ence of monotonicity constraints. Moreover, Kultti and Vartiainen (2010) and Herings
and Predtetchinski (2011a) present examples where in the absence of differentiability
assumptions, sequences of bargaining equilibria may have a limit different from the
Nash bargaining solution and may have multiple limits.

For the cases with two or three players and a strict order on the players, we calculate
bargaining equilibria explicitly and verify the uniqueness of the limit proposal. For
these cases, it corresponds to the equal division of the surplus, although for the three-
player case this outcome is not proposed by any player for sufficiently low values of the
bargaining breakdown probability, but is only reached in the limit. The equal division
of the surplus is also the outcome predicted by an application of the Nash bargaining
solution to our problem.We demonstrate that also in the case with an arbitrary number
of players and an arbitrary monotonicity constraints, the limit proposal is unique and
leads to an equal division of the surplus.

This paper is organized as follows. Section 2 introduces the bargaining procedure
and Sect. 3 the notion of bargaining equilibrium. Section 4 characterizes optimal
proposals of players, and Sect. 5 demonstrates the uniqueness of bargaining equilibria.
Section 6 computes the bargaining equilibrium explicitly for two simple examples
and shows that it converges to an equal division of the surplus in the limit when the
bargaining breakdown probability converges to zero. Limit equilibria are formally
introduced in Sect. 7. Section 8 proves that limit equilibria are unique, lead to an equal
division of the surplus, and correspond therefore to the Nash bargaining solution for
this problem. Section 9 concludes.

2 The bargaining procedure

We study a bargaining game �(N ,�), where a group of players N = {1, . . . , n}
bargains about the division of a surplus of size one and � is a complete order on the
players. A division of the surplus is a vector of shares x = (x1, . . . , xn), where xi
is the share in the surplus of player i. For a group of players G ⊂ N and a vector
y ∈ R

n, we use the notation y(G) = ∑
i∈G yi . A group of players G of the form

{i, i + 1, . . . , j − 1, j} for some i, j ∈ N , is denoted [i, j].
The order � specifies the restriction that a higher-ranked player should at least

receive the same share in the surplus as a lower-ranked player, so for i, j ∈ N , if i � j,
then xi ≤ x j .Without loss of generality, we assume that 1 � 2 � · · · � n.Notice that
two or more players may belong to the same indifference class. The indifference class
of player i is denoted by the possibly degenerate interval [�i , ui ], so the collection
{[�i , ui ] | i ∈ N } is a partition of [1, n]. We denote the set of all lower bounds by
L = {�i | i ∈ N } and upper bounds by U = {ui | i ∈ N }.

The set X of feasible divisions of the surplus is then equal to

X = {x ∈ R
n+ | x(N ) = 1, ∀i, j ∈ N such that i � j, xi ≤ x j }.

Two extreme efficient divisions of the surplus are given by equal sharing where xi =
1/n for all players i on the one hand and the least egalitarian division where xi = 0
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for every i ∈ N such that i ≺ n, and the surplus is shared equally among all players
in the indifference class of player n. In case all players different from n are ranked
strictly below n, we have xi = 0 for i ∈ [1, n − 1] and xn = 1.

The bargaining procedure is defined as follows. In each bargaining round r, each
player has an equal probability to be selected as the proposer. The selected player,
say player i, makes a proposal pi ∈ X. After observing pi , players sequentially
decide whether to accept or to reject the proposal in a fixed a priorily chosen order. If
all players accept, then the division of the surplus is given by pi , leading to a share
pij for player j ∈ N . As soon as some player rejects, bargaining breaks down with
probability 1− δ > 0 and continues with probability δ ≥ 0 in bargaining round r + 1
with the selection of a randomly selected player as the proposer. If no agreement is
ever reached, all players receive a share equal to zero.

We analyze the subgame perfect equilibria in stationary strategies (SSPE) of the
resulting game. A stationary strategy of player i, σ i = (pi , Ai ), consists of a proposal
pi ∈ X and an acceptance set Ai ⊂ X. The acceptance set consists of those proposals
that are accepted by a player. This specification results in a stationary strategy because
pi and Ai are time and history independent. We write p = (p1, . . . , pn) and A =
(A1, . . . , An). The social acceptance set consists of the proposals that are accepted
by all players and is given by ∩i∈N Ai . A strategy profile (p, A) is a subgame perfect
equilibrium if it induces a Nash equilibrium in every subgame.

A strategy profile σ = (σ i )i∈N determines the expected payoff V i (σ ) for each
player i as evaluated at the beginning of the game. This payoff is equal to the expected
value of player i’s share in the surplus. Since strategies are stationary, V i (σ ) is also
the continuation payoff of player i, the expected payoff as evaluated at the beginning
of any bargaining round r, and therefore equal to the expected share in the surplus at
the beginning of any bargaining round r.

A strategy profile (p, A) is called a no-delay strategy profile if pi ∈ ∩ j∈N A j for
all i ∈ N .

3 Bargaining equilibrium

The concept of SSPE imposes relatively few restrictions on individual acceptance
sets. For instance, it may well happen at equilibrium that a player accepts a proposal
which is very unfavorable to him in the knowledge that it will be rejected by a player
that responds next. To avoid such inessential multiplicity, we introduce a more basic
notion of equilibrium, called bargaining equilibrium, which is shown to be essentially
equivalent to the notion of SSPE.

The role of these results is auxiliary: They simplify the exposition of the main
results on the uniqueness and convergence of equilibria developed in the rest of the
paper. For instance, as shown in Sect. 5, bargaining equilibria are unique. Clearly, due
to the inessential indeterminacy of the players’ acceptance set alluded to above, SSPE
are not unique, even though each player makes the same equilibrium proposal in each
SSPE. The arguments involved in deriving the equivalence of bargaining equilibria
and SSPE are rather standard. We relegate the proofs to the “Appendix”.
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In a bargaining equilibrium, a player votes in favor of any proposal that gives the
player at least his reservation utility. Consequently, the social acceptance set in a
bargaining equilibrium consists of all proposals x ∈ X that are coordinatewise greater
than or equal to the vector of reservation utilities δ

∑
j∈N (1/n)p j .

