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Abstract We answer the question asked by Robert Aumann as to whether core equiv-
alence depends on there being “many more agents than commodities.” We show that
for a large class of commodity spaces, which might be infinite-dimensional and even
non-separable, core equivalence is indeed equivalent to the presence of “many more
agents than commodities” when allocations are Bochner integrable. By contrast, we
show that in a classical model of an atomless economy with an infinite-dimensional
commodity space, the model where the commodity space is L∞(μ) with the Mackey
topology and allocations are Gelfand integrable, core equivalence holds in full gener-
ality, evenwhen there are “manymore commodities than agents.” The assumptionswe
make on economies are much weaker than what is commonly used in core equivalence
results for infinite-dimensional commodity spaces and reduce to Aumann’s original
assumptions when there are finitely many commodities.
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1 Introduction

That in an economic environment with many insignificant agents all gains from trade
are exhausted precisely at market outcomes is an idea going back to Edgeworth in the
nineteenth century. The clearest andmost natural formulation of this idea can be found
in Aumann (1964). Taking an atomless measure space to represent the set of agents, so
that in a mathematically precise sense there are many agents, each of them being neg-
ligible in the set of all agents, Aumann showed in his core equivalence theorem, under
surprisingly weak assumptions, that the core allocations of an economy are exactly the
Walrasian allocations. In Aumann’s model, the number of commodities is finite. Of
course, with finitely many commodities, an atomless measure space of agents does not
just mean “many agents,” but actually means “many more agents than commodities.”
One may see “many more agents than commodities” as an assumption on top of that
of “many agents” and may ask whether it is important for core equivalence that the
former assumption holds in addition to the latter. The issue was raised by Aumann
himself. As Mertens writes in the 1991 reprint of his core equivalence paper from
1970: “If I remember correctly that conversation with R. Aumann, he was stressing
the importance of going beyond the separable case […] to check whether equivalence
did not depend on there being (many) more traders than commodities.”

It was first shown by Tourky and Yannelis (2001) that the “many more agents
than commodities” aspect of Aumann’s model indeed matters for core equivalence,
even when the space of agents is atomless. Assuming the generalized continuum
hypothesis, Tourky and Yannelis showed that, given a vector space E whose algebraic
dimension is at least the cardinal of the continuum, there are a vector order and a norm
on E , so that E becomes an ordered non-separable Hilbert space with positive cone
having non-empty interior, and an economy with an atomless measure space of agents
and E as commodity space such that—allocations taken to be Bochner integrable—
all assumptions made in Aumann (1964) hold, but such that core equivalence fails.
Extending the scope of the result in Tourky and Yannelis (2001), it was shown in
Podczeck (2003) that core equivalence can fail whenever the commodity space is a
non-separable Banach space.

Of course, the algebraic dimension of a linear space provides a natural way to
extend the usual notion of “number of commodities” to infinite-dimensional commod-
ity spaces. However, there is a problem. The algebraic dimension of every infinite-
dimensional Banach space is at least the cardinal of the continuum, even without
the continuum hypothesis.1 On the other hand, there are (positive) core equivalence
results for commodity spaces that are separable infinite-dimensional Banach spaces,
e.g., Rustichini and Yannelis (1991). A main factor behind these results is that in a
separable commodity space, trades among agents can be approximated by points in
some countable subset, so that, with continuous preferences, all welfare gains through
trading can be approximately achieved in a countable subset of the commodity space.
From this perspective, a separable infinite-dimensional commodity space looks as if
there were just countably many commodities. So, one may view an atomless economy

1 This was first shown in Mackey (1945). An alternative proof can be found in Lacey (1973).
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Edgeworth’s conjecture 95

where the commodity space is an infinite-dimensional but separable Banach space as
an economy in which there are “many more agents than commodities,” even though
the algebraic dimension of the commodity space is not smaller than the cardinal of the
continuum. In particular, if one wants to interpret core equivalence as a manifestation
of “many more agents than commodities,” one cannot use the algebraic dimension of
a commodity space as the notion of the number of commodities.

In this paper, we formalize the idea of “many more agents than commodities”
as a condition that is satisfied in an atomless economy whenever the commodity
space is separable; see Sect. 4. In Sect. 5, we then consider the case in which the
commodity space is an ordered Banach space whose positive cone has non-empty
interior, and allocations are taken to be Bochner integrable (the setting treated in
Tourky and Yannelis 2001; Podczeck 2003) and show that under assumptions on the
primitives of an economy exactly as in Aumann (1964), core equivalence is indeed
equivalent to the presence of “many more agents than commodities,” without any
special set-theoretic assumptions in the background.

There are some subtleties, concerning the order of the commodity space and the
fact that the assumptions in Aumann (1964) do not include transitivity of preferences.
For a discussion of these points and for relevant results, see Sect. 5. In Sect. 6, we show
that the identification of core equivalence with “many more agents than commodities”
also holds for many economically relevant commodity spaces which are not covered
by the previous results, in particular for the L p-spaces, 1 ≤ p < ∞.

In Sect. 7, we revisit the setting of Mertens’ (1970) core equivalence result. The
commodity space is L∞(μ) with the Mackey topology and feasibility is defined in
terms of the Gelfand integral, viewing L∞(μ) as the dual of L1(μ). In particular,
continuity of preferences is requiredwith respect to theMackey topology. It is assumed
in Mertens (1970) that L∞(μ) with the Mackey topology is separable; thus, there are
“manymore agents than commodities.”We show, however, that core equivalence holds
without this assumption. In fact, there might be many more commodities than agents.
This also answers a question raised by Mertens. By weakening some assumptions
made by Mertens, we actually get a core equivalence result that reduces to that of
Aumann (1964) when the number of commodities is finite.

So, the notion of integral chosen to define feasibility of allocations matters for core
equivalence. The crucial difference in this regard between theGelfand and the Bochner
integral is that with the latter integral, an allocation must be strongly measurable and
therefore essentially separably valued. If the commodity space itself is not separable,
this means that Bochner integrable allocations take values in thin subspaces of the
commodity space, which, compared with the case of Gelfand integrable allocations,
makes the blocking possibilities of any coalition rather limited.

The organization of this paper is as follows. The next section contains the principal
definitions. Section 3 contains a restatement of Aumann’s (1964) core equivalence
theorem, which is the point of reference for our results, which are stated in Sects. 5–
7, after a Sect. 4 where our formalization of the notion of “many more agents than
commodities” may be found. The proofs of our results are given in Sects. 8–11. In
Appendix 1, connections between some of the assumptions we use and assumptions
known from the literature are established, and in Appendix 2, some mathematical
background information is provided.
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96 M. Greinecker, K. Podczeck

2 Notation and terminology

(1) Let E be a linear topological space. Assume that some notion of integrability for
functions from measure spaces to E is given. Now an economy E with commodity
space E is given by a list E = [(T,T , ν), 〈Xt ,�t , e(t)〉t∈T ] where
– (T,T , ν) is a complete probability space, representing the space of agents;
– Xt ⊆ E is the consumption set of agent t ;
– �t ⊆ Xt × Xt is the (strict) preference relation of agent t ;
– e(t) ∈ E is the initial endowment of agent t ;
– the endowment map e : T → E , given by t 
→ e(t), is integrable.

The economy E is said to be atomless if the probability space (T,T , ν) of agents is
atomless.

An allocation in the economy E is an integrable function f : T → E such that
f (t) ∈ Xt for almost all t ∈ T . An allocation f is said to be feasible if

∫
T
f (t) dν(t) =

∫
T
e(t) dν(t) .

Price systems are continuous linear functionals on the commodity space E . A Wal-
rasian equilibrium for the economy E is a pair (p, f ), where f is a feasible allocation
and p is a price system, such that for almost every t ∈ T :

(i) p f (t) ≤ pe(t) and
(ii) if x �t f (t) then px > pe(t).2

A feasible allocation f is said to be aWalrasian allocation if there is a price vector p
such that the pair (p, f ) is aWalrasian equilibrium.An allocation f is a core allocation
if it is feasible and if it cannot be blocked by any non-negligible coalition, i.e., if there
is no S ∈ T with ν(S) > 0 and no allocation g : T → E such that

(i)
∫
S g(t) dν(t) = ∫

S e(t) dν(t), i.e., g is feasible for S, and
(ii) g(t) �t f (t) for almost all t ∈ S.

The core is the set of all core allocations.

(2) We need to fix some additional notation and terminology.
(a) If E is a linear topological space, E∗ denotes the (topological) dual space, i.e.,

the space of all continuous linear functionals on E .
(b) If E is an ordered linear space, we write ≥ for the order of E , and E+ for the

positive cone; thus, E+ = {x ∈ E : x ≥ 0}. Elements of E+ are called positive. We
write x > y to mean “x ≥ y and x = y.”

(c) If E is an ordered linear topological space, i.e., an ordered linear space endowed
with a linear space topology such that the positive cone E+ is closed, then E∗ is
always viewed as being endowed with the dual order defined from E ; thus for any

2 To avoid unnecessary clutter of parentheses, we frequently write qx , rather than q(x), for the value of a
linear functional q at a point x in its domain when no confusion can arise.
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Edgeworth’s conjecture 97

p, q ∈ E∗, p ≥ q means px ≥ qx for all x ∈ E+, so that, in particular, E∗+ =
{p ∈ E∗ : px ≥ 0 for all x ∈ E+}.

(d) Let E be an ordered linear topological space.
(i) An element x ∈ E is called strictly positive if x ≥ 0 and px > 0 for every

p ∈ E∗ with p > 0. Of course, if E = R
� with the usual topology and order, then

this definition says nothing else than that a vector is strictly positive if it is larger than
zero in each coordinate. A more general fact is that if E is locally convex and E+ has
non-empty interior, then the strictly positive vectors in E are the interior points of E+
(see Aliprantis and Tourky 2007, Lemma 2.17, p. 73).

(ii) A linear functional on E , in particular an element p ∈ E∗, is called strictly
positive if px > 0 for every x ∈ E with x > 0.

(iii) Note that if E+ has non-empty interior, or if E is a Banach lattice, then any
positive linear functional on E is continuous, i.e., belongs to E∗.

(e) A convex subset H of a cone Λ in a vector space E is a base of Λ if for each
x ∈ Λ\{0}, there is a unique h ∈ H and a unique λ > 0 such that x = λh; if E is a
normed space, then such a set H is said to be a bounded base of the cone Λ if H is a
norm-bounded subset of E .

Remark 1 Let E be an ordered normed space and suppose that E+ has a base H .
Then by Aliprantis and Tourky (2007, Theorem 1.47 and Exercise 2, p. 42), there is
a strictly positive linear functional q on E such that H = {x ∈ E+ : qx = 1}. If E+
has an interior point, such a q must be continuous, i.e., must be an element of E∗+. It
follows from these two facts that if E+ has a bounded base and an interior point, then
the dual cone E∗+ must have non-empty interior for the dual norm.

Remark 2 The notion of “strictly positive” as stated in (d)(i) involves the topology of
E in an essential way. For example, if (Ω,Σ,μ) is a σ -finite measure space, then for
L∞(μ) with the Mackey topology defined from the duality with L1(μ), an element
p ∈ L∞(μ) is strictly positive if (for any of its versions) p(ω) > 0 a.e. in Ω , while
for L∞(μ) with the ‖·‖∞-topology, a p ∈ L∞(μ) is strictly positive if and only if
there is an ε > 0 such that p(ω) > ε a.e. in Ω .

3 Aumann’s classical core equivalence result

In Aumann’s (1964) model, the commodity space E isR� (with the usual topology and
order) and allocations are Lebesgue integrable functions. The following assumptions
are made by Aumann (1964):

(P) (Positive consumption) For each t ∈ T , Xt = E+.
(D) (Desirability) For each t ∈ T ,�t is strictly monotone, i.e., if x , y ∈ Xt and x > y
then x �t y.
(C) (Continuity) For each t ∈ T and each x ∈ Xt , the set {y ∈ Xt : y �t x} is open
in Xt .
(AM) (Aumann measurability) If f , g are allocations, then {t ∈ T : f (t) �t g(t)} is
a measurable set.
(EC) (Endowments are consumption vectors) For each t ∈ T , e(t) ∈ Xt .
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98 M. Greinecker, K. Podczeck

(RA) (Resource availability) The aggregate endowment
∫
T e(t) dν(t) is strictly posi-

tive.

Here is Aumann’s (1964) classical core equivalence result.

Theorem 1 Let E be an atomless economy with commodity space E = R
�. If (P),

(D), (C), (AM), (EC), and (RA) are satisfied, then the core of the economy E coincides
with the set of Walrasian allocations.

A few remarks are in order. In Aumann (1964), the continuity assumption on pref-
erences is stated in a form slightly stronger than (C); not only the upper sections of
the preference relations are assumed to be open, but also the lower sections. However,
in the proof given by Aumann, only the former assumption is used.

Instead of assuming (AM), several papers on core equivalence make a weaker
measurability assumption in which only constant allocations are compared. We refer
toPodczeck (2004) for a discussionof the relationship between these twomeasurability
assumptions.

There is a growing literature on core equivalence in atomless economies with asym-
metric information among agents; see, e.g., Einy et al. (2001),Angeloni andMartins-da
Rocha (2009), and Hervés-Beloso et al. (2005). We will not investigate this context
here.

4 Many more agents than commodities

In this section, we want to give the phrase “many more agents than commodities” a
precise definition. For this, we need some more notation.

(a) We write c for the cardinal of the continuum, i.e., the cardinal of R.
(b) If E is a linear space, we write dima(E) for the algebraic dimension of E ,

i.e., the least cardinal of any subset of E with a full linear span, and if E is actually
a linear topological space, we write dim(E) for the least cardinal of any subset of
E with a dense linear span. As noted in the introduction, dima(E) ≥ c if E is an
infinite-dimensional Banach space.

(c) Given an atomless probability space (T,T , ν), we write N (ν) for the ideal of
null sets in T , and addN (ν) for the least cardinal of any family inN (ν) whose union
is not in N (ν). Note that addN (ν) ≤ c. (To see this, let 〈Tn〉n∈N be a sequence of
partitions of T into measurable subsets such that for each n, ν(A) = 2−n for each
A ∈ Tn . Then the non-empty sets of the form

⋂
n An , where An ∈ Tn for each n, form

a partition of T into no more that c null sets.) But of course, addN (ν) is uncountable
because the union of countably many null sets is a null set.

Now let (T,T , ν) be an atomless probability space of agents, and E a linear
topological space, taken to be the commodity space. In Tourky and Yannelis (2001),
dima(E) is the notion of number of commodities, and “many more agents than com-
modities” is formally expressed by saying that addN (ν) > dima(E).3 However, as

3 Actually, to give the “number of agents” a formal expression, Tourky andYannelis (2001) define a cardinal
for a probability space, which they call the “weight” of this space. Now if a probability space (T,T , ν) is
Footnote 3 continued
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Edgeworth’s conjecture 99

pointed out in the introduction, one may well view an atomless economy where the
commodity space is a separable infinite-dimensional Banach space as an economy
with “many more agents than commodities.” But this is incompatible with the formal-
ization above, because addN (ν) ≤ c but dima(E) ≥ c if E is an infinite-dimensional
Banach space.

