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1 Introduction

That in an economic environment with many insignificant agents all gains from trade
are exhausted precisely at market outcomes is an idea going back to Edgeworth in the
nineteenth century. The clearest and most natural formulation of this idea can be found
in Aumann (1964). Taking an atomless measure space to represent the set of agents, so
that in a mathematically precise sense there are many agents, each of them being neg-
ligible in the set of all agents, Aumann showed in his core equivalence theorem, under
surprisingly weak assumptions, that the core allocations of an economy are exactly the
Walrasian allocations. In Aumann’s model, the number of commodities is finite. Of
course, with finitely many commodities, an atomless measure space of agents does not
just mean “many agents,” but actually means “many more agents than commodities.”
One may see “many more agents than commodities” as an assumption on top of that
of “many agents” and may ask whether it is important for core equivalence that the
former assumption holds in addition to the latter. The issue was raised by Aumann
himself. As Mertens writes in the 1991 reprint of his core equivalence paper from
1970: “If I remember correctly that conversation with R. Aumann, he was stressing
the importance of going beyond the separable case [...] to check whether equivalence
did not depend on there being (many) more traders than commodities.”

It was first shown by Tourky and Yannelis (2001) that the “many more agents
than commodities” aspect of Aumann’s model indeed matters for core equivalence,
even when the space of agents is atomless. Assuming the generalized continuum
hypothesis, Tourky and Yannelis showed that, given a vector space E whose algebraic
dimension is at least the cardinal of the continuum, there are a vector order and a norm
on E, so that E becomes an ordered non-separable Hilbert space with positive cone
having non-empty interior, and an economy with an atomless measure space of agents
and E as commodity space such that—allocations taken to be Bochner integrable—
all assumptions made in Aumann (1964) hold, but such that core equivalence fails.
Extending the scope of the result in Tourky and Yannelis (2001), it was shown in
Podczeck (2003) that core equivalence can fail whenever the commodity space is a
non-separable Banach space.

Of course, the algebraic dimension of a linear space provides a natural way to
extend the usual notion of “number of commodities” to infinite-dimensional commod-
ity spaces. However, there is a problem. The algebraic dimension of every infinite-
dimensional Banach space is at least the cardinal of the continuum, even without
the continuum hypothesis.! On the other hand, there are (positive) core equivalence
results for commodity spaces that are separable infinite-dimensional Banach spaces,
e.g., Rustichini and Yannelis (1991). A main factor behind these results is that in a
separable commodity space, trades among agents can be approximated by points in
some countable subset, so that, with continuous preferences, all welfare gains through
trading can be approximately achieved in a countable subset of the commodity space.
From this perspective, a separable infinite-dimensional commodity space looks as if
there were just countably many commodities. So, one may view an atomless economy

! This was first shown in Mackey (1945). An alternative proof can be found in Lacey (1973).
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where the commodity space is an infinite-dimensional but separable Banach space as
an economy in which there are “many more agents than commodities,” even though
the algebraic dimension of the commaodity space is not smaller than the cardinal of the
continuum. In particular, if one wants to interpret core equivalence as a manifestation
of “many more agents than commodities,” one cannot use the algebraic dimension of
a commodity space as the notion of the number of commodities.

In this paper, we formalize the idea of “many more agents than commodities”
as a condition that is satisfied in an atomless economy whenever the commodity
space is separable; see Sect. 4. In Sect. 5, we then consider the case in which the
commodity space is an ordered Banach space whose positive cone has non-empty
interior, and allocations are taken to be Bochner integrable (the setting treated in
Tourky and Yannelis 2001; Podczeck 2003) and show that under assumptions on the
primitives of an economy exactly as in Aumann (1964), core equivalence is indeed
equivalent to the presence of “many more agents than commodities,” without any
special set-theoretic assumptions in the background.

There are some subtleties, concerning the order of the commodity space and the
fact that the assumptions in Aumann (1964) do not include transitivity of preferences.
For a discussion of these points and for relevant results, see Sect. 5. In Sect. 6, we show
that the identification of core equivalence with “many more agents than commodities”
also holds for many economically relevant commodity spaces which are not covered
by the previous results, in particular for the L ,-spaces, 1 < p < oo.

In Sect. 7, we revisit the setting of Mertens’ (1970) core equivalence result. The
commodity space is Lo (u) with the Mackey topology and feasibility is defined in
terms of the Gelfand integral, viewing Lo, (1) as the dual of Li(w). In particular,
continuity of preferences is required with respect to the Mackey topology. It is assumed
in Mertens (1970) that L, () with the Mackey topology is separable; thus, there are
“many more agents than commodities.” We show, however, that core equivalence holds
without this assumption. In fact, there might be many more commodities than agents.
This also answers a question raised by Mertens. By weakening some assumptions
made by Mertens, we actually get a core equivalence result that reduces to that of
Aumann (1964) when the number of commodities is finite.

So, the notion of integral chosen to define feasibility of allocations matters for core
equivalence. The crucial difference in this regard between the Gelfand and the Bochner
integral is that with the latter integral, an allocation must be strongly measurable and
therefore essentially separably valued. If the commodity space itself is not separable,
this means that Bochner integrable allocations take values in thin subspaces of the
commodity space, which, compared with the case of Gelfand integrable allocations,
makes the blocking possibilities of any coalition rather limited.

The organization of this paper is as follows. The next section contains the principal
definitions. Section 3 contains a restatement of Aumann’s (1964) core equivalence
theorem, which is the point of reference for our results, which are stated in Sects. 5—
7, after a Sect. 4 where our formalization of the notion of “many more agents than
commodities” may be found. The proofs of our results are given in Sects. 8—11. In
Appendix 1, connections between some of the assumptions we use and assumptions
known from the literature are established, and in Appendix 2, some mathematical
background information is provided.
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926 M. Greinecker, K. Podczeck

2 Notation and terminology

(1) Let E be a linear topological space. Assume that some notion of integrability for
functions from measure spaces to E is given. Now an economy & with commodity
space E is givenby alist & = [(T, 7, v), (X;, >, e(t))1er] where

- (T, ,v) is a complete probability space, representing the space of agents;
— X; C E is the consumption set of agent 7;

— >: C X; x X; is the (strict) preference relation of agent ¢;

— e(t) € E is the initial endowment of agent ¢;

— the endowment map e: T — E, given by r — e(t), is integrable.

The economy & is said to be atomless if the probability space (T, .7, v) of agents is
atomless.

An allocation in the economy & is an integrable function f: T — E such that
f(t) € X; for almost all # € T. An allocation f is said to be feasible if

/f(t)dv(t)=/e(t)du(t).
T T

Price systems are continuous linear functionals on the commodity space E. A Wal-
rasian equilibrium for the economy & is a pair (p, f), where f is a feasible allocation
and p is a price system, such that for almost every t € T':

(i) pf(t) < pe(t) and
(i) if x >; f(r) then px > pe(t).2

A feasible allocation f is said to be a Walrasian allocation if there is a price vector p
such that the pair (p, f) is a Walrasian equilibrium. An allocation f is a core allocation
if it is feasible and if it cannot be blocked by any non-negligible coalition, i.e., if there
isno § € Z with v(S) > 0 and no allocation g: T — E such that

@) [gg@®)dv(r) = [ge(r)dv(r),ie., g is feasible for S, and
(i1) g(t) > f(¢) for almostall t € S.

The core is the set of all core allocations.

(2) We need to fix some additional notation and terminology.

(a) If E is a linear topological space, E* denotes the (topological) dual space, i.e.,
the space of all continuous linear functionals on E.

(b) If E is an ordered linear space, we write > for the order of E, and E for the
positive cone; thus, E; = {x € E: x > 0}. Elements of E are called positive. We
write x > y tomean “x > y and x # y.”

(¢) If E is an ordered linear topological space, i.e., an ordered linear space endowed
with a linear space topology such that the positive cone E. is closed, then E* is
always viewed as being endowed with the dual order defined from E; thus for any

2 To avoid unnecessary clutter of parentheses, we frequently write gx, rather than ¢ (x), for the value of a
linear functional ¢ at a point x in its domain when no confusion can arise.

@ Springer
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p.q € E*, p > g means px > gx for all x € E,, so that, in particular, E =
{peE*: px>0forallx € E,}.
(d) Let E be an ordered linear topological space.
(1) An element x € E is called strictly positive if x > 0 and px > 0 for every
p € E* with p > 0. Of course, if E = R’ with the usual topology and order, then
this definition says nothing else than that a vector is strictly positive if it is larger than
zero in each coordinate. A more general fact is that if E is locally convex and E has
non-empty interior, then the strictly positive vectors in E are the interior points of E 4
(see Aliprantis and Tourky 2007, Lemma 2.17, p. 73).
(ii) A linear functional on E, in particular an element p € E*, is called strictly
positive if px > 0 for every x € E with x > 0.
(iii) Note that if £ has non-empty interior, or if E is a Banach lattice, then any
positive linear functional on E is continuous, i.e., belongs to E*.
(e) A convex subset H of a cone A in a vector space E is a base of A if for each
x € A\{0}, there is a unique 2 € H and a unique A > O such that x = Ah; if E isa
normed space, then such a set H is said to be a bounded base of the cone A if H is a
norm-bounded subset of E.

Remark 1 Let E be an ordered normed space and suppose that E4 has a base H.
Then by Aliprantis and Tourky (2007, Theorem 1.47 and Exercise 2, p. 42), there is
a strictly positive linear functional ¢ on E suchthat H = {x € E: gx = 1}. If E,
has an interior point, such a ¢ must be continuous, i.e., must be an element of Ei It
follows from these two facts that if £ has a bounded base and an interior point, then
the dual cone £ must have non-empty interior for the dual norm.

Remark 2 The notion of “strictly positive” as stated in (d)(i) involves the topology of
E in an essential way. For example, if (£2, X, ) is a o-finite measure space, then for
Lo () with the Mackey topology defined from the duality with L (), an element
p € Loo() is strictly positive if (for any of its versions) p(w) > 0 a.e. in §2, while
for Loo(u) with the ||-||so-topology, a p € Loo(1) is strictly positive if and only if
there is an ¢ > 0 such that p(w) > ¢ a.e. in £2.

3 Aumann’s classical core equivalence result

In Aumann’s (1964) model, the commodity space E is R¢ (with the usual topology and
order) and allocations are Lebesgue integrable functions. The following assumptions
are made by Aumann (1964):

(P) (Positive consumption) For eacht € T, X; = E;.

(D) (Desirability) Foreach t € T, >; is strictly monotone, i.e.,if x,y € X; andx > y
then x >; y.

(C) (Continuity) For each t € T and each x € X, the set {y € X,;: y >, x} is open
in X;.

(AM) (Aumann measurability) If f, g are allocations, then {t € T: f(t) =; g(t)} is
a measurable set.

(EC) (Endowments are consumption vectors) For each r € T, e(t) € X;.
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98 M. Greinecker, K. Podczeck

(RA) (Resource availability) The aggregate endowment fT e(t) dv(z) is strictly posi-
tive.

Here is Aumann’s (1964) classical core equivalence result.

Theorem 1 Let & be an atomless economy with commodity space E = R, If (P),
(D), (C), (AM), (EC), and (RA) are satisfied, then the core of the economy & coincides
with the set of Walrasian allocations.

A few remarks are in order. In Aumann (1964), the continuity assumption on pref-
erences is stated in a form slightly stronger than (C); not only the upper sections of
the preference relations are assumed to be open, but also the lower sections. However,
in the proof given by Aumann, only the former assumption is used.

Instead of assuming (AM), several papers on core equivalence make a weaker
measurability assumption in which only constant allocations are compared. We refer
to Podczeck (2004) for a discussion of the relationship between these two measurability
assumptions.

There is a growing literature on core equivalence in atomless economies with asym-
metric information among agents; see, e.g., Einy etal. (2001), Angeloni and Martins-da
Rocha (2009), and Hervés-Beloso et al. (2005). We will not investigate this context
here.

4 Many more agents than commodities

In this section, we want to give the phrase “many more agents than commodities” a
precise definition. For this, we need some more notation.

(a) We write ¢ for the cardinal of the continuum, i.e., the cardinal of R.

(b) If E is a linear space, we write dim*(E) for the algebraic dimension of E,
i.e., the least cardinal of any subset of E with a full linear span, and if E is actually
a linear topological space, we write dim(E) for the least cardinal of any subset of
E with a dense linear span. As noted in the introduction, dim®(E) > c if E is an
infinite-dimensional Banach space.