Definition 3.1 The profile p ∈ XN is a bargaining equilibrium if, for all i ∈ N ,

pi ∈ argmaxx∈S xi , where S = {x ∈ X | x ≥ δ
∑

j∈N (1/n)p j }.
Given a bargaining equilibrium p, we define the strategy profile σ = (p, A(p)),

where

Ai (p) =
{
x ∈ X | xi ≥ δ

∑

j∈N (1/n)p j
i

}
, i ∈ N .

Notice that at a bargaining equilibrium, every player i makes a proposal pi in the
social acceptance set

∩ j∈N A j (p) =
{
x ∈ X | x ≥ δ

∑

j∈N (1/n)p j
}

,

which coincides with the set S as defined in Definition 3.1. The strategy profile
(p, A(p)) therefore satisfies the no-delay property. Observe that

∑
j∈N (1/n)p j is

equal to the expected division of the surplus in a bargaining equilibrium. According to
the individual acceptance set Ai (p), a player accepts any proposal giving him a payoff
greater than or equal to his expected share of the surplus multiplied by δ. Conditional
on being the proposer, every player makes a proposal that maximizes his share among
all the proposals in the social acceptance set. Since all proposals p j belong to X, and
X is convex, it also holds that

∑
j∈N (1/n)p j belongs to X. The expected equilibrium

share is nonnegative, and players who are higher in the order obtain a higher expected
share in the surplus.

Before turning to the existence and uniqueness of bargaining equilibria in Sect. 5,
we argue first that bargaining equilibrium is an appropriate concept.

Theorem 3.2 If p ∈ XN is a bargaining equilibrium, then (p, A(p)) is an SSPE.

Theorem 3.3 If (p, A) is an SSPE, then (p, A) is a no–delay strategy profile, and p
is a bargaining equilibrium.

It follows from Theorems 3.2 and 3.3 that there is no loss of generality to restrict
attention to bargaining equilibria. By Theorem 3.2, every bargaining equilibrium is
associated with some SSPE, and the no-delay property presented in Theorem 3.3
implies that for every SSPE there is a payoff equivalent bargaining equilibrium.

4 Optimal proposals

In this section, we characterize the solution to player i’s optimization problem of
choosing the best proposal within the set of socially acceptable proposals. Before we
proceed with the derivations, we recall the logic of the canonical bargaining problem
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where the players have to agree on the division of a dollar. Themain feature of divide—
the—dollar bargaining is that, in equilibrium, every proposer offers the other players
their respective continuation payoffs so that all responders are indifferent between
rejecting and accepting an equilibrium proposal.

In the presence of monotonicity constraints, proposals that extract all of the surplus
from the responders may not be feasible. In a bargaining equilibrium, the proposal of
player i might be strictly preferred by some of the responders to their continuation
payoffs. Players ranked strictly below i as well as the players ranked sufficiently far
above i are offered exactly their reservation payoffs. Players in the interval [�i ,mi ],
where mi ≥ ui , are all offered the same share, which weakly exceeds their respective
continuation payoffs. The characterization of the set [�i ,mi ] of players is the main
import of this section.

Given an expected equilibriumdivision of the surplus y ∈ X,player i’s optimization
problem is

maximize xi
subject to x ∈ X,

x ≥ δy.

A solution to this problem is denoted ai (y) ∈ X and yields the proposed division
by player i given an expected equilibrium division y. In this section, we argue this
solution to be unique.

The set {x ∈ X | x ≥ δy} is compact. Thepoint x̄ = (δy1+(1−δ)/n, . . . , δyn+(1−
δ)/n) belongs to X, so X is non-empty. Indeed, it holds that x̄(N ) = 1, and for every
i, j ∈ N such that i � j it holds that x̄i = δyi + (1− δ)/n ≤ δy j + (1− δ)/n = x̄ j .

The problem of player i therefore involves the maximization of a continuous func-
tion on a non-empty, compact set and therefore has at least one solution. The following
proposition is straightforward to verify and is stated without proof.

Proposition 4.1 Consider some y ∈ X. Let ai (y) be a solution to the optimization
problem of player i ∈ N . Then there exists a threshold mi ∈ [ui , n] ∩U such that

aij (y) =
{

δy([�i ,mi ])+1−δ
mi−�i+1 , j ∈ [�i ,mi ],

δy j , j ∈ N \ [�i ,mi ],

and

δymi ≤ aimi
(y) < δymi+1, if mi < n,

δymi ≤ aimi
(y), if mi = n.

In an optimal proposal by player i ∈ N , all players in [�i ,mi ] receive the same
share in the surplus, equal to aii (y). Figure 1 provides a sketch of the share aij (y)
player i offers to player j . It is instructive to compare optimal proposals with and
without monotonicity constraints. In the absence of monotonicity constraints, player
i optimally offers all other players j their respective reservation payoffs, δy j , and
leaves himself a share of δyi +1− δ. Under monotonicity constraints, such a proposal
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Fig. 1 Optimal proposals

i i mi
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aii (y)

y j

aij (y)

may no longer be feasible, for instance when there is a player j different from i in
the same indifference class as player i, or when there is a player j with j 
 i and
δy j < δyi + 1 − δ. Player i is then forced to offer some other players the same share
as he receives himself.

Let some y ∈ X be given. For player i ∈ N ,we define the function gi : [ui , n] → R

by

gi (m) = δy([�i ,m]) + 1 − δ

m − �i + 1
.

Then gi (m) is equal to the share of player i in the surplus when the players j ∈
N \ [�i ,m] are given the share δy j and the remainder of the surplus is shared equally
between the players in [�i ,m]. We define the set

Mi = {m ∈ [ui , n − 1] | δym ≤ gi (m) < δym+1} ∪ {m ∈ {n} | δym ≤ gi (m)} .

It holds that Mi ⊂ U. Indeed, if m ∈ Mi is such that m < n, then it follows that
m ∈ U from the requirement that δym < δym+1. If m = n, then it obviously holds
that m ∈ U.

From Proposition 4.1, we know that aii (y) = gi (m) for some m ∈ Mi . As
Proposition 4.2 below shows, the set Mi is a singleton. Therefore, the threshold
mi can be characterized as the unique integer m ∈ [ui , n] such that (m < n and
δym ≤ gi (m) < δym+1) or (m = n and δym ≤ gi (m)).

Proposition 4.2 Consider some y ∈ X. For every i ∈ N , the set Mi is a singleton.

