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Abstract Themain purpose of this paper is to present an analytical framework that can
be used to study rationalizable strategic behavior in general situations—i.e., arbitrary
strategic games with various modes of behavior. We show that, under mild conditions,
the notion of rationalizability defined in general situations has nice properties similar
to those in finite games. The major features of this paper are (1) our approach does
not require any kind of technical assumptions on the structure of the game, and (2)
the analytical framework provides a unified treatment of players’ general preferences,
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including expected utility as a special case. In this paper, we also investigate the
relationship between rationalizability and Nash equilibrium in general games.

Keywords Strategic games · General preferences · Rationalizability · Common
knowledge of rationality · Nash equilibrium

JEL Classification C70 · D81

1 Introduction

The notion of rationalizability proposed by Bernheim (1984) and Pearce (1984) is
one of the most important and fundamental solution concepts in noncooperative game
theory; see, e.g., Osborne and Rubinstein (1994, Chapter 4). The basic idea behind this
notion is that rational behavior should be justified by “rational beliefs,” and conversely,
“rational beliefs” should be based on rational behavior. The notion of rationalizabil-
ity captures the strategic implications of the assumption of “common knowledge of
rationality” (see Tan and Werlang 1988), which is different from the assumption of
“commonality of beliefs” or “correct conjectures” in an equilibrium (see Aumann and
Brandenburger 1995).

In the literature, most of the studies of rationalizable strategic behavior have been
restricted to finite games.1 The main purpose of this paper is to extend the notion of
rationalizability to general strategic games that can inherit properties of conventional
rationalizability. Since many important models arising in economic applications are
games with infinite strategy spaces and discontinuous payoff functions, e.g., models of
price and spatial competition, auctions, and mechanism design,2 it is clearly important
and practically relevant to extend the notion of rationalizability to arbitrary strategic
games.

In the definition of conventional rationalizability, each player is implicitly assumed
to be Bayesian rational—i.e., each player maximizes the expected utility given his
probabilistic belief about the opponents’ strategy choices. However, at the individual
level, though subjective expected utility maximization is undoubtedly the dominant
model in economics, many economists would probably view axioms such as “tran-
sitivity” or “monotonicity” as more basic tenets of rationality than the sure-thing
principle and other components of the Savage (1954) model. The Ellsberg paradox
and related experimental evidence demonstrate that a decision maker may display

1 Bernheim (1984, Proposition 3.2) and Tan and Werlang (1988) studied the properties of rationalizable
strategies in compact (metric) and continuous games. There are also a few exceptional examples on infinite
games such asArieli’s (2010) analysis of rationalizability in continuous gameswhere every player’s strategy
set is a Polish space and the payoff function of each player is bounded and continuous and Zimper’s (2006)
discussions on a variant of “strong point-rationalizability” in games with metrizable strategy sets. See also
Jara-Moroni (2012) and Yu (2010, 2014) for discussions on rationalizability in games with a continuum of
players.
2 See, e.g., Bergemann and Morris (2005a, 2005b), Bergemann et al. (2011), and Kunimoto and Serrano
(2011). In particular, Bergemann et al. (2011) and Kunimoto and Serrano (2011) considered infinite mech-
anisms (game forms) for which transfinite rounds of deletion of never-best replies or dominated strategies
are necessary.
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an aversion to uncertainty or ambiguity and, thereby, motivate generalizations of the
subjective expected utility model; see, e.g., Camerer and Weber (1992) and Gilboa
and Marinacci (2013) for surveys on recent developments. The notion of “rationality”
should, therefore, be extended to accommodate various modes of behavior discussed
in economics: The notion of “rationality” can be defined as the maximization with
respect to a preference ordering in alternative models of preferences, such as the
probabilistic sophistication model (Machina and Schmeidler 1992), the multi-priors
model (Gilboa and Schmeidler 1989), the Choquet expected utility model (Schmei-
dler 1989), the lexicographic preference model (Blume et al. 1991), the Knightian
uncertainty model (Bewley 1986).3 Another important motivation for extending the
notion of rationalizability to the case of general preferences is that, in the mechanism
design/implementation theory, it is rather natural and standard for us to consider the
very general form of preference orderings for individuals in real-life environments;
see, e.g., Osborne and Rubinstein (1994, Chapter 10). Subsequently, it leads to the
question how to define and analyze the notion of rationalizability in general game
situations with different modes of behavior.

Epstein (1997) extended the concept of rationalizability to a variety of general
preference models by characterizing rationalizability and survival of iterated deletion
of never-best response strategies as the (equivalent) implications of rationality and
common knowledge of rationality. In his analysis Epstein offered a “model of pref-
erence” to allow for different categories of “regular” preferences such as subjective
expected utility, probabilistically sophisticated preference, Choquet expected utility
and the multi-priors model. However, from a technical point of view, Epstein’s (1997)
analysis relies on topological assumptions on the game structure and, in particular, his
discussions on rationalizability are restricted to finite games. Apt (2007) relaxed the
finite setup of games and studied rationalizability by an iterative procedure, but his
analysis implicitly requires players’ preferences to have a certain form of expected
utility. In this paper we study rationalizable strategic behavior in general situations:
arbitrary strategic games with various modes of behavior.

To define the notion of rationalizability, we need to consider a system of prefer-
ences/beliefs for restricted parts (or parings) of a game. By usingHarsanyi’s (1967-68)
notion of type, we introduce the simple analytical framework—the “model of situa-
tion,” which specifies a set of admissible and feasible types for each of players in
every possible restriction of game situation. A player, endowed with a type, is able
to make a choice decision over his own strategies. Our approach is topology-free and
with no measure-theoretic assumptions, and it is applicable to any arbitrary strategic
game with different modes of behavior.

In a related paper, Apt and Zvesper (2010) provided a broad and general approach
to various forms of customary iterative solution concepts in arbitrary strategic games
with a special emphasis on the role of monotonicity in “rationality.” Our analysis
of rationalizable strategic behavior is, in this respective, harmonious with Apt and
Zvesper’s (2010) approach. As we have emphasized, this paper focuses on how to
extend the notion of rationalizability to general strategic games with various modes

3 Eichberger and Kelsey (2011) showed that some experimental results which contradict Nash equilibrium
can be explained by the hypothesis that subjects view their opponents’ behavior as ambiguous.
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of behavior that inherits the properties of conventional rationalizability, while Apt
and Zvesper’s (2010) paper focuses on examining and comparing, in the context of
epistemic analysis with possibility correspondences, various forms of customary iter-
ative solution concepts in arbitrary strategic games through the monotonic property
of “rationality” behind the iterated dominance notions.