(c) Given an atomless probability space (T, .7, v), we write A/ (v) for the ideal of
null sets in 7', and add N\ (v) for the least cardinal of any family in A/ (v) whose union
is not in A/ (v). Note that add V'(v) < c. (To see this, let {9,),cn be a sequence of
partitions of 7 into measurable subsets such that for each n, v(A) = 27" for each
A € 7. Then the non-empty sets of the form (), A,, where A, € .7}, for each n, form
a partition of T into no more that ¢ null sets.) But of course, add A/ (v) is uncountable
because the union of countably many null sets is a null set.

Now let (T, .7, v) be an atomless probability space of agents, and E a linear
topological space, taken to be the commodity space. In Tourky and Yannelis (2001),
dim?®(E) is the notion of number of commodities, and “many more agents than com-
modities” is formally expressed by saying that add N'(v) > dim®(E ).3 However, as

3 Actually, to give the “number of agents” a formal expression, Tourky and Yannelis (2001) define a cardinal
for a probability space, which they call the “weight” of this space. Now if a probability space (7', .7, v) is
Footnote 3 continued
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pointed out in the introduction, one may well view an atomless economy where the
commodity space is a separable infinite-dimensional Banach space as an economy
with “many more agents than commodities.” But this is incompatible with the formal-
ization above, because add A (v) < ¢ but dim?®(E) > ¢ if E is an infinite-dimensional
Banach space.

A notion of the “number of commodities” which is more permissive than dim?(E)
is provided by dim(E). Informally, while dim®(E) amounts to a notion of the number
of commodities in physical terms, dim(£) amounts to a notion of the number of
commodities in economic terms, incorporating certain substitutability relations among
commodities. Of course, if E = R¢, then dim(E) = dim?(E), and dim(E) is just the
number of commodities in the usual sense. Here is our formalization of “many more
agents than commodities,” following that in Tourky and Yannelis (2001) concerning the
side of the agents, but with dim(E) in place of dim?(E) on the side of the commodities.

Definition 1 An atomless economy satisfies (MMATC) (has “many more agents than
commodities”) if add A'(v) > dim(E), where E is the commodity space of the econ-
omy and v is the measure on the set of agents.

Now according to this definition, there are “many more agents than commodities” in an
atomless economy whenever the commodity space is separable. But it should be noted
that (MMATC) may not imply separability of the commodity space. As an example
of what is conceivable, take the unit interval with Lebesgue measure for the space of
agents, and recall that under Martin’s axiom, add V' (v) = cif v is Lebesgue measure,
and that Martin’s axiom is compatible with ¢ being an arbitrarily large cardinal (see
Jech 2003, Theorem 16.13 and Corollary 26.41, or Appendix 2). So, we can have
plenty of uncountable cardinals « for which (MMATC) holds with dim(E) = «.

5 Core equivalence when the commodity space is an ordered Banach space
whose positive cone has non-empty interior

In this section, we adopt the setting considered by Tourky and Yannelis (2001) to relate
the core equivalence problem to the notion of “many more agents than commodities:”
The commodity space E is an ordered Banach space with positive cone having non-
empty interior, and allocations are taken to be Bochner integrable.

The first theorem in this section shows that, in this setting, Aumann’s classical core
equivalence result carries over verbatim to an infinite-dimensional commodity space
provided that there are “many more agents than commodities.” As this latter condition
trivially holds if the commodity space is R?, the theorem contains Aumann’s result as
a special case. In particular, the theorem significantly strengthens the core equivalence
result of Tourky and Yannelis (2001), showing that, as in Aumann’s result, transitivity
and irreflexivity of preferences are not needed. Recall that (MMATC) may not imply
that the commodity space is separable.

atomless, this cardinal is the same as add A/ (v). We will use this latter expression because it is standard
terminology in measure theory and has a more compact definition.
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100 M. Greinecker, K. Podczeck

Theorem 2 Let E be an ordered Banach space whose positive cone E has non-
empty interior and let & be an atomless economy with commodity space E such that
P), (D), (C), (AM), (EC), (RA), and (MMATC) are satisfied. Then the core of the
economy & coincides with the set of Walrasian allocations.

In fact, in the context of Theorem 2, the assumption of “many more agents than
commodities” is pivotal for core equivalence:

Theorem 3 Let (T, .7, v) be an atomless probability space, and E an ordered Banach
space such that E has non-empty interior and E* has strictly positive elements. If
add N'(v) < dim(E), then there is an economy & with (T, .7, v) as space of agents
and E as commodity space such that (P), (D), (C), (AM), (EC), and (RA) are satisfied
but such that there is a core allocation which is not Walrasian.

This remains true if all individual endowments are required to be strictly positive.

Together, Theorems 2 and 3 show that (MMATC) is essentially equivalent to core
equivalence. In the proof of Theorem 3, strictly positive prices are used to construct
strictly monotone preferences. Of course, if the commodity space is such that there
are no strictly positive prices, then there can be no economies with strictly monotone
preferences and a Walrasian equilibrium, and the question addressed by Theorem 3
becomes pointless.

In the context of Theorems 2 and 3, preferences need not be transitive. Transitivity
may be seen as a reasonable property of preferences. So, let us state this property
formally as an assumption.

(Tr) Foreach t € T, >, is transitive.

The next theorem, together with the subsequent example, shows that if (Tr) is assumed,
then, in the context of Theorem 2, “many more agents than commodities” need no
longer be a prerequisite for core equivalence. As may be inferred from the proof, the
reason is that the effects of strict monotonicity of preferences can be strengthened by
transitivity, so that it becomes easier for any non-negligible group of agents to find
common directions of improvement.

Theorem 4 Let K be a compact Hausdorff space and let the commodity space E be
C(K) with the usual norm and order. Let & be an atomless economy satisfying (P),
(D), (C), (AM), (EC), (RA), and (Tr). Let Mj_ (K) be the set of tight Borel probability
measures on K. If M_}_(K ) is first countable in the weak*-topology, then the core of
the economy & coincides with the set of Walrasian allocations.

Example Let E = C(I £y where 17 is the split interval (or “double arrow space”),
ie, I" = (0,1] x {0} U[0, 1) x {1} € R?, endowed with the lexicographical order
topology; see, e.g., Engelking (1989, 3.10.C, p. 212). The space I° is a separable
compact Hausdorff space, and as shown in Pol (1982), the space M i (I%) of tight Borel
probability measures on I is weak*-first countable. Separability of I* implies that
M}r(l %) has elements with full support. Thus, the dual of C (/%) has strictly positive
elements, so Assumptions (P) and (D) are simultaneously satisfiable for C(/ 1 as
commodity space. Thus, economies satisfying the assumptions in Theorem 4 for C (%)
as commodity space do exist. Now the order of /* has continuum many “jumps,” so the
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Edgeworth’s conjecture 101

weight of I* is ¢. This implies that dim(C (/%)) = ¢ (use Engelking 1989, 3.2.1, p. 147,
together with Fact 1 in Sect. 8). Hence, as add A'(v) < ¢ for any atomless probability
measure, (MMATC) fails for any atomless economy with commodity space C (/7).

Now in the results on failure of core equivalence presented in Tourky and Yannelis
(2001) and Podczeck (2003), preferences actually have continuous utility representa-
tions and are, in particular, transitive. So, one may ask for the relationship between
these results and Theorem 4. The point is that in the core non-equivalence results in
Tourky and Yannelis (2001) and Podczeck (2003), the positive cone of the commodity
space has a bounded base [see 2(2)(e)] in addition to having a non-empty interior.
On the other hand, in Theorem 4 the commodity space is Banach lattice. It is a well-
known fact that no infinite-dimensional Banach lattice can have simultaneously a non-
empty interior and a bounded base,* and therefore there is no contradiction between
Theorem 4 and the core non-equivalence results in Tourky and Yannelis (2001) and
Podczeck (2003).

Asnoted in the introduction, in these non-equivalence results the continuum hypoth-
esis is assumed.’ Of course, if the continuum hypothesis holds, then our condition
(MMATC) is equivalent to the commodity space being separable. In view of this, the
continuum hypothesis is not just an innocent assumption, but imposes severe restric-
tions on the scope of our notion of “many more agents than commodities.” It is there-
fore desirable to avoid the continuum hypothesis. Our next theorem shows that if the
positive cone of the commodity space has a bounded base, as in the above mentioned
results of Tourky and Yannelis (2001) and Podczeck (2003), then Theorem 3 remains
true for preferences with continuous utility representations, without any need for the
continuum hypothesis.

(UR) For each ¢ € T, >, has a continuous utility representation.

Theorem 5 Let the commodity space E be an ordered Banach space such that E_
has non-empty interior. If E4 has a bounded base, then given an atomless economy &,
conditions (P), (D), (C), (AM), (EC), (RA), and (UR) together imply core equivalence
if and only if MMATC) is satisfied.

This remains true if all individual endowments are strictly positive.

To compare Theorems 4 and 5, recall that if E is an ordered Banach space such
that £ has a bounded base and non-empty interior, then the dual cone E7 must have
non-empty interior for the dual norm (see Remark 1), whereas if E is an infinite-
dimensional Banach lattice such that £ has non-empty interior, then £’ has empty
interior. Thus, if preferences are strictly monotone, so that the members of E7 reflect

4 To see this, use Remark 1 and the fact that if E is an infinite-dimensional Banach lattice such that Ey
has non-empty interior, then the dual cone E _T_ has empty norm-interior.

5 Actually, in Tourky and Yannelis (2001), GCH (the generalized continuum hypothesis) is assumed, and
in addition, it is assumed that the algebraic dimension of the commodity space is a regular cardinal. But this
excludes many possible commodity spaces from the analysis. For example, let A be a set such that #(A) is
a singular cardinal with uncountable cofinality, such as wg), . Then #(A) > c¢by CH. Let £ = £3(A). Then
#(A) < dim?(E) < #(E) < ¢ - #(A)® = #(A)®. Since cf (#(A)) > w, GHC implies that #(A)® = #(A),
so dim*(E) = #(A), a singular cardinal. Note that it is relatively consistent that GCH holds and every
uncountable limit cardinal is singular, i.e., is not weakly inaccessible (Kunen 2011, Corollary 11.6.26).

@ Springer



102 M. Greinecker, K. Podczeck

the possible marginal rates of substitution, then the latter case may be seen as imposing
more restrictions on the possible diversity of preferences than the former.

Remark 3 A vector order such that the positive cone has both a bounded base and a
non-empty interior exists on every Banach space. For example, given a Banach space
E, let A be an “ice cream cone” in E, i.e., a closed convex cone of the form

A:{x € E:gx Z8||x||}

where ¢ € E* is of norm 1 and ¢ is a number with 0 < ¢ < 1 (see Aliprantis and
Tourky 2007, p. 99). Setting x > y whenever x — y € A defines a vector order on E
suchthat E4 = A.Thefactthatg isofnorm 1 and ¢ < 1implies that A has non-empty
interior. Evidently the set H = {x € A: gx = 1} is a base of A. Moreover, if x € H,
then ||x|| < 1/e, and thus H is bounded.

In view of this remark, we have the following corollary of Theorem 5, which parallels
the statement of the core non-equivalence results in Tourky and Yannelis (2001) and
Podczeck (2003) (but without the continuum hypothesis).

Corollary Let E be a Banach space and (T, 7, v) an atomless probability space.
Suppose dim(E) > add N (v). Then there is a vector order on E, for which E is an
ordered Banach space with int E4 # (@, and an economy &, with (T, 7, v) as space
of agents and E as commodity space, such that (P), (D), (C), (AM), (EC), (RA), and
(UR) hold, but such that there is a core allocation which is not Walrasian.

This is the case even when all individual endowments are required to be strictly
positive.

6 Core equivalence when the commodity space is an order-continuous Banach
lattice

Infinite-dimensional commodity spaces arising in applications often require dealing
with consumption sets having empty interior. Such contexts are not covered by the
treatment in the previous section. In this section, we allow for consumption sets with
empty interior. We will restrict attention to the framework where the commodity space
is a Banach lattice with order-continuous norm (in short, an order-continuous Banach
lattice). This framework is sufficiently general for the core equivalence problem to be
of interest when consumption sets may have empty interior. Note that the L ,-spaces
for 1 < p < oo are covered.