Proof The proposition is clearly truewhen ui = n. So consider the casewhere ui < n.

Some elementary algebra shows that for m ∈ [ui + 1, n],

gi (m) − gi (m − 1) = δym − gi (m)

m − �i
,

so we have that

gi (m) ≥ gi (m − 1) if and only if δym ≥ gi (m). (1)
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We show next that Mi is an interval. Assume that j and j ′ are elements of Mi with
j < j ′. We prove that the set Mi contains the interval [ j, j ′]. It holds that

δy j ′−1 ≤ δy j ′ ≤ gi ( j
′) ≤ gi ( j

′ − 1),

where the first inequality follows from y ∈ X, the second inequality follows since j ′ ∈
Mi , and the third inequality follows from the second inequality and the equivalence
in (1). Iterating this argument, we obtain the chain of inequalities

δy j ≤ · · · ≤ δy j ′ ≤ gi ( j
′) ≤ · · · ≤ gi ( j). (2)

At the same time, we obtain the chain of inequalities

gi ( j
′) ≤ · · · ≤ gi ( j) < δy j+1 ≤ · · · ≤ δy j ′+1, (3)

where the first tuple of weak inequalities follows from (2), the strict inequality since
j ∈ Mi , and the last tuple of weak inequalities from y ∈ X. The inequalities in (2)
and (3) show that [ j, j ′] is contained in Mi .

Finally, we show that the interval Mi is degenerate. Suppose that both j and j + 1
belong to the set Mi . Then δy j ≤ gi ( j) < δy j+1 ≤ gi ( j + 1), thus in particular
gi ( j) < gi ( j + 1). At the same time, since gi ( j + 1) ≥ δy j+1, the equivalence in (1)
implies that gi ( j) ≥ gi ( j + 1), and we obtain a contradiction. This proves that Mi is
a singleton. ��

Combining Propositions 4.1 and 4.2 leads to the following result.

Corollary 4.3 Consider some y ∈ X. For every i ∈ N , the solution ai (y) to the
optimization problem of player i ∈ N is unique.

Clearly, all players who are in the indifference class [�i , ui ] of player i ∈ N make
the same proposal. The next proposition shows that the solution to the optimization
problem of a player varies continuously with y ∈ X.

Proposition 4.4 For every i ∈ N , the function ai : X → X is continuous.

Proof The correspondence ϕ : X → X defined by

ϕ(y) = {x ∈ X | x ≥ δy}, y ∈ X,

is compact-valued and has a closed graph, so is upper hemi-continuous. To show it is
lower hemi-continuous, consider ȳ ∈ X, a sequence (yk)k∈N in X converging to ȳ,
and x̄ ∈ ϕ(ȳ). We have to construct a sequence (xk)k∈N in X such that xk ∈ ϕ(yk)
for all k ∈ N, and xk → x̄ . We define

xk = δyk + αk max{x̄ − δyk, 0},
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where

αk = 1 − δ
∑

j∈N max{x̄ j − δykj , 0}

and max{x̄ − δyk, 0} denotes the vector obtained by taking the component-wise max-
imum. The denominator in the expression for αk is well defined since

∑

j∈N
max{x̄ j − δykj , 0} ≥

∑

j∈N
(x̄ j − δykj ) = 1 − δ > 0,

so αk ∈ (0, 1].
We show next that for all k ∈ N, it holds that xk ∈ ϕ(yk). Clearly, it holds that

xk(N ) = 1 and xk ≥ δyk .
Consider some j, j ′ ∈ N with j � j ′.
If x̄ j ≤ δykj , then xkj = δykj ≤ δykj ′ ≤ xkj ′ , so consider the case where x̄ j > δykj , so

xkj = αk x̄ j + (1 − αk)δykj .

If x̄ j ′ ≤ δykj ′ , then

xkj ′ = δykj ′ ≥ x̄ j ′ ≥ x̄ j > αk x̄ j + (1 − αk)δy
k
j = xkj .

If x̄ j ′ > δykj ′, then

xkj ′ = αk x̄ j ′ + (1 − αk)δy
k
j ′ ≥ αk x̄ j + (1 − αk)δy

k
j = xkj .

We have shown that xk ∈ ϕ(yk).
Since yk → ȳ, we have that

αk = 1−δ
∑

j∈N max{x̄ j −δykj , 0}
→ 1−δ

∑
j∈N max{x̄ j − δ ȳ j , 0} = 1−δ

∑
j∈N (x̄ j −δ ȳ j )

=1,

so

xk → δ ȳ + max{x̄ − δ ȳ, 0} = δ ȳ + x̄ − δ ȳ = x̄ .

We have shown that ϕ is lower hemi-continuous.
The function fi : X → R defined by fi (x) = xi is continuous. An application of

the maximum theorem yields that the correspondence μi : X → X defined by

μi (y) = {x̄ ∈ ϕ(y) | ∀x ∈ ϕ(y), fi (x) ≤ fi (x̄)}, y ∈ X,

is upper hemi-continuous. Since μi (y) = {ai (y)} for all y ∈ X, it follows that ai is a
continuous function. ��
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5 Uniqueness of the bargaining equilibrium

Little is known about the uniqueness of SSPE in multilateral bargaining models with
unanimous agreement. It follows from the results in Kalandrakis (2006) that the most
one can hope for is that the number of equilibria is odd for generic specifications of
the model.

Under more special assumptions, it is possible to obtain uniqueness results, as is
the case in Merlo and Wilson (1995). However, their results do not apply to our setup
because the set X does not lead to functions ξ i as required in their Assumption (A1).
To see this, let n = 2 and let the order � consist of the single pair (1, 2), so

X =
{
(x1, x2) ∈ R

2+ | x1 + x2 = 1 and x1 ≤ x2
}

.

For i = 1, 2, the function ξ i : R2 → R is defined by

ξ i (d) = sup({xi ∈ R | x ∈ X, x−i ≥ d−i } ∪ {0}), d ∈ R
2.

Thus, ξ2(d) = min{1, 1 − d1} if d1 ≤ 1
2 , and ξ2(d) = 0 if d1 > 1

2 , violating the
condition of item (b) of assumption (A1) that the function ξ i be continuous. Moreover,
setting x = (1/2, 1/2) and d = (0, 0), we obtain a contradiction with item (cii) as
x1 = ξ1(d) and x2 > d2, while x is an element of X . Neither does the set X satisfy
the additional Assumption (A2) required for the uniqueness result.