A notion of the “number of commodities” which is more permissive than dima(E)

is provided by dim(E). Informally, while dima(E) amounts to a notion of the number
of commodities in physical terms, dim(E) amounts to a notion of the number of
commodities in economic terms, incorporating certain substitutability relations among
commodities. Of course, if E = R

�, then dim(E) = dima(E), and dim(E) is just the
number of commodities in the usual sense. Here is our formalization of “many more
agents than commodities,” following that inTourky andYannelis (2001) concerning the
side of the agents, but with dim(E) in place of dima(E) on the side of the commodities.

Definition 1 An atomless economy satisfies (MMATC) (has “manymore agents than
commodities”) if addN (ν) > dim(E), where E is the commodity space of the econ-
omy and ν is the measure on the set of agents.

Now according to this definition, there are “manymore agents than commodities” in an
atomless economy whenever the commodity space is separable. But it should be noted
that (MMATC) may not imply separability of the commodity space. As an example
of what is conceivable, take the unit interval with Lebesgue measure for the space of
agents, and recall that under Martin’s axiom, addN (ν) = c if ν is Lebesgue measure,
and that Martin’s axiom is compatible with c being an arbitrarily large cardinal (see
Jech 2003, Theorem 16.13 and Corollary 26.41, or Appendix 2). So, we can have
plenty of uncountable cardinals κ for which (MMATC) holds with dim(E) = κ .

5 Core equivalence when the commodity space is an ordered Banach space
whose positive cone has non-empty interior

In this section, we adopt the setting considered by Tourky andYannelis (2001) to relate
the core equivalence problem to the notion of “many more agents than commodities:”
The commodity space E is an ordered Banach space with positive cone having non-
empty interior, and allocations are taken to be Bochner integrable.

The first theorem in this section shows that, in this setting, Aumann’s classical core
equivalence result carries over verbatim to an infinite-dimensional commodity space
provided that there are “many more agents than commodities.” As this latter condition
trivially holds if the commodity space is R�, the theorem contains Aumann’s result as
a special case. In particular, the theorem significantly strengthens the core equivalence
result of Tourky and Yannelis (2001), showing that, as in Aumann’s result, transitivity
and irreflexivity of preferences are not needed. Recall that (MMATC) may not imply
that the commodity space is separable.

atomless, this cardinal is the same as addN (ν). We will use this latter expression because it is standard
terminology in measure theory and has a more compact definition.
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Theorem 2 Let E be an ordered Banach space whose positive cone E+ has non-
empty interior and let E be an atomless economy with commodity space E such that
(P), (D), (C), (AM), (EC), (RA), and (MMATC) are satisfied. Then the core of the
economy E coincides with the set of Walrasian allocations.

In fact, in the context of Theorem 2, the assumption of “many more agents than
commodities” is pivotal for core equivalence:

Theorem 3 Let (T,T , ν) be an atomless probability space, and E an orderedBanach
space such that E+ has non-empty interior and E∗ has strictly positive elements. If
addN (ν) ≤ dim(E), then there is an economy E with (T,T , ν) as space of agents
and E as commodity space such that (P), (D), (C), (AM), (EC), and (RA) are satisfied
but such that there is a core allocation which is not Walrasian.

This remains true if all individual endowments are required to be strictly positive.

Together, Theorems 2 and 3 show that (MMATC) is essentially equivalent to core
equivalence. In the proof of Theorem 3, strictly positive prices are used to construct
strictly monotone preferences. Of course, if the commodity space is such that there
are no strictly positive prices, then there can be no economies with strictly monotone
preferences and a Walrasian equilibrium, and the question addressed by Theorem 3
becomes pointless.

In the context of Theorems 2 and 3, preferences need not be transitive. Transitivity
may be seen as a reasonable property of preferences. So, let us state this property
formally as an assumption.

(Tr) For each t ∈ T , �t is transitive.

The next theorem, together with the subsequent example, shows that if (Tr) is assumed,
then, in the context of Theorem 2, “many more agents than commodities” need no
longer be a prerequisite for core equivalence. As may be inferred from the proof, the
reason is that the effects of strict monotonicity of preferences can be strengthened by
transitivity, so that it becomes easier for any non-negligible group of agents to find
common directions of improvement.

Theorem 4 Let K be a compact Hausdorff space and let the commodity space E be
C(K ) with the usual norm and order. Let E be an atomless economy satisfying (P),
(D), (C), (AM), (EC), (RA), and (Tr). Let M1+(K ) be the set of tight Borel probability
measures on K . If M1+(K ) is first countable in the weak∗-topology, then the core of
the economy E coincides with the set of Walrasian allocations.

Example Let E = C(I �) where I � is the split interval (or “double arrow space”),
i.e., I � = (0, 1] × {0} ∪ [0, 1) × {1} ⊆ R

2, endowed with the lexicographical order
topology; see, e.g., Engelking (1989, 3.10.C, p. 212). The space I � is a separable
compact Hausdorff space, and as shown in Pol (1982), the spaceM1+(I �) of tight Borel
probability measures on I � is weak∗-first countable. Separability of I � implies that
M1+(I �) has elements with full support. Thus, the dual of C(I �) has strictly positive
elements, so Assumptions (P) and (D) are simultaneously satisfiable for C(I �) as
commodity space. Thus, economies satisfying the assumptions in Theorem4 forC(I �)

as commodity space do exist. Now the order of I � has continuummany “jumps,” so the
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Edgeworth’s conjecture 101

weight of I � is c. This implies that dim(C(I �)) = c (use Engelking 1989, 3.2.I, p. 147,
together with Fact 1 in Sect. 8). Hence, as addN (ν) ≤ c for any atomless probability
measure, (MMATC) fails for any atomless economy with commodity space C(I �).

Now in the results on failure of core equivalence presented in Tourky and Yannelis
(2001) and Podczeck (2003), preferences actually have continuous utility representa-
tions and are, in particular, transitive. So, one may ask for the relationship between
these results and Theorem 4. The point is that in the core non-equivalence results in
Tourky and Yannelis (2001) and Podczeck (2003), the positive cone of the commodity
space has a bounded base [see 2(2)(e)] in addition to having a non-empty interior.
On the other hand, in Theorem 4 the commodity space is Banach lattice. It is a well-
known fact that no infinite-dimensional Banach lattice can have simultaneously a non-
empty interior and a bounded base,4 and therefore there is no contradiction between
Theorem 4 and the core non-equivalence results in Tourky and Yannelis (2001) and
Podczeck (2003).

As noted in the introduction, in these non-equivalence results the continuumhypoth-
esis is assumed.5 Of course, if the continuum hypothesis holds, then our condition
(MMATC) is equivalent to the commodity space being separable. In view of this, the
continuum hypothesis is not just an innocent assumption, but imposes severe restric-
tions on the scope of our notion of “many more agents than commodities.” It is there-
fore desirable to avoid the continuum hypothesis. Our next theorem shows that if the
positive cone of the commodity space has a bounded base, as in the above mentioned
results of Tourky and Yannelis (2001) and Podczeck (2003), then Theorem 3 remains
true for preferences with continuous utility representations, without any need for the
continuum hypothesis.

(UR) For each t ∈ T , �t has a continuous utility representation.

Theorem 5 Let the commodity space E be an ordered Banach space such that E+
has non-empty interior. If E+ has a bounded base, then given an atomless economy E ,
conditions (P), (D), (C), (AM), (EC), (RA), and (UR) together imply core equivalence
if and only if (MMATC) is satisfied.

This remains true if all individual endowments are strictly positive.

To compare Theorems 4 and 5, recall that if E is an ordered Banach space such
that E+ has a bounded base and non-empty interior, then the dual cone E∗+ must have
non-empty interior for the dual norm (see Remark 1), whereas if E is an infinite-
dimensional Banach lattice such that E+ has non-empty interior, then E∗+ has empty
interior. Thus, if preferences are strictly monotone, so that the members of E∗+ reflect

4 To see this, use Remark 1 and the fact that if E is an infinite-dimensional Banach lattice such that E+
has non-empty interior, then the dual cone E∗+ has empty norm-interior.
5 Actually, in Tourky and Yannelis (2001), GCH (the generalized continuum hypothesis) is assumed, and
in addition, it is assumed that the algebraic dimension of the commodity space is a regular cardinal. But this
excludes many possible commodity spaces from the analysis. For example, let A be a set such that #(A) is
a singular cardinal with uncountable cofinality, such as ωω1 . Then #(A) ≥ c by CH. Let E = �2(A). Then
#(A) ≤ dima(E) ≤ #(E) ≤ cω · #(A)ω = #(A)ω . Since cf(#(A)) > ω, GHC implies that #(A)ω = #(A),
so dima(E) = #(A), a singular cardinal. Note that it is relatively consistent that GCH holds and every
uncountable limit cardinal is singular, i.e., is not weakly inaccessible (Kunen 2011, Corollary II.6.26).
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the possible marginal rates of substitution, then the latter casemay be seen as imposing
more restrictions on the possible diversity of preferences than the former.

Remark 3 A vector order such that the positive cone has both a bounded base and a
non-empty interior exists on every Banach space. For example, given a Banach space
E , let Λ be an “ice cream cone” in E , i.e., a closed convex cone of the form

Λ = {
x ∈ E : qx ≥ ε‖x‖}

where q ∈ E∗ is of norm 1 and ε is a number with 0 < ε < 1 (see Aliprantis and
Tourky 2007, p. 99). Setting x ≥ y whenever x − y ∈ Λ defines a vector order on E
such that E+ = Λ. The fact that q is of norm 1 and ε < 1 implies thatΛ has non-empty
interior. Evidently the set H = {x ∈ Λ : qx = 1} is a base of Λ. Moreover, if x ∈ H ,
then ‖x‖ ≤ 1/ε, and thus H is bounded.

In view of this remark, we have the following corollary of Theorem 5, which parallels
the statement of the core non-equivalence results in Tourky and Yannelis (2001) and
Podczeck (2003) (but without the continuum hypothesis).

Corollary Let E be a Banach space and (T,T , ν) an atomless probability space.
Suppose dim(E) ≥ addN (ν). Then there is a vector order on E, for which E is an
ordered Banach space with int E+ = ∅, and an economy E , with (T,T , ν) as space
of agents and E as commodity space, such that (P), (D), (C), (AM), (EC), (RA), and
(UR) hold, but such that there is a core allocation which is not Walrasian.

This is the case even when all individual endowments are required to be strictly
positive.

6 Core equivalence when the commodity space is an order-continuous Banach
lattice

Infinite-dimensional commodity spaces arising in applications often require dealing
with consumption sets having empty interior. Such contexts are not covered by the
treatment in the previous section. In this section, we allow for consumption sets with
empty interior. We will restrict attention to the framework where the commodity space
is a Banach lattice with order-continuous norm (in short, an order-continuous Banach
lattice). This framework is sufficiently general for the core equivalence problem to be
of interest when consumption sets may have empty interior. Note that the L p-spaces
for 1 ≤ p < ∞ are covered.

It is well known that if the commodity space is infinite-dimensional and consump-
tion sets have empty interior, then continuity of preferences does not guarantee appro-
priate bounds on marginal rates of substitution in order for preferred sets to have sup-
porting price vectors. As a consequence, core equivalence may fail through marginal
rates of substitution that are not properly bounded; see Example 5.1 in Rustichini and
Yannelis (1991). To avoid such a technical failure of core equivalence, which is unre-
lated towhether or not there are “manymore agents than commodities,”wewill employ
the following assumption, which is a rephrasing of the notion of “extremely desirable
commodity” used in the core equivalence result in Rustichini and Yannelis (1991).
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(EDC) (Extremely desirable commodity) There are a v ∈ E+\{0} and a strictly
positive q ∈ E∗ such that for each t ∈ T and any number λ > 0, x+λ(v+u) �t x
whenever x ∈ Xt and u ∈ E are such that x + λ(v + u) ∈ Xt and q|u| < 1.

Here |u| is the absolute value of u, i.e., the supremum of u and −u. Actually, in Rus-
tichini and Yannelis (1991) the notion of “extremely desirable commodity” is stated
for the case in which the consumption sets of the agents are equal to the positive cone
of the commodity space. In Appendix 1(A), we show that, in this case, the notion of
“extremely desirable commodity” in the statement of (EDC) is indeed equivalent to
that in Rustichini and Yannelis (1991). For us, the version we use is easier to operate
with.

Another assumption that has been used in the context of core equivalence to deal
with consumption sets with empty interior is as follows.

(US) (Uniform substitutability) There are strictly positive linear functionals a and
b ∈ E∗, with a ≤ b, such that for each t ∈ T , x + v − u �t x whenever x ∈ Xt

and u, v ∈ E+ are such that x + v − u ∈ Xt and av > bu.

This condition was developed by Zame (1986). In (B) in Appendix 1, we show that
(US) implies (EDC). Observe that if E = R

�, then (EDC) is automatically satisfied if
(P) and (D) are. This is not true of (US).

As in the previous section, allocations are taken to be Bochner integrable in the
following theorem.

Theorem 6 Let the commodity space E be an order-continuous Banach lattice such
that E+ has strictly positive elements. Then given an atomless economy E , Assump-
tions (P), (D), (C), (AM), (EC), (RA), (Tr), and (EDC) together imply core equivalence
if and only if (MMATC) is satisfied.

This remains true if all individual endowments are strictly positive and if (EDC) is
strengthened to (US), and (Tr) to (UR).

Remark 4 The sufficiency part of Theorem 6 remains true if the requirement that E be
order-continuous is dropped; see the proof of this theorem. However, by Theorem 4
and the example following the statement of that theorem, the necessity part does not
hold in all Banach lattices.

7 Core equivalence when the commodity space is L∞(µ) with the Mackey
topology

In this section, the commodity space E is taken to be L∞(μ) endowedwith theMackey
topology defined from the usual pairing of L∞(μ) with L1(μ), the measure μ being
σ -finite, and allocations are taken to be Gelfand integrable, viewing L∞(μ) as the
(norm) dual of L1(μ). Recall that the usual pairing of L∞(μ) and L1(μ) is given by
integration, i.e., px = ∫

Ω
p × x dμ, p ∈ L1(μ), x ∈ L∞(μ) and that the Mackey

topology of L∞(μ) for this pairing is the strongest locally convex topology on L∞(μ)

such that L1(μ) is the (topological) dual. In the sequel, we will refer to this topology
simply as the Mackey topology of L∞(μ).
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According to the definitions in Sect. 2, price vectors are taken to be elements
of the topological dual of the commodity space, so, as in Mertens (1970), they are
now required to be in L1(μ). Furthermore, assumptions (C) and (RA), which involve
topological notions, have now to be interpreted in the Mackey topology of L∞(μ).
In particular, (RA) does not imply that the aggregate endowment of an economy is
strictly positive for the ‖·‖∞-topology of L∞(μ).