It is well known that if the commodity space is infinite-dimensional and consump-
tion sets have empty interior, then continuity of preferences does not guarantee appro-
priate bounds on marginal rates of substitution in order for preferred sets to have sup-
porting price vectors. As a consequence, core equivalence may fail through marginal
rates of substitution that are not properly bounded; see Example 5.1 in Rustichini and
Yannelis (1991). To avoid such a technical failure of core equivalence, which is unre-
lated to whether or not there are “many more agents than commodities,” we will employ
the following assumption, which is a rephrasing of the notion of “extremely desirable
commodity” used in the core equivalence result in Rustichini and Yannelis (1991).
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(EDC) (Extremely desirable commodity) There are a v € E4 \ {0} and a strictly
positive ¢ € E* such that foreach ¢ € T and any number A > 0, x +A(v+u) >; x
whenever x € X; and u € E are such that x + A(v +u) € X; and q|u| < 1.

Here |u| is the absolute value of i, i.e., the supremum of « and —u. Actually, in Rus-
tichini and Yannelis (1991) the notion of “extremely desirable commodity” is stated
for the case in which the consumption sets of the agents are equal to the positive cone
of the commodity space. In Appendix 1(A), we show that, in this case, the notion of
“extremely desirable commodity” in the statement of (EDC) is indeed equivalent to
that in Rustichini and Yannelis (1991). For us, the version we use is easier to operate
with.

Another assumption that has been used in the context of core equivalence to deal
with consumption sets with empty interior is as follows.

(US) (Uniform substitutability) There are strictly positive linear functionals a and
b € E*, with a < b, such that foreacht € T, x + v — u >; x whenever x € X;
and u,v € E are such that x + v —u € X; and av > bu.

This condition was developed by Zame (1986). In (B) in Appendix 1, we show that
(US) implies (EDC). Observe that if £ = R¢, then (EDC) is automatically satisfied if
(P) and (D) are. This is not true of (US).

As in the previous section, allocations are taken to be Bochner integrable in the
following theorem.

Theorem 6 Let the commodity space E be an order-continuous Banach lattice such
that E has strictly positive elements. Then given an atomless economy &, Assump-
tions (P), (D), (C), (AM), (EC), (RA), (Tr), and (EDC) together imply core equivalence
if and only if IMMATC) is satisfied.

This remains true if all individual endowments are strictly positive and if (EDC) is
strengthened to (US), and (Tr) to (UR).

Remark 4 The sufficiency part of Theorem 6 remains true if the requirement that £ be
order-continuous is dropped; see the proof of this theorem. However, by Theorem 4
and the example following the statement of that theorem, the necessity part does not
hold in all Banach lattices.

7 Core equivalence when the commodity space is L o (©) with the Mackey
topology

In this section, the commodity space E is taken to be Lo, (1) endowed with the Mackey
topology defined from the usual pairing of Lo, (w) with L(u), the measure p being
o-finite, and allocations are taken to be Gelfand integrable, viewing L, (i) as the
(norm) dual of L;(x). Recall that the usual pairing of Lo (xt) and L{(w) is given by
integration, i.e., px = f_Q p xxdu, p € Li(n), x € Loo(n) and that the Mackey
topology of L, (1) for this pairing is the strongest locally convex topology on L, (14)
such that L () is the (topological) dual. In the sequel, we will refer to this topology
simply as the Mackey topology of Lo (1).
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According to the definitions in Sect. 2, price vectors are taken to be elements
of the topological dual of the commodity space, so, as in Mertens (1970), they are
now required to be in L (u). Furthermore, assumptions (C) and (RA), which involve
topological notions, have now to be interpreted in the Mackey topology of Lo (1t).
In particular, (RA) does not imply that the aggregate endowment of an economy is
strictly positive for the ||-||so-topology of Lso(t).

Remark 5 1t has been argued in Tourky and Yannelis (2001, Remark10.1) that weak
integrals such as the Gelfand or Pettis integral may be inappropriate to define feasi-
bility of allocations, because there could be functions with integral equal to zero that
are everywhere positive and nonzero. (E.g., let (T, .7, v) be the unit interval with
Lebesgue measure, let E be the Hilbert space £,2([0, 1]), and define h: T — E by
setting h(¢t) = 1y for each t € T.) Under Assumptions (P) and (D), adding such a
function to a given allocation improves every agent without affecting feasibility. As a
consequence of this kind of free lunch, the core would be empty and core equivalence
holds trivially. This is not a problem in the setting defined above. As the measure pu is
o -finite, there is a strictly positive element p € L{(u). Now forx € E4, px = 0 can
happen only if x = 0. So, under Assumption (P), an allocation with Gelfand integral
equal to zero must be zero almost everywhere in 7. See (D) of Appendix 1 for a more
precise statement.

The following assumption, which is stronger than Assumption (RA) if Lo () is
infinite-dimensional, is implied by the assumptions made in Mertens (1970) on the
endowments in an economy [see (C) in Appendix 1].

(TAE) (Thick aggregate endowment) There is a non-decreasing sequence (e, ) of
|I-llco-Bochner integrable functions e,: T — E such that e, (t) — e(f) in the
Mackey topology a.e.in T and such that fT e (1) dv(1) € |- |loo-int E, foreachn.®

Observe that (TAE) does not imply the initial allocation to be ||-||so-Bochner inte-
grable. In fact, the initial allocation need not even be ||-||so-strongly measurable. But
of course, (TAE) implies that the aggregate endowment of an economy belongs to the
|I-|l so-interior of E and that there is a Mackey-separable subset of E; which contains
the individual endowment of almost all agents. In these latter two aspects, (TAE) is
stronger than (RA).

In view of the fact that the indefinite Bochner integrals of the functions e, are v-
continuous, (TAE) says that small groups of agents can have no corner (i.e., monopoly
power) on the market, in the sense that, for some ¢ > 0, if 7/ C T is such that
v(T') < ¢, then fT\T, e(t)dv(t) € ||-llco-int E4, i.e., the aggregate endowment of the
complementary group T\ 7’ contains all commodities.

Note that (TAE) does not imply that the individual endowments e(#) are in the || || so-
interior of E. In this aspect, (TAE) is actually more general than the assumptions
on endowments made in Mertens (1970). In fact, when E = R and (EC) holds, then
(TAE) is equivalent to (RA).

6 Bochner integrability of the maps e, implies that they are also Gelfand integrable; moreover, the integrals
according to these two notions of integrability agree. Thus, the statement of (TAE) is consistent with the
present setting where allocations are taken to be Gelfand integrable.
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In the following core equivalence result, (MMATC) does not play any role; the
“size” of the commodity space may be arbitrarily large, without any relation to prop-
erties of the space of agents. Note in this regard that for any cardinal «, there is a
probability measure p such that least cardinal of any subset of L, (1) whose linear
span is dense in Lo (1) for the Mackey topology is larger than . (Just look at the
usual measure on {0, 1}, where « is an arbitrary cardinal.)

Theorem 7 Let (£2, X, u) be a o-finite measure space and let the commodity space
E be Lo (1) with the Mackey topology. Let & be an atomless economy with commodity
space E such that (P), (D), (C), (AM), and (TAE) are satisfied. Then the core of the
economy & coincides with the set of Walrasian allocations.

As noted above, if E = R and (EC) is satisfied, then (TAE) is equivalent to (RA), so
Theorem 7 includes Aumann’s core equivalence result as a special case. In the core
equivalence result of Mertens (1970), individual endowments are assumed to belong
to ||-lco- int E+; also, the desirability assumption includes a transitivity requirement.
For these reasons, Merten’s result does not include that of Aumann.

As already noted in the introduction, in Mertens (1970) the commodity space is
assumed to be separable for the Mackey topology. However, Mertens asked whether
this assumption may be dropped. Our result above gives an affirmative answer.

As also noted above, assumption (TAE) is stronger than (RA). The next theorem
shows that if the assumptions on preferences are strengthened so as to include (EDC)
and (Tr), then core equivalence holds again with the standard assumptions (RA) and
(EC), and (TAE) is not needed.”

Theorem 8 Let (£2, X, 1) be a o-finite measure space and let the commodity space
E be Loo (1) with the Mackey topology. Let & be an atomless economy with commodity
space E. If (P), (D), (C), (AM), (RA), (EC), (Tr), and (EDC) are satisfied, then the
core of the economy & coincides with the set of Walrasian allocations.

Note that, given some price system, optimal consumptions of agents, and hence their
demands, reflect marginal rates of substitution. Assumption (EDC) imposes bounds on
marginal rates of substitution, uniformly across the agents in an economy. Thus, this
assumption may be seen as implying that small groups of agents cannot have monop-
sony power in the market. As remarked above, (TAE) may be seen as an assumption
implying that small groups of agents cannot have monopoly power in the market.
Thus, what drives the two core equivalence results in this section seems to be that the
assumptions imply that there is some kind of “thickness” on at least one side of the
market.

8 Preliminaries for the proofs

In this section, we introduce further notation, record two basic facts, and make some
general preparing remarks for the proofs.

7 In the statement of (EDC), the functional g is required to be in the topological dual of the commodity
space, which now means that this functional must be an element of L1 ().
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(1) (a) Given a measure space (T, 7, v), we write v* for the outer measure defined
from v.

(b) If Z is a topological space and A C Z, then int A denotes the interior of A, and
¢l A or A the closure of A.

() If E is a linear topological space and A C E, then co A denotes the convex hull
of A, and co A the closed convex hull; further, span A denotes the linear span of A,
i.e., the set of all (finite) linear combinations of members of A.

(d) For elements x, y of a Riesz space X, the expressions xT,x7 x,xVy, x Ay,
and x L y have the usual lattice theoretic meaning; we refer to Aliprantis and Tourky
(2007) for this as well as for the Riesz space-related facts that will be used in some of
the proofs below.

(2) If Z is a topological space and A C Z, then dens(A) denotes the density character
of A, i.e., the least cardinal of any subset of A which is dense in A.

Recall that for a linear topological space E, dim(E) is defined to be the least cardinal
of any set A C FE such that span A is dense in E. By the following fact, we may replace
the cardinal dim(E) in the definition of (MMATC) by dens(E ).8

Fact 1 IfE isalineartopological space, then dens(E) = dim(E) ifdim(E) is infinite.

(Indeed, it is clear that dim(E) < dens(E). For the reverse inequality, note that if
A C FE and span A is dense in E, then the subset of span A consisting of those linear
combinations of members of A where the coefficients are rational is dense in E, t00.)
(3) It will be convenient to have the following definition.

Definition 2 Given a measurable space (T, .7) and a linear space X, we say that a
set A of functions from T to X is decomposable if whenever f, g € Aand S € T
then also 1g x f 4 175 X g € A.

The following fact may be inferred from the proof of Theorem 6.2 in Yannelis (1991,
p. 22).

Fact 2 Let (T, 7, v) be a totally finite measure space, and E a Banach space. Let A
be a set of Bochner integrable functions from T to E and let B = { [f:fe A}. If
A is decomposable and (T, 7 , v) is atomless, then the norm-closure of B is convex.

(4) The theorems to be proved contain the implication that a Walrasian allocation is
a core allocation. That this is true is a standard and well-known fact, so in the proofs
given below we will not look at this implication.

(5) According to the definition of economy as stated in Sect. 2, the probability space
(T, 7, v) of agents is complete. We will invoke this fact frequently without explicit
reference.

(6) In the proofs below, it is assumed without loss of generality that £ # {0} whenever
this is needed for an argument but is not implied by the assumptions in force. Note
that the assumption E # {0} means in particular that 0 cannot be an interior point of
the positive cone E .

8 As the cardinal add NV (v) is uncountable, this replacement leaves the condition in (MMATC) the same
also when dim(F) is finite because in this case dens(E) is of course countable.
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9 Proofs of Theorems 2—4
9.1 Proof of Theorem 2
Let f be a core allocation of the given economy and let

A={h:T - E: forsome S € .7, h=1g x g — 1g x e where

g: T — E. is a measurable simple function with g(¢) >, f(¢) a.e.in S}.

Every h € A is ||-|lco-Bochner integrable; write B = {fh dv: h e A}. Clearly, A
is decomposable, so, as v is atomless, Fact 2 implies that c€ B is convex. Moreover,
0 € B, so cf B is non-empty.