For the case where the set of feasible proposals is the unit interval, uniqueness
results are given in Imai and Salonen (2000), Cho and Duggan (2003), Cardona and
Ponsatí (2007), and Herings and Predtetchinski (2010). Imai and Salonen (2000) study
the case where utility functions are either monotonically increasing or monotonically
decreasing on the unit interval. Cho andDuggan (2003) prove uniqueness for quadratic
utility functions and show that uniqueness does not hold for general concave utility
functions. It follows from Cardona and Ponsatí (2007) that concavity together with
symmetry around the peak is sufficient for uniqueness. Herings and Predtetchinski
(2010) prove uniqueness for a rather general proposer selection protocol in case the
utility of a player is given by the distance to some ideal point. Obviously, none of these
results implies uniqueness in our setting since the multi-dimensional set X cannot be
generated from a 1-dimensional physical cake C by utility functions satisfying the
assumptions of the various uniqueness results.

In this section, we demonstrate that the bargaining equilibrium is unique by estab-
lishing that the function f : X → X defined by

f (y) =
n∑

i=1

1

n
ai (y), y ∈ X,

is a contraction with contraction coefficient δ, i.e., for all y, ȳ ∈ X it holds that
‖ f (y) − f (ȳ)‖ ≤ δ‖y − ȳ‖, where ‖ · ‖ denotes the infinity norm. It follows directly
from the definition of a bargaining equilibrium that y ∈ X is a fixed point of f if and
only if (a1(y), . . . , an(y)) is a bargaining equilibrium.
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Consider a player i ∈ N . We use the notation mi (y) for the unique threshold as
defined in Proposition 4.1, so we now make the dependence on y ∈ X explicit. For
m ∈ [ui , n] ∩U , we define Xi

m = {y ∈ X | mi (y) = m}. The closed-form expression
for Xi

m is given by

Xi
m =

{
y ∈ X

∣
∣
∣δym ≤ δy[�i ,m]+1−δ

m−�i+1 < δym+1

}
, if m < n,

Xi
m =

{
y ∈ X

∣
∣
∣δym ≤ δy[�i ,m]+1−δ

m−�i+1

}
, if m = n.

On the set Xi
m, the function ai is given by

aij (y) =
{

δy([�i ,m])+1−δ
m−�i+1 , j ∈ [�i ,m],

δy j , j ∈ N \ [�i ,m].

We denote the closure of Xi
m by X̄ i

m . The closed-form expression for a non-empty set
X̄ i
m is given by

X̄ i
m =

{
y ∈ X

∣
∣
∣δym ≤ δy[�i ,m]+1−δ

m−�i+1 ≤ δym+1

}
, if m < n,

X̄ i
m =

{
y ∈ X

∣
∣
∣δym ≤ δy[�i ,m]+1−δ

m−�i+1

}
, if m = n.

Proposition 5.1 For all i ∈ N , for all m ∈ [ui , n]∩U, the function ai is a contraction
on the set X̄ i

m with contraction coefficient δ.

Proof We first argue ai to be a contraction on the set Xi
m with contraction coefficient

δ. Take points y and ȳ in Xi
m . For each j ∈ [�i ,m], we have the inequalities

|aij (y) − aij (ȳ)| =
∣
∣
∣
∣
δy([�i ,m]) + 1 − δ

m − �i + 1
− δ ȳ([�i ,m]) + 1 − δ

m − �i + 1

∣
∣
∣
∣

= δ

m − �i + 1
|y([�i ,m]) − ȳ([�i ,m])|

≤ δ

m−�i +1

m∑

j=�i

|y j − ȳ j | ≤ δ

m−�i +1

m∑

j=�i

‖y− ȳ‖ = δ‖y− ȳ‖.

For each j ∈ N \ [�i ,m], we have

|aij (y) − aij (ȳ)| = δ|y j − ȳ j | ≤ δ‖y − ȳ‖.

We conclude that

‖ai (y) − ai (ȳ)‖ ≤ δ‖y − ȳ‖.
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Now take points y and ȳ in X̄ i
m . Let (yk)k∈N and (ȳk)k∈N be sequences in Xi

m
converging to y and ȳ, respectively. Then, for all k ∈ N,

‖ai (yk) − ai (ȳk)‖ ≤ δ‖yk − ȳk‖,

and by taking the limit as k → ∞, we have

‖ai (y) − ai (ȳ)‖ ≤ δ‖y − ȳ‖,

where we use the continuity of ai as derived in Proposition 4.4. ��
The next step is to extend the result of Proposition 5.1, claiming that ai is a contrac-

tion on each set X̄ i
m, to a result valid for the entire domain X. To derive this extension,

we exploit the fact that each X̄ i
m is a polytope.

Theorem 5.2 For all i ∈ N , the function ai is a contraction with contraction coeffi-
cient δ.

Proof It follows from Proposition 4.2 that the collection {Xi
m | m ∈ [ui , n] ∩U } is a

partition of X, so the collection {X̄ i
m | m ∈ [ui , n] ∩U } is a cover of X. Since all the

equalities and inequalities defining X̄ i
m are linear, it follows that X̄ i

m is a polytope.
Take points y and ȳ in X and consider a straight line from y to ȳ. Since all the sets

X̄ i
m are polytopes, there exist y1, . . . , yk

′
which are all on the line from y to ȳ and

which are such that y1 = y, yk
′ = ȳ, and for all k ∈ [1, k′−1] there existsm ∈ [ui , n]

such that both yk and yk+1 belong to X̄ i
m . We have that

‖ai (y) − ai (ȳ)‖ ≤
k′−1∑

k=1

‖ai (yk) − ai (yk+1)‖ ≤
k′−1∑

k=1

δ‖yk − yk+1‖ = δ‖y − ȳ‖,

where the second inequality follows from Proposition 5.1. ��
Theorem 5.3 The function f is a contraction with contraction coefficient δ.