Remark 5 It has been argued in Tourky and Yannelis (2001, Remark10.1) that weak
integrals such as the Gelfand or Pettis integral may be inappropriate to define feasi-
bility of allocations, because there could be functions with integral equal to zero that
are everywhere positive and nonzero. (E.g., let (T,T , ν) be the unit interval with
Lebesgue measure, let E be the Hilbert space �2([0, 1]), and define h : T → E by
setting h(t) = 1{t} for each t ∈ T .) Under Assumptions (P) and (D), adding such a
function to a given allocation improves every agent without affecting feasibility. As a
consequence of this kind of free lunch, the core would be empty and core equivalence
holds trivially. This is not a problem in the setting defined above. As the measure μ is
σ -finite, there is a strictly positive element p ∈ L1(μ). Now for x ∈ E+, px = 0 can
happen only if x = 0. So, under Assumption (P), an allocation with Gelfand integral
equal to zero must be zero almost everywhere in T . See (D) of Appendix 1 for a more
precise statement.

The following assumption, which is stronger than Assumption (RA) if L∞(μ) is
infinite-dimensional, is implied by the assumptions made in Mertens (1970) on the
endowments in an economy [see (C) in Appendix 1].

(TAE) (Thick aggregate endowment) There is a non-decreasing sequence 〈en〉 of
‖·‖∞-Bochner integrable functions en : T → E+ such that en(t) → e(t) in the
Mackey topology a.e. in T and such that

∫
T en(t) dν(t) ∈ ‖·‖∞-int E+ for each n.6

Observe that (TAE) does not imply the initial allocation to be ‖·‖∞-Bochner inte-
grable. In fact, the initial allocation need not even be ‖·‖∞-strongly measurable. But
of course, (TAE) implies that the aggregate endowment of an economy belongs to the
‖·‖∞-interior of E+ and that there is aMackey-separable subset of E+ which contains
the individual endowment of almost all agents. In these latter two aspects, (TAE) is
stronger than (RA).

In view of the fact that the indefinite Bochner integrals of the functions en are ν-
continuous, (TAE) says that small groups of agents can have no corner (i.e., monopoly
power) on the market, in the sense that, for some ε > 0, if T ′ ⊆ T is such that
ν(T ′) < ε, then

∫
T\T ′ e(t) dν(t) ∈ ‖·‖∞- int E+, i.e., the aggregate endowment of the

complementary group T \T ′ contains all commodities.
Note that (TAE) does not imply that the individual endowments e(t) are in the ‖·‖∞-

interior of E+. In this aspect, (TAE) is actually more general than the assumptions
on endowments made in Mertens (1970). In fact, when E = R

� and (EC) holds, then
(TAE) is equivalent to (RA).

6 Bochner integrability of the maps en implies that they are also Gelfand integrable; moreover, the integrals
according to these two notions of integrability agree. Thus, the statement of (TAE) is consistent with the
present setting where allocations are taken to be Gelfand integrable.
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In the following core equivalence result, (MMATC) does not play any role; the
“size” of the commodity space may be arbitrarily large, without any relation to prop-
erties of the space of agents. Note in this regard that for any cardinal κ , there is a
probability measure μ such that least cardinal of any subset of L∞(μ) whose linear
span is dense in L∞(μ) for the Mackey topology is larger than κ . (Just look at the
usual measure on {0, 1}κ , where κ is an arbitrary cardinal.)

Theorem 7 Let (Ω,Σ,μ) be a σ -finite measure space and let the commodity space
E be L∞(μ)with theMackey topology. Let E be an atomless economywith commodity
space E such that (P), (D), (C), (AM), and (TAE) are satisfied. Then the core of the
economy E coincides with the set of Walrasian allocations.

As noted above, if E = R
� and (EC) is satisfied, then (TAE) is equivalent to (RA), so

Theorem 7 includes Aumann’s core equivalence result as a special case. In the core
equivalence result of Mertens (1970), individual endowments are assumed to belong
to ‖·‖∞- int E+; also, the desirability assumption includes a transitivity requirement.
For these reasons, Merten’s result does not include that of Aumann.

As already noted in the introduction, in Mertens (1970) the commodity space is
assumed to be separable for the Mackey topology. However, Mertens asked whether
this assumption may be dropped. Our result above gives an affirmative answer.

As also noted above, assumption (TAE) is stronger than (RA). The next theorem
shows that if the assumptions on preferences are strengthened so as to include (EDC)
and (Tr), then core equivalence holds again with the standard assumptions (RA) and
(EC), and (TAE) is not needed.7

Theorem 8 Let (Ω,Σ,μ) be a σ -finite measure space and let the commodity space
E be L∞(μ)with theMackey topology. Let E be an atomless economywith commodity
space E. If (P), (D), (C), (AM), (RA), (EC), (Tr), and (EDC) are satisfied, then the
core of the economy E coincides with the set of Walrasian allocations.

Note that, given some price system, optimal consumptions of agents, and hence their
demands, reflect marginal rates of substitution. Assumption (EDC) imposes bounds on
marginal rates of substitution, uniformly across the agents in an economy. Thus, this
assumption may be seen as implying that small groups of agents cannot have monop-
sony power in the market. As remarked above, (TAE) may be seen as an assumption
implying that small groups of agents cannot have monopoly power in the market.
Thus, what drives the two core equivalence results in this section seems to be that the
assumptions imply that there is some kind of “thickness” on at least one side of the
market.

8 Preliminaries for the proofs

In this section, we introduce further notation, record two basic facts, and make some
general preparing remarks for the proofs.

7 In the statement of (EDC), the functional q is required to be in the topological dual of the commodity
space, which now means that this functional must be an element of L1(μ).
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(1) (a) Given a measure space (T,T , ν), we write ν∗ for the outer measure defined
from ν.

(b) If Z is a topological space and A ⊆ Z , then int A denotes the interior of A, and
c� A or A the closure of A.

(c) If E is a linear topological space and A ⊆ E , then co A denotes the convex hull
of A, and co A the closed convex hull; further, span A denotes the linear span of A,
i.e., the set of all (finite) linear combinations of members of A.

(d) For elements x , y of a Riesz space X , the expressions x+, x−, |x |, x ∨ y, x ∧ y,
and x ⊥ y have the usual lattice theoretic meaning; we refer to Aliprantis and Tourky
(2007) for this as well as for the Riesz space-related facts that will be used in some of
the proofs below.

(2) If Z is a topological space and A ⊆ Z , then dens(A) denotes the density character
of A, i.e., the least cardinal of any subset of A which is dense in A.

Recall that for a linear topological space E , dim(E) is defined to be the least cardinal
of any set A ⊆ E such that span A is dense in E . By the following fact, wemay replace
the cardinal dim(E) in the definition of (MMATC) by dens(E).8

Fact 1 If E is a linear topological space, then dens(E) = dim(E) if dim(E) is infinite.

(Indeed, it is clear that dim(E) ≤ dens(E). For the reverse inequality, note that if
A ⊆ E and span A is dense in E , then the subset of span A consisting of those linear
combinations of members of A where the coefficients are rational is dense in E , too.)
(3) It will be convenient to have the following definition.

Definition 2 Given a measurable space (T,T ) and a linear space X , we say that a
set A of functions from T to X is decomposable if whenever f , g ∈ A and S ∈ T
then also 1S × f + 1T�S × g ∈ A.

The following fact may be inferred from the proof of Theorem 6.2 in Yannelis (1991,
p. 22).

Fact 2 Let (T,T , ν) be a totally finite measure space, and E a Banach space. Let A
be a set of Bochner integrable functions from T to E and let B = {∫

f : f ∈ A
}
. If

A is decomposable and (T,T , ν) is atomless, then the norm-closure of B is convex.

(4) The theorems to be proved contain the implication that a Walrasian allocation is
a core allocation. That this is true is a standard and well-known fact, so in the proofs
given below we will not look at this implication.
(5) According to the definition of economy as stated in Sect. 2, the probability space
(T,T , ν) of agents is complete. We will invoke this fact frequently without explicit
reference.
(6) In the proofs below, it is assumed without loss of generality that E = {0}whenever
this is needed for an argument but is not implied by the assumptions in force. Note
that the assumption E = {0} means in particular that 0 cannot be an interior point of
the positive cone E+.

8 As the cardinal addN (ν) is uncountable, this replacement leaves the condition in (MMATC) the same
also when dim(E) is finite because in this case dens(E) is of course countable.
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9 Proofs of Theorems 2–4

9.1 Proof of Theorem 2

Let f be a core allocation of the given economy and let

A = {h : T → E : for some S ∈ T , h = 1S × g − 1S × e where

g : T → E+ is a measurable simple function with g(t) �t f (t) a.e. in S} .

Every h ∈ A is ‖·‖∞-Bochner integrable; write B = {∫
h dν : h ∈ A

}
. Clearly, A

is decomposable, so, as ν is atomless, Fact 2 implies that c� B is convex. Moreover,
0 ∈ B, so c� B is non-empty.

Note that (c� B)∩ int(−E+) = ∅. Otherwise, as 0 /∈ int E+, there are a v ∈ int E+
and an S ∈ T with ν(S) > 0 such that

∫
S g dν − ∫

S e dν = −v where g is as in the
definition of A. As the measure ν is atomless and the indefinite Bochner integral of
the function g − e is ν-continuous, we may assume, shrinking the set S if necessary,
that ν(T \S) > 0. For each n ∈ N, set Tn = {t ∈ T \S : e(t) + nv ≥ f (t)}. Note that
Tn ∈ T for each n because the map t 
→ e(t)+ nv − f (t), being Bochner integrable,
is Borel measurable. Now because v, belonging to int E+, is an order unit of E , we
have

⋃∞
n=0 Tn = T\S. Thus, as ν(T\S) > 0, there is an n1 ∈ N such that ν(Tn1) > 0.

Choose n2 ∈ N so that both n2 > n1 and ν(Tn1) > 1/n2. ByAssumptions (D) and (P),
e(t) + n2v �t f (t) for all t ∈ Tn1 . Because ν is atomless, we can choose an F ⊆ Tn1
with ν(F) = 1/n2. Define a function f ′ : T → E+ by setting f ′(t) = g(t) for t ∈ S,
f ′(t) = e(t) + n2v for t ∈ F , and f ′(t) = 0 for t ∈ T \(F ∪ S). Then f ′(t) �t f (t)
for almost all t ∈ F ∪ S. Moreover, f ′ is Bochner integrable and we have

∫
F∪S

f ′(t) dν(t) =
∫
F
e(t) + n2v dν(t) +

∫
S
g(t) dν(t)

=
∫
F
e(t) dν(t) + v +

∫
S
e(t) dν(t) − v =

∫
F∪S

e(t) dν(t) .

Thus, the coalition F ∪ S can block f via f ′, contradicting the property of f being a
core allocation. Thus, (c� B) ∩ int(−E+) = ∅.

Now, as int E+ is non-empty, it follows from the separation theorem that there is
a nonzero positive p ∈ E∗ such that pz ≥ 0 for each z ∈ B. For each x ∈ E+, let
Nx = {t ∈ T : x �t f (t), px < pe(t)}. From Assumptions (P) and (AM), together
with the fact that the map t 
→ pe(t) is measurable, it follows that Nx ∈ T for each
x ∈ E+. Hence, the fact that pB ≥ 0 implies that Nx is a null set for each x ∈ E+.

By (MMATC), E+ has a dense subset D such that addN (ν) > #(D).9 It follows
that N = ⋃

x∈D Nx is a null set, and by Assumptions (P) and (C), and continuity of p:

(∗) For all t ∈ T \N , if x �t f (t), then px ≥ pe(t).

It is now routine to verify that for almost all t ∈ T ,

9 Recall that if Z is a metric space and Y ⊆ Z , then dens(Y ) ≤ dens(Z).
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(i) p f (t) ≤ pe(t);
(ii) if x �t f (t), then px > pe(t).

Note first that by (P) and (D), (∗) implies that p f (t) ≥ pe(t) a.e. in T . Consequently,
since f is feasible, i.e., since

∫
T f (t) dν(t) = ∫

T e(t) dν(t), (i) holds a.e. in T . Let
S = {t ∈ T : pe(t) > 0}. By (C) and (P), (∗) implies that (ii) holds a.e. in S. Now by
(RA), the fact that p is nonzero and positive implies that ν(S) > 0, so by (P) and (D)
again, the fact that (ii) holds a.e. in S implies that p is strictly positive. Consequently,
by (P) and (EC), for t ∈ T \S a failure of (ii) implies that e(t) �t f (t). By (AM), the
set {t ∈ T : e(t) �t f (t)} is measurable. Because f is a core allocation, this set must
be a null set, so (ii) holds also a.e. in T \S. We may conclude that the pair (p, f ) is a
Walrasian equilibrium. ��

9.2 Proof of Theorem 3

Fix an interior point ē of E+ and a strictly positive q ∈ E∗ such that qē = 1. Let
H = {x ∈ E+ : qx = 1}. Observe that dens(H) = dens(E).

Write α = addN (ν) and choose a family 〈Nξ 〉ξ<α of null sets in T such that⋃
ξ<α Nξ is not a null set. Recall that in every metric space of density character κ ,

there is a disjoint family of non-empty open subsets which has cardinal κ (see, e.g.,
Engelking 1989, 4.1.H, or Hodel 1984, Theorem 8.1). As α ≤ dens(H) by hypothesis,
we can therefore find a family 〈Bξ 〉ξ<α of open balls in E , each of them centered at
some point xξ ∈ H , such that the family 〈Bξ ∩ H〉ξ<α of intersections is disjoint.
Using the fact that in a normed space the distance between the centers of two disjoint
open balls cannot be smaller than the sum of the radii of these balls, we see that, in
fact, the family 〈Bξ 〉ξ<α is disjoint.

Now for each agent t ∈ T , let Xt = E+ and e(t) = ē, so that (P) and (EC) are
satisfied. In particular, the initial allocation t 
→ e(t) is Bochner integrable and we
have

∫
T e(t) dν(t) = ē ∈ int E+, so (RA) is also satisfied.

As for preferences, for ξ < α and t ∈ Nξ let

�t=
{
(x, y) ∈ E+ × E+ : qx > qy

} ∪ (
(Bξ ∩ E+) × {ē}),

and for t ∈ T \⋃
ξ<α Nξ let �t=

{
(x, y) ∈ E+ × E+ : qx > qy

}
. As q is strictly

positive, (D) is satisfied, and as each Bξ ∩ E+ is open in E+, (C) is satisfied, too.
Note that any separable subspace S of E can intersect only countablymanymembers

of the family 〈Bξ 〉ξ<α (by the choice of this family). Hence, given any such S, we
must have

�t ∩ S × E ⊆ {
(x, y) ∈ E+ × E+ : qx > qy

}

for almost all t ∈ T . As allocations are Bochner integrable, and Bochner integrable
functions are essentially separably valued, it follows that given any two allocations f ,
g : T → E+, there is a null set N ⊆ T such that

{
t ∈ T : f (t) �t g(t)

}\N = {
t ∈ T : q f (t) > qg(t)

}\N .
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This shows that (AM) is satisfied and also shows that the initial allocation is a core
allocation.