Note that (cf B) Nint(—E4) = . Otherwise, as 0 ¢ int E, thereareav € int £
and an § € .7 with v(S) > 0 such that [ gdv — [gedv = —v where g is as in the
definition of A. As the measure v is atomless and the indefinite Bochner integral of
the function g — e is v-continuous, we may assume, shrinking the set S if necessary,
that v(T\S) > 0. Foreachn € N,set T,, = {t € T\S: e(t) + nv > f(t)}. Note that
T, €  for each n because the map ¢t — e(t) +nv — f(t), being Bochner integrable,
is Borel measurable. Now because v, belonging to int E, is an order unit of E, we
have UZOZO T, = T\S. Thus, as v(T'\S) > O, thereis ann; € N such that v(T;,) > 0.
Choose ny € Nsothatbothny > nyand v(7,,) > 1/n,. By Assumptions (D) and (P),
e(t) +nyv >; f(t)forallt € T,,. Because v is atomless, we can choose an F C Ty,
with v(F) = 1/n;. Define a function f': T — E. by setting f'(t) = g(¢) fort € S,
f'@®) =e(t) +npvfort € F,and f'(t) =0fort € T\(F US). Then f'(t) =; f(¢)
for almost all € F U S. Moreover, f’ is Bochner integrable and we have

/ £ () dv(t) :/ e(t) +nyvdv(t) +/g(t) dv (1)
FUS F s

= / e(t)dv(t) + v+ / e(t)dv(t) —v = / e(t)dv(t).
F S FUS

Thus, the coalition F U S can block f via f”, contradicting the property of f being a
core allocation. Thus, (cf B) Nint(—E) = @.

Now, as int E is non-empty, it follows from the separation theorem that there is
a nonzero positive p € E* such that pz > 0 for each z € B. For each x € E, let
Ny ={teT: x> f(t), px < pe(t)}. From Assumptions (P) and (AM), together
with the fact that the map t — pe(t) is measurable, it follows that N, € & for each
x € E4. Hence, the fact that pB > 0 implies that N, is a null set for each x € E_.

By (MMATC), E has a dense subset D such that add A'(v) > #(D).° It follows
that N = | cep Nx is anull set, and by Assumptions (P) and (C), and continuity of p:

(x)Forallt € T\N,if x >; f(t), then px > pe(t).

It is now routine to verify that for almost all r € T,

9 Recall that if Z is a metric space and Y C Z, then dens(Y) < dens(Z).
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(i) pf@) < pe(?);
@) if x >; f(¢), then px > pe(t).

Note first that by (P) and (D), () implies that pf (#) > pe(t) a.e. in T. Consequently,
since f is feasible, i.e., since [} f(1)dv(r) = [, e(t)dv(2), (i) holds a.e. in T. Let
S={teT: pe(t) > 0}. By (C) and (P), () implies that (ii) holds a.e. in S. Now by
(RA), the fact that p is nonzero and positive implies that v(S) > 0, so by (P) and (D)
again, the fact that (ii) holds a.e. in § implies that p is strictly positive. Consequently,
by (P) and (EC), for r € T'\ S a failure of (ii) implies that e(¢) >; f(¢). By (AM), the
set{t € T: e(t) =, f(t)}1is measurable. Because f is a core allocation, this set must
be a null set, so (ii) holds also a.e. in 7'\ S. We may conclude that the pair (p, f) is a
Walrasian equilibrium. O

9.2 Proof of Theorem 3

Fix an interior point e of E and a strictly positive ¢ € E* such that ge = 1. Let
H = {x € E;: gx = 1}. Observe that dens(H) = dens(E).

Write @« = add N'(v) and choose a family (Ng)e <o of null sets in T such that
U g <o Ve 1s not a null set. Recall that in every metric space of density character «,
there is a disjoint family of non-empty open subsets which has cardinal « (see, e.g.,
Engelking 1989, 4.1.H, or Hodel 1984, Theorem 8.1). As « < dens(H) by hypothesis,
we can therefore find a family (Bg)g <o of open balls in E, each of them centered at
some point xg € H, such that the family (B¢ N H)s -, of intersections is disjoint.
Using the fact that in a normed space the distance between the centers of two disjoint
open balls cannot be smaller than the sum of the radii of these balls, we see that, in
fact, the family (Bg )¢ <o is disjoint.

Now for each agentr € T, let X; = E4 and e(t) = e, so that (P) and (EC) are
satisfied. In particular, the initial allocation ¢ + e(#) is Bochner integrable and we
have fT e(t)dv(t) = e € int E4, so (RA) is also satisfied.

As for preferences, for £ < o and t € N¢ let

=={(x,y) € Ex x Ey: qx > qy} U ((Be N Ey) x {e}),

and for r € T\Ug<a N let >;= {(x, y)eEL xEf:gx > qy}. As g is strictly
positive, (D) is satisfied, and as each B N E is open in E, (C) is satisfied, too.

Note that any separable subspace S of E can intersect only countably many members
of the family (Bg)s <o (by the choice of this family). Hence, given any such S, we
must have

>,ﬂSng{(x,y)eE+xE+:qx>qy}

for almost all # € T. As allocations are Bochner integrable, and Bochner integrable

functions are essentially separably valued, it follows that given any two allocations f,
g: T — E,, thereis anull set N C T such that

{t eT: f(t) > g(t)}\N = {t eT:qf() > qg(t)}\N.
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This shows that (AM) is satisfied and also shows that the initial allocation is a core
allocation.

Suppose thereisa p € E* for which the initial allocation is Walrasian. Theng = Ap
for some number . Otherwise, by a well-known fact from linear algebra, there is a
z € E with pz = 0 and gz > 0, so that p(e + z) = pe but g(e + z7) > ge. As
e € int E4, we may assume that ¢ + z € E . But then by the choice of preferences,
we havee+z >; eforallt € T, thus getting a contradiction to the assumption that the
initial allocation is Walrasian for p. Now if ¢ = Ap, then for the points x¢ from above,
we have pxg = pe. But by the choice of preferences again, we have xg >, e for each
t € Ng and each & < a. Because [J; _,, N¢ is non-negligible, we get a contradiction
as before, and it follows that the initial allocation is not Walrasian. O

9.3 Proof of Theorem 4

Lemma 1 Let E be an ordered Banach space whose positive cone E. has a non-
empty interior. Let p € E}\{0}, and let G C E be such that whenever q € E{
satisfies gx = px for all x € G, then q = p. Then there is an H C E., with
#(H) < max{#(G), w}, such that whenever x € E and c € Ry satisfy px < c, then
thereisay € H withy > x and py < c.

Proof We may assume both that G Nint E4 # () and that pz = 1 forall z € G.
Indeed, as p € E7\{0}, we may pick an e € int E with pe = 1. Now foreachz € G,
set B, = 1 — pz. Let G' = {z+ B,e: z€ G} U {e}. Then gz = pz forallz € G
whenever ¢ € E7 is such that gy = py for all y € G'. Note that max{#(G), o} =
max{#(G’), }. Thus, if necessary, we may replace G by G’.

Let K be the affine hull of G. In particular, K is convex and pz = 1 forall z € K.
Let x € E and suppose px < 1. There mustbe a z € K such that z € {x} +int E .
Otherwise, by the separation theorem, there is a nonzero g € E* such that gz < gy
forallz € K and y € {x} + int E;. Now ¢ must be positive, and because K is affine,
there must be a number ¢ such that gz = c forall z € K. As K Nint EL # ), we
must have ¢ > 0, so replacing g by a suitable scalar multiple, we may assume ¢ = 1.
But then gz = pz for all z € G, and on the other hand, gx > 1 > px, contradicting
the hypothesis on G.

Let L be the set of those members of K for which the coefficients in the represen-
tation as a linear combination of members of G are rational. Then L is dense in K,
and we have #(L) < max{#(G), w}. Since L is dense in K, and since for any x € E,
K N ({x} +int E4) is open in K, it follows from the previous paragraph that given
x € E4 with px < 1, thereis az € L such that z > x.

Set H ={rz: ze€ L,r € Q} N E; where Q is the set of rational numbers. Then
#(H) < w-#(L) < max{#(G), w}. Suppose x € E; and ¢ € R are such that px < c.
Pick an r € Q such that px < r < c. Now p%x < 1, so there is a z € L such that
7> %x; clearly rz > x and px < prz =r < c. Thus, H is as required. O

Proof of Theorem 4 Let f be a core allocation of the given economy &. As in the
proof of Theorem 2, it follows that there is a nonzero positive p € E* such that for
eachx € Ef theset Ny ={t € T: x >, f(t), px < pe(t)}is anull set.
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Write v = 1x € C(K) = E and let A = {g € E} : qv = 1}. We may assume
p € A. Since A may be identified with the set of all tight Borel probability measures
on K, A is weak*-first countable by hypothesis. By the definition of the weak*-
topology, this means there is a countable set C C E such that whenever g € A and
gx = px forall x € C, then g = p. Of course, we may assume that v is in C, so that
whenever g € E7 is such that gx = px forallg € C, theng = p.

By Lemma 1, it follows that there is a countable H C E such that whenever
x € Eyand ¢ € Ry satisfy px < ¢, thereisay € H withy > x and py < c¢. As H is
countable, N = (. Ny is a null set. Now by Assumptions (P), (D), and (Tr), for
any t € T, if thereis an x € E4 with x >, f(t) and px < pe(t), thent € N. Thus,
by (P) again, if r € T\ N then px > pe(t) whenever x >; f(t). As in the proof of
Theorem 2, it follows that the pair (p, f) is a Walrasian equilibrium. O

9.4 Proof of Theorem 5

In view of Theorem 2, the following statement needs to be proved.

Let E be an ordered Banach space such that E. has both a non-empty interior
and a bounded base, and let (T, 7, v) be an atomless probability space such that
add N'(v) < dens(E). Then there is an economy &, with (T, 7 , v) as space of agents
and E as commodity space, such that (P), (D), (C), (AM), (EC), (RA), and (UR) are
satisfied, but such that there is a core allocation which is not Walrasian.

Let E and (T, .7, v) be as in this statement. Let H be a bounded base of E .
By Remark 1, there is a strictly positive ¢ € E* such that H = {x € E;: gx = 1}.
Choose an interior point e of E4 withe € H.

Follow the proof of Theorem 3 down to the start of the construction of preferences.
Now for # € T\ Jg_, N, define preferences exactly as in that proof (in particular,
there is a continuous utility representation). For t € Ng, & < «, let preferences be
given by the continuous utility function u,: E4 — R defined by

ur(x) = gx + k dist (x — (gx — De, H\Bg), x e E4,

where k > 0 is real number, common for all § < « and all + € Ng. Note that for
the points x¢ from the proof of Theorem 3, we have u;(xz) > u,(e) for eacht € N,
& < «a. Below we will show that the hypothesis that £ has a bounded base implies
that the number k can be chosen in such a way that the preferences given by the u;’s
are strictly monotone.

Supposing that has been done, we have, as in the proof of Theorem 3, an economy
such that (P), (D), (C), (EC), and (RA) hold, and now also (UR) in addition. Observe
that forany § < o andr € N¢, and any x € E, if u;(x) # gx then x + Ae € Bg
for some number A > 0, and that if § is a separable subspace of E, then so is
S + {xe: A € R}. Consequently, the fact that allocations are Bochner integrable
and therefore essentially separably valued implies that given any two allocations f,
g: T — E,, thereis anull set N C T such that

{t eT: f(t) > g(t)}\N = {t eT:qf() > qg(t)}\N.
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Thus, as in the proof of Theorem 3, (AM) is satisfied and the initial allocation is a core
allocation. As in that proof, it follows that this allocation is not Walrasian.

Finally, to see that there is a number k£ > 0 such that the preferences given by the
functions u, are strictly monotone for all + € N¢ and § < «, note first that the fact
that H = {x € E4: gx = 1} is a bounded base of E; means that there is a number
k' > O such that ||y|| < k’qy for all y € E,\{0}, which implies that

|y = @we| < Iyl + @»lell < Kqy + (@y)ell

for any y € E;\{0}. Thus, setting k = (k' + ||é||)71, we have gy > k|ly — (gy)e|
for such y. Now for any x, y € E, writing A for H\ B,

dist (x — (gx — e, A) < |y — (gy)e| +dist (x +y — (g(x + y) — De, A),
and it follows that
kdist (x — (gx — De, A) < gy +kdist(x +y — (g(x +y) — De, A)

for any x, y € E4 with y # 0, showing that the preferences given by the u,’s are
indeed strictly monotone for the above choice of k. O

10 Proof of Theorem 6

Lemma 2 Let X be a Riesz space, with positive cone X4, let v € X, and suppose
that q is a strictly positive linear functional on X. WriteU = {u € X: q(Jju]) < 1}. Let

xi, 1 =0,...,n, and e be elements of X, letv; > 0,i =0, ..., n, be real numbers,
and suppose o vixi +A(v+u) = e for some u € U and some real number ). > 0.
Then there exist real numbers A; > 0 and elements u; € U, i = 0, ..., n, such that

Xi+Ai(v+u;) € X4 foreachi =0, ..., nandsuchthat Y ;_ v; (xi+ki(v+ui)) =e.