Proof For each y and ȳ, we have the following inequalities

‖ f (y)− f (ȳ)‖=
∥
∥
∥
∥

∑n

i=1

1

n
(ai (y)−ai (ȳ))

∥
∥
∥
∥ ≤

∑n

i=1

1

n

∥
∥
∥ai (y)−ai (ȳ)

∥
∥
∥≤δ‖y− ȳ‖,

where the last inequality follows from Theorem 5.2. ��
The function f being a contraction implies that it has a unique fixed point. Since

the fixed points of f are in a one-one correspondence with bargaining equilibria, we
find the following corollary.

Corollary 5.4 There is a unique bargaining equilibrium.
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Table 1 The functions ai if
m1 = 1 and m2 = 2 a1(y) a2(y)

1 − δ + δy1 δy1
δy2 1 − δ + δy2

Table 2 The functions ai if
m1 = 2 and m2 = 2 a1(y) a2(y)

1
2 δy1
1
2 1 − δ + δy2

6 Two special cases

This section calculates the bargaining equilibrium for the cases where n = 2 and
n = 3 and the order � is linear. This analysis also gives some first insights into the
equilibrium choice of mi as well as the limit proposal when δ ↑ 1.

6.1 Two players

In this subsection, we assume n = 2 and 1 ≺ 2.
We show first that there are no values of δ for which in a bargaining equilibrium it

holds that m1 = 1 and m2 = 2.
Table 1 shows the functions ai . At equilibrium, it holds that a1(y) + a2(y) = 2y,

which can be rewritten as

[
2 − 2δ 0

0 2 − 2δ

] [
y1
y2

]

=
[
1 − δ

1 − δ

]

.

Solving it gives y1 = y2 = 1/2.
Moreover, mi should satisfy the inequalities presented in Proposition 4.1, so δy1 ≤

a11(y) < δy2 and δy2 ≤ a22(y). It holds that a
1
1(y) = 1 − δ/2 > δ/2 = δy2, so there

is no value for δ for which m1 = 1 and m2 = 2.
Since a bargaining equilibrium exists by Corollary 5.4, we have for all values of δ

that m1 = 2 and m2 = 2 in equilibrium. Table 2 depicts the corresponding functions
ai .

At equilibrium, it holds that a1(y) + a2(y) = 2y, which can be rewritten as

[
2 − δ 0
0 2 − δ

] [
y1
y2

]

=
[ 1

2
3
2 − δ

]

.

Solving this linear system of equations gives y1 = 1/(4−2δ) and y2 = (3−2δ)/(4−
2δ). It can be verified that m1 and m2 satisfy the inequalities of Proposition 4.1 for all
values of δ. Table 3 presents the bargaining equilibrium proposals and the expected
division of the surplus.
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Table 3 The bargaining
equilibrium proposals pi and the
expected division of the surplus
y

It holds that m1 = m2 = 2

p1 p2 y

1
2

δ
4−2δ

1
4−2δ

1
2

4−3δ
4−2δ

3−2δ
4−2δ

Player 2 exploits his privileged bargaining position and obtains a higher expected
share in the surplus for any value of δ. The difference in equilibrium payoff is highest
for δ = 0 when equilibrium shares are given by 1/4 and 3/4, respectively. We are
particularly interested in the limit of bargaining equilibriumproposals and the expected
division of the surplus when δ tends to 1 from below. Player 1 always proposes to split
the surplus equally, irrespective of the value of δ. Player 2 does the same in the limit,
since

lim
δ↑1

δ

4 − 2δ
= 1

2
and lim

δ↑1
4 − 3δ

4 − 2δ
= 1

2
.

It then follows that, in the limit, both players always receive a share equal to 1/2.

6.2 Three players

We now analyze the case where n = 3 and 1 ≺ 2 ≺ 3.
We first compute the values of δ for which in equilibriumm1 = m2 = m3 = 3. We

have the following system of 12 equations and 12 unknowns.

pi = ai (y), i ∈ [1, 3],
y =

∑

i∈[1,3]
1

n
pi ,

which we can simplify as the following system in 3 equations and 3 unknowns:

a1(y) + a2(y) + a3(y) = 3y.

This system can be rewritten as

⎡

⎣
3 − 2δ 0 0

0 3 − 3
2δ − 1

2δ

0 − 1
2δ 3 − 3

2δ

⎤

⎦

⎡

⎣
y1
y2
y3

⎤

⎦ =
⎡

⎢
⎣

1
3

5
6 − 1

2δ

11
6 − 3

2δ

⎤

⎥
⎦ ,

or equivalently

⎡

⎣
18 − 12δ 0 0

0 18 − 9δ −3δ
0 −3δ 18 − 9δ

⎤

⎦

⎡

⎣
y1
y2
y3

⎤

⎦ =
⎡

⎣
2

5 − 3δ
11 − 9δ

⎤

⎦ .
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Table 4 The bargaining
equilibrium proposals pi and
and the expected division of the
surplus y if δ ∈ [0, 3/4]

It holds that
m1 = m2 = m3 = 3

p1 p2 p3 y

1
3

δ
3(3−2δ)

δ
3(3−2δ)

1
3(3−2δ)

1
3

9−7δ
6(3−2δ)

δ(15−11δ)
6(3−δ)(3−2δ)

15−11δ
6(3−δ)(3−2δ)

1
3

9−7δ
6(3−2δ)

25δ2−75δ+54
6(3−δ)(3−2δ)

12δ2−41δ+33
6(3−δ)(3−2δ)

Table 5 The bargaining
equilibrium proposals pi and the
expected division of the surplus
y if δ ∈ (3/4, 1)

It holds that m1 = 2 and
m2 = m3 = 3

p1 p2 p3 y

9−12δ+4δ2
18−15δ

3δ−2δ2
18−15δ

3−2δ2
18−15δ

3−2δ
18−15δ

9−12δ+4δ2
18−15δ

9−9δ+δ2

18−15δ
δ
3

1
3

9δ−8δ2
18−15δ

9−9δ+δ2

18−15δ
18−24δ+7δ2

18−15δ
9−8δ
18−15δ

Solving this system of equations, we obtain the unique solution given by the last
column of Table 4. To check that the proposals in Table 4 constitute an equilibrium,
one has to verify the inequalities δy3 ≤ p13, δy3 ≤ p23, and δy3 ≤ p33. The most
stringent inequality is δy3 ≤ p13. It holds if and only if (δ − 3/4)(δ − 1)(δ − 2) ≤ 0,
which is the case for δ ∈ [0, 3/4].