Weoffer a definition of rationalizability in general situations (Definition1).Roughly
speaking, a set of strategy profiles is regarded as “rationalizable” if every player’s strat-
egy in this set can be justified by some of the player’s types associated with the set.
We show that the set of all rationalizable strategy profiles is the largest (w.r.t. set inclu-
sion) rationalizable set in product form (Proposition 1), which can be derived from an
iterated elimination of never-best responses (IENBR). Moreover, IENBR is an order-
independent procedure (Proposition 2). In addition, we study the epistemic foundation
of rationalizability in general situations: We formulate and prove that rationalizabil-
ity is the strategic implication of common knowledge of rationality (Proposition 5).
We show an equivalence between the notion of rationalizability and the notion of a
posteriori equilibrium in general settings (Proposition 6).

In this paper, we also investigate the relationship between rationalizability andNash
equilibrium.We demonstrate through an example that the IENBR procedure may gen-
erate spurious Nash equilibrium and, then, offer a necessary and sufficient condition
for no spurious Nash equilibria (Proposition 3). In dominance-solvable games, the
unique Nash equilibrium can be obtained by IENBR, and moreover, rationalizable
strategic behavior in a wide range of preference models is observationally indistin-
guishable from Nash equilibrium behavior (Proposition 4). We show that, through
examples, rationalizability neither implies nor is implied by iterated strict dominance
defined by Chen et al. (2007) in general game situations. It is worthwhile to emphasize
that one important feature of this paper is that, throughout this paper, we do not require
any kind of technical assumptions on the structure of the game or particular strong
behavioral assumptions on players’ preferences; in particular, we do not require the
compactness, convexity, continuity, and measure-theoretic conditions on strategy sets
and payoff functions, and we do not even assume that players’ preferences have utility
function representations.

The rest of this paper is organized as follows. Section 2 is the setup. Sections 3
and 4 present the main results concerning rationalizability with IENBR and Nash
equilibrium, respectively. Section 5 discusses the relationship between rationalizabil-
ity and iterated strict dominance. Section 6 provides the epistemic foundation for
rationalizability. Section 7 offers concluding remarks.

2 Setup

Consider an arbitrary strategic game:4

4 Wehere adopt the conventional game-theory frameworkwhich includes the component of payoff functions
for players; our analysis of this paper is applicable to a more general framework with players’ preference
orderings over consequences of the game. (In particular, we keep payoff functions/preference orderings
in the framework only for the purpose of discussing the notion of Nash equilibrium in the usual way.)
Throughout this paper, we consider only the sets which satisfy the ZFC axioms; see, e.g., Jech (2003, p. 3).
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G ≡ (N , {Si }i∈N , {ui }i∈N ),

where N is an (in)finite set of players, Si is an (in)finite set of player i’s strategies,
and ui : S → R is player i’s arbitrary payoff function where S ≡ ×i∈N Si . For s ∈ S
let s ≡ (si , s−i ).

The notion of “type” due to Harsanyi (1967-68) is a simple and parsimonious
description of the exhaustive uncertainty facing a player, including the player’s knowl-
edge, preferences/beliefs. While the notion of “type” was firstly proposed for games
with incomplete information, the notion is equally useful to analyze uncertainty about
the actual play of the complete-information games—i.e., each player faces uncertainty
not only about the primitive uncertainty corresponding to the actual play of opponents,
but also the opponents’ “types” representing all the relevant characteristics; see, e.g.,
Brandenburger (2007, pp. 467–468) and Perea (2012, pp. 124–126) for discussions.
For the purpose of this paper, we use a generalized notion of “type” (for each player i)
that specifies a preference relation over i’s strategies when i faces the comprehensive
and exhaustive uncertainty in a game. That is, the player, endowed with a type, has
one corresponding preference relation over his own strategies, according to which the
player can make his choice decision. Formally, we introduce a model of situation for
game G:

�G ≡ {�G
i (·)}i∈N ,

where �G
i (·) is defined for every subset S′ ⊆ S and every player i ∈ N . (We assume

that�G
i (∅) = ∅.) The set�G

i (S′) is interpreted as player i’s type space in the reduced
game G|S′ ≡ (N , {S′

i }i∈N , {ui |S′ }i∈N ), where ui |S′ is the payoff function ui restricted
on S′. In other words,�G

i (S′) is the set of all plausible types of player i when the player
faces strategic uncertainty about the other players’ actions in S′−i ≡ {s−i | (si , s−i ) ∈
S′}.

Each type ti ∈ �G
i (S′) has a corresponding preference relation (or binary relation)

�ti over player i ’s strategies in Si . (The indifference relation, ∼ti , is defined as usual,
i.e., si ∼ti s′

i iff si �ti s′
i and s′

i �ti si .) For our purpose, we can interpret �G
i (S′)

as the set of player i’s plausible conditional preferences given that i’s opponents’
strategies lie in S′−i . For instance, we may consider �G

i (S′) as a probability space or
a preference space defined on S′.

The following three examples demonstrate that our analytical framework in this
paper can be applied to games where the players have different kinds of preferences,
including the standard subjective expected utility (SEU) as a special case.

Example 1 Consider a finite game G. Player i’s belief about the strategies that the
opponents play in the reduced game G|S′ is defined as a probability distribution μi

over S′−i , i.e., μi ∈ Δ
(
S′−i

)
where Δ

(
S′−i

)
is the set of probability distributions over

S′−i . For any μi , the expected payoff of si can be calculated by

Ui (si , μi ) =
∑

s−i∈S′−i

μi (s−i ) · ui (si , s−i )
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where μi (s−i ) is the probability assigned by μi to s−i . That is, μi generates an SEU
preference over Si . For our purpose we define a model of situation (on G) as follows:

�G = {�G
i (·)}i∈N ,

where, for every player i ∈ N ,�G
i (S′) = Δ

(
S′−i

)
for every subset S′ ⊆ S. Note

that the beliefs are “correlated” in the sense that a belief is represented by a joint
probability distribution over the opponents’ strategies. The model of situation allows
representing player’s beliefs as product (independent) or degenerated (point) proba-
bility distributions over opponents’ strategies.5

Example 2 Consider a finite game G. An act on S′−i is a real-valued function defined
on S′−i . Let F

(
S′−i

)
denote the set of acts on S′−i . Let P (·) be a model of preference

defined in Epstein (1997, pp. 6–7). That is, P (·) is a correspondence mapping each
S′−i to a nonempty set of utility functions over F (

S′−i

)
such that for every Ui ∈

P (
S′−i

)
,Ui (r) = r for each constant act r ∈ R and Ui ( f ) ≥ Ui

(
f ′) whenever

f ≥ f ′. (With the topological assumption on the game structure: compact Hausdorff
strategy sets, Epstein and Wang (1996) constructed a type space for a wide class
of “regular” preferences, including the standard SEU preference as a special case.)
Observe that each strategy si can be identified with an act ui (si , ·) on S′−i . We define
a model of situation (on G) as follows:

�G = {�G
i (·)}i∈N ,

where, for each player i ∈ N ,�G
i (S′) = P (

S′−i

)
for every subset S′ ⊆ S. From

this perspective, the standard assumption in game theory that players are SEU maxi-
mizers corresponds to the restriction that players’ preferences lie in a suitable subset
of P (

S′−i

)
. Thus, our framework presented in this paper can be used for analyzing

strategic behavior in games with various models of preference discussed in Epstein
(1997).