Suppose there is a p ∈ E∗ forwhich the initial allocation isWalrasian. Then q = λp
for some number λ. Otherwise, by a well-known fact from linear algebra, there is a
z ∈ E with pz = 0 and qz > 0, so that p(ē + z) = pē but q(ē + z) > qē. As
ē ∈ int E+, we may assume that ē + z ∈ E+. But then by the choice of preferences,
we have ē+ z �t ē for all t ∈ T , thus getting a contradiction to the assumption that the
initial allocation is Walrasian for p. Now if q = λp, then for the points xξ from above,
we have pxξ = pē. But by the choice of preferences again, we have xξ �t ē for each
t ∈ Nξ and each ξ < α. Because

⋃
ξ<α Nξ is non-negligible, we get a contradiction

as before, and it follows that the initial allocation is not Walrasian. ��

9.3 Proof of Theorem 4

Lemma 1 Let E be an ordered Banach space whose positive cone E+ has a non-
empty interior. Let p ∈ E∗+ \{0}, and let G ⊆ E be such that whenever q ∈ E∗+
satisfies qx = px for all x ∈ G, then q = p. Then there is an H ⊆ E+, with
#(H) ≤ max{#(G), ω}, such that whenever x ∈ E+ and c ∈ R+ satisfy px < c, then
there is a y ∈ H with y > x and py < c.

Proof We may assume both that G ∩ int E+ = ∅ and that pz = 1 for all z ∈ G.
Indeed, as p ∈ E∗+\{0}, we may pick an e ∈ int E+ with pe = 1. Now for each z ∈ G,
set βz = 1 − pz. Let G ′ = {z + βze : z ∈ G} ∪ {e}. Then qz = pz for all z ∈ G
whenever q ∈ E∗+ is such that qy = py for all y ∈ G ′. Note that max{#(G), ω} =
max{#(G ′), ω}. Thus, if necessary, we may replace G by G ′.

Let K be the affine hull of G. In particular, K is convex and pz = 1 for all z ∈ K .
Let x ∈ E+ and suppose px < 1. There must be a z ∈ K such that z ∈ {x} + int E+.
Otherwise, by the separation theorem, there is a nonzero q ∈ E∗ such that qz ≤ qy
for all z ∈ K and y ∈ {x} + int E+. Now q must be positive, and because K is affine,
there must be a number c such that qz = c for all z ∈ K . As K ∩ int E+ = ∅, we
must have c > 0, so replacing q by a suitable scalar multiple, we may assume c = 1.
But then qz = pz for all z ∈ G, and on the other hand, qx ≥ 1 > px , contradicting
the hypothesis on G.

Let L be the set of those members of K for which the coefficients in the represen-
tation as a linear combination of members of G are rational. Then L is dense in K ,
and we have #(L) ≤ max{#(G), ω}. Since L is dense in K , and since for any x ∈ E ,
K ∩ ({x} + int E+) is open in K , it follows from the previous paragraph that given
x ∈ E+ with px < 1, there is a z ∈ L such that z > x .

Set H = {r z : z ∈ L , r ∈ Q} ∩ E+ where Q is the set of rational numbers. Then
#(H) ≤ ω · #(L) ≤ max{#(G), ω}. Suppose x ∈ E+ and c ∈ R are such that px < c.
Pick an r ∈ Q such that px < r < c. Now p 1

r x < 1, so there is a z ∈ L such that
z > 1

r x ; clearly r z > x and px ≤ prz = r < c. Thus, H is as required. ��
Proof of Theorem 4 Let f be a core allocation of the given economy E . As in the
proof of Theorem 2, it follows that there is a nonzero positive p ∈ E∗ such that for
each x ∈ E+ the set Nx = {t ∈ T : x �t f (t), px < pe(t)} is a null set.
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Write v = 1K ∈ C(K ) ≡ E and let Δ = {q ∈ E∗+ : qv = 1}. We may assume
p ∈ Δ. Since Δ may be identified with the set of all tight Borel probability measures
on K , Δ is weak∗-first countable by hypothesis. By the definition of the weak∗-
topology, this means there is a countable set C ⊆ E such that whenever q ∈ Δ and
qx = px for all x ∈ C , then q = p. Of course, we may assume that v is in C , so that
whenever q ∈ E∗+ is such that qx = px for all q ∈ C , then q = p.

By Lemma 1, it follows that there is a countable H ⊆ E+ such that whenever
x ∈ E+ and c ∈ R+ satisfy px < c, there is a y ∈ H with y > x and py < c. As H is
countable, N = ⋃

x∈H Nx is a null set. Now by Assumptions (P), (D), and (Tr), for
any t ∈ T , if there is an x ∈ E+ with x �t f (t) and px < pe(t), then t ∈ N . Thus,
by (P) again, if t ∈ T \N then px ≥ pe(t) whenever x �t f (t). As in the proof of
Theorem 2, it follows that the pair (p, f ) is a Walrasian equilibrium. ��

9.4 Proof of Theorem 5

In view of Theorem 2, the following statement needs to be proved.

Let E be an ordered Banach space such that E+ has both a non-empty interior
and a bounded base, and let (T,T , ν) be an atomless probability space such that
addN (ν) ≤ dens(E). Then there is an economy E , with (T,T , ν) as space of agents
and E as commodity space, such that (P), (D), (C), (AM), (EC), (RA), and (UR) are
satisfied, but such that there is a core allocation which is not Walrasian.

Let E and (T,T , ν) be as in this statement. Let H be a bounded base of E+.
By Remark 1, there is a strictly positive q ∈ E∗ such that H = {x ∈ E+ : qx = 1}.
Choose an interior point ē of E+ with ē ∈ H .

Follow the proof of Theorem 3 down to the start of the construction of preferences.
Now for t ∈ T \⋃

ξ<α Nξ , define preferences exactly as in that proof (in particular,
there is a continuous utility representation). For t ∈ Nξ , ξ < α, let preferences be
given by the continuous utility function ut : E+ → R defined by

ut (x) = qx + k dist
(
x − (qx − 1)ē, H \Bξ

)
, x ∈ E+,

where k > 0 is real number, common for all ξ < α and all t ∈ Nξ . Note that for
the points xξ from the proof of Theorem 3, we have ut (xξ ) > ut (ē) for each t ∈ Nξ ,
ξ < α. Below we will show that the hypothesis that E+ has a bounded base implies
that the number k can be chosen in such a way that the preferences given by the ut ’s
are strictly monotone.

Supposing that has been done, we have, as in the proof of Theorem 3, an economy
such that (P), (D), (C), (EC), and (RA) hold, and now also (UR) in addition. Observe
that for any ξ < α and t ∈ Nξ , and any x ∈ E+, if ut (x) = qx then x + λē ∈ Bξ

for some number λ > 0, and that if S is a separable subspace of E , then so is
S + {λē : λ ∈ R}. Consequently, the fact that allocations are Bochner integrable
and therefore essentially separably valued implies that given any two allocations f ,
g : T → E+, there is a null set N ⊆ T such that

{
t ∈ T : f (t) �t g(t)

}\N = {
t ∈ T : q f (t) > qg(t)

}\N .

123



Edgeworth’s conjecture 111

Thus, as in the proof of Theorem 3, (AM) is satisfied and the initial allocation is a core
allocation. As in that proof, it follows that this allocation is not Walrasian.

Finally, to see that there is a number k > 0 such that the preferences given by the
functions ut are strictly monotone for all t ∈ Nξ and ξ < α, note first that the fact
that H = {x ∈ E+ : qx = 1} is a bounded base of E+ means that there is a number
k′ > 0 such that ‖y‖ < k′qy for all y ∈ E+\{0}, which implies that

∥∥y − (qy)ē
∥∥ ≤ ‖y‖ + (qy)‖ē‖ < k′qy + (qy)‖ē‖

for any y ∈ E+\{0}. Thus, setting k = (
k′ + ‖ē‖)−1, we have qy > k

∥∥y − (qy)ē
∥∥

for such y. Now for any x , y ∈ E+, writing A for H \Bξ ,

dist (x − (qx − 1)ē, A) ≤ ∥∥y − (qy)ē
∥∥ + dist (x + y − (q(x + y) − 1)ē, A) ,

and it follows that

k dist (x − (qx − 1)ē, A) < qy + k dist (x + y − (q(x + y) − 1)ē, A)

for any x , y ∈ E+ with y = 0, showing that the preferences given by the ut ’s are
indeed strictly monotone for the above choice of k. ��

10 Proof of Theorem 6

Lemma 2 Let X be a Riesz space, with positive cone X+, let v ∈ X+, and suppose
that q is a strictly positive linear functional on X.WriteU = {u ∈ X : q(|u|) < 1}. Let
xi , i = 0, . . . , n, and e be elements of X+, let νi > 0, i = 0, . . . , n, be real numbers,
and suppose

∑n
i=0 νi xi +λ(v +u) = e for some u ∈ U and some real number λ > 0.

Then there exist real numbers λi ≥ 0 and elements ui ∈ U, i = 0, . . . , n, such that
xi+λi (v+ui ) ∈ X+ for each i = 0, . . . , n and such that

∑n
i=0 νi

(
xi+λi (v+ui )

) = e.

Proof Scaling the element e and the numbers νi by some common factor, if necessary,
we may assume λ = 1, so that v + u = e − ∑n

i=0 νi xi .
Now if v ≥ u−, we are done by setting ui = u for all i = 0, . . . , n, λ0 = 1/ν0,

and λi = 0 for i = 1, . . . , n.
Otherwise, note thatwemust haveq(u−−(v∧u−)) > 0 asq is strictly positive.Note

also that (v +u)− = u− − (v ∧u−). Thus we must have u− − (v ∧u−) ≤ ∑n
i=0 νi xi .

By the Riesz decomposition theorem, we obtain elements b0, . . . , bn ∈ X+ such that∑n
i=0 bi = u− − (v ∧ u−) and bi ≤ νi xi for each i = 0, . . . , n. Set di = (1/νi )bi , so

that xi − di ∈ X+, and set

λi = qdi
q(u− − (v ∧ u−))

.

Note that
∑n

i=0 νiλi = 1. Set ui = u+ − (v ∧ u−) − (1/λi )di if λi > 0, and ui = u
otherwise. Then xi +λi (v+ui ) ∈ X+ for each i = 0, . . . , n, because v−(v∧u−) ≥ 0.
If λi > 0, then by the triangle inequality for the absolute value,

123



112 M. Greinecker, K. Podczeck

|u+ − (v ∧ u−) − (1/λi )di | ≤ |u+| + |v ∧ u−| + |(1/λi )di |
= u+ + (v ∧ u−) + (1/λi )di ,

as the three summands involved are all in X+, so

q|ui | ≤ qu+ + q(v ∧ u−) + q(u− − (v ∧ u−)) = q|u|.

Hence ui ∈ U for each i = 1, . . . , n, because u ∈ U . Also, because νi di = bi for
each i = 1, . . . , n, and because

∑n
i=0 νiλi = 1, we have

n∑
i=0

νi
(
λi (v + ui )

) = v + u+ − (v ∧ u−) −
n∑

i=0

bi

= v + u+ − (v ∧ u−) − (u− − (v ∧ u−)),

so
∑n

i=0 νi
(
λi (v + ui )

) = v + u, and it follows that
∑n

i=0 νi
(
xi + λi (v + ui )

) = e,
because we have assumed v + u = e − ∑n

i=0 νi xi . ��
Lemma 3 Let E be an infinite-dimensional order-continuous Banach lattice such
that E+ has strictly positive elements. Then there is a strictly positive p ∈ E∗ such
that given any cardinal κ ≤ dens(E), there is a family 〈pi 〉i∈I in the order interval
[−p, p], with #(I ) = κ , such that pi = 0 for each i ∈ I but such that on any separable
subspace of E, pi is zero for all but countably many i ∈ I .

Proof By the representation theorem for order-continuous Banach lattices in Linden-
strauss and Tzafriri (1979, p. 25, Theorem 1.b.14), we may assume that, for some
probability space (Ω,Σ,μ), L∞(μ) ⊆ E ⊆ L1(μ) and L∞(μ) ⊆ E∗ ⊆ L1(μ),
the inclusions being continuous and order preserving; in particular, 1Ω is a strictly
positive element in E∗. [Recall for the reference that in a normed Riesz space, strictly
positive elements are weak order units; see Aliprantis and Burkinshaw (1985, p. 266,
Theorem 4.85, and p. 267(b)).]

Now by Fabian et al (2001, p. 364, Theorem 11.12), there is a family 〈xi , pi 〉i∈I in
L1(μ) × L∞(μ), with #(I ) = dens(L1(μ)), such that

(1) pi x j ≡ ∫
Ω

pi × x j dμ = 0 if and only if i = j ,
(2) span{xi : i ∈ I } is dense in L1(μ).

Scaling the elements pi , if necessary, we may assume that all of them belong to
[−1Ω, 1Ω ].Now (1) implies that if x ∈ span{xi : i ∈ I } then pi x = 0 for all but finitely
many i ∈ I , and hence (2) implies that for any x ∈ L1(μ), pi x = 0 for all but countably
many i ∈ I (consider a sequence in span{xi : i ∈ I } converging to x). It follows that
if D is any countable subset of L1(μ) then pi is zero on D for all but countably many
i ∈ I (i.e., {i ∈ I : pid = 0 for some d ∈ D} is countable), and hence that if S is any
separable subspace of E , then pi is zero on S for all but countably many i ∈ I .

It remains to see that dens(E) ≤ dens(L1(μ)). To this end, let A ⊆ [−1Ω, 1Ω ] be
dense in [−1Ω, 1Ω ] for theweak topology of L1(μ) and ofminimal cardinal among the
subsets of [−1Ω, 1Ω ] with this property. Note that since E is order-continuous, order
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intervals in E areweakly compact, so, as L∞(μ) ⊆ E∗, the weak topology of E agrees
on [−1Ω, 1Ω ] with the weak topology of L1(μ). Hence A is dense in [−1Ω, 1Ω ] also
for the weak topology of E . Observe that [−1Ω, 1Ω ] separates the points of L1(μ)

and therefore also those of E∗. Thus A, being dense in [−1Ω, 1Ω ] for the weak topol-
ogy of E , separates the points of E∗, so span A is norm-dense in E . Let B be the
subset of span A consisting of those linear combinations of members of A in which
the coefficients are rational. Then B is still norm-dense in E ; moreover, #(B) = #(A).
Thus dens(E) ≤ #(A). Now by the choice of A, #(A) ≤ ‖·‖1- dens

([−1Ω, 1Ω ]) ≤
dens(L1(μ)), and we conclude that dens(E) ≤ dens(L1(μ)). ��
Proof of Theorem 6 (a) Sufficiency Let E be as in the statement of the theorem, and
let E be an atomless economy with commodity space E such that all the assumption
listed in the theorem, including (MMATC), are satisfied. Let f be a core allocation of
the economy E and let

A = {h : T → E : for some S ∈ T , h = 1S × g − 1S × e where

g : T → E+ is a measurable simple function with g(t) �t f (t) a.e. in S} .