Proof Scaling the element e and the numbers v; by some common factor, if necessary,
we may assume A = 1,sothatv +u =e — > 1, Vvix;.

Now if v > u~, we are done by setting u; = u foralli =0, ...,n, Ao = 1/vp,
and A; =0fori=1,...,n.

Otherwise, note that we musthave g (u~ —(vAu~)) > Oas g is strictly positive. Note
alsothat W+u)™ =u~ —(vAu~). Thuswemusthaveu™ — (vAu~) < Z?:o ViX;.
By the Riesz decomposition theorem, we obtain elements by, ..., b, € X4 such that
Z?:o bi=u" —(wAu")and b; < v;x; foreachi =0,...,n.Setd; = (1/v;)b;, so
that x; — d; € X4, and set

_ qd;
Cqum — (AU’

i
Note that 37 g vir; = 1. Setu; =ut — (v Au~) — (1/A)d; if 1; > 0, and u; = u

otherwise. Then x; +X; (v+u;) € X4 foreachi =0, ..., n,becausev—(vAu~) > 0.
If A; > 0, then by the triangle inequality for the absolute value,
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lut — @ Au") = (1/A)d;| < ut]+ v Au| + [(1/2)d;]
=ut+@WAu)+A/1)d;,

as the three summands involved are all in X, so
qluil < qut +q@ AuT) +qu” —@AuT)) =qlul.

Hence u; € U foreachi = 1,...,n, because u € U. Also, because v;d; = b; for
eachi =1,...,n, and because >_;_,viA; = 1, we have

vi(ki(v+ui)) =v4+ut—@WAu")— Zbi
i=0 i=0
=v+uT—WAuU)— W —@WAu)),

s0 D7 o vi(Ai(v 4+ u;)) = v+ u, and it follows that D7 vi (x; + i (v + u;)) = e,
because we have assumed v +u = e — >/ Vix;. O

Lemma 3 Let E be an infinite-dimensional order-continuous Banach lattice such
that E has strictly positive elements. Then there is a strictly positive p € E* such
that given any cardinal k < dens(E), there is a family (p;)icy in the order interval
[—p, pl, with#(I) = «, such that p; # Oforeachi € I but such that on any separable
subspace of E, p; is zero for all but countably many i € I.

Proof By the representation theorem for order-continuous Banach lattices in Linden-
strauss and Tzafriri (1979, p. 25, Theorem 1.b.14), we may assume that, for some
probability space (2, £, 1), Loo(n) € E € Ly(w) and Loo() € E* € Ly(),
the inclusions being continuous and order preserving; in particular, 1 is a strictly
positive element in E*. [Recall for the reference that in a normed Riesz space, strictly
positive elements are weak order units; see Aliprantis and Burkinshaw (1985, p. 266,
Theorem 4.85, and p. 267(b)).]

Now by Fabian et al (2001, p. 364, Theorem 11.12), there is a family (x;, p;)ies in
L1(u) X Loo(), with #(1) = dens(L1(w)), such that

(1) pixj = [, pi x xjdpu # 0 if and only if i = j,
(2) span{x;: i € I}isdensein Li(u).

Scaling the elements p;, if necessary, we may assume that all of them belong to
[—1ge, 1e].Now (1)implies thatif x € span{x;: i € I'}then p;x = 0forall butfinitely
manyi € I,andhence (2) implies thatforany x € Li(u), pix = Oforall but countably
many i € I (consider a sequence in span{x;: i € I} converging to x). It follows that
if D is any countable subset of L (u) then p; is zero on D for all but countably many
iel(e.,{i €l: pid+#0forsomed € D} is countable), and hence that if S is any
separable subspace of E, then p; is zero on § for all but countably many i € I.

It remains to see that dens(E) < dens(L(w)). To thisend, let A C [—1g, 1] be
densein[—1g, 1] for the weak topology of L1 (1) and of minimal cardinal among the
subsets of [— 1, 1] with this property. Note that since E is order-continuous, order
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intervals in E are weakly compact, so, as Lo (1) € E*, the weak topology of E agrees
on [—1g, 1] with the weak topology of L1 (). Hence A is dense in [—1¢, 1] also
for the weak topology of E. Observe that [—1, 1] separates the points of L(u)
and therefore also those of E*. Thus A, being dense in [—1, 1] for the weak topol-
ogy of E, separates the points of E*, so span A is norm-dense in E. Let B be the
subset of span A consisting of those linear combinations of members of A in which
the coefficients are rational. Then B is still norm-dense in E; moreover, #(B) = #(A).
Thus dens(E) < #(A). Now by the choice of A, #(A) < ||-||;-dens ([—1g, lo]) <
dens(L(w)), and we conclude that dens(E) < dens(L(u)). O

Proof of Theorem 6 (a) Sufficiency Let E be as in the statement of the theorem, and
let & be an atomless economy with commodity space E such that all the assumption
listed in the theorem, including (MMATC), are satisfied. Let f be a core allocation of
the economy & and let

A={h:T — E: forsomeS € 7, h=15x g—1g x e where

g: T — E, is a measurable simple function with g(t) >; f(¢) a.e.in S}.

Every h € A is Bochner integrable; write B = { f hdv: h e A}. As in the proof of
Theorem 2, we see that cf B is convex and non-empty.

Letv € EL\{0} and ¢ € E* be chosen according to Assumption (EDC). Write
U = {u € E: qlu|] < 1} and note that U is convex. By the continuity of the lattice
operations in E, the map u — ¢q|u|: E — R is continuous, so U is an open subset of
E. Let

I'={Av+u):ueclU, >0}

As U is open in E and convex, so is I". We may assume that 0 ¢ I, replacing g by a
sufficiently large multiple if necessary.

We claim that (c¢ B) N —I" = (). Otherwise, BN —1I" # {J because I is open, and
thus, as 0 ¢ I, there are an S € .7 with v(S) > 0,au € U, and a A > 0 such that
Jsgdv+Ar(v+u) = [gedv where g: T — E, is as in the definition of A. Now by
Lemma 2, there are measurable simple functions A: T — Ry and ii: T — U such
that both ¢ g(r) +A(t)(v+ii (1)) dv(t) = [gedvand g(t) +A(t) (v +ii(t)) € E. for
everyt € S.Define g’: T — E by setting g'(t) = g(t) +A(t)(v+1ii(r)) if t € S and
g'(t) = 0 otherwise. By Assumptions (P), (EDC), and (Tr), g’(t) >, f(¢) a.e.in S,
and we get a contradiction to the property of f being a core allocation.

By the separation theorem, it follows that there is a nonzero p € E* such that
pB > 0. As in the proof of Theorem 2, we see that there is anull set N C T such that
if r € T\ N, then px > pe(t) whenever x >; f(¢). In particular, p must be positive.
Indeed, pick any a € E\{0}. By Assumptions (P) and (D), f(¢t) + na >; f(t) for
eacht € T and each n € N\ {0}, so p(f(t) + na) > pe(t) for each n € N\ {0} and
t € T\ N, and it follows that pa > 0.

Arguing as in the proof of Theorem 2, we can conclude that the pair (p, f) is a
Walrasian equilibrium.
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(b) Necessity Let the commodity space E be an order-continuous Banach lattice
whose positive cone has strictly positive elements, and let (7', .7, v) be an atomless
probability space of agents such that add A'(v) < dens(E). We will construct an
economy such that (P), (D), (C), (AM), (EC), (RA), (UR), and (US) are satisfied, but
such that there is a core allocation which is not Walrasian.

Fix a strictly positive element e in E. Foreacht € T, let X; = E; and e(¢) = e,
so that (P), (EC), and (RA) are satisfied.

As in the proof of Theorem 3, write « = add A/ (v) and choose a family (Ng)e <o
of null sets in 7" such that [ J; _,, N¢ is not a null set.

As a < dens(E), we may apply Lemma 3 to find a strictly positive ¢ € E* and a
family (qé)g@, in the order interval [—¢, ¢] such that qé # 0 for each & < « but such
that on any separable subspace of E, qé is zero for all but countably many § < «. For
eaché < a,setge =g+ (1 /Z)C]é, so that g¢ is strictly positive. Clearly, g¢ # ¢ for
each £ < «, but on any separable subspace S of E, g¢ [ S = ¢ | S for all but countably
many § < «.

Now define preference relations >, by setting

= {(x,y) €EEL X Ey:qgex > qu} fort € Ng, § < a,

and >;= {(x,y) € E4 x E;: qx > gy} fort € T\Ug -y Ne. so that (UR), (D), and
(C) are satisfied. Set a = (1/2)g and b = (3/2)g. Then for any u, v € E, with
av > bu, and any ¢’ in the order interval [a, b], we have ¢'(v — u) > av — bu > 0.
Consequently, as g and each g¢, § < o are in [a, b], (US) is also satisfied.

As allocations are Bochner integrable, and Bochner integrable functions are essen-
tially separably valued, the choice of the preference relations implies that given any
two allocations f, g: T — E, thereis anull set N C T such that

{teT: f) = gONN={reT:qf() > qgO}\N.

As in the proof of Theorem 3, we see from this that (AM) is satisfied and that the
initial allocation is a core allocation.

Supposethereisa p € E* for which the initial allocationt +—> e(t) = e is Walrasian.
Write /; for the order ideal in E generated by e. Note that e is an order unit of /;. Thus,
if the equilibrium conditions hold forat € Ng, & < o, wemusthavegs [ I; = Aep | Iz
for some real number A¢ (see the end of the proof of Theorem 3). Since E is a Banach
lattice, the fact that e is strictly positive implies that I; is dense in E (Aliprantis and
Burkinshaw 1985, Theorem 4.85), so we have g = Agp if g [ I; = Az p [ Iz. Hence,
as Ng is anull set foreach & < o, but [ J; _, N¢ is non-negligible, the assumption that
the initial allocation is Walrasian for p implies that there is an uncountable set H C «
such that g¢ € span{p} for each & € H. Now by construction, we have a ¢ € E*
such that g¢ # ¢ for all § € H, but such that for any z € E, gez = gz for all but
countably many § € H. As H is uncountable, this implies that the set {g¢: § € H}
cannot be included in a one-dimensional subspace of E*. In particular, we cannot have
qe € span{p} for each & € H. We thus obtain a contradiction, proving that the initial
allocation is not Walrasian.
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11 Proofs of Theorems 7 and 8
11.1 Basic facts

Fact 3 (Cf. Zame 1986, Sect. 9, p.1) Let (£2, X, ) be a o -finite measure space with
W(82) = oo. Then there is a probability measure i on (§2, X') such that:

(a) Loo(it) = Loo(ft), as Banach lattices, and in particular as sets, so that no dis-
tinction in notation is needed in (b) and (c) below.

(b) The Mackey topology of L (14) under the pairing with L1(1) is the same as that
under the pairing with L1({1).

(c) Whenever (T, 7, v) is a totally finite measure space, a function f: T — Loo(1t)
is Gelfand integrable for the pairing of Loo(1t) with L1() if and only if it is
Gelfand integrable for the pairing of Loo(u) with Li(f1), in which case both
pairings yield the same Gelfand integral of f over any S € 7.

Proof Let (B,),cnN be a partition of §2 into measurable sets with 0 < w(B,) < oo for
eachn € N, and define ji: ¥ — Ry by i(A) = >0 2= D (B,) "' (A N By)
foreach A € X. Then jx is a probability measure which gives the same null sets in £2
as the measure p and thus (a) holds.

Now for each p € Li(n), set ¢(p) = > o ;2" 1 1i(B,)1p, x p. This defines a
bijection ¢ from L (u) to L1(u) such that for each x € Lo (),

/xXde=/ x X ¢(p)du,
2 2

and thus (c) must hold. In fact, ¢ is an isomorphism for the norm-topologies of L (u)
and L (j1), therefore also for the weak topologies of these spaces, and thus (b) holds by
the above equality because the Mackey topology of L, (1) is the topology of uniform
convergence on weakly compact subsets of L (u). O

Fact4 Let (2, X, 1) be a totally finite measure space, so that Loo(it) S Li(w).
Then the Mackey topology of Loo(1t) and the |-||1-topology of L1 (i) agree on ||| oo-
bounded subsets of Loo(14). (See Zame 1986, Lemma A).