Example 3 Consider a game G where each strategy set Si is a measurable space with
algebra Si and ui is a boundedmeasurable function with respect to the product algebra
on S. Player i’s belief about the strategies that the opponents play in the reduced game
G|S′ is defined as a probability measure μi over S′−i where S

′−i is also endowed with
the product algebra. For any μi , the expected payoff of si can be calculated by

Ui (si , μi ) =
∫

S′−i

ui (si , s−i ) dμi (s−i ) .

That is, μi generates a topology-free SEU preference over Si . [Heifetz and Samet
(1998) showed that, only with the measure-theoretic assumption on strategy sets, a

5 In the game-theory literature, players are typically assumed to be Bayesian rational, that is, each player
forms a prior over the space of states of theworld andmaximizes the expected value of somefixed vNMindex
on outcomes. The model of situation also allows representing player’s beliefs as other forms of subjective
expected utility preferences such as Borgers’s (1993) ordinal expected utility and the state-dependent utility
preferences discussed in Morris and Takahashi (2011).
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type space can be explicitly constructed in such an environment.] We define a model
of situation (on G) as follows:

�G = {�G
i (·)}i∈N ,

where, for each player i ∈ N ,�G
i (S′) = ba

(
S′−i

)
for every subset S′ ⊆ S where

ba
(
S′−i

)
is the set of finitely additive probability measures over S′−i . That is, the

model of situation can be used to analyze games with topology-free SEU preferences.

In the framework of this paper, we impose no essential behavioral assumption on
preferences; in particular, we do not assume that preferences have utility function rep-
resentations. Our approach is applicable to most of preference models discussed in the
literature such as the SEU model (Savage 1954), the OEU model (Borgers 1993), the
probabilistic sophistication model (Machina and Schmeidler 1992), the multi-priors
model (Gilboa and Schmeidler 1989), the Choquet expected utility model (Schmei-
dler 1989), the lexicographic preference model (Blume et al. 1991), the Knightian
uncertainty model (Bewley 1986). For ti ∈ �G

i (S′), a strategy si ∈ Si is one of most
preferred actions for ti if si �ti s

′
i for all s

′
i ∈ Si . (Notice that even if a reduced game

G|S′ is concerned, any strategy of player i in the original game G can be a candidate
for the most preferred choices.) Let

β (ti ) ≡ {
si ∈ Si |si �ti s

′
i for all s′

i ∈ Si
}
.

We first present a definition of rationalizability in a game G with the situation model
�G . The spirit of this definition is that for every strategy in a rationalizable set, the
player can always find some of types defined over this set to support his choice of
strategy.6

Definition 1 Asubset R ⊆ S isa rationalizable set in�G if∀i and∀s ∈ R, there exists
some ti ∈ �G

i (R) such that si ∈ β(ti ). We denote the collection of all rationalizable
sets in �G asR (�G

)
.

In Definition 1, a rationalizable set satisfies the “internally” consistent property:
A rationalizable set consists of its best responses, but not all its best responses are
required to be included in the rationalizable set. Proposition 5(1) in Section 6 shows
that the assumption of “common knowledge of rationality” leads to a rationalizable
set. We note that the concept of a rationalizable set is related to Basu and Weibull’s
(1991) concept of a “closed under rational behavior (curb)” set which, in contrast,
satisfies an “externally” consistent property—i.e., a curb set must contain all its best
responses, but the curb set may contain something that is not a best response.7 For our
discussions, we need the following condition on the model of situation �G .

6 Definition 1 can be viewed as a generalization of the best response property; indeed, we may define β (ti )
as a choice set for type ti , so that it can be used to model and analyze different behavioral patterns and
decision rules for ti . Throughout this paper, for simplicity we focus on pure strategies; we can apply our
analytical framework to the mixed extensions of finite games by allowing for using mixed strategies in finite
games.
7 We thank a referee for drawing our attention to Basu and Weibull’s concept of the curb set. It is easy to
verify that the largest rationalizable set R∗ (in Proposition 1) is a curb set.
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C1 (Monotonicity) ∀i,�G
i (S′) ⊆ �G

i (S′′) if S′ ⊆ S′′.

The monotonicity condition requires that when one player faces a greater degree
of strategic uncertainty, the player possesses more types available for resolving uncer-
tainty. In the literature on information economics, a type of a player is interpreted as
the initial private information, about all the uncertainty regarding the state of nature in
a game situation, that player has. From this point of view, it is natural to assume that
there are more types available if there is more strategic uncertainty about the choices
of the players. Most of models discussed in the literature satisfy the monotonicity
condition C1; in particular, it is easy to verify that the models of situation defined
in Examples 1–3 satisfy C1. One prominent example that violates C1 is the iterated
elimination of weakly dominated strategies (IEWDS): A weakly dominated strategy
in a game may no longer be a weakly dominated strategy in the reduced game after
eliminating some strategies.

We call a strategy profile rationalizable in �G if this profile lies in a rationalizable
set in �G . Let R∗ ≡ ∪R∈R(�G)R be the set of all rationalizable strategy profiles in

�G . The following proposition asserts that, under C1, there is the largest (w.r.t. set
inclusion) rationalizable set in product form, which consists of all the rationalizable
strategy profiles.

Proposition 1 Under C1, the set of all rationalizable strategy profiles in �G is the
largest (product form) rationalizable set in �G.

Proof It suffices to show that R∗ ≡ ∪R∈R(�G)R is a rationalizable set in �G . Let

s ∈ R∗. Then, there exists a rationalizable set R in �G such that s ∈ R. Thus, for
every player i , there exists some ti ∈ �G

i (R) such that si ∈ β(ti ). Since R ⊆ R∗, by
C1, ti ∈ �G

i (R∗) and si ∈ β(ti ). Thus, R∗ is a rationalizable set in �G .
Let s ∈ ×i∈N R∗

i where R
∗
i ≡ {si |s ∈ R∗}. Then, for every player i, there exists ti ∈

�G
i (R∗) such that si ∈ β(ti ). Since R∗ ⊆ ×i∈N R∗

i , again by C1, ti ∈ �G
i (×i∈N R∗

i )

and si ∈ β(ti ). That is,×i∈N R∗
i is a rationalizable set in�G . Since R∗ ≡ ∪R∈R(�G)R,

it must be the case that R∗ = ×i∈N R∗
i . 
�

Remark For Z ⊆ S let ϕ(Z) = ×i∈N
{
si |si ∈ β(ti ) for some ti ∈ �G

i (Z)
}
. Then,

R∗ is the largest fixed point of the monotonic operator ϕ : 2S �→ 2S . See Apt and
Zvesper (2010) and Luo (2001, Sect. 4.1) for a general approach to rationalizability-
like solution concepts by using Tarski’s fixed point theorem on complete lattices; see
also Brandenburger et al. (2011) for related discussions.