Every h ∈ A is Bochner integrable; write B = {∫
h dν : h ∈ A

}
. As in the proof of

Theorem 2, we see that c� B is convex and non-empty.
Let v ∈ E+ \{0} and q ∈ E∗ be chosen according to Assumption (EDC). Write

U = {u ∈ E : q|u| < 1} and note that U is convex. By the continuity of the lattice
operations in E , the map u 
→ q|u| : E → R is continuous, soU is an open subset of
E . Let

Γ = {λ(v + u) : u ∈ U, λ > 0}.

As U is open in E and convex, so is Γ . We may assume that 0 /∈ Γ , replacing q by a
sufficiently large multiple if necessary.

We claim that (c� B) ∩ −Γ = ∅. Otherwise, B ∩ −Γ = ∅ because Γ is open, and
thus, as 0 /∈ Γ , there are an S ∈ T with ν(S) > 0, a u ∈ U , and a λ > 0 such that∫
S g dν + λ(v + u) = ∫

S e dν where g : T → E+ is as in the definition of A. Now by
Lemma 2, there are measurable simple functions λ̃ : T → R+ and ũ : T → U such
that both

∫
S g(t)+ λ̃(t)(v + ũ(t)) dν(t) = ∫

S e dν and g(t)+ λ̃(t)(v + ũ(t)) ∈ E+ for
every t ∈ S. Define g′ : T → E+ by setting g′(t) = g(t)+ λ̃(t)(v + ũ(t)) if t ∈ S and
g′(t) = 0 otherwise. By Assumptions (P), (EDC), and (Tr), g′(t) �t f (t) a.e. in S,
and we get a contradiction to the property of f being a core allocation.

By the separation theorem, it follows that there is a nonzero p ∈ E∗ such that
pB ≥ 0. As in the proof of Theorem 2, we see that there is a null set N ⊆ T such that
if t ∈ T \N , then px ≥ pe(t) whenever x �t f (t). In particular, p must be positive.
Indeed, pick any a ∈ E+\{0}. By Assumptions (P) and (D), f (t) + na �t f (t) for
each t ∈ T and each n ∈ N\{0}, so p( f (t) + na) ≥ pe(t) for each n ∈ N\{0} and
t ∈ T \N , and it follows that pa ≥ 0.

Arguing as in the proof of Theorem 2, we can conclude that the pair (p, f ) is a
Walrasian equilibrium.
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(b) Necessity Let the commodity space E be an order-continuous Banach lattice
whose positive cone has strictly positive elements, and let (T,T , ν) be an atomless
probability space of agents such that addN (ν) ≤ dens(E). We will construct an
economy such that (P), (D), (C), (AM), (EC), (RA), (UR), and (US) are satisfied, but
such that there is a core allocation which is not Walrasian.

Fix a strictly positive element ē in E+. For each t ∈ T , let Xt = E+ and e(t) = ē,
so that (P), (EC), and (RA) are satisfied.

As in the proof of Theorem 3, write α = addN (ν) and choose a family 〈Nξ 〉ξ<α

of null sets in T such that
⋃

ξ<α Nξ is not a null set.
As α ≤ dens(E), we may apply Lemma 3 to find a strictly positive q ∈ E∗ and a

family 〈q ′
ξ 〉ξ<α in the order interval [−q, q] such that q ′

ξ = 0 for each ξ < α but such
that on any separable subspace of E , q ′

ξ is zero for all but countably many ξ < α. For
each ξ < α, set qξ = q + (1/2)q ′

ξ , so that qξ is strictly positive. Clearly, qξ = q for
each ξ < α, but on any separable subspace S of E , qξ � S = q � S for all but countably
many ξ < α.

Now define preference relations �t by setting

�t=
{
(x, y) ∈ E+ × E+ : qξ x > qξ y

}
for t ∈ Nξ , ξ < α,

and �t=
{
(x, y) ∈ E+ × Et : qx > qy

}
for t ∈ T \⋃

ξ<α Nξ , so that (UR), (D), and
(C) are satisfied. Set a = (1/2)q and b = (3/2)q. Then for any u, v ∈ E+ with
av > bu, and any q ′ in the order interval [a, b], we have q ′(v − u) ≥ av − bu > 0.
Consequently, as q and each qξ , ξ < α are in [a, b], (US) is also satisfied.

As allocations are Bochner integrable, and Bochner integrable functions are essen-
tially separably valued, the choice of the preference relations implies that given any
two allocations f , g : T → E+, there is a null set N ⊆ T such that

{
t ∈ T : f (t) �t g(t)

}\N = {
t ∈ T : q f (t) > qg(t)

}\N .

As in the proof of Theorem 3, we see from this that (AM) is satisfied and that the
initial allocation is a core allocation.

Suppose there is a p ∈ E∗ forwhich the initial allocation t 
→ e(t) = ē isWalrasian.
Write Iē for the order ideal in E generated by ē. Note that ē is an order unit of Iē. Thus,
if the equilibrium conditions hold for a t ∈ Nξ , ξ < α, we must have qξ � Iē = λξ p � Iē
for some real number λξ (see the end of the proof of Theorem 3). Since E is a Banach
lattice, the fact that ē is strictly positive implies that Iē is dense in E (Aliprantis and
Burkinshaw 1985, Theorem 4.85), so we have qξ = λξ p if qξ � Iē = λξ p � Iē. Hence,
as Nξ is a null set for each ξ < α, but

⋃
ξ<α Nξ is non-negligible, the assumption that

the initial allocation is Walrasian for p implies that there is an uncountable set H ⊆ α

such that qξ ∈ span{p} for each ξ ∈ H . Now by construction, we have a q ∈ E∗
such that qξ = q for all ξ ∈ H , but such that for any z ∈ E , qξ z = qz for all but
countably many ξ ∈ H . As H is uncountable, this implies that the set {qξ : ξ ∈ H}
cannot be included in a one-dimensional subspace of E∗. In particular, we cannot have
qξ ∈ span{p} for each ξ ∈ H . We thus obtain a contradiction, proving that the initial
allocation is not Walrasian.
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11 Proofs of Theorems 7 and 8

11.1 Basic facts

Fact 3 (Cf. Zame 1986, Sect. 9, p.1) Let (Ω,Σ,μ) be a σ -finite measure space with
μ(Ω) = ∞. Then there is a probability measure μ̄ on (Ω,Σ) such that:

(a) L∞(μ) = L∞(μ̄), as Banach lattices, and in particular as sets, so that no dis-
tinction in notation is needed in (b) and (c) below.

(b) The Mackey topology of L∞(μ) under the pairing with L1(μ) is the same as that
under the pairing with L1(μ̄).

(c) Whenever (T,T , ν) is a totally finite measure space, a function f : T → L∞(μ)

is Gelfand integrable for the pairing of L∞(μ) with L1(μ) if and only if it is
Gelfand integrable for the pairing of L∞(μ) with L1(μ̄), in which case both
pairings yield the same Gelfand integral of f over any S ∈ T .

Proof Let 〈Bn〉n∈N be a partition of Ω into measurable sets with 0 < μ(Bn) < ∞ for
each n ∈ N, and define μ̄ : Σ → R+ by μ̄(A) = ∑∞

n=0 2
−(n+1)μ(Bn)

−1μ(A ∩ Bn)

for each A ∈ Σ . Then μ̄ is a probability measure which gives the same null sets in Ω

as the measure μ and thus (a) holds.
Now for each p ∈ L1(μ), set φ(p) = ∑∞

n=0 2
n+1μ(Bn)1Bn × p. This defines a

bijection φ from L1(μ) to L1(μ̄) such that for each x ∈ L∞(μ),

∫
Ω

x × p dμ =
∫

Ω

x × φ(p) dμ̄ ,

and thus (c) must hold. In fact, φ is an isomorphism for the norm-topologies of L1(μ)

and L1(μ̄), therefore also for theweak topologies of these spaces, and thus (b) holds by
the above equality because the Mackey topology of L∞(μ) is the topology of uniform
convergence on weakly compact subsets of L1(μ). ��

Fact 4 Let (Ω,Σ,μ) be a totally finite measure space, so that L∞(μ) ⊆ L1(μ).
Then the Mackey topology of L∞(μ) and the ‖·‖1-topology of L1(μ) agree on ‖·‖∞-
bounded subsets of L∞(μ). (See Zame 1986, Lemma A).

Definition 3 Let (T,T , ν) be a totally finite measure space, and (Ω,Σ,μ) a σ -finite
measure space. A function η : T → L∞(μ) is called a weak∗-null function if for each
p ∈ L1(μ), pη(t) = 0 for almost all t ∈ T .

The point of this definition is that the exceptional set of measure zero is allowed to
vary with p ∈ L1(μ). Of course, if the measure space (Ω,Σ,μ) is separable, so that
L1(μ) has a countable subset separating the points of L∞(μ), then η : T → L∞(μ)

is a weak∗-null function if and only if η(t) = 0 a.e. in T . In any case, given that
μ is σ -finite, so that L1(μ) has strictly positive elements, if η : T → L∞(μ) is a
weak∗-null function, there can be no non-negligible S ⊆ T such that η(t) > 0 for all
t ∈ S.
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Lemma 4 Let (Ω,Σ,μ) be a σ -finite measure space. Then there is a Q+ ⊆ L∞(μ)+
such that:

(a) Q+ is dense in L∞(μ)+ for the Mackey topology.
(b) If (T,T , ν) is a totally finite measure space, S a subset of T , with ν∗(S) > 0,

and h : S → Q+ a function, then there are a set S′ ⊆ S, with ν∗(S′) > 0,
and an element a ∈ L∞(μ)+ such that h(t) = a + η(t) for all t ∈ S′ where
η : T → L∞(μ) is a weak∗-null function.

Proof In view of Fact 3, we may assume that μ is a probability measure, so that, in
particular, L∞(μ) ⊆ L1(μ). Then by the proof of Lemma 9 in Podczeck (2004), there
is a family 〈xi , pi 〉i∈I of elements of L∞(μ) × L∞(μ) such that, writing Q for the
set of all finite linear combinations of xi ’s with rational coefficients:

(1) pi x j ≡ ∫
Ω

pi × x j dμ = 0 if and only if i = j .
(2) The set {pi : i ∈ I } separates the points of L∞(μ).
(3) Q ∩ [0, 1Ω ] is ‖·‖1-dense in [0, 1Ω ]
(where [0, 1Ω ] is the order interval {x ∈ L∞(μ) : 0 ≤ x ≤ 1Ω }).

By Fact 4, (3) implies that Q ∩ [0, 1Ω ] is actually Mackey dense in [0, 1Ω ]. As
L∞(μ)+ = ⋃∞

n=1[0, n1Ω ] and nQ = Q for each n ∈ N, it follows that Q ∩ L∞(μ)+
is Mackey dense in L∞(μ)+. Set Q+ = Q ∩ L∞(μ)+.

Now let (T,T , ν), S, and h be as hypothesized in (b) of the lemma. For every
t ∈ T , let It = {i ∈ I : pi h(t) = 0}.

By (1) and the definition of Q+, It is finite for each t ∈ S. By the fact that ν∗(S) > 0
and that the countable union of null set in S is a null set, we can choose an integer
n and an S1 ⊆ S with ν∗(S1) > 0 such that #(It ) = n for each t ∈ S1. Note that if
F ⊆ I is such that #(F) = 0, i.e., F = ∅, then F ⊆ It for each t ∈ S1. There is
therefore an integer k̄ ≤ n which is maximal among the integers k ≤ n such that there
is an F ⊆ I with #(F) = k and with the property that there is an S2 ⊆ S1 such that
ν∗(S2) > 0 and F ⊆ It for each t ∈ S2. Choose and fix F and S2 corresponding in
this sense to k̄. Note that for each i ∈ I \F , {t ∈ S2 : pi h(t) = 0} is a null set.

As F is finite, the product of #(F) copies of the set of rational numbers is countable.
Thus, as ν∗(S2) > 0, there are rational numbers ri , i ∈ F , and a set S′ ⊆ S2 with
ν∗(S′) > 0 such that for each t ∈ S′ and each i ∈ F the coefficient of xi in h(t) as
a member of Q is ri . Set a = ∑

i∈F ri xi (where a = 0 if F = ∅). Then (1) implies
that pi h(t) = pia for each t ∈ S′ and each i ∈ F , and that pia = 0 for i ∈ I \F .
Define η : T → L∞(μ) by setting η(t) = h(t) − a if t ∈ S′ and η(t) = 0 otherwise.
As S′ ⊆ S2, {t ∈ S′ : pi h(t) = 0} is a null set for each i ∈ I \F , and it follows that
{t ∈ T : piη(t) = 0} is a null set for each i ∈ I .

For each p ∈ L1(μ), let Tp = {t ∈ T : pη(t) = 0}. Then Tpi is a null set in T for
each i ∈ I . If p ∈ span{pi : i ∈ I }, then Tp ⊆ ⋃

i∈Ip Tpi for some finite Ip ⊆ I , and
it follows that Tp is a null set. Let p be an arbitrary element of L1(μ). As we have
L1(μ)∗ = L∞(μ) ⊆ L1(μ), (2) implies that span{pi : i ∈ I } is dense in L1(μ) by the
Hahn–Banach theorem, so there is a sequence 〈pn〉 in span{pi : i ∈ I } with pn → p.
Now Tp ⊆ ⋃

n∈N
Tpn , and thus Tp is a null set. As p ∈ L1(μ) was arbitrary, η is a

weak∗-null function.
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It now also follows that the element a ∈ L∞(μ) defined above is positive. Indeed,
otherwise there is a p ∈ L1(μ)+ with pa < 0. As a = h(t) − η(t) for t ∈ S′, and
η is a weak∗-null function, it follows that ph(t) < 0 for almost all t ∈ S′. But this is
impossible because h(t) ∈ Q+ ⊆ L∞(μ)+ for all t ∈ S′ and ν∗(S′) > 0. Thus we
must have a ∈ L∞(μ)+. ��

11.2 Proof of Theorem 7

Let f be a core allocation of the given economy and let

A = {
h : T → L∞(μ) : for some S ∈ T , h = 1S × g − 1S × e′ where
(a) e′ : T → L∞(μ)+ is Bochner integrable with e′(t) ≤ e(t) a.e. in T,

(b) g : T → L∞(μ)+ is a measurable simple function such that for

some weak∗-null function η : T → L∞(μ), g(t) + η(t) �t f (t) a.e. in S
}
.