Definition 3 Let (7, .7, v) be a totally finite measure space, and (£2, X, ) a o -finite
measure space. A function : T — Lo (i) is called a weak™-null function if for each
p € Li(w), pn() =0foralmostallr € T.

The point of this definition is that the exceptional set of measure zero is allowed to
vary with p € L1(u). Of course, if the measure space (£2, X, u) is separable, so that
L1(w) has a countable subset separating the points of Lo (i), then n: T — Loo(1)
is a weak*-null function if and only if n(#) = 0 a.e. in 7. In any case, given that
W is o-finite, so that L1 (u) has strictly positive elements, if n: T — Loo(u) is a
weak*-null function, there can be no non-negligible S € T such that n(¢) > 0 for all
tred.
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Lemma 4 Let (82, X, u) be a o -finite measure space. Then thereisa Q4 C Loo(10)+
such that:

(a) QO+ isdense in Lo (1L)+ for the Mackey topology.

(b) If (T, 7, v) is a totally finite measure space, S a subset of T, with v*(S) > 0,
and h: S — Q. a function, then there are a set ' < S, with v*(§') > 0,
and an element a € Loo(p)y such that h(t) = a + n(t) for all t € S" where
n: T — Leo(i) is a weak™-null function.

Proof In view of Fact 3, we may assume that u is a probability measure, so that, in
particular, Lo (1) € L1(w). Then by the proof of Lemma 9 in Podczeck (2004), there
is a family (x;, p;)ics of elements of Loo(tt) X Loo(ut) such that, writing Q for the
set of all finite linear combinations of x;’s with rational coefficients:

(1) pixj = [, pi x xjdu # 0 if and only if i = j.
(2) The set {p;: i € I} separates the points of Ly, (1).
(3) N0, Ilis [|-[li-dense in [0, 1]

(where [0, 1] is the order interval {x € Loo(u): 0 <x < 1p}).

By Fact 4, (3) implies that Q N [0, 1] is actually Mackey dense in [0, 1o ]. As
Loo()4 = U,‘jil[o, nlglandnQ = Q foreachn € N, it follows that Q N Loo (1) +
is Mackey dense in Loo(it)+. Set Q4 = O N Loo () +.

Now let (T, 7, v), S, and h be as hypothesized in (b) of the lemma. For every
teT,letl; ={i €I: pih(t) # 0}.

By (1) and the definition of Q 4, I, is finite foreach r € S. By the fact that v*(S) > 0
and that the countable union of null set in S is a null set, we can choose an integer
nand an S; € S with v*(S1) > 0 such that #(I,) = n for each ¢ € §y. Note that if
F C I is such that #(F) = 0, i.e., F = §, then F C I, for each t € §;. There is
therefore an integer k < n which is maximal among the integers k < n such that there
isan F C [ with #(F) = k and with the property that there is an S, C §; such that
V*($2) > 0and F C I, for each ¢ € 5. Choose and fix F and S, corresponding in
this sense to k. Note that for each i € I\F,{t € S>: pih(t) # 0} is a null set.

As F is finite, the product of #(F') copies of the set of rational numbers is countable.
Thus, as v*(S,) > 0, there are rational numbers r;, i € F, and a set S’ C S, with
v*(S") > 0 such that for each r € §" and each i € F the coefficient of x; in h(r) as
amember of Q isr;. Seta = > ;_prix; (Where a = 0 if F = §J). Then (1) implies
that p;i(t) = p;a foreachr € S' and each i € F, and that pja = 0 fori € I\ F.
Define : T — Loo(1t) by setting n(¢) = h(t) —aift € §’ and n(¢) = 0 otherwise.
As S C Sy, {t € §": pih(t) # 0} is anull set for each i € I\ F, and it follows that
{t € T: pin(t) # 0} is anull set for eachi € I.

Foreach p € Li(n),let T, = {t € T: pn(t) # 0}. Then T), is anull setin T for
eachi € I.If p e span{p;: i € I}, then T), C Uie],, T}, for some finite , I, and
it follows that 7}, is a null set. Let p be an arbitrary element of L;(u). As we have
Li(n)* = Loo() € L1(1), (2) implies that span{p; : i € I}isdensein L(u) by the
Hahn—Banach theorem, so there is a sequence (p,) in span{p;: i € I} with p, — p.
Now T, C UnEN Ty, and thus T}, is a null set. As p € Ly(u) was arbitrary, n is a
weak™-null function.
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It now also follows that the element a € Lo, (1) defined above is positive. Indeed,
otherwise there is a p € Li(u)4 with pa < 0. Asa = h(t) — n(t) fort € §', and
n is a weak*-null function, it follows that ph(t) < O for almost all # € S’. But this is
impossible because h(r) € Q4 C Loo(u)+ forall 7 € §" and v*(S’) > 0. Thus we
must have @ € Loo(14)+. O

11.2 Proof of Theorem 7
Let f be a core allocation of the given economy and let

A={h:T — Loo(nn): forsome S e 7, h=1g x g — lg x ¢ where
(@ e: T — Loo(u)y is Bochner integrable with €’(¢) < e(t) a.e.in T,
(b) g: T — Lso(pt)+ is a measurable simple function such that for

some weak™*-null function n: T — Loo(1t), g(t) +n(t) >=; f(t) ae. in S} .

Then every h € A is ||-||co-Bochner integrable; write B = {fhdv: he A} where
[ hdv is the Bochner integral of 4. Evidently, A is decomposable. Thus, as v is
atomless, it follows from Fact 2 that || - || .o-c£ B is a convex subset of L, (u). Moreover,
as 0 € B, ||-|lco-cf B is non-empty.

Observe that (||| co-¢€ B) N || ||co-int(— Lo () +) = @. Indeed, otherwise, because
0 ¢ |Illco-int(—Loo(tt)+), there are an S € 7 with v(§) > 0 and a v € || co-
int Loo (i) such that [ gdv — [¢ ¢’ dv = —v" where g and ¢’ are as in the definition
of A. Because the measure v is atomless and the indefinite Bochner integral of the
function g — ¢’ is v-continuous with respect to ||-|| s, We may assume, shrinking the set
S, if necessary, that v(T\S) > 0. Now setv = —( [y gdv — [gedv). As ¢/ (1) < e(r)
a.e.in T, we have v > v/, and therefore v € ||-||oo-int Loo (i) . For each n € N, set
T, ={t € T\S:e()+nv> f(t)}. Then U;io T, = T\S. Hence, as v(T'\S) > 0,
there must be an ny € N such that v*(T,,) > 0.9 Choose n, € N so that both
ny > ny and v*(7T,,) > 1/n2. By Assumptions (P) and (D), e(¢) + nav >; f(t) for
allt € T,,, and by (P) and (AM), {t € T: e(t) + nav >; f(t)} € 7. Therefore, if
G is a measurable envelope of T},,, then e(t) 4+ nav >; f(t) for almost all t € G
and we have v(G) = v*(Ty,,) > 1/ny. As v is atomless, we can choose an FF C G
with v(F) = 1/ny. Clearly we may assume that F NS = ¢J. Now according to
(b) in the definition of A, there is a weak™*-null function n: T — Lo () such that
g(®) + n@) =, f(t) for almost all r € S. Define f': T — Ly (u)s by setting
f'@) = gt) +n() forr € S, f'(t) = e(t) + npv fort € F, and f/'(r) = 0 for
t € T\ (F US). By construction, f'(¢) >; f(¢) a.e.in F U S. Also, being the sum
of a Bochner integrable function and a weak*-null function, f” is Gelfand integrable
and we have

10 Actually, the sets 75 can be shown to be measurable, but we don’t need this property here.
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/ £l dv() = / e(t) + nav dv(t) + / ¢(0) + n(D) dv(1)
FUS F S
_ / e(t) dv(t) + v+ / (1) dv(r)
F S

= / e(t)ydv(t) +v +/e(t)dv(t) —v= / e(t)dv(r).
F S FUS

Thus, the coalition F U S can block f via f’, contradicting the property of f being a
core allocation.

AS ||']lco-int Loo (1) + is non-empty, the separation theorem implies that there is a
nonzero positive linear functional 7 on Ly (1) such that wz > O for each z € B.
Now m can be identified with a finitely additive measure on X so that 7x = f xdm,
X € Loo(p); in particular, 7 (£) = 0 whenever u(E) = 0. Let 7 = 7. + 7y be the
Yosida—Hewitt decomposition of 7, where 7. > 0 is countably additive and ¢ > 0
is purely finitely additive, and choose a sequence (Cy)ren in X with u(2\Cr) — 0
such that 7 s (Cy) = 0 for each k € N (Yosida and Hewitt 1952, Theorems 1.23 and
1.22). We may view 7. as an element of L1 (u).

Now 7. # 0. To see this, fix a ||-|| oo-Bochner integrable functione’: T — Lo ()4
with fT e'(t)dv(r) € int Loo(u)+ such that e’(r) < e(t) for almost all 7 € T, as is
possible by Assumption (TAE). The indefinite Bochner integral of ¢’ is v-continuous,
so there is an & such that [, ¢/(t) dv(¢) € int Loo(11)+ whenever v(T\T') < &. Now
foreachn e NletT, = {te T:nlg >; f(t)}. Foreacht € T,nlgp > f(t)ifn
is sufficiently large, so by Assumptions (P) and (D), we have J,,cny (Vyom In = T
By Assumptions (P) and (AM), T;, is measurable for each n, and it follows that there
is an integer n such that v(7T\T;) < €.

Consider the sequence (nlc,)geN in Loo(it)+, where the sets Cy € X are those
chosen above. By (P) and (AM) again, the set Ty = {tr € T;;: nlc, >, f(t)} is mea-
surable for each k. Note that because u(£2\Cx) — 0, nl¢c, — nlg in the Mackey
topology of Lo (1). Hence, by Assumption (C), we have | J;cn (g, Tk = T7 and
thus v(7;3\Tx) — O ask — oco. As v(T'\T;) < &, it follows that there is a k such that
v(T\T;) < &. By the choice of &, fT/E €' (t)dv(t) € int Loo(it)+, and thus we have

T ka e'(t)dv(r) > 0, as 7 is nonzero and positive. On the other hand, consider the
allocation g: T — Loo(p)+ given by setting g(r) = nl¢, for eacht € T. Note that
fT;; (g —€')dv € B and that fT/E gdv = v(Tp)ilc,. Thus would we have 7 = 7y,
then sz: gdv = v(Tpnms(Cp) = 0, and we would get a contradiction to the fact

that wz > O for each z € B. Thus 7. # 0 must be true.
Note that .z > 0 for each z € B. Otherwise, for some S € .7 with v(S) > 0, and
functions ¢’, g, and 5 as in the definition of the set A, we have

nc/gdv<nc/e’dv§n/e’dv
s s s

but g(¢) +n(t) =; f(¢) foralmostallr € S.Set f’ = 1g x g+ lg x n and note that by
Assumption (P), f’ takes valuesin Lo, (1) + a.e.in T. Forevery k € N,define gy : T —
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Loo()+andng: T — Loo(p) by setting gi (1) = 1¢, x g(r) and ni (1) = 1¢, xn(t) if
t € §,thesets Cy being as before, and gi (t) = nx(t) = 0ifr € T\S. Then foreachk, gi
is a measurable simple function and 7y, is a weak*-null function. (For any ¢ € L;(w),
gnk() = g1, x n(t)) = (1¢, x g)n(t) for all ¢ € S. Thus, since 7 is weak*-null
function, and since 1¢, xg € L1(n) whenever g € L1(u), 1k is a weak™-null function
aswell.) Foreachk € N, set fy = gr+ni. Notethat fi (1) = 1¢, x f/(¢) foreachs € T.
Thus, for each k, f takes values in Loo (i) a.e. in T, because f’ does. Moreover, for
each k, fi is Gelfand integrable, being the sum of a measurable simple function and
a weak™*-null function. Hence, by Assumptions (P) and (AM), for each k the set Sy =
{t € S: fi(t) = f(t)}belongsto 7. Arguing similarly as above, we see that v(Sg) —
v(S) as k — 00, so fSk mee' (1) dv(t) — [gmee' (1) dv(r). There must therefore be ak
such that 7. fS/E e'dv > m, fS g dv. Now because 7 s (Cg) = 0 (and 7y > 0), we have

77/7 gr() dv(1) = m, / gr (1) dv ()

Sk Sk

< JTC/ g)dv() < nc/ e (t)dv(r) 571/ e(t)dv(r).