3 IENBR and rationalizability

In the literature, rationalizability can also be defined as the outcome of an iterated
elimination of never-best responses. We employ a possibly transfinite elimination
process that can be used for any arbitrary game.8 Let λ0 denote the first element in an

8 Lipman (1994) demonstrated that, in infinite games, we may need the transfinite induction to analyze the
strategic implication of “common knowledge of rationality.” See also Chen et al.’s (2007) Example 1 for
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ordinal Λ, and let λ + 1 denote the successor to λ in Λ. For S′′ ⊆ S′ ⊆ S, S′ is said
to be reduced to S′′ (denoted by S′ → S′′) if, ∀s ∈ S′\S′′, there exists some player i
such that si /∈ β (ti ) for any ti ∈ �G

i

(
S′). Note: S′ → S′ for any S′ ⊆ S.

Definition 2 An iterated elimination of never-best responses (IENBR) is a family
{Rλ}λ∈Λ such that

(a) Rλ0 = S,
(b) Rλ → Rλ+1 (and Rλ = ∩λ′<λRλ′

for a limit ordinal λ), and
(c) R∞ ≡ ∩λ∈ΛRλ → S′ (where S′ ⊆ S) only if S′ = R∞.

Definition 2(c) can be viewed as the “stopping” condition for the IENBRprocedure:
There is no element in the outcome R∞ which can be eliminated for further consider-
ation. Note that the definition of IENBR procedure does not require the elimination of
all never-best response strategies in each round of elimination. This flexibility raises a
question whether the IENBR procedure always results in a unique set of rationalizable
outcomes. The following proposition asserts that, for any given arbitrary game, there
exists an IENBR procedure defined in Definition 2, and furthermore, Definitions 1
and 2 are equivalent.

Proposition 2 In a model of situation �G , there is an IENBR procedure, and more-
over, under C1, R∞ = R∗ for any IENBR procedure {Rλ}λ∈Λ—i.e., IENBR is an
order-independent procedure.

Proof 9We first show, for any arbitrary game G, that there is an IENBR procedure in
�G . Let S′ →∗ S′′ denote “S′ → S′′ and S′ �= S′′.” By using Transfinite Induction
[see, e.g., Jech (2003, p. 21)], we define a quasi-procedure

{
Qλ

}
λ≤Λ

as: There exists
an ordinal Λ such that

(i) Qλ0 = S, and
(ii) Qλ →∗ Qλ+1 (and Qλ = ∩λ′<λQλ′

for a limit ordinal λ ≤ Λ).

LetQ be the (nonempty) set of all the quasi-procedures.10 We define a binary relation
� on Q as:

{
Qλ

}
λ≤Λ

�
{
Q

λ
}

λ≤Λ
if Λ ≤ Λ and Qλ = Q

λ
for all λ ≤ Λ.

It is easy to verify that (Q,�) is a partially ordered set. (For the transitivity, for

example, assume that
{
Qλ

}
λ≤Λ

�
{
Q̃λ

}
λ≤Λ̃

and
{
Q̃λ

}
λ≤Λ̃

�
{
Q

λ
}

λ≤Λ
. Then,

Footnote 8 continued
the reason why we may need a transfinite process for iterated deletion of strictly dominated strategies in
general games.
9 In fact, we can alternatively construct a concrete IENBR procedure similar to one constructed in Chen
et al. (2007). We thank a referee for providing us with useful comments and suggestions that lead to this
proof for the existence of an IENBR procedure.
10 Note that each quasi-procedure in Q can be viewed as an element, which satisfies the property (i)–(ii),
in the power set of 2S . By the Axiom Schema of Separation [see, e.g., Jech (2003, p. 3)],Q is a set in ZFC.

123



156 Y.-C. Chen et al.

{
Qλ

}
λ≤Λ

�
{
Q

λ
}

λ≤Λ
since Λ ≤ Λ̃ ≤ Λ and Qλ = Q̃λ = Q

λ
for all λ ≤ Λ). Note

that, if
{
Qλ

}
λ≤Λ

is a maximal element in (Q,�), no element can be eliminated from

QΛ, which implies that Definition 2(c) is satisfied. Therefore, it suffices to prove that
there exists a maximal element in (Q,�) for the existence of an IENBR procedure.

Consider a chain C in (Q,�). Let ΛC ≡
{
Λ| {Qλ

}
λ≤Λ

∈ C
}
and Λ∗ ≡ ∪ΛC . By

Jech’s (2003, p. 20) (2.4), Λ∗ = sup ΛC is an ordinal. For arbitrary quasi-procedures
{
Qλ

}
λ≤Λ

and
{
Q̃λ

}
λ≤Λ̃

in C, Qλ = Q̃λ ≡ Q
λ
if λ ≤ Λ and λ ≤ Λ̃, and hence, there is

a unique Q
λ
for any λ ∈ Λ∗. Moreover, ifΛ∗ is not a limit ordinal, thenΛ∗ ∈ ΛC and

Q
Λ∗

is also determined in this way. Let Q
Λ∗ ≡ ∩λ∈Λ∗Q

λ
ifΛ∗ is a limit ordinal. Thus,

we obtain a quasi-procedure
{
Q

λ
}

λ≤Λ∗ . Because Λ ≤ Λ∗,
{
Qλ

}
λ≤Λ

�
{
Q

λ
}

λ≤Λ∗

for all
{
Qλ

}
λ≤Λ

∈ C. That is, we find an upper bound
{
Q

λ
}

λ≤Λ∗ ∈ Q for C. By Zorn’s
lemma [see, e.g., Jech (2003, p. 49)], there exists a maximal element in (Q,�), which
generates an IENBR procedure in �G .