We now compute the values of δ for which in equilibrium m1 = 2, m2 = 3, and
m3 = 3. The system of equations 6y−2a1(y)−2a2(y)−2a3(y) = 0 can be rewritten
as

⎡

⎣
6 − 5δ −δ 0

−δ 6 − 4δ −δ

0 −δ 6 − 5δ

⎤

⎦

⎡

⎣
y1
y2
y3

⎤

⎦ =
⎡

⎣
1 − δ

2(1 − δ)

3(1 − δ)

⎤

⎦ .

Table 5 presents the solution. To check that the proposals in Table 5 constitute an
equilibrium, one has to verify the inequalities δy2 ≤ p12 < δy3, δy3 ≤ p23, and
δy13 ≤ p33. The first three inequalities are, respectively, equivalent to (δ − 1)2 ≥ 0,
(δ − 1)(4δ − 3) < 0, and δ − 1 ≤ 0, whereas the fourth inequality is satisfied for
all values of δ. It follows that δ ∈ (3/4, 1) gives rise to a bargaining equilibrium with
m1 = 2, m2 = 3, and m3 = 3.

For the casewith n = 3, the choice ofmi depends on the value of δ.For δ ∈ [0, 3/4],
it holds that mi = 3 for all players i. The equilibrium share of player 1 increases
monotonically from 1/9 when δ = 0 to 2/9 when δ = 3/4. The equilibrium share
of player 2 increases monotonically from 5/18 when δ = 0 to 1/3 when δ = 3/4.
Player 3 can significantly exploit his more favorable bargaining position and obtains
a share of 11/18 when δ = 0 and a share of 4/9 when δ = 3/4. When δ increases
above 3/4, the equilibrium share of player 2 stays constant at 1/3, but the equilibrium
share of player 1 continues to rise. In the limit when δ = 1, it holds that

lim
δ↑1

(
9 − 12δ + 4δ2

18 − 15δ
,
9 − 12δ + 4δ2

18 − 15δ
,
9δ − 8δ2

18 − 15δ

)

=
(
1

3
,
1

3
,
1

3

)

,
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lim
δ↑1

(
3δ − 2δ2

18 − 15δ
,
9 − 9δ + δ2

18 − 15δ
,
9 − 9δ + δ2

18 − 15δ

)

=
(
1

3
,
1

3
,
1

3

)

,

lim
δ↑1

(
3 − 2δ2

18 − 15δ
,
δ

3
,
18 − 24δ + 7δ2

18 − 15δ

)

=
(
1

3
,
1

3
,
1

3

)

.

As a consequence, in the limit all three players receive a share equal to 1/3, irrespective
of the player that proposes.

7 Limit equilibria

In this section, we make a first analysis of the limit of bargaining equilibria when
δ ↑ 1 for an arbitrary number of players. A first result is that all players make the same
proposal in the limit.

Theorem 7.1 Let (δk)k∈N be a sequence of continuation probabilities converging to
1 and, for k ∈ N, let pk be the bargaining equilibrium corresponding to continuation
probability δk . Then for every i, i ′ ∈ N it holds that ‖pk,i − pk,i

′ ‖ → 0.

Proof Let yk = 1
n

∑n
j=1 p

k, j be the expected division of the surplus. Since pk, j ≥
δk yk and

∑n
j=1 y

k
j = 1,we have that pk,ij ≤ δk ykj + (1− δk) for all j ∈ N . Therefore,

it holds that |pk,ij − pk,i
′

j | ≤ 1−δk for every j ∈ N , and hence ‖pk,i − pk,i
′ ‖ ≤ 1−δk .

By taking the limit as k goes to infinity, the result follows. ��
We next study the limit of proposals in a bargaining equilibrium when δ converges

to one from below.

Definition 7.2 The proposal x ∈ X is a limit proposal if it is the limit of a sequence
(pk,i )k∈N, where pk,i is the proposal of some player i ∈ N in the bargaining equi-
librium corresponding to δk and (δk)k∈N is a sequence of continuation probabilities
converging to one from below.

When studying limit proposals, the choice of the proposer i is irrelevant by
Theorem 7.1. Notice that although the bargaining equilibrium is unique for a given
choice of δk, this does not imply that the limit of such equilibria is uniquely determined.

We are interested in two questions. First, are limit proposals uniquely determined?
And if so, how are they characterized? The results in Sect. 6 show that when n = 2 or
n = 3 and the order � is linear, limit proposals are uniquely determined and equal to
the egalitarian solution. However, demonstrating such a result for higher values of n
requires techniques different from brute force calculations.

The literature on multilateral bargaining with unanimous agreement has obtained a
number of results on the convergence of non-cooperative equilibrium outcomes to the
Nash bargaining solution. In particular, such results have been demonstrated in Hart
andMas-Colell (1996), Laruelle and Valenciano (2007), Miyakawa (2008), Kultti and
Vartiainen (2010), and Britz et al. (2010) under increasingly weaker conditions.
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Definition 7.3 The Nash product is the function ρ : Rn+ → R defined by

ρ(x) =
∏

i∈N
xi , x ∈ R

n+.

The Nash bargaining solution is the unique maximizer of the function ρ on the set X.

Uniqueness of the Nash bargaining solution follows from convexity of the set X. In
fact, the weaker condition of log-convexity is necessary and sufficient for uniqueness
of the Nash bargaining solution, see Qin et al. (2015).

The following result establishes that the Nash bargaining solution corresponds to
the egalitarian solution. The vector e denotes the n-dimensional vector of ones.

Theorem 7.4 The Nash bargaining solution on the set X is equal to (1/n)e.

Proof It is easy to see that the point (1/n)e is the maximizer of the Nash product on
the set P = {x ∈ R

n+ | x1 + · · · + xn = 1}. The result follows at once since all Pareto
efficient points of X belong to P. ��

We have found that the Nash bargaining solution coincides with the egalitarian
solution for all values of n.Unfortunately, we cannot yet conclude that limit proposals
coincide with the egalitarian solution. The reason is that all the results on convergence
of multilateral bargaining with unanimous agreement to the Nash bargaining solution
assume that the set of feasible utilities has a differentiable Pareto frontier, a requirement
obviously not met by X.