Sk Sk Sk

But by construction, |, s 8k dv— | 5; ¢’ dv belongs to B, and we get a contradiction to
the fact that 7z > O for all z € B. Thus, as claimed, 7.z > 0 for all z € B.

Now by Assumption (TAE), there is a non-decreasing sequence (e,) of Bochner
integrable functions e,,: T — Lo (1t)+ such that e, (t) — e(¢) in the Mackey topol-
ogy for almostall t € T. As m, € L1(u), we must have m.e;, (t) — mee(t) for almost
all t € T. Consequently, for any S € .7, fs wee,(t)dv(t) — fS mee(t) dv(t), just by
the monotone convergence theorem, and thus 7, f gen()dv(t) — m, f ge®dv(r). It
follows that whenever S € 7 and g: T — Lo ()4 are such that the conditions in
(b) of the definition of the set A are satisfied, so that [ g(r) dv(r) — [ e, (t) dv(1) € B
for each n, then 7. [ g(r) dv(t) = 7 [ e(t) dv(r).

Write p = m.. We claim now that a.e. in 7 we have px > pe(t) whenever
x >; f(t). Otherwise, by Assumption (P), there is a map h: S — Loo(t)+ where
S C T with v*(S) > 0 such that for all t € S, h(t) =, f(t) but ph(t) < pe(t).
Let QO+ € Lo ()4 be chosen according to Lemma 4. In particular, Q4 is Mackey
dense in Lso(w)+. Therefore, as p € Li(u), Assumptions (P) and (C) imply that
we may assume that h(r) € Q4 for all + € S. Now by Lemma 4(b), there are an
S1 C S, with v*(S]) > 0,an @ € Ly()+, and a weak*-null function n: T —
Loo(u) such that h(r) = a + n(r) for all ¢+ € S;. Define h': T — Loo(u)4+ by
setting /(1) = a + n(t) if t € Sy, and h'(t) = a otherwise. Note that /4’ is Gelfand
integrable. Let S, = {t € T: h/'(t) >=; f(¢)}. By Assumptions (P) and (AM), S, € 7.
LetS3 = {tr € S»: ph’'(t) < pe(t)}. Then also S3 € 7. Note that S| C S3. Therefore,
as v*(S1) > 0, we have v(S3) > 0. Define g: T — Loo(1t)+ by setting g(¢) = a for
all t € T. Observe that ' — g is a weak*-null function. Hence, relative to the set S3,
g satisfies the conditions in (b) of the definition of A, because h'(t) >; f(¢) for all
t € §3. On the other hand, we must have pg(¢t) = ph'(r) for almost all 7 € T. By
the definition of S3, it follows that p fS3 g)ydv(®) < p fS3 e(t)dv(r), and we get a
contradiction to what has been established in the previous paragraph.
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Arguing as in the proof of Theorem 2, we can conclude that the pair (p, f) is a
Walrasian equilibrium, observing that (TAE) implies that p fT e(t)dv(t) > 0, because
p is a positive and nonzero element of L (u). O

11.3 Additional facts for the proof of Theorem 8

Fact S Let (82, X, u) be a totally finite measure space, so that Loo(it) € L1(w). Let
(T, 7, v) be a totally finite measure space, and f: T — Loo() a function; write
f1 for f viewed as a function from T to Li(w).

(a) If f is Gelfand integrable, then f| is Pettis integrable, and for any S € 7, the
Pettis integral of f1 over S agrees with the Gelfand integral of f over S.

(b) If f1 is Pettis integrable and ||-|| co-bounded, then f is Gelfand integrable and for
any S € 7, the Pettis integral of f1 over S agrees with the Gelfand integral of f
over S.

Proof By hypothesis, L1(i)* = Loo(i) € L1(1) and thus (a) holds. Now suppose
f1 is Pettis integrable, so that, in particular, the map ¢ +— pf1(¢) is measurable for
each p € Lo (). But then ¢ — pf(¢) must be measurable for each p € Li(w),
because L, (1) is sequentially dense in L1(u). Moreover, |pf ()| < [Ipll1]lf () lloo
forallt € T and all p € L{(n). Hence, if f is ||-||co-bounded, then ¢ +— |pf(¢)|
is integrable for each p € Li(u) because (T, 7, v) is totally finite, so f is Gelfand
integrable, and by (a), for any S € .7, the Pettis integral of f; over S agrees with the
Gelfand integral of f over S. O

Fact 6 Let (2, X, i) be a o-finite measure space, (T, 7, v) a totally finite measure
space, and A a set of Gelfand integrable functions from T to Loo(1). Suppose that
(T, 7, v) is atomless and that A is decomposable. Write B = {f f:fe A} and
suppose that B is ||| co-bounded, or, equivalently, that B is included in an order
interval of Loo (). Then the Mackey closure of B is convex.

Proof Note first that, u being o-finite, L1(n) is weakly compactly generated and
therefore measure compact.!! By Fact 3 we may assume that y is actually totally
finite, so that Lo (1) € L1(w). Now, as L(u) is measure compact, it follows from
Podczeck (2004, proof of Lemma 6) together with Fact 5(a) that the ||-||;-closure of
B is a convex subset of L (u). Observe that, n being totally finite, an order interval
of Lo () is both a closed subset of L1 (u) and a Mackey closed subset of Loo(1). As
B is included in an order interval of Lo, (1), we now see from Fact 4 that the Mackey
closure of B in Lo (i) is convex. O

Fact7 Let (T, .7,v) be a totally finite measure space, and ($2, X, ;1) a o-finite
measure space. Let f: T — Loo(t)+ be Gelfand integrable and let x € Loo(11) be
suchthat 0 < x < fT f. Suppose T = 2T and that f is ||-||co-bounded. Then there is

11 See Edgar (1979) for the definition of “measure compact” and the fact that a weakly compactly generated
Banach space has this property.
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a Gelfand integrable function h: T — Loo(14) 4 Such that fT h=xandh(t) < f(t)
forallt € T."?

Proof By Fact 3, we may assume that Lo, (1) € Li(u). Then x may be viewed as
element of L{(u)+, and by Fact 5(a), f may be viewed as a Pettis integrable function
from T to Li(u)+, with Pettis integral equal to the Gelfand integral; moreover, the
assumption that f is ||-||co-bounded implies that f is |-||;-bounded as well. Now
L1(w) is an order-continuous Banach lattice which, p being totally finite, is weakly
compactly generated and thus has the PIP.'® Hence by Podczeck (2004, Lemma 11), the
hypothesis that .7 = 27 and the facts that 0 < x < J fdvandthat f is ||-]|;-bounded
and has positive values imply the existence of a Pettis integrable h: T — Li(u)+
with Pettis integral equal to x such that h(z) < f(¢t) forallt € T. As f 1S |||l co-
bounded and 0 < h(t) < f(¢) forall t € T, h actually takes values in L, (1) and is
|I-|lco-bounded. An appeal to Fact 5(b) concludes the proof. O

Lemma 5 Let (£2, X, ) be a o-finite measure space, let v € Loo(1t), and let g
be a strictly positive element of L1(). Write U = {u € Loo(): q(Jul) < 1}. Let
(T, 7, v) beatotally finite measure space with 7 = 27, leth — Lo (1) 4 be Gelfand
integrable, and let e € Lo (1) Suppose h is ||-|| co-bounded and that for some u € U
and some number ). > 0, fT h(t)dv(t) + A(v + u) = e. Then there are an integrable
function T —> Ry and a function u: T — U such that h(t) + Ao (v + i) €
Loo()+ for almost all t € T and such that the function t +— h(t) + ):(t)(v + u(r))
is Gelfand integrable with fT h(t) + X(t)(v +u(t))dv(t) =e.

Proof Scaling e and the function #, if necessary, we may assume A = 1.

Suppose first that v > u~. In this case, set #(f) = u and At) = 1/(v(T)) for all
t € T, and we are done (clearly, we may assume v(7") > 0).

Otherwise, note that g(u~ — (v Au~)) > 0. Similarly as in the proof of Lemma 2,
weseethatu™ — (VAU ) < fT h(t)dv(z). By Fact 7, there is a Gelfand integrable
function b: T — Lo (it)+ such that fT b(t)dv(t) =u= — (wAu")and b(t) < h(t)
for almost all € T. Define »: T — R by setting

qb(1)
qu™ —(@Au))

) =

and note that fT A(t) dv(r) = 1. Now define the functionii: T — Loo (1) + by setting
i) =ut —(Au") = (A/A1)b(t) if A(+) > 0 and ii(t) = u otherwise. As b(r) <
h(t) foralmostallr € T andv—(vAu—) > 0, Wehaveh(t)—i—)z(t)(v—i—ﬁ(t)) € Loo(()+
foralmostall 7 € T, and similarly as in the proof of Lemma 2, it follows that i(¢) € U
for almostall t € T.

12 This fact and Lemma 5 below are needed only if there exists an atomless probability space with no
non-measurable subset. Recall that it is (relatively) consistent with ZFC that no such measure space exists.
However, it is not known whether the existence of such a measure space is inconsistent with ZFC, and for
this reason, we do not want to exclude such a measure space. See the brief discussion in Appendix 2(B).

13 See Edgar (1979) for the definition of “PIP” (Pettis integral property) and the fact that a weakly compactly
generated Banach space has this property.
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Note that A(t)ii(t) = A(t)(u™ — (v Au~)) — b(¢) for each t € T. Consequently,
the map ¢ — h(t) + g(t)(v + u(t)) is Gelfand integrable (because the maps b and &
and because the map A is integrable), and because fT b(t)dv(t) =u™ —(vAu")and
J7 (@) dv(t) = 1, we get

/ h(t) + () (v + (1)) dv(r)
T
=/h(t)dv(t)+v+u+—(v/\u_)—/b(t)dv(t)
T T
=/h(t)dv(t)+u+u+—(vAu*)—(u*—(vAu*))
T

=/h(t)dv(t)+v+u=e.
T

11.4 Proof of Theorem 8

Let f be a core allocation of the given economy. Recall for the following arguments
that the probability space (T, 7, v) of agents is complete.

(a) To start the proof that f is Walrasian, let v € Lo(u)+\{0} and g € Li(u)
be chosen according to Assumption (EDC). Write U = {u € Loo(1): qlu| < 1}.
Because the lattice operations in L, (1) are continuous for the Mackey topology,
the map u +— gqlu|: Loo(it) — R is Mackey continuous, and thus U is an open
neighborhood of 0 in L, (1) for the Mackey topology. Let

I'={Av+u):ueclU, »>0}.

As U is Mackey open, so is I". As in the proof of Theorem 6, I” is convex and we
may assume that 0 ¢ I". Set

K={peLi(w:pl'>0, pv=1}

so that |pU| < 1 whenever p € K. As the polars of the weakly compact subsets of
L1(n) form a local base at zero in L, (1) for the Mackey topology, it follows from
the bipolar theorem that K is a weakly compact set in L1(u).

(b) Let

7 =sup{r € R: thereisan S € .7 with v(S) > r and 25 c 7).
Because 2/ = {#f} € 7, there is an S, € .7 with 25" € .7 and v(S,) > 7 — (1/n)
for each integer n > 0. Set Ty = T\J,,~o Sn and 7> = J,,— Sp- Then 77 and 7>

belong to .7 and 272 € .7; moreover, v(T>) = 7, so every S C T} with § € .7 and
v(S) > 0 has a non-measurable subset.
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Note that if S € 7 and g: SN T, - Loo(1) is any ||-|oo-bounded function, then
for every p € L(u) the integral fT p((Isnt, x g)(1)) dv(¢) is defined. Thus, for any
such g, the map 1gn7, X g: T — Loo() is Gelfand integrable.

(c) Foreachn € N, let

Ay, =1{h: T - Loo(u): forsome S € .7, h =1g x g — 1g x e where
(i) g: T — Loo(u)+ is afunction with 0 < g < nlg such that
g() >; f(t)ae.in S,
(i) 17, x g is a measurable simple function} .

For each n, every h € A, is Gelfand integrable; let B, = {[hdv: h € A,} where
J hdv is the Gelfand integral of . Note that A, is decomposable for each n and that
B, is included in the order interval [— f edv,nlg]. Hence, as v is atomless, Fact 6
implies that the Mackey closure of B,, is convex for each n. Note that 0 € B, for each
n, so the Mackey closure of B, is non-empty for each n.