Now, we consider an arbitrary IENBR procedure {Rλ}λ∈Λ. By Definition 2,
∀s ∈ R∞, every player i has some ti ∈ �G

i (R∞) such that si ∈ β(ti ). So R∞ is
a rationalizable set, and hence, R∞ ⊆ R∗. Under C1, by Proposition 1, R∗ is a ratio-
nalizable set in �G and, hence, survives every round of elimination in Definition 2.
So R∗ ⊆ R∞. That is, R∞ = R∗ for any IENBR procedure {Rλ}λ∈Λ. 
�
Remark It is worthwhile to note that if βi (ti ) = ∅ for each type ti , then Definition 2
implies that the IENBR procedure ends up with the empty set (as we assume that
�G

i (∅) = ∅). For example, if one player has a dominant strategy but some of the
other players has no best response, Definition 2 implies that the set of rationalizable
strategies is empty. On a conceptual level, a player’s rationalizable strategy should
be justified by the opponents’ rationalizable strategies. That is, the definition of a
player’s rationalizable strategymust be dependent on the definitionof the other players’
rationalizable strategies. Therefore, there is no rationalizable strategies even if one
player has an obvious action of play in this circumstance.11

4 Nash equilibrium and rationalizability

Recall that a strategy profile s∗ in S is a (pure) Nash equilibrium in G if for every
player i ,

ui
(
s∗) ≥ ui

(
si , s

∗−i

) ∀si ∈ Si .

To study the relationship between Nash equilibrium and rationalizability, we need
a weak consistency requirement between payoff functions and the preferences of
types.12 For strategy profile s ∈ S, player i’s Dirac type δi (s) is a type with the
property:

11 We thank a referee for pointing out this to us.
12 In this paper, we impose no essential condition for the relationship between the preference relation �ti
of a type ti and the payoff function ui—i.e., the only link between payoff functions and the preferences
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∀s′
i , s

′′
i ∈ Si , ui (s

′
i , s−i ) ≥ ui (s

′′
i , s−i ) iff s′

i �δi (s) s
′′
i .

A Dirac type δi (s) is a degenerated type with which player i behaves as if he faces a
certain play s−i of the opponents; in probabilistic models, a Dirac type is a point mass
that represents a point belief about the opponents’ choices. Observe that s∗ is a Nash
equilibrium iff, for every player i , s∗

i is a best response to δi (s∗). The following condi-
tion requires that the only possible type for a deterministic case—i.e., a singleton of a
certain play of the opponents—is aDirac type.This condition is a rather natural require-
ment when strategic uncertainty is reduced to a special deterministic case of certainty.

C2 (Diracability) ∀i,�G
i ({s}) = {δi (s)} for all s ∈ S.

It is easy to verify that various models of situation defined in Examples 1–3 satisfy
C2. C1 and C2 jointly imply that δi (s) ∈ �G

i (S′) if s ∈ S′, i.e., the type space on S′
contains all the possible Dirac types on S′. Observe that, under C2, every Nash equilib-
rium is a rationalizable strategy profile. Propositions 1 and 2 imply that, under C1 and
C2, every Nash equilibrium survives IENBR and, if G admits a Nash equilibrium, the
IENBR procedure yields a nonempty set of rationalizable outcomes: R∞ = R∗. The
following example taken fromChen et al. (2007) demonstrates that a Nash equilibrium
in the reduced game after an IENBR procedure may be a spurious Nash equilibrium,
i.e., it is not a Nash equilibrium in the original game.

Example 4 Consider a two-person symmetric game:13 G ≡ (
N , {Si }i∈N , {ui }i∈N

)
,

where N = {1, 2}, S1 = S2 = [0, 1], and for all si , s j ∈ [0, 1], i, j = 1, 2, and i �= j

ui (si , s j ) =
⎧
⎨

⎩

1, if si ∈ [1/2, 1] and s j ∈ [1/2, 1] ,
1 + si , if si ∈ [0, 1/2) and s j ∈ (2/3, 5/6) ,

si , otherwise.

We consider the standard SEU model for G. It is easily verified that R∞ =
[1/2, 1] × [1/2, 1] since every strategy si ∈ [0, 1/2) is strictly dominated and
hence never a best response. That is, IENBR leaves the reduced game G|R∞ ≡ (N ,{
R∞
i

}
i∈N , {ui |R∞}i∈N ) that cannot be further reduced. Clearly, R∞ is the set of

Nash equilibria in the reduced game G|R∞ , but the set of Nash equilibria in game
G is {s ∈ R∞|s1, s2 /∈ (2/3, 5/6)}. Thus, IENBR generates spurious Nash equilibria
s ∈ R∞ where some si ∈ (2/3, 5/6). Observe that in G, ui

(
., s j

)
has a maximizer

for s j /∈ (2/3, 5/6), but ui
(
., s j

)
has no maximizer for s j ∈ (2/3, 5/6). That is, some

player has no best response in such a spurious Nash equilibrium, while each player
should have a best response in a (normal) Nash equilibrium.

Definition 3 G ≡ (N , {Si }i∈N , {ui }i∈N ) has well-defined best responses on S′ ⊆ S
if ∀i ∈ N and ∀s ∈ S′, β (δi (s)) �= ∅.

Let NE denote the set ofNash equilibria inG, and NE |R∞ the set ofNash equilibria
in the reduced game G|R∞ ≡ (N , {R∞

i }i∈N , {ui |R∞}i∈N ). A sufficient and necessary

Footnote 12 continued
of types is given by the very weak Diracability condition (C2) in this section and the strong monotonicity
condition (C3) in Sect. 5.
13 The game of this example is in the class of Reny’s (1999) better-reply secure games.
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condition under which IENBR generates no spurious Nash equilibria is provided as
follows.

Proposition 3 UnderC1andC2, N E = NE |R∞ iff G haswell-defined best responses
on N E |R∞ .

Proof (“Only if” part.) Let s∗ ∈ NE |R∞ . Since NE |R∞ = NE, s∗
i ∈ β (δi (s∗)) ∀i .

Thus, β (δi (s∗)) �= ∅ for all i .
(“If” part.) (i) Let s∗ ∈ NE . Under C1 and C2, by Propositions 1 and 2, s∗ ∈ R∞,

and hence, s∗ ∈ NE |R∞ . So NE ⊆ NE |R∞ . (ii) Let s∗ ∈ NE |R∞ . Since G has well-
defined best responses on NE |R∞ , for every player i there exists some ŝi ∈ Si such that
ŝi ∈ β (δi (s∗)), which implies that ŝi �δi (s∗) s

∗
i and (ŝi , s∗−i ) ∈ R∞ under C1 and C2.

Since s∗ ∈ NE |R∞ , s∗
i �δi (s∗) ŝi . Therefore, s

∗
i ∼δi (s∗) ŝi , and hence, s

∗
i ∈ β (δi (s∗)).

That is, s∗ ∈ NE . So NE |R∞ ⊆ NE . 
�
This sufficient and necessary condition in Proposition 3 does not involve any topo-

logical assumption on the original or the reduced games. In Chen et al.’s (2007)
Corollary 4, some classes of games with special topological structures were proved
to “preserve Nash equilibria” for the iterated elimination of strictly dominated strate-
gies. These results are also applicable to the IENBR procedure defined in this paper.
If a game is solvable by an IENBR procedure, the following corollary asserts that the
unique strategy profile surviving the procedure is the only Nash equilibrium.