Kultti and Vartiainen (2010) provide an example showing that without differen-
tiability, the unique bargaining equilibrium may not converge to the Nash bargaining
solution. Herings and Predtetchinski (2011a) show that without differentiability, the
limit of bargaining equilibria may not be unique. For instance, for a set X̃ given by
the intersection of two halfspaces,

X̃ = {x ∈ R
3 | 2x1 + x2 + 3x3 ≤ 15} ∩ {x ∈ R

3 | x1 + 2x2 + 3x3 ≤ 15},

Herings and Predtetchinski (2011a) show that bargaining equilibria converge to
(3, 3, 2), whereas the Nash bargaining solution is given by (10/3, 10/3, 5/3).

8 Convergence to the Nash bargaining solution

In this section, wewill argue that irrespective of the number of players and the order�,

the limit proposal is uniquely determined and corresponds to the egalitarian solution,
and therefore to the Nash bargaining solution by Theorem 7.4. The first result of this
section claims that the expected equilibrium share in the surplus is strictly increasing
in the order �.

Theorem 8.1 Let p ∈ XN be a bargaining equilibrium with expected division of the
surplus y = 1

n

∑n
j=1 p

j . For i, i ′ ∈ N , it holds that i � i ′ if and only if yi ≤ yi ′ .
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Proof Since y ∈ X, we have that i ∼ i ′ implies yi = yi ′ .
Consider the case where i ≺ i ′. We show that yi < yi ′ . It holds that

pi
′
i ′ = δ

mi ′ − �i ′ + 1

mi ′∑

j=�i ′
y j + 1 − δ

mi ′ − �i ′ + 1

≥ δ

mi ′ − �i ′ + 1

mi ′∑

j=�i ′
yi + 1 − δ

mi ′ − �i ′ + 1
= δyi + 1 − δ

mi ′ − �i ′ + 1
> δyi = pi

′
i .

Thus, pi
′
i < pi

′
i ′ and p j

i ≤ p j
i ′ for all j ∈ N since p j belongs to X . Since y is the

average of the proposals p1, . . . , pn, we find that yi < yi ′ . ��
The next result claims that the thresholds mi are weakly increasing in i.

Theorem 8.2 Let p ∈ XN be a bargaining equilibrium with thresholds mi , i ∈ N .

Then it holds that m1 ≤ m2 ≤ · · · ≤ mn.

Proof Suppose there is some i ∈ [1, n−1] such thatmi+1 < mi , so the set [�i+1,mi+1]
is contained in [�i ,mi ]. We show that the vector ai (y) Pareto dominates the vector
ai+1(y), which delivers the desired contradiction since the coordinates of any vector
in X add up to one. For every j ∈ [�i+1,mi+1] ⊂ [�i ,mi ], we have the following
chain of inequalities:

ai+1
j (y) = ai+1

mi+1
(y) < δymi+1+1 ≤ δymi ≤ aimi

(y) = aij (y),

where ymi+1+1 ≤ ymi follows since mi+1 < mi and the other inequality and the
equations are taken from Proposition 4.1. For every j /∈ [�i+1,mi+1], we have

ai+1
j (y) = δy j ≤ aij (y).

Thus, ai+1
j (y) ≤ aij (y) for every player j with strict inequality whenever j ∈

[�i+1,mi+1], yielding the desired contradiction. ��
We show next that any player i such that i ≺ n proposes the same share to player

i + 1 as to himself. This property can be verified to hold for n = 2 and n = 3 in
Sect. 6.

Theorem 8.3 Let p ∈ XN be a bargaining equilibrium with thresholds mi , i ∈ N .

Then, for every i ∈ [1, n − 1], it holds that mi > i.

Proof Bargaining equilibrium payoff y should satisfy y = ∑
i∈N (1/n)ai (y), with

ai (y) given by the expression in Proposition 4.1.
Suppose mi ′ = i ′ for some i ′ ∈ [1, n − 1]. For i > i ′ it then holds that �i > mi ′ ,

so
∑

j∈[1,i ′]
aij (y) =

∑

j∈[1,i ′]
δy j .

For i ≤ i ′ it holds that
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∑

j∈[1,i ′]
aij (y) =

∑

j∈[1,i ′]
δy j + (1 − δ),

where we use that mi ′ = i ′ by our supposition and mi ≤ mi ′ = i ′ for i ≤ i ′ by
Theorem 8.2. We have that

∑

j∈[1,i ′]
y j =

∑

j∈[1,i ′]

∑

i∈N

1

n
aij (y)

= 1

n

∑

i∈[1,i ′]

∑

j∈[1,i ′]
aij (y) + 1

n

∑

i∈[i ′+1,n]

∑

j∈[1,i ′]
aij (y)

= i ′

n

∑

j∈[1,i ′]
δy j + i ′

n
(1 − δ) + n − i ′

n

∑

j∈[1,i ′]
δy j

= δ
∑

j∈[1,i ′]
y j + i ′

n
(1 − δ).

By rearranging this equality, we find that
∑

j∈[1,i ′] y j = i ′/n. Since y(N ) = 1, we
have that the average of y1, . . . , yi ′ is equal to the average of yi ′+1, . . . , yn, leading
to a contradiction with Theorem 8.1. ��

We show next that procedural fairness results in the egalitarian solution.

Theorem 8.4 The limit proposal is unique and equal to (1/n)e.

Proof Consider a sequence of continuation probabilities (δk)k∈N converging to 1 from
below. Let pk be the bargaining equilibrium corresponding to continuation probability
δk . In view of Theorem 7.1, we can assume that the sequences (pk,i )k∈N converge to
the same limit p̄ for each i ∈ N . By Theorem 8.3, it holds that for every i ∈ [1, n−1],
for every k ∈ N, pk,ii = pk,ii+1, so for every i ∈ [1, n − 1], p̄i = p̄i+1. We conclude
that p̄1 = · · · = p̄n, and p̄ = (1/n)e. ��

Although it has been shown in Sect. 6 that for low values of δ, a player higher in
the ranking � has a significant bargaining advantage, such an advantage disappears
in the limit when δ goes to one, irrespective of the number of players and irrespective
of the number and size of the indifference classes in �.