Then every h ∈ A is ‖·‖∞-Bochner integrable; write B = {∫
h dν : h ∈ A

}
where∫

h dν is the Bochner integral of h. Evidently, A is decomposable. Thus, as ν is
atomless, it follows fromFact 2 that ‖·‖∞-c� B is a convex subset of L∞(μ).Moreover,
as 0 ∈ B, ‖·‖∞-c� B is non-empty.

Observe that (‖·‖∞- c� B)∩‖·‖∞-int(−L∞(μ)+) = ∅. Indeed, otherwise, because
0 /∈ ‖·‖∞-int(−L∞(μ)+), there are an S ∈ T with ν(S) > 0 and a v′ ∈ ‖·‖∞-
int L∞(μ)+ such that

∫
S g dν − ∫

S e
′ dν = −v′ where g and e′ are as in the definition

of A. Because the measure ν is atomless and the indefinite Bochner integral of the
function g−e′ is ν-continuous with respect to ‖·‖∞, we may assume, shrinking the set
S, if necessary, that ν(T \S) > 0. Now set v = −(∫

S g dν − ∫
S e dν

)
. As e′(t) ≤ e(t)

a.e. in T , we have v ≥ v′, and therefore v ∈ ‖·‖∞-int L∞(μ)+. For each n ∈ N, set
Tn = {t ∈ T \S : e(t) + nv ≥ f (t)}. Then ⋃∞

n=0 Tn = T \S. Hence, as ν(T \S) > 0,
there must be an n1 ∈ N such that ν∗(Tn1) > 0.10 Choose n2 ∈ N so that both
n2 > n1 and ν∗(Tn1) > 1/n2. By Assumptions (P) and (D), e(t) + n2v �t f (t) for
all t ∈ Tn1 , and by (P) and (AM), {t ∈ T : e(t) + n2v �t f (t)} ∈ T . Therefore, if
G is a measurable envelope of Tn1 , then e(t) + n2v �t f (t) for almost all t ∈ G
and we have ν(G) = ν∗(Tn1) > 1/n2. As ν is atomless, we can choose an F ⊆ G
with ν(F) = 1/n2. Clearly we may assume that F ∩ S = ∅. Now according to
(b) in the definition of A, there is a weak∗-null function η : T → L∞(μ) such that
g(t) + η(t) �t f (t) for almost all t ∈ S. Define f ′ : T → L∞(μ)+ by setting
f ′(t) = g(t) + η(t) for t ∈ S, f ′(t) = e(t) + n2v for t ∈ F , and f ′(t) = 0 for
t ∈ T \(F ∪ S). By construction, f ′(t) �t f (t) a.e. in F ∪ S. Also, being the sum
of a Bochner integrable function and a weak∗-null function, f ′ is Gelfand integrable
and we have

10 Actually, the sets Tn can be shown to be measurable, but we don’t need this property here.
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∫
F∪S

f ′(t) dν(t) =
∫
F
e(t) + n2v dν(t) +

∫
S
g(t) + η(t) dν(t)

=
∫
F
e(t) dν(t) + v +

∫
S
g(t) dν(t)

=
∫
F
e(t) dν(t) + v +

∫
S
e(t) dν(t) − v =

∫
F∪S

e(t) dν(t) .

Thus, the coalition F ∪ S can block f via f ′, contradicting the property of f being a
core allocation.

As ‖·‖∞-int L∞(μ)+ is non-empty, the separation theorem implies that there is a
nonzero positive linear functional π on L∞(μ) such that π z ≥ 0 for each z ∈ B.
Now π can be identified with a finitely additive measure on Σ so that πx = ∫

x dπ ,
x ∈ L∞(μ); in particular, π(E) = 0 whenever μ(E) = 0. Let π = πc + π f be the
Yosida–Hewitt decomposition of π , where πc ≥ 0 is countably additive and π f ≥ 0
is purely finitely additive, and choose a sequence 〈Ck〉k∈N in Σ with μ(Ω\Ck) → 0
such that π f (Ck) = 0 for each k ∈ N (Yosida and Hewitt 1952, Theorems 1.23 and
1.22). We may view πc as an element of L1(μ).

Nowπc = 0. To see this, fix a ‖·‖∞-Bochner integrable function e′ : T → L∞(μ)+
with

∫
T e′(t) dν(t) ∈ int L∞(μ)+ such that e′(t) ≤ e(t) for almost all t ∈ T , as is

possible by Assumption (TAE). The indefinite Bochner integral of e′ is ν-continuous,
so there is an ε̄ such that

∫
T ′ e′(t) dν(t) ∈ int L∞(μ)+ whenever ν(T \T ′) < ε̄. Now

for each n ∈ N let Tn = {t ∈ T : n1Ω �t f (t)}. For each t ∈ T , n1Ω > f (t) if n
is sufficiently large, so by Assumptions (P) and (D), we have

⋃
m∈N

⋂
n≥m Tn = T .

By Assumptions (P) and (AM), Tn is measurable for each n, and it follows that there
is an integer n̄ such that ν(T \Tn̄) < ε̄.

Consider the sequence 〈n̄1Ck 〉k∈N in L∞(μ)+, where the sets Ck ∈ Σ are those
chosen above. By (P) and (AM) again, the set Tk = {t ∈ Tn̄ : n̄1Ck �t f (t)} is mea-
surable for each k. Note that because μ(Ω \Ck) → 0, n̄1Ck → n̄1Ω in the Mackey
topology of L∞(μ). Hence, by Assumption (C), we have

⋃
l∈N

⋂
k≥l Tk = Tn̄ and

thus ν(Tn̄\Tk) → 0 as k → ∞. As ν(T \Tn̄) < ε̄, it follows that there is a k̄ such that
ν(T \Tk̄) < ε̄. By the choice of ε̄,

∫
Tk̄
e′(t) dν(t) ∈ int L∞(μ)+, and thus we have

π
∫
Tk̄
e′(t) dν(t) > 0, as π is nonzero and positive. On the other hand, consider the

allocation g : T → L∞(μ)+ given by setting g(t) = n̄1Ck̄
for each t ∈ T . Note that∫

Tk̄
(g − e′) dν ∈ B and that

∫
Tk̄
g dν = ν(Tk̄)n̄1Ck̄

. Thus would we have π = π f ,

then π
∫
Tk̄
g dν = ν(Tk̄)n̄π f (Ck̄) = 0, and we would get a contradiction to the fact

that π z ≥ 0 for each z ∈ B. Thus πc = 0 must be true.
Note that πcz ≥ 0 for each z ∈ B. Otherwise, for some S ∈ T with ν(S) > 0, and

functions e′, g, and η as in the definition of the set A, we have

πc

∫
S
g dν < πc

∫
S
e′ dν ≤ π

∫
S
e′ dν

but g(t)+η(t) �t f (t) for almost all t ∈ S. Set f ′ = 1S ×g+1S ×η and note that by
Assumption (P), f ′ takes values in L∞(μ)+ a.e. in T . For every k ∈ N, define gk : T →
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L∞(μ)+ and ηk : T → L∞(μ) by setting gk(t) = 1Ck ×g(t) and ηk(t) = 1Ck ×η(t) if
t ∈ S, the setsCk being as before, and gk(t) = ηk(t) = 0 if t ∈ T\S. Then for each k, gk
is a measurable simple function and ηk is a weak∗-null function. (For any q ∈ L1(μ),
qηk(t) = q(1Ck × η(t)) = (1Ck × q)η(t) for all t ∈ S. Thus, since η is weak∗-null
function, and since 1Ck ×q ∈ L1(μ)whenever q ∈ L1(μ), ηk is a weak∗-null function
aswell.) For each k ∈ N, set fk = gk+ηk . Note that fk(t) = 1Ck× f ′(t) for each t ∈ T .
Thus, for each k, fk takes values in L∞(μ)+ a.e. in T , because f ′ does. Moreover, for
each k, fk is Gelfand integrable, being the sum of a measurable simple function and
a weak∗-null function. Hence, by Assumptions (P) and (AM), for each k the set Sk =
{t ∈ S : fk(t) �t f (t)} belongs toT . Arguing similarly as above,we see that ν(Sk) →
ν(S) as k → ∞, so

∫
Sk

πce′(t) dν(t) → ∫
S πce′(t) dν(t). There must therefore be a k̄

such that πc
∫
Sk̄
e′ dν > πc

∫
S g dν. Now because π f (Ck̄) = 0 (and π f ≥ 0), we have

π

∫
Sk̄

gk̄(t) dν(t) = πc

∫
Sk̄

gk̄(t) dν(t)

≤ πc

∫
Sk̄

g(t) dν(t) < πc

∫
Sk̄

e′(t) dν(t) ≤ π

∫
Sk̄

e′(t) dν(t) .

But by construction,
∫
Sk̄
gk̄ dν − ∫

Sk̄
e′ dν belongs to B, and we get a contradiction to

the fact that π z ≥ 0 for all z ∈ B. Thus, as claimed, πcz ≥ 0 for all z ∈ B.
Now by Assumption (TAE), there is a non-decreasing sequence 〈en〉 of Bochner

integrable functions en : T → L∞(μ)+ such that en(t) → e(t) in the Mackey topol-
ogy for almost all t ∈ T . As πc ∈ L1(μ), we must have πcen(t) → πce(t) for almost
all t ∈ T . Consequently, for any S ∈ T ,

∫
S πcen(t) dν(t) → ∫

S πce(t) dν(t), just by
the monotone convergence theorem, and thus πc

∫
S en(t) dν(t) → πc

∫
S e(t) dν(t). It

follows that whenever S ∈ T and g : T → L∞(μ)+ are such that the conditions in
(b) of the definition of the set A are satisfied, so that

∫
S g(t) dν(t)−∫

S en(t) dν(t) ∈ B
for each n, then πc

∫
S g(t) dν(t) ≥ πc

∫
S e(t) dν(t).

Write p = πc. We claim now that a.e. in T we have px ≥ pe(t) whenever
x �t f (t). Otherwise, by Assumption (P), there is a map h : S → L∞(μ)+ where
S ⊆ T with ν∗(S) > 0 such that for all t ∈ S, h(t) �t f (t) but ph(t) < pe(t).
Let Q+ ⊆ L∞(μ)+ be chosen according to Lemma 4. In particular, Q+ is Mackey
dense in L∞(μ)+. Therefore, as p ∈ L1(μ), Assumptions (P) and (C) imply that
we may assume that h(t) ∈ Q+ for all t ∈ S. Now by Lemma 4(b), there are an
S1 ⊆ S, with ν∗(S1) > 0, an a ∈ L∞(μ)+, and a weak∗-null function η : T →
L∞(μ) such that h(t) = a + η(t) for all t ∈ S1. Define h′ : T → L∞(μ)+ by
setting h′(t) = a + η(t) if t ∈ S1, and h′(t) = a otherwise. Note that h′ is Gelfand
integrable. Let S2 = {t ∈ T : h′(t) �t f (t)}. By Assumptions (P) and (AM), S2 ∈ T .
Let S3 = {t ∈ S2 : ph′(t) < pe(t)}. Then also S3 ∈ T . Note that S1 ⊆ S3. Therefore,
as ν∗(S1) > 0, we have ν(S3) > 0. Define g : T → L∞(μ)+ by setting g(t) = a for
all t ∈ T . Observe that h′ − g is a weak∗-null function. Hence, relative to the set S3,
g satisfies the conditions in (b) of the definition of A, because h′(t) �t f (t) for all
t ∈ S3. On the other hand, we must have pg(t) = ph′(t) for almost all t ∈ T . By
the definition of S3, it follows that p

∫
S3
g(t) dν(t) < p

∫
S3
e(t) dν(t), and we get a

contradiction to what has been established in the previous paragraph.
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Arguing as in the proof of Theorem 2, we can conclude that the pair (p, f ) is a
Walrasian equilibrium, observing that (TAE) implies that p

∫
T e(t) dν(t) > 0, because

p is a positive and nonzero element of L1(μ). ��

11.3 Additional facts for the proof of Theorem 8

Fact 5 Let (Ω,Σ,μ) be a totally finite measure space, so that L∞(μ) ⊆ L1(μ). Let
(T,T , ν) be a totally finite measure space, and f : T → L∞(μ) a function ; write
f1 for f viewed as a function from T to L1(μ).

(a) If f is Gelfand integrable, then f1 is Pettis integrable, and for any S ∈ T , the
Pettis integral of f1 over S agrees with the Gelfand integral of f over S.

(b) If f1 is Pettis integrable and ‖·‖∞-bounded, then f is Gelfand integrable and for
any S ∈ T , the Pettis integral of f1 over S agrees with the Gelfand integral of f
over S.

Proof By hypothesis, L1(μ)∗ = L∞(μ) ⊆ L1(μ) and thus (a) holds. Now suppose
f1 is Pettis integrable, so that, in particular, the map t 
→ p f1(t) is measurable for
each p ∈ L∞(μ). But then t 
→ p f (t) must be measurable for each p ∈ L1(μ),
because L∞(μ) is sequentially dense in L1(μ). Moreover, |p f (t)| ≤ ‖p‖1‖ f (t)‖∞
for all t ∈ T and all p ∈ L1(μ). Hence, if f is ‖·‖∞-bounded, then t 
→ |p f (t)|
is integrable for each p ∈ L1(μ) because (T,T , ν) is totally finite, so f is Gelfand
integrable, and by (a), for any S ∈ T , the Pettis integral of f1 over S agrees with the
Gelfand integral of f over S. ��
Fact 6 Let (Ω,Σ,μ) be a σ -finite measure space, (T,T , ν) a totally finite measure
space, and A a set of Gelfand integrable functions from T to L∞(μ). Suppose that
(T,T , ν) is atomless and that A is decomposable. Write B = {∫

f : f ∈ A
}
and

suppose that B is ‖·‖∞-bounded, or, equivalently, that B is included in an order
interval of L∞(μ). Then the Mackey closure of B is convex.