Corollary 1 Under C1 and C2, R∞ = NE if |R∞| = 1.

Proof Let R∞ = {s∗}. By C2, s∗
i is a best response to δi (s∗) for every player i . So

s∗ ∈ NE , and hence, R∞ ⊆ NE . By Proposition 1, NE ⊆ R∞. 
�

5 Rationalizability and iterated strict dominance

In this section, we show that, through examples, rationalizability in general game
situations neither implies nor is implied by iterated strict dominance defined by Chen
et al. (2007). This is because, in the general environments, an undominated strategy
need not be a best response in a model of situation, and conversely, a best response in
a model of situation is not necessarily undominated, even in the case of (correlated)
probabilistic models.

Since the model of situation can be applied to some particular class of probabilis-
tic models such as the product (independent) probability model and the degenerated
(point) probability model, it is easy to see that an undominated strategy may fail to be
a best response in finite games with such restrictive types of probabilistic beliefs; see,
e.g., Brandenburger and Dekel (1987, Sect. 3). Alternatively, the following example
(due to Andrew Postlewaite), which appears in Bergemann and Morris (2005a, Foot-
note 8), shows that an undominated strategy need not be a best response in an infinite
game with (correlated) probabilistic beliefs.14

14 For simplicity, we here consider strategies dominated by pure strategies. Examples 5 and 6 are still valid
if we allow mixed strategies.
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Example 5 Consider a two-person symmetric game G = (
N , {Si }i∈N , {ui }i∈N

)
,

where N = {1, 2}, and for i = 1, 2, Si = {0, 1, 2, ...} and

ui (si , s−i ) =
⎧
⎨

⎩

1, if si = 0;
2, if si ≥ 1 and si > s−i ;
0, if si ≥ 1 and si ≤ s−i .

Let�G be themodel of situation generated by expected utility preferenceswith (count-
ably additive) probability measures, i.e., �G

i (S′) = Δ
(
S′−i

)
for all S′ ⊆ S. Clearly,

si = 0 is not strictly dominated, because for any si ≥ 1, ui (0, s−i ) = 1 > 0 =
ui (si , s−i ) for s−i ≥ si . But, si = 0 cannot be a best response in �G . To see this, note
that for any μi ∈ Δ (S−i ) and any si > 0,

∫
ui (si , s−i ) dμi (s−i ) = 2μi ({s−i |s−i < si }) → 2 as si → ∞.

Hence, there is some si > 0 such that
∫
ui (si , s−i ) dμi (s−i ) > 1 = ∫

ui (0, s−i )

dμi (s−i ).
The following example, which is modified from Stinchcombe (1997), shows that a

strictly dominated strategy can be a best response in a game with “finitely additive”
probabilistic beliefs.

Example 6 Consider a two-person game G = (
N , {Si }i∈N , {ui }i∈N

)
, where N =

{1, 2} , S1 = {0, 1} , S2 = {1, 2, ...}, and u1 (0, s2) = 0, u1 (1, s2) = 1/s2, u2 (s2, 0)
= 0, and u2 (s2, 1) = s2 for all s2 ∈ S2. Let the algebra on S2 be the power set of S2.
Let �G be the model of situation generated by expected utility preferences generated
by finitely additive probability charges, i.e.,�G

i (S′) = ba
(
S′−i

)
for all S′ ⊆ S, where

ba
(
S′−i

)
is the space of finitely additive probability charges on S′−i .

Clearly, s1 = 0 is strictly dominated by s1 = 1. However, s1 = 0 can be a
best response in �G . To see this, it suffices to show that

∫
u1 (1, s2) dμ (s2) =∫

u1 (0, s2) dμ (s2) = 0 for some μ ∈ ba (S2). To find such a μ, let μm ∈ ba (S2)
be the uniform distribution on {1, 2, ...,m}. By Alaoglu’s Theorem [see, e.g., Royden
(1968, Theorem 10.17)], there are μ ∈ ba (S2) and a sequence of {μm} such that

lim
m→∞ μm (E) = μ (E) for each E ⊆ N. (1)

Since u1 (0, s2) = 0 for all s2, it follows that
∫
u1 (0, s2) dμ (s2) = 0. To see∫

u1 (1, s2) dμ (s2) = 0, observe that for every K ≥ 1,

0 ≤
∫

u1 (1, s2) dμ (s2) ≤
K∑

s2=1

μ ({s2}) + 1

K
μ ({s2 : s2 > K }) . (2)

Sinceμm ({s2}) → 0 andμm ({s2 : s2 > K }) → 1, it follows from (1) thatμ ({s2}) =
0 and μ ({s2 : s2 > K }) = 1. Since (2) holds for all K ≥ 1,

∫
u1 (1, s2) dμ (s2) = 0.
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A strategy si ∈ Si is said to be dominated given S′ ⊆ S if for some strategy ŝi ∈
Si , ui (̂si , s′−i ) > ui (si , s′−i ) for all s

′−i ∈ S′−i . (This definition of strict dominance is
applicable to the standard one used in finite games—i.e., a pure strategy is allowed to be
strictly dominated by some randomized ormixed strategy—by considering the “mixed
extensions” of finite games instead.) For any subsets S′, S′′ ⊆ S where S′′ ⊆ S′, we
use the notation S′ �→ S′′ to signify that for any s ∈ S′\S′′, some si is dominated given
S′. In general games, Chen et al. (2007) offered the well-defined order-independent
iterated elimination of strictly dominated strategies. Let λ0 denote the first element in
an ordinal Λ, and let λ + 1 denote the successor to λ in Λ.

Definition 4 An iterated elimination of strictly dominated strategies (IESDS∗) is
defined as a family

{Dλ
}
λ∈Λ

such that

(a) Dλ0 = S,

(b) Dλ �→ Dλ+1 (and Dλ = ∩λ′<λDλ′
for a limit ordinal λ), and

(c) D ≡ ∩λ∈ΛDλ �→ S′ (where S′ ⊆ S) only if S′ = D.

Next, we present an equivalence result between rationalizability and IESDS∗ in the
class of dominance-solvable games. We say that a game G is “dominance solvable”
if the procedure of IESDS∗ leads to a unique strategy profile—i.e., by performing the
procedure of iterated elimination of strictly dominated strategies, there is only one
strategy left for each player; for example, the standard Cournot game (Moulin 1984),
Bertrand oligopoly with differentiated products, and the arms-race games (Milgrom
and Roberts 1990). We need the following condition on a situation model �G .

C3 (Strong Monotonicity) If a strategy ŝi ∈ Si strictly dominates another strategy
si ∈ Si given S′—i.e., ui

(
ŝi , s′−i

)
> ui

(
si , s′−i

) ∀s′−i ∈ S′−i , then ŝi �ti si for all ti ∈
�G

i (S′).