9 Conclusion

In this paper, we study the effects of monotonicity constraints on bargaining out-
comes. Players are ranked according to a complete order, and players higher in the
ranking should not receive lower payoffs. Indifferences among players are allowed
for. Monotonicity constraints result naturally in various applications in personnel eco-
nomics, as well as in bankruptcy and taxation problems, and have not been taken into
account in the non-cooperative bargaining literature so far.
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The crucial question is to what extent higher-ranked players can exploit their more
favorable bargaining position. We prove that bargaining equilibria in the presence
of monotonicity constraints are unique. Examples show that for high values of the
probability of breakdown, or alternatively for low values of the discount factor, the
advantage of a higher-ranked player can be substantial.

We aremainly interested in the limit of bargaining equilibria as the breakdown prob-
ability converges to zero.We are facedwith the difficulty that the non-differentiabilities
causedby themonotonicity constraintsmakepreviously derived limit results inapplica-
ble and might potentially be a source of multiplicity of limit equilibria. Nevertheless,
we show that in the presence of monotonicity constraints, there is a well-defined limit
equilibrium which coincides with the Nash bargaining solution, similar to the dif-
ferentiable case. The limit equilibrium itself corresponds to an equal division of the
surplus. When players are sufficiently patient, a higher-ranked player therefore does
not have a bargaining advantage.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Proof of Theorem 3.2 A one–shot deviation in a subgame is a single deviation by the
player at the root of the subgame. It holds that (p, A(p)) is an SSPE if and only if there
is no player having a profitable one–shot deviation. The proof of this fact is standard
in the literature and is based on the optimality principle from dynamic programming.

Let p be a bargaining equilibrium. We demonstrate next that no player has a prof-
itable one–shot deviation from (p, A(p)). We denote the expected division of the
surplus by y = ∑

j∈N (1/n)p j .

Consider a subgame starting at a history where player i is the proposer, so according
to (p, A(p)), the proposal pi is made by i and next accepted by all players, giving rise
to a share of pii for player i. Consider a one–shot deviation by player i to a proposal
x ∈ X. If x does not belong to ∩ j∈N A j (p), it leads to an expected share δyi for
player i. Since δyi ≤ pii by definition of pi , such a deviation is not profitable. If x
does belong to ∩ j∈N A j (p), it holds that xi ≤ pii by definition of pi , and again the
deviation is not profitable.

Consider a subgame starting at a historywhere player i is the responder to a proposal
x ∈ X. If x j ≥ δy j for all j ∈ N such that either j = i or j responds after player
i, then x is accepted, giving a share xi to player i. A one–shot deviation by player
i to rejection leads to an expected share δyi ≤ xi and is therefore not profitable. If
xi < δyi and x j ≥ δy j for all j ∈ N such that j responds after player i, then x is
rejected and player i’s expected share is equal to δyi . A one–shot deviation by player
i to acceptance leads to share xi < δyi and is therefore not profitable. If x j < δy j
for some j ∈ N such that j responds after player i, then x is rejected and player
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i’s expected share is equal to δyi , irrespective of player i’s decision, so one–shot
deviations are not profitable. ��
Proof of Theorem 3.3 Let (p, A) be an SSPE. We denote the SSPE payoff by y. The
proof proceeds in five steps.

(1) {x ∈ X | x � δy} ⊂ ∩ j∈N A j .1

Suppose there is x ∈ X such that x � δy, but x /∈ ∩ j∈N A j . Let player i be
such that x /∈ Ai and for all players j responding after player i it holds that
x ∈ A j . Consider a subgame starting at a history where player i has to respond
to the proposal x . The expected share of player i in equilibrium is equal to δyi .
A one–shot deviation by player i to acceptance leads to a share xi > δyi and is
therefore profitable, a contradiction.

(2) For all i ∈ N , pi ∈ ∩ j∈N A j.
Suppose by way of contradiction that there is i ∈ N such that pi /∈ ∩ j∈N A j .

Consider the subgame starting at a history where player i is the proposer. Since
pi is rejected, there is a positive probability that all players receive a share of 0,
so

∑
j∈N y j < 1. Moreover, since y is a weighted average of vectors in X and

the zero vector, it holds that y j ≤ yk if j � k. It follows that there is x ∈ X
such that x � y. The expected share of player i is equal to δyi in equilibrium.
Consider the one–shot deviation of player i where he proposes x . By (1) the
proposal x is accepted, leading to a share xi > δyi for player i. We have found a
profitable one–shot deviation, a contradiction to (p, A) being an SSPE. We have
as a consequence that y = ∑

j∈N (1/n)p j.

(3) For all i ∈ N , pi ∈ argmaxx∈∩ j∈N A j xi .

If there would be a proposal that gives player i a strictly higher share than pi

and that is accepted by all players, player i would have a profitable deviation in
a subgame starting at a history where player i is the proposer.

(4) ∩ j∈N A j ⊂ S = {x ∈ X | x ≥ δy}.
Suppose not. Let x ∈ ∩ j∈N A j and i ∈ N be such that xi < δyi and x j ≥ δy j for
all j ∈ N responding after i. Consider the subgame starting at a history where
player i responds to the proposal x . Since x is accepted by i and all his followers,
player i receives the share xi . A one–shot deviation by player i to rejection leads
to an expected share δyi > xi , and is therefore profitable, a contradiction.

(5) For all i ∈ N , pi ∈ argmaxx∈S xi .
By (2) and (4), for all i ∈ N , pi ∈ ∩ j∈N A j ⊂ S, so pii ≤ maxx∈S xi . Suppose
there is i ∈ N and x̄ ∈ S such that x̄i > pii . The vector ȳ ∈ R

N defined by
ȳ j = δy j + (1 − δ)/n, j ∈ N , satisfies ȳ ∈ S and ȳ � δy. Let z̄ be a strictly
convex combination of x̄ and ȳ, so z̄ ∈ S and z̄ � δy. For a sufficiently small
weight on ȳ it holds that z̄i > pii . By (1) it holds that z̄ ∈ ∩ j∈N A j . We obtain a
contradiction to pi being a vector in ∩ j∈N A j with maximal component i. ��

1 We use the notation x � x̄ to indicate that all components of the vector x strictly exceed the corresponding
components of the vector x̄, whereas > is used when this property holds for at least one component.
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