Proof Note first that, μ being σ -finite, L1(μ) is weakly compactly generated and
therefore measure compact.11 By Fact 3 we may assume that μ is actually totally
finite, so that L∞(μ) ⊆ L1(μ). Now, as L1(μ) is measure compact, it follows from
Podczeck (2004, proof of Lemma 6) together with Fact 5(a) that the ‖·‖1-closure of
B is a convex subset of L1(μ). Observe that, μ being totally finite, an order interval
of L∞(μ) is both a closed subset of L1(μ) and a Mackey closed subset of L∞(μ). As
B is included in an order interval of L∞(μ), we now see from Fact 4 that the Mackey
closure of B in L∞(μ) is convex. ��
Fact 7 Let (T,T , ν) be a totally finite measure space, and (Ω,Σ,μ) a σ -finite
measure space. Let f : T → L∞(μ)+ be Gelfand integrable and let x ∈ L∞(μ) be
such that 0 ≤ x ≤ ∫

T f . SupposeT = 2T and that f is ‖·‖∞-bounded. Then there is

11 See Edgar (1979) for the definition of “measure compact” and the fact that a weakly compactly generated
Banach space has this property.
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a Gelfand integrable function h : T → L∞(μ)+ such that
∫
T h = x and h(t) ≤ f (t)

for all t ∈ T .12

Proof By Fact 3, we may assume that L∞(μ) ⊆ L1(μ). Then x may be viewed as
element of L1(μ)+, and by Fact 5(a), f may be viewed as a Pettis integrable function
from T to L1(μ)+, with Pettis integral equal to the Gelfand integral; moreover, the
assumption that f is ‖·‖∞-bounded implies that f is ‖·‖1-bounded as well. Now
L1(μ) is an order-continuous Banach lattice which, μ being totally finite, is weakly
compactly generated and thus has thePIP.13 Hence byPodczeck (2004, Lemma11), the
hypothesis thatT = 2T and the facts that 0 ≤ x ≤ ∫

f dν and that f is ‖·‖1-bounded
and has positive values imply the existence of a Pettis integrable h : T → L1(μ)+
with Pettis integral equal to x such that h(t) ≤ f (t) for all t ∈ T . As f is ‖·‖∞-
bounded and 0 ≤ h(t) ≤ f (t) for all t ∈ T , h actually takes values in L∞(μ) and is
‖·‖∞-bounded. An appeal to Fact 5(b) concludes the proof. ��
Lemma 5 Let (Ω,Σ,μ) be a σ -finite measure space, let v ∈ L∞(μ), and let q
be a strictly positive element of L1(μ). Write U = {u ∈ L∞(μ) : q(|u|) < 1}. Let
(T,T , ν) be a totally finitemeasure spacewithT = 2T , let h → L∞(μ)+ beGelfand
integrable, and let e ∈ L∞(μ)+. Suppose h is ‖·‖∞-bounded and that for some u ∈ U
and some number λ > 0,

∫
T h(t) dν(t) + λ(v + u) = e. Then there are an integrable

function λ̃ : T → R+ and a function ũ : T → U such that h(t) + λ̃(t)(v + ũ(t)) ∈
L∞(μ)+ for almost all t ∈ T and such that the function t 
→ h(t) + λ̃(t)(v + ũ(t))
is Gelfand integrable with

∫
T h(t) + λ̃(t)(v + ũ(t)) dν(t) = e.

Proof Scaling e and the function h, if necessary, we may assume λ = 1.
Suppose first that v ≥ u−. In this case, set ũ(t) = u and λ̃(t) = 1/(ν(T )) for all

t ∈ T , and we are done (clearly, we may assume ν(T ) > 0).
Otherwise, note that q(u− − (v ∧ u−)) > 0. Similarly as in the proof of Lemma 2,

we see that u− − (v ∧ u−) ≤ ∫
T h(t) dν(t). By Fact 7, there is a Gelfand integrable

function b : T → L∞(μ)+ such that
∫
T b(t) dν(t) = u− − (v ∧ u−) and b(t) ≤ h(t)

for almost all t ∈ T . Define λ̃ : T → R+ by setting

λ̃(t) = qb(t)

q(u− − (v ∧ u−))

and note that
∫
T λ̃(t) dν(t) = 1. Now define the function ũ : T → L∞(μ)+ by setting

ũ(t) = u+ − (v ∧ u−) − (1/λ̃(t))b(t) if λ̃(t) > 0 and ũ(t) = u otherwise. As b(t) ≤
h(t) for almost all t ∈ T and v−(v∧u−) ≥ 0,wehave h(t)+λ̃(t)(v+ũ(t)) ∈ L∞(μ)+
for almost all t ∈ T , and similarly as in the proof of Lemma 2, it follows that ũ(t) ∈ U
for almost all t ∈ T .

12 This fact and Lemma 5 below are needed only if there exists an atomless probability space with no
non-measurable subset. Recall that it is (relatively) consistent with ZFC that no such measure space exists.
However, it is not known whether the existence of such a measure space is inconsistent with ZFC, and for
this reason, we do not want to exclude such a measure space. See the brief discussion in Appendix 2(B).
13 SeeEdgar (1979) for the definition of “PIP” (Pettis integral property) and the fact that aweakly compactly
generated Banach space has this property.
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Note that λ̃(t)ũ(t) = λ̃(t)
(
u+ − (v ∧ u−)

) − b(t) for each t ∈ T . Consequently,
the map t 
→ h(t) + λ̃(t)(v + ũ(t)) is Gelfand integrable (because the maps b and h
and because the map λ̃ is integrable), and because

∫
T b(t) dν(t) = u− − (v ∧ u−) and∫

T λ̃(t) dν(t) = 1, we get

∫
T
h(t) + λ̃(t)(v + ũ(t)) dν(t)

=
∫
T
h(t) dν(t) + v + u+ − (v ∧ u−) −

∫
T
b(t) dν(t)

=
∫
T
h(t) dν(t) + v + u+ − (v ∧ u−) − (u− − (v ∧ u−))

=
∫
T
h(t) dν(t) + v + u = e.

��

11.4 Proof of Theorem 8

Let f be a core allocation of the given economy. Recall for the following arguments
that the probability space (T,T , ν) of agents is complete.

(a) To start the proof that f is Walrasian, let v ∈ L∞(μ)+ \{0} and q ∈ L1(μ)

be chosen according to Assumption (EDC). Write U = {u ∈ L∞(μ) : q|u| < 1}.
Because the lattice operations in L∞(μ) are continuous for the Mackey topology,
the map u 
→ q|u| : L∞(μ) → R is Mackey continuous, and thus U is an open
neighborhood of 0 in L∞(μ) for the Mackey topology. Let

Γ = {λ(v + u) : u ∈ U, λ > 0}.

As U is Mackey open, so is Γ . As in the proof of Theorem 6, Γ is convex and we
may assume that 0 /∈ Γ . Set

K = {p ∈ L1(μ) : pΓ ≥ 0, pv = 1},

so that |pU | ≤ 1 whenever p ∈ K . As the polars of the weakly compact subsets of
L1(μ) form a local base at zero in L∞(μ) for the Mackey topology, it follows from
the bipolar theorem that K is a weakly compact set in L1(μ).

(b) Let

r = sup{r ∈ R : there is an S ∈ T with ν(S) ≥ r and 2S ⊆ T }.

Because 2∅ = {∅} ⊆ T , there is an Sn ∈ T with 2Sn ⊆ T and ν(Sn) > r − (1/n)

for each integer n > 0. Set T1 = T \⋃
n>0 Sn and T2 = ⋃

n>0 Sn . Then T1 and T2
belong to T and 2T2 ⊆ T ; moreover, ν(T2) = r , so every S ⊆ T1 with S ∈ T and
ν(S) > 0 has a non-measurable subset.
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Note that if S ∈ T and g : S ∩ T2 → L∞(μ) is any ‖·‖∞-bounded function, then
for every p ∈ L1(μ) the integral

∫
T p((1S∩T2 × g)(t)) dν(t) is defined. Thus, for any

such g, the map 1S∩T2 × g : T → L∞(μ) is Gelfand integrable.
(c) For each n ∈ N, let

An = {h : T → L∞(μ) : for some S ∈ T , h = 1S × g − 1S × e where

(i) g : T → L∞(μ)+ is a function with 0 ≤ g ≤ n1Ω such that

g(t) �t f (t) a.e. in S,

(ii) 1T1 × g is a measurable simple function
}
.

For each n, every h ∈ An is Gelfand integrable; let Bn = {∫
h dν : h ∈ An

}
where∫

h dν is the Gelfand integral of h. Note that An is decomposable for each n and that
Bn is included in the order interval [− ∫

e dν , n1Ω ]. Hence, as ν is atomless, Fact 6
implies that the Mackey closure of Bn is convex for each n. Note that 0 ∈ Bn for each
n, so the Mackey closure of Bn is non-empty for each n.

Now Bn∩−Γ = ∅ for every n. Otherwise, as 0 /∈ Γ , for some n there are an S ∈ T
with ν(S) > 0, a u ∈ U , and a λ > 0 such that

∫
S g dν + λ(v + u) = ∫

S e dν where
g : T → L∞(μ)+ is as in the definition of An . Write g1 = g �T1, g2 = g �T2, and set
S1 = S ∩ T1 and S2 = S ∩ T2, so that

∫
S g dν = ∫

S1
g1 dν + ∫

S2
g2 dν. By Lemma 2,

there are points u1, u2 ∈ U and e1, e2 ∈ L∞(μ)+, and numbers λ1, λ2 ≥ 0, such that∫
Si
gi dν+λi (v+ui ) = ei , i = 1, 2, and e1+e2 = ∫

S e dν. Now, g1 being ameasurable
simple function, another application of Lemma 2 yields measurable simple functions
λ̃1 : T1 → R+ and ũ1 : T1 → U such that

∫
S1
g1(t)+ λ̃1(t)(v + ũ1(t)) dν(t) = e1 and

g1(t)+λ̃1(t)(v+ũ1(t)) ∈ L∞(μ)+ for t ∈ T1.ApplyingLemma5 (with S2 substituted
for T ), we can find an integrable function λ̃2 : T2 → R+ and a function ũ2 : T2 → U
with the result that the function t 
→ g2(t)+λ̃2(t)(v+ũ2(t)) isGelfand integrable,with∫
S2
g2(t) + λ̃2(t)(v + ũ2(t)) dν(t) = e2, and g2(t) + λ̃2(t)(v + ũ2(t)) ∈ L∞(μ)+ for

all t ∈ T2. Now define g′ : T → L∞(μ)+ by setting g′(t) = g1(t)+ λ̃1(t)(v + ũ1(t))
if t ∈ T1, and g′(t) = g2(t)+ λ̃2(t)(v + ũ2(t)) if t ∈ T2. Then g′ is Gelfand integrable
and

∫
S g

′ dν = e1+e2 = ∫
S e dν. ByAssumptions (P), (EDC), and (Tr), g′(t) �t f (t)

a.e. in S, and we get a contradiction to the fact that f is a core allocation.
Note that since Γ is Mackey open, the fact that Bn ∩ −Γ = ∅ implies that also the

Mackey closure of Bn does not intersect −Γ .
(d) Using the separation theorem, it follows that for each n ∈ N, there is a nonzero

pn ∈ L1(μ) such that pn Bn ≥ 0 ≥ pn(−Γ ). Note that wemust have pnv > 0 for each
n. Hence, by the facts noted in (b), we may assume that there is a nonzero p ∈ L1(μ)

such that pn → p weakly in L1(μ) as n → ∞ (recall that in any Banach space,
“weakly compact” implies “weakly sequentially compact” by the Eberlein–Šmulian
theorem). As the sequence 〈Bn〉n∈N is non-decreasing, it follows that pBn ≥ 0 for
each n.

Note that because the map t 
→ pe(t) : T → R is measurable, Assumptions (P)
and (AM) imply that the set {t ∈ T1 : x �t f (t), px < pe(t)} is a measurable set in
T for each x ∈ L∞(μ)+. Therefore, the fact that pBn ≥ 0 for each n implies the
following:
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(i) For every x ∈ L∞(μ)+, the set {t ∈ T1 : x �t f (t), px < pe(t)} is a null set.
As for T2, note that the fact that pBn ≥ 0 for each n implies that if g : T → L∞(μ)+ is
‖·‖∞-bounded and there is a non-negligible S ⊆ T2 such that g(t) �t f (t) for almost
all t ∈ S, then there is a non-negligible S′ ⊆ S such that pg(t) ≥ e(t) for all t ∈ S′.
Note also that if S ⊆ T2 is non-negligible and g : T → L∞(μ)+ is any function, there
is a non-negligible S′ ⊆ S such that g is ‖·‖∞-bounded on S′. Consequently:

(ii) If S ⊆ T2 is non-negligible and g : S → L∞(μ)+ satisfies g(t) �t f (t) a.e. in S,
then there is a non-negligible S′ ⊆ S such that pg(t) ≥ pe(t) for all t ∈ S′.

(e)Suppose there is an S ⊆ T with ν∗(S) > 0 and a function h : S → L∞(μ)+ such
that for all t ∈ S, h(t) �t f (t) and ph(t) < pe(t). Note that by (d)(ii), S∩T2 is a null
set. We may therefore assume that S ⊆ T1. Arguing as in the proof of Theorem 7, we
may assume that there are an S1 ⊆ S with ν∗(S1) > 0, an a ∈ L∞(μ)+, and a weak∗-
null function η : T → L∞(μ) such that for every t ∈ S1, h(t) = a + η(t). According
to (b), there is a non-measurable set S2 ⊆ S1. Define h′ : T → L∞(μ)+ by setting
h′(t) = a + η(t) if t ∈ S2 and h′(t) = a otherwise. Then h′ is Gelfand integrable. By
Assumptions (P) and (AM), the set {t ∈ T : h′(t) �t f (t)} is measurable, and hence
so is the set

S3 = {t ∈ T : h′(t) �t f (t), ph′(t) < pe(t)}.

Let S4 = {t ∈ T : a �t f (t), pa < pe(t)}. Observe that S3 = S2 ∪ S4. By (d)(i) and
(d)(ii), S4 is a null set. As S2 is a non-measurable, it follows that S3 is non-measurable,
and we get a contradiction.

(f) By Assumption (P), it follows that for almost all t ∈ T , px ≥ pe(t) whenever
x �t f (t). In particular, p must be positive. Indeed, consider any a ∈ L∞(μ)+\{0}.
By Assumptions (P) and (D), f (t) + na �t f (t) for each t ∈ T and each n ∈ N\{0}.
It follows that p( f (t) + na) ≥ pe(t) for each n ∈ N\{0} and almost all t ∈ T and
hence that pa ≥ 0. Arguing as in the proof of Theorem 2, we can conclude that the
pair (p, f ) is a Walrasian equilibrium. ��

Appendix 1

(A) Let E be a Banach lattice and let E be an economy with commodity space E .
Suppose the consumption set of every agent is E+. Now the statement of the notion
of “extremely desirable commodity” in Rustichini and Yannelis (1991) says that there
are a v ∈ E+\{0} and a convex solid open neighborhood U of zero in E such that

(a) for each t ∈ T and any number λ > 0, x + λ(u + v) �t x whenever x ∈ E+ and
u ∈ U are such that x + λ(u + v) ∈ E+;

(b) whenever δ1, . . . , δn are positive real numbers and x1, . . . , xn are elements of E+
such that

∑n
i=1 δi = 1 and xi /∈ δiU , i = 1, . . . , n, then

∑n
i=1 xi /∈ U .14

14 Solidity of U is assumed by Rustichini and Yannelis (1991) in the proof of their Theorem 6.1.
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Suppose this condition holds. Let ρ be the gauge of U . By the properties of U , ρ is
a Riesz seminorm on E , and U = {x ∈ E : ρ(x) < 1}. Pick any x , y ∈ E+, and set
α = ρ(x) and β = ρ(y). If α = 0, then ρ(x) + ρ(y) = ρ(y) ≤ ρ(x + y), since ρ is
a Riesz seminorm. Similarly, if β = 0, then ρ(x) + ρ(y) ≤ ρ(x + y). Assume that α
and β are both larger than 0, and set x1 = 1

α+β
x and y1 = 1

α+β
y. Then x1 /∈ α

α+β
U

and y1 /∈ β
α+β

U . Now by (b), x1+ y1 /∈ U , so ρ(x+ y) ≥ α+β, and we see again that
ρ(x) + ρ(y) ≤ ρ(x + y). Thus the seminorm ρ is additive on E+. There is therefore
a positive linear functional q1 on E which agrees with ρ on E+. By the fact that U is
solid, we see thatU = {u ∈ E : q1|u| < 1}. Moreover, since E is a Banach lattice, the
fact that the linear functional q1 is positive implies that q1 is continuous, i.e., q1 ∈ E∗.
Now it is assumed in Rustichini and Yannelis (1991) that E is separable, so E∗ has
a strictly positive element, q2 say (see, e.g., Lindenstrauss and Tzafriri 1979, p. 25).
Set q = q1 + q2. Then q is strictly positive, and q1|u| < 1 whenever u ∈ E is such
that q|u| < 1. Hence, by (a), (EDC) must hold.