The strongmonotonicity requires that a strategy be strictly preferred to another strategy
if the former strategy strictly payoff-dominates the latter one. This condition on �G

seems to be rather natural and is satisfied by most of preference models discussed in
the literature, e.g., the SEU model, the OEU model, the probabilistic sophistication
model, the multi-priors model, the Choquet expected utility model, the lexicographic
preference model, the Knightian uncertainty model.15 From a decision-theoretic point
of view, the “transitivity” or “strong monotonicity” condition is considered to be more
basic tenets of rationality than the sure-thing principle and other components of the
standard Savage model; see Luce and Raiffa (1957, Chapter 13) and Epstein (1997)
for more discussions. The following proposition asserts that in dominance-solvable
games, the notion of rationalizability defined in any situation model �G satisfying
Diracability and strong monotonicity (but not necessarily satisfying monotonicity) is
equivalent to the Nash equilibrium, which can be solved by IESDS∗.

Proposition 4 Suppose that G is a dominance-solvable game with a situation model
�G satisfying C2 and C3. Then, D = R∗ = NE.

15 Nevertheless, as demonstrated in Example 6, the expected utility preferencemodelwith a finitely additive
probability charge may violate C3.
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Proof Since G is dominance solvable, D = NE . Let R be a rationalizable set in �G .
Then, by C3, R is an undominated set—i.e., for every i, si ∈ Ri is not dominated given
R. Therefore, R ⊆ Dλ

for all λ, and hence, R∗ ⊆ D = NE . By C2, the singleton of
a Nash equilibrium is a rationalizable set in �G . Consequently, R∗ = D = NE . 
�

Remark Proposition 4 says that in dominance-solvable games, rationalizability
defined in any situation model �G satisfying C2 and C3 yields the unique set of
outcomes of iterated strict dominance, which is consistent with the Nash equilibrium
outcome. The result implies that the Nash equilibrium behavior is observationally
indistinguishable from the rationalizable strategic behavior in such situation mod-
els.16 Proposition 4 also implies that IESDS∗ generates no spurious Nash equilibria
in dominance-solvable games.

6 Epistemic conditions of rationalizability

In this section we provide epistemic conditions for rationalizability in general games.
In doing epistemic analysis, we need to extend the model of situation in Sect. 2 to the
space of states. Consider a space Ω of states, with typical element ω ∈ Ω . A subset
E ⊆ Ω is referred to as an event. A model of situation on Ω is given by

� ≡ {�i (·)}i∈N ,

where �i (·) is defined over subsets E ⊆ Ω . The set �i (E) is player i’s type space for
given event E , which can be interpreted as player i’s type space conditional on event E ;
each type ti ∈ �i (E) has a preference relation�ti defined on player i’s strategies in Si
under which the complement of E is regarded as impossible. (As usual we assume that
�i (∅) = ∅.) For example, if �i (E) is applied to the case of the probability measure
space, �i (E) can be considered as the space of probability measures conditional on
subset E of Ω . The model of situation on Ω can also be viewed as a type structure
used in epistemic game theory to model interactive beliefs in which a type of a player
is a joint belief about the states of nature and the types of the other players [(see, e.g.,
Brandenburger (2007)].17

16 Chen and Luo (2012) showed that rationalizability under general preferences can be indistinguishable
from the outcome of the IESDS procedure for a class of (in)finite games where each player’s strategy space
is compact Hausdorff and each player’s payoff function is continuous and “concave-like.” The indistin-
guishability result in Proposition 4 does not rely on the structure of strategic game.
17 We take a point of view that an epistemic model is a pragmatic and convenient framework to be used
for doing epistemic analysis; see Aumann and Brandenburger (1995, Sect. 7a) for related discussions.
There are many examples of well-defined type spaces: Mertens and Zamir (1985) constructed a compact
Hausdorff type space, Brandenburger and Dekel (1993) constructed a Polish type space, Heifetz and Samet
(1998) provided an alternative “topology-free” construction of type space, and Epstein and Wang (1996)
constructed a compact Hausdorff (nonprobabilistic) type space in a setting of “regular” preferences. In this
paper, we are mainly concerned with the analysis of the game-theoretic solution concept of rationalizability
in general situations. In particular, we do not assume that preferences have utility function representations.
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An epistemic model for �G is defined by

M
(
�G

)
≡ (Ω,�, {si }i∈N , {ti }i∈N ) ,

whereΩ is the space of states,� is a model of situation onΩ, si (ω) ∈ Si is player i’s
strategy at state ω, and ti (ω) ∈ �i (Ω) is player i’s type at state ω; see, e.g., Aumann
(1999) and Osborne and Rubinstein (1994, Chapter 5). Denote by s (ω) the strategy
profile at ω and let

SE ≡ {s (ω) |ω ∈ E}.
Apparently, from an analyst’s point of view, the model of situation, � , defined on Ω

should be consistent with themodel of situation,�G , defined onG. For this purpose, in
this paperwe require the epistemicmodelM (�G

)
to satisfy the following consistency

property:

[Consistency] For any event E ⊆ Ω,�i (E) = �G
i (SE ) ∀i .

That is, the consistency property requires that the type space on an event be consistent
with the type space on the strategies projected from the event, and thus, each player
behaves in a natural way with respect to the marginalization in the epistemic model.
This requirement ismuch in the same spirit of the notion of “coherence” imposed in the
analysis of hierarchy of beliefs and preferences [see, e.g., Mertens and Zamir (1985),
Brandenburger and Dekel (1993) and Epstein and Wang (1996)]. We would like to
point out that the consistency property is not a behavioral condition for the players in
games, but it is made only for the (comprehensive) epistemic model adopted by an
analyst to be harmonious with the (simple) analytical framework used in Sect. 2.

We say “player i knows/believes an event E at ω” if ti (ω) ∈ �i (E) since the
complement of E is regarded as impossible under ti (ω) ∈ �i (E).18 Let

Ki E ≡ {ω ∈ Ω| i knows E at ω}.

An event E ⊆ E is called a common-knowledge/self-evident event (in E), if

E ⊆ Ki E for all i ∈ N .

Say player i is “ rational at ω” if si (ω) is one of most preferred actions for ti (ω). Let

Ri ≡ {ω ∈ Ω| i is rational at ω}

and
R ≡ ∩i∈NRi .

18 This formalism can be easily applied to Aumann’s definition of knowledge by the possibility correspon-
dence in a semantic framework and the notion of “belief with probability one” in a probabilistic model, for
instance. Some readers may prefer the term “believes E” rather than “knows E .” In this paper, we do not
particularly distinguish between “knowledge” and “belief.”
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That is, R is the event “everyone is rational.” The following proposition provides an
epistemic characterization for rationalizability: The notion of rationalizability is the
strategic implication of common knowledge of rationality.