The other direction, i.e., that (EDC) implies the notion of “extremely desirable
commodity” in Rustichini and Yannelis (1991) is immediate.

(B) Let E be a Banach lattice, and let a and b be as in the statement of (US). Choose
any v ∈ E+ with av > 1. Let x ∈ Xt , u ∈ E , and a number λ > 0 be given so that
b|u| < 1 and x + λ(v + u) ∈ Xt . We may write

x + λ(v + u) = x − λu− + λ
(
v + u+)

.

Now as a and b are positive, we have

a(λ(v + u+)) > λ > λb|u| ≥ b(λu−).

Thus, (US) implies (EDC).
(C) Let (Ω,Σ,μ) be a σ -finite measure space, and let the commodity space be

L∞(μ) with the Mackey topology. Let E be an economy with probability space of
agents (T,T , ν) (and recall that the measure ν is complete according to our definition
of economy). The assumption inMertens (1970) on endowments is that the endowment
map e : T → L∞(μ)+ is Gelfand integrable (as in (TAE)) and that

(i) e(t) ∈ ‖·‖∞- int L∞(μ)+ for almost all T ;
(ii) there is a non-decreasing sequence 〈en〉 of measurable countably valued functions

en : T → L∞(μ)+ such that en(t) → e(t) in the Mackey topology for almost all
t ∈ T .

We will show now that this assumption implies (TAE). Note first that as (T,T , ν) is a
probability space, the property of en being measurable and countably valued implies
that we can find a set Sn ∈ T with ν(T \Sn) < 2−n such that 1Sn × en is a simple
function, i.e., takes only finitely many values. Set Tn = ⋂

m≥n Sm for each n, so that
the sequence 〈Tn〉 is non-decreasing with ν(Tn) → ν(T ). Now for each n, 1Tn × en
is a measurable simple function, and the sequence 〈1Tn × en〉 is non-decreasing such
that (1Tn × en)(t) → e(t) in the Mackey topology a.e. in T .

We may therefore assume that each en is a simple function. By Fact 3, we may
also assume that (Ω,Σ,μ) is a probability space, so that L∞(μ) ⊆ L1(μ). Observe
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that for almost all t ∈ T , en(t) is an element of the order interval [0, e(t)] for all n.
Hence, by Fact 4, we have en(t) → e(t) in L1(μ) for almost all t ∈ T . Thus, as a map
from T to L1(μ), e is strongly measurable, therefore Borel measurable as (T,T , ν)

is complete. Now for each number r , the set {x ∈ L1(μ) : x ≥ r1Ω} is a closed subset
of L1(μ), and it follows that the set {t ∈ T : e(t) ≥ r1Ω} is a measurable subset of T
for each number r .

Note that (i) means that for almost every t ∈ T there is an integer n > 0 such
that e(t) ≥ (1/n)1Ω . By the previous paragraph, we can therefore find a number
r > 0 and a set H ∈ T with ν(H) ≥ r such that e(t) ≥ r1Ω for each t ∈ H . For
each n ∈ N, define e′

n : T → L∞(μ) by setting e′
n(t) = en(t) ∨ r1Ω if t ∈ H , and

e′
n(t) = en(t) if t ∈ T \H . Then for each n, e′

n is a measurable simple function; in
particular, e′

n is Bochner integrable. Observe that
∫
T e′

n(t) dν(t) ≥ ν(H)r1Ω . Thus∫
T e′

n(t) dν(t) ∈ ‖·‖∞- int L∞(μ)+ for each n. Moreover, the sequence 〈e′
n〉 is non-

decreasing, and using the fact that the lattice operations in L∞(μ) are continuous for
the Mackey topology, we see that e′

n(t) → e(t) in the Mackey topology for almost all
t ∈ T . Thus (TAE) holds.

(D) The following two lemmata show that in the context of Sect. 7, the Gelfand
integral does not exhibit pathological features. With S = T and B = Ω , Lemma 6
below amounts to a translation of Remark 5 into formal language. Lemma 7 shows
that if Assumption (P) holds, and an allocation f is feasible for a coalition S ∈ T , i.e.,∫
S f (t) dν(t) = ∫

S e(t) dν(t), then the agents belonging to S cannot get commodities
that are not available in the aggregate endowment of S.

Lemma 6 Let (T,T , ν) be a probability space, (Ω,Σ,μ) a σ -finite measure space,
and f : T → L∞(μ)+ Gelfand integrable. Let S ∈ T and write v = ∫

S f (t) dν(t)
for the Gelfand integral of f over S. If a set B ∈ Σ is such that 1B × v = 0, then the
set N = {t ∈ S : 1B × f (t) = 0} is a null set.

Proof Choose a strictly positive q ∈ L1(μ) (as is possible becauseμ is σ -finite). Note
that

∫
S
(1B× q)( f (t)) dν(t)= (1B × q)

(∫
S
f (t) dν(t)

)
= q

(
1B ×

∫
S
f (t) dν(t)

)
= 0.

As (1B × q)( f (t)) ≥ 0 for all t ∈ S, it follows that (1B × q)( f (t)) = 0 for almost
all t ∈ S. Consequently, as (1B × q)( f (t)) = q(1B × f (t)) and q is strictly positive,
we must have 1B × f (t) = 0 for almost all t ∈ S. ��

Lemma 7 Let (T,T , ν), (Ω,Σ,μ), f , S, and, v be as in the previous lemma. Let
C = {ω ∈ Ω : v(ω) > 0}, identifying v with any of its versions. Then there is a null
set N ⊆ S such that f (t) = 1C × f (t) for all t ∈ S\N.

Proof Set B = Ω\C , so that 1B × v = 0. By the previous lemma, there is a null set
N ⊆ S such that 1B × f (t) = 0 for all t ∈ S\N , which implies that f (t) = 1C × f (t)
for all t ∈ S\N , because f (t) = 1B × f (t) + 1C × f (t). ��
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Appendix 2

In this appendix, we provide some mathematical background information, collecting
some basics on vector integrals and on set theory.

(A) Let (T,T , ν) be a nontrivial complete and totally finite measure space, and E
a Banach space, with norm ‖ · ‖. A measurable function f : T → E is called a simple
function if f (T ) is finite. The integral of a simple function f is given by

∫
T
f dν =

∑
x∈E

ν ◦ f −1({x})x .

A function f : T → E is strongly measurable if there exists a sequence 〈 fn〉 of simple
functions such that

lim
n→∞ ‖ f (t) − fn(t)‖ = 0

for ν-almost all t . Every strongly measurable function is Borel measurable. Since for
ν-almost all t , f (t) ∈ c�

( ⋃
n fn(T )

)
, a strongly measurable function takes values

in a separable subspace of E outside a ν-null set. A strongly measurable function
f : T → E is Bochner integrable if there exists a sequence of simple functions 〈 fn〉
such that

lim
n→∞

∫
T

‖ f − fn‖ dν = 0.

In that case, the Bochner integral of f is

∫
T
f dν = lim

n→∞

∫
T
fn dν .

This limit exists and is independent of the particular approximating sequence 〈 fn〉.
A strongly measurable function f is Bochner integrable if and only if the function
t 
→ ‖ f (t)‖ is Lebesgue integrable (Diestel and Uhl 1977, Theorem II.2.2). Bochner
integrals inherit many convenient properties of the Lebesgue integral. If f is Bochner
integrable, we call the function from T to E given by

A 
→
∫
A
f dν =

∫
T
1A × f dν

the indefinite Bochner integral. The indefinite Bochner integral is a ν-continuous
countably additive vector measure; ν-continuity meaning that if limn→∞ ν(An) = 0,
then limn→∞ ‖ ∫

An
f dν ‖ = 0 (Diestel and Uhl 1977, Theorem II.2.4(i)).

In order to be able to integrate functions with values that do not essentially lie
in a separable subspace, one can use weak integrals. Let E∗ be the topological dual
of E . A function f : T → E is weakly measurable if t 
→ x∗ f (t) is measurable
for all x∗ ∈ E∗. A function f : T → E∗ is weak*-measurable if t 
→ x f (t) is
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measurable for all x ∈ E . By Pettis’ measurability theorem, a function is strongly
measurable exactly when it is weakly measurable and there is a separable subspace
of E containing almost all values (Diestel and Uhl 1977, Theorem II.1.2). A weak*-
measurable function need not beweaklymeasurable and aweaklymeasurable function
need not be strongly measurable (Diestel and Uhl 1977, Examples II.1.5 and II.1.6).
Let f : T → E be weakly measurable. If for each A ∈ T , there is an xA ∈ E such
that

∫
A x∗ f dν = x∗xA for all x∗ ∈ E∗, f is called Pettis integrable and

∫
A
f dν = xA

the Pettis integral of f over A. It agrees with the Bochner integral if the latter is
well defined, so this notation is unambiguous. It is possible for a weakly measurable
function that t 
→ x∗ f (t) is integrable for all x∗ ∈ E∗ without f beingPettis integrable
(Diestel and Uhl 1977, Example II.3.3). Better behaved in that respect is the Gelfand
integral. If f : T → E∗ isweak*-measurable and t 
→ x f (t) is integrable for all x ∈ E ,
then f is Gelfand integrable and there is a unique x∗ ∈ E∗ such that

∫
T x f dν = x∗x

for all x ∈ E (Diestel and Uhl 1977, Lemma II.3.1). We call

∫
T
f dν = x∗

theGelfand integral of f . It follows that whenever f is Gelfand integrable and A ∈ T ,
there is an x∗

A ∈ E∗ such that
∫
A x f dν = x∗

Ax for all x ∈ E .
(B) We now collect some set-theoretic results. Many of the results will not be used

in proofs, but in discussing how certain results fit into the literature. All results of this
paper are derivable from the usual axioms of set theory, i.e., Zermelo–Fraenkel set
theory with the axiom of choice (ZFC).

Recall that a partially ordered set is well-ordered if every non-empty subset has
a minimum. An ordinal is a set well-ordered by the relation “∈ or =” and such that
every element of the set is also a subset. If α and γ are ordinals, we write α ≤ γ if
α ∈ γ or α = γ . Every set of ordinals is well-ordered by ≤ and each ordinal equals
the set of strictly smaller ordinals. In particular, we can use notation such as 〈xξ 〉ξ<α

to denote a transfinite sequence indexed by the ordinal α. There is no set containing
all ordinals.

For each set X , there is a smallest ordinal κ such that there is a bijection from κ onto
X . We call κ the cardinal of X and write κ = #(X). Finite cardinals can be identified
with the natural numbers 0, 1, 2, 3, . . . In particular, 2 = {0, 1}. The set of all finite
cardinals is a cardinal itself, the first infinite cardinal ω. The next larger cardinal is
ω1, the first uncountable cardinal. The cardinal of R is of special importance and is
denoted by c and called the cardinal of the continuum. If κ is a cardinal, we let κ+
be the smallest cardinal strictly larger than κ . For example, ω+ = ω1. A cardinal of
the form κ+ is a successor cardinal and every other cardinal is a limit cardinal. The
continuum hypothesis (CH) says that ω1 = c.

If κ and λ are cardinals, we let κλ be the cardinal of the set of functions from λ to
κ . Since one can identify subsets with indicator functions, 2κ is the cardinal of the set
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of all subsets of κ . For every cardinal κ , we have κ < 2κ . We have c = 2ω. CH can be
written as ω+ = 2ω. The generalized continuum hypothesis (GCH) says that κ+ = 2κ

for every cardinal κ . There are other operations one can do with the cardinals κ and λ.
We let κ + λ be the cardinal of the disjoint union of κ and λ and κ · λ be the cardinal
of their Cartesian product. If κ or λ is infinite and both are nonzero, these operations
are trivial and one has κ + λ = κ · λ = max{κ, λ}.

An axiomA is relatively consistent with ZFC if every proof of a contradiction from
ZFC together with A can be turned into a proof of a contradiction from ZFC alone.
Clearly, everything is relatively consistent with ZFC if there is a contradiction provable
from ZFC. So, we assert our faith in mathematics and assume this is not possible.
The generalized continuum hypothesis, and therefore also the continuum hypothesis,
is relatively consistent with ZFC (Kunen 2011, Theorem II.6.24). A weakening of
the continuum hypothesis is provided by Martin’s axiom. The original statement of
Martin’s axiom is slightly intricate, but Martin’s axiom is equivalent to the following
statement: If X is a compact Hausdorff topological space in which every disjoint
family of non-empty open subsets is countable, then the intersection of less than c
open dense subsets is non-empty (Kunen 2011, Lemma III.3.17). A consequence of
Martin’s axiom is that the additivity of Lebesgue measure is c, that is, the union
of less than c Lebesgue null sets is again a null set (Kunen 2011, Lemma III.3.28).
Baire’s category theorem for compact Hausdorff spaces shows that Martin’s axiom
in its topological version is implied by the continuum hypothesis. However, Martin’s
axiom is much weaker; in fact, there is a precise sense in which Martin’s axiom is
consistent with the cardinal of the continuum being arbitrarily large (Kunen 2011,
Theorem V.4.1).

There are axioms that arewidely used andwidely taken to be consistent even though
their relative consistency cannot be established. For example, one cannot prove the
relative consistency of the existence of an atomless probability space in which every
subset is measurable. By a result of Ulam, if such a probability space exists, a so-
called weakly inaccessible cardinal must exist too (Jech 2003, Theorem 10.1). Such
weakly inaccessible cardinals are known to imply the consistency of ZFC (Kunen
2011, Corollary II.6.26 and Theorem II.6.23). But by Gödels second incompleteness
theorem, an axiom system strong enough to prove the consistency of ZFC is not
relatively consistent with ZFC.
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