Proposition 5 (1) In any epistemic model M (�G
)
, S R is a rationalizable set in

�G. (2) Suppose that R is a rationalizable set in�G. Then, there is an epistemic model

M (�G
)
in which S R = R for some common-knowledge event R .

Proof (1) Since R ⊆ R is a common-knowledge event, for any ω ∈ R , si (ω) ∈
β (ti (ω)) and ti (ω) ∈ �i

(
R

)
for all i . By Consistency, ti (ω) ∈ �G

i

(

S
R

)

.

Therefore, ∀i and ∀s ∈ S
R

, there exists some ti ∈ �G
i

(

S
R

)

such that si ∈ β(ti ).

That is, S
R

is a rationalizable set in �G .
(2) Let R be a rationalizable set in �G . Define an epistemic model for �G :

M
(
�G

)
≡ (Ω,�, {si }i∈N , {ti }i∈N ) ,

such that

(i) Ω =
{
(si , ti )i∈N |ti ∈ �G

i (R) and si ∈ β(ti ) ∩ Ri

}
;

(ii) ∀i,�i (E) = �G
i (SE ) if E ⊆ Ω;

(iii) ∀i, si (ω) = si and ti (ω) = ti if ω = (si , ti )i∈N .

Clearly, every player i is rational across states in Ω . By Consistency, Ω ⊆ KΩ .
Therefore, R = Ω is common-knowledge event satisfying SΩ = R. 
�
Remark In the standard semantic model of knowledge, it is well known that the
above “fixed-point” definition of “common knowledge” is equivalent to the traditional
“iterative” formalism of “common knowledge”; see, e.g., Aumann (1976, 1999) and
Monderer and Samet (1989). In general cases, the “fixed-point” definition of “common
knowledge” is a more fundamental notion. Under the “monotonic” information and
knowledge structures, it can be shown that the “fixed-point” definition of “common
knowledge” is equivalent to an “iterative” notion of “common knowledge” possibly
by using transfinite levels of mutual knowledge; see Heifetz (1996, 1999) for more
discussions. If, moreover, the information and knowledge structures satisfy a “limit
closure” property: What happens at finite levels determines what happens at the limit,
it can be shown that the “fixed-point” definition of “common knowledge” is equivalent
to the traditional “iterative” definition by using a countably infinite number of levels
of mutual knowledge; see Fagin et al. (1999).

Within the standard expected utility framework in finite games, Brandenburger
and Dekel (1987) offered the notion of “a posteriori equilibrium,” a strengthening of
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Aumann’s (1974) notion of subjective correlated equilibrium and showed an equiva-
lence between rationalizability and a posteriori equilibrium. The equivalence implies
that the assumption of common knowledge of rationality also provides a formal epis-
temic justification for this equilibriumnotion. Infinitemodels, Epstein (1997) extended
this equivalence result to “regular” preferences including the subjective expected util-
ity model. We end this section by presenting such an equivalence result for arbitrary
games with various modes of behavior in the analytical framework used in this paper.

A strategy profile function s : Ω → S in an epistemic modelM (�G
)
for game G

is said to be an a posteriori equilibrium in M (�G
)
if for every player i ∈ N ,

∀ω ∈ Ω, si (ω) �ti (ω) si ∀si ∈ Si ,

i.e., si (ω) ∈ β (ti (ω)).

Proposition 6 The strategy profile s∗ is rationalizable in �G if and only if there exist
an epistemic model M (�G

)
and an a posteriori equilibrium s inM (�G

)
such that

s∗ = s (ω) for some ω ∈ Ω .

Proof (“If” part.) Let s be an a posteriori equilibrium in an epistemic modelM (�G
)
.

Then, for every player i and every s ∈ SΩ, si ∈ β(ti ) for some ti ∈ �i (Ω). By
Consistency, for every player i and every s ∈ SΩ, si ∈ β(ti ) for some ti ∈ �G

i (SΩ).
That is, the set SΩ is a rationalizable set in �G . Thus, the profile s∗ is rationalizable
in �G if s∗ = s (ω) for some ω ∈ Ω .

(“Only if” part.) Let s∗ be a rationalizable strategy profile in �G . Then, there is
a rationalizable set R in �G which contains s∗. Thus, for every player i and every
s ∈ R, there is ti ∈ �G

i (R) such that si ∈ β(ti ). Define an epistemic model for G :

M
(
�G

)
≡ (Ω,�, {si }i∈N , {ti }i∈N ) ,

such that

(i) Ω =
{
(si , ti )i∈N |ti ∈ �G

i (R) and si ∈ β(ti )
}

;
(ii) ∀i,�i (E) = �G

i (SE ) if E ⊆ Ω;
(iii) ∀i, si (ω) = si and ti (ω) = ti if ω = (si , ti )i∈N .

Therefore, for every player i and every ω = (si , ti )i∈N in Ω, si (ω) ∈ β (ti (ω)). That
is, s is an a posteriori equilibrium inM (�G

)
. Thus, for each rationalizable profile s∗ in

�G , we can find an a posteriori equilibrium s inM (�G
)
and a stateω∗ = (

s∗
i , t∗i

)
i∈N

in Ω such that s∗ = s (ω∗). 
�

7 Concluding remarks

In this paper, we have presented a simple and unified framework for analyzing ratio-
nalizable strategic behavior in general environments—i.e., arbitrary strategic games
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with various modes of behavior; in particular, we have introduced the “model of situa-
tion” to define the notion of rationalizability in games with (in)finite players, arbitrary
strategy spaces, and arbitrary payoff functions. In this paper, we have focused on the
concept of rationalizability in strategic games and aimed at identifying the maximal
domain of environments to which most of well-known properties of the rationaliz-
ability notion in finite games can be extended. We have shown that the notion of
rationalizability possesses nice properties similar to those in finite games discussed
in standard textbooks. Our approach in this paper is completely topology-free and
with imposing no measure-theoretic assumption on the structure of the game and is
applicable to any arbitrary strategic game.

We would like to emphasize that one important feature of this paper is that the
framework allows the players to have different preferences which include the subjec-
tive expected utility as a special case. In the light of the analysis of this paper, we seek
fairly natural and few behavioral assumptions on players’ preference relations as weak
as possible to make our analysis applicable to a wide range of strategic problems; in
particular, we do not assume that preferences have utility function representations.
The general analysis of this paper is applicable to any arbitrary strategic game with
various modes of behavior.19

To close this paper, we would like to point out some possible extensions of this
paper for future research. The extension of this paper to general gameswith incomplete
information or with complex social and coalitional interactions is an important and
intriguing subject for further research. The exploration of the notion of extensive-
form rationalizability in general dynamic games is also an important research topic
for further study [see, e.g., Greenberg et al. (2009) and Vannetelbosch (1999) for some
related work in this direction].
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