Now B,N—TI" = @ for every n. Otherwise, as 0 ¢ I', for some n therearean S € .7
with v(S) > 0,au € U,andax > 0 such that [¢ gdv + A(v +u) = [, edv where
g: T — Ly ()4 is as in the definition of A,. Write g1 = g [ T1, g2 = g | T, and set
Sy =8NTand S, = SN T, so that [;gdv = fSl g1dv + sz g2dv. By Lemma 2,
there are points 11, uy € U and ey, €2 € Loo(1)+, and numbers A1, A > 0, such that
fSi gi dv+24;(v+u;) = e;,i =1,2,andej+e; = [gedv.Now, g; being a measurable
simple function, another application of Lemma 2 yields measurable simple functions
T — Ry andug: Ty — U such that fSl g1(t)+)~\1(t)(v+121(t))dv(t) = ¢; and
g1 ()1 (1) (v+it1 (1)) € Loo(p) 4 fort € T1. Applying Lemma 5 (with Sy substituted
for T'), we can find an integrable function Xz : T, - Ry and a function ttp: T — U
with the result that the function? — g» (1) +Ara(1) (v+uz(1)) is Gelfand integrable, with
Js, 820 + 2 () (v + 2 (1)) dv(1) = ez, and g2 (1) +A2(1) (v + 2 (1)) € Loo(p)+ for
allt € T». Now define g': T — Loo(1)4 by setting g’ (t) = g1(t) + A1 (1) (v + i1 (1))
ift € T, and g'(1) = g2(t) +A2(t)(v+1iia (1)) if t € T». Then g’ is Gelfand integrable
and [ g’ dv = e;+e = [ e dv. By Assumptions (P), (EDC), and (Tr), g'(t) >, f(t)
a.e.in S, and we get a contradiction to the fact that f is a core allocation.

Note that since I” is Mackey open, the fact that B, N —I" = ¢ implies that also the
Mackey closure of B, does not intersect —1I".

(d) Using the separation theorem, it follows that for each n € N, there is a nonzero
pn € L1(w) suchthat p, B, > 0 > p,(—1I"). Note that we must have p,v > 0foreach
n. Hence, by the facts noted in (b), we may assume that there is a nonzero p € L{(u)
such that p, — p weakly in L1(n) as n — oo (recall that in any Banach space,
“weakly compact” implies “weakly sequentially compact” by the Eberlein—Smulian
theorem). As the sequence (B,),cN is non-decreasing, it follows that pB, > 0 for
each n.

Note that because the map ¢t +— pe(t): T — R is measurable, Assumptions (P)
and (AM) imply that the set {t € T1: x >; f(t), px < pe(t)} is a measurable set in
T for each x € Lo (i)4. Therefore, the fact that pB,, > 0 for each n implies the
following:
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(i) Forevery x € Loo(it)4,theset{r € T1: x >; f(¢), px < pe(t)}is anull set.

As for T», note that the fact that p B,, > Oforeachn implies thatif g: 7 — Loo()+ 1s
I-lco-bounded and there is a non-negligible S € 7> such that g(¢) >; f(¢) for almost
all t € S, then there is a non-negligible S’ C § such that pg(¢) > e(r) forallt € §'.
Note also thatif S € 75 is non-negligible and g: T — Lo () + is any function, there
is a non-negligible S’ C § such that g is ||-||co-bounded on S’. Consequently:

(i) If S € T3 is non-negligible and g: S — Lo (u)+ satisfies g(¢) >; f(¢) a.e.in S,
then there is a non-negligible S C § such that pg(r) > pe(t) forallr € S'.

(e) Suppose thereisan § € T with v*(S) > Oand a functions: S — Lo (1) such
that forallr € S, h(t) >, f(¢t) and ph(t) < pe(t). Note that by (d)(ii), SN 7> is a null
set. We may therefore assume that S C 77. Arguing as in the proof of Theorem 7, we
may assume that there are an S| C S with v*(S)) > 0,ana € Loo(1) 4+, and a weak™-
null function n: T — Lo (1) such that for every ¢ € Sy, h(t) = a + n(t). According
to (b), there is a non-measurable set S» C S;. Define h': T — Lo (1) by setting
W (t) =a+n(t)ift € S and i/ (t) = a otherwise. Then i’ is Gelfand integrable. By
Assumptions (P) and (AM), the set {t € T: h'(¢) >=; f(¢)} is measurable, and hence
so is the set

S3={teT:h{t)> f@t), ph'(t) < pe(®)}.

LetSy={teT:a>; f(t), pa < pe(t)}. Observe that S3 = 5> U S4. By (d)(i) and
(d)(ii), S4 is a null set. As S» is a non-measurable, it follows that S3 is non-measurable,
and we get a contradiction.

(f) By Assumption (P), it follows that for almost all € T, px > pe(t) whenever
x > f(t). In particular, p must be positive. Indeed, consider any a € Lo (1t)+\{0}.
By Assumptions (P) and (D), f(t) +na >; f(t) foreacht € T and each n € N\{0}.
It follows that p(f(t) + na) > pe(t) for each n € N\ {0} and almost all + € T and
hence that pa > 0. Arguing as in the proof of Theorem 2, we can conclude that the
pair (p, f) is a Walrasian equilibrium. O

Appendix 1

(A) Let E be a Banach lattice and let & be an economy with commodity space E.
Suppose the consumption set of every agent is £. Now the statement of the notion
of “extremely desirable commodity” in Rustichini and Yannelis (1991) says that there
are av € E4\ {0} and a convex solid open neighborhood U of zero in E such that

(a) foreacht € T and any number A > 0, x + A(# + v) >; x whenever x € E and
u € U aresuchthatx +A(u +v) € Ey;

(b) whenever é1, ..., §, are positive real numbers and x1, .. ., x, are elements of E
suchthat >'_ & =landx; ¢ §;U,i =1,...,n,then >/, x; ¢ U.1*

14 Solidity of U is assumed by Rustichini and Yannelis (1991) in the proof of their Theorem 6.1.
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Suppose this condition holds. Let p be the gauge of U. By the properties of U, p is
a Riesz seminormon E, and U = {x € E: p(x) < 1}. Pick any x, y € E, and set
a = p(x)and B = p(y). lf « =0, then p(x) + p(y) = p(y) < p(x + y), since p is
a Riesz seminorm. Similarly, if 8 = 0, then p(x) + p(y) < p(x + y). Assume that

and B are both larger than 0, and set x; = ﬁx and y; = ﬁy. Then x| ¢ OﬁﬂU

and y; ¢ %U. Now by (b), x1 +y1 ¢ U,so p(x+y) > o+ f, and we see again that
p(x)+ p(y) < p(x + y). Thus the seminorm p is additive on E . There is therefore
a positive linear functional ¢; on E which agrees with p on E_ . By the fact that U is
solid, we see that U = {u € E: gq1|u| < 1}. Moreover, since E is a Banach lattice, the
fact that the linear functional ¢ is positive implies that ¢ is continuous, i.e., g € E*.
Now it is assumed in Rustichini and Yannelis (1991) that E is separable, so E* has
a strictly positive element, g» say (see, e.g., Lindenstrauss and Tzafriri 1979, p. 25).
Set ¢ = g1 + ¢2- Then gq is strictly positive, and g |u| < 1 whenever u € E is such
that g|lu| < 1. Hence, by (a), (EDC) must hold.

The other direction, i.e., that (EDC) implies the notion of “extremely desirable
commodity” in Rustichini and Yannelis (1991) is immediate.

(B) Let E be a Banach lattice, and let a and b be as in the statement of (US). Choose
any v € E4 withav > 1. Letx € X;, u € E, and a number A > 0 be given so that
blu| < 1and x + A(v 4+ u) € X;. We may write

x4+ A(v+u :x—ku_+k(v+u+).
Now as a and b are positive, we have
aQ (v +ut)) > A > rblul > b(Ou™).

Thus, (US) implies (EDC).

(C) Let (£2, X, ) be a o-finite measure space, and let the commodity space be
Lo (1) with the Mackey topology. Let & be an economy with probability space of
agents (T, .7, v) (and recall that the measure v is complete according to our definition
of economy). The assumption in Mertens (1970) on endowments is that the endowment
map e: T — Loo(1)+ is Gelfand integrable (as in (TAE)) and that

(i) e(t) € ||'[loo-int Loo(1t) 4 for almost all T';

(i1) there is a non-decreasing sequence (e, ) of measurable countably valued functions
en: T — Loo(u)+ such that e, () — e(¢) in the Mackey topology for almost all
tefT.

We will show now that this assumption implies (TAE). Note first that as (7, .7, v) is a
probability space, the property of e, being measurable and countably valued implies
that we can find a set S, € .7 with v(T'\ S,;) < 27" such that 15, x ¢, is a simple
function, i.e., takes only finitely many values. Set T, = () m>n Sm for each n, so that
the sequence (7},) is non-decreasing with v(7,,) — v(T). Now for each n, 17, % e,
is a measurable simple function, and the sequence (17, x ¢,) is non-decreasing such
that (17, x e,)(t) — e(t) in the Mackey topology a.e. in 7.

We may therefore assume that each e, is a simple function. By Fact 3, we may
also assume that (£2, X', ) is a probability space, so that Lo (1) S L1(u). Observe
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that for almost all t € T, e,(t) is an element of the order interval [0, e(¢)] for all n.
Hence, by Fact 4, we have e, (t) — e(¢) in L1 () for almost all # € T'. Thus, as a map
from T to Li(w), e is strongly measurable, therefore Borel measurable as (7, 7, v)
is complete. Now for each number r, the set {x € L{(®): x > rl}is aclosed subset
of L1(u), and it follows that the set {t € T : e(t) > r1g} is a measurable subset of T
for each number r.

Note that (i) means that for almost every ¢ € T there is an integer n > 0 such
that e(t) > (1/n)lg. By the previous paragraph, we can therefore find a number
r > 0andaset H € .7 with v(H) > r such that e(t) > rlg for each tr € H. For
each n € N, define ¢),: T — Loo(1t) by setting e, (1) = e,(t) V rlg ift € H, and
e, (t) = ey(t) ift € T\ H. Then for each n, e], is a measurable simple function; in
particular, ¢], is Bochner integrable. Observe that fT e, (t)dv(t) > v(H)rlg. Thus
fT e, (1) dv(t) € ||loo-int Loo(t)+ for each n. Moreover, the sequence (e),) is non-
decreasing, and using the fact that the lattice operations in L, (1) are continuous for
the Mackey topology, we see that e],(f) — e(¢) in the Mackey topology for almost all
t € T. Thus (TAE) holds.

(D) The following two lemmata show that in the context of Sect. 7, the Gelfand
integral does not exhibit pathological features. With S = T and B = 2, Lemma 6
below amounts to a translation of Remark 5 into formal language. Lemma 7 shows
that if Assumption (P) holds, and an allocation f is feasible for a coalition S € .7, i.e.,
f g S(Wdv() = f g e(t) dv(1), then the agents belonging to S cannot get commodities
that are not available in the aggregate endowment of S.

Lemma 6 Let (T, 7, v) be a probability space, (2, X, 1) a o-finite measure space,
and f: T — Loo()+ Gelfand integrable. Let S € 7 and write v = fS f(@)dv(r)
for the Gelfand integral of f over S. If a set B € X is such that 1p x v = 0, then the
set N={t e S:1p x f(t) # 0} is a null set.

Proof Choose a strictly positive ¢ € L1(u) (as is possible because u is o -finite). Note
that

/SUB < ) dv)= (15 x @) (/S f(t)dv(t)) —y (13 x /Sf(t)dv(t)) 0.

As (I1p x g)(f(t)) > 0 forall r € S, it follows that (15 x q)(f(z)) = 0 for almost
all r € §. Consequently, as (15 x q)(f(t)) = g(1p x f(t)) and q is strictly positive,
we must have 15 x f(t) = 0 for almost all ¢ € S. O

Lemma 7 Let (T, 7,v), (2, X, 1), f, S, and, v be as in the previous lemma. Let
C = {w € 2: v(w) > 0}, identifying v with any of its versions. Then there is a null
set N C S such that f(t) = 1¢ x f(t) forallt € S\N.

Proof Set B = £2\C, so that 15 x v = 0. By the previous lemma, there is a null set

N C Ssuchthat 15 x f(¢r) = Oforall € S\N, which implies that f(¢) = 1¢ x f(t)
forall t € S\ N, because f () = 1p x f(t) + 1c x f(2). O
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Appendix 2

In this appendix, we provide some mathematical background information, collecting
some basics on vector integrals and on set theory.

(A) Let (T, .7, v) be a nontrivial complete and totally finite measure space, and E
a Banach space, with norm || - ||. A measurable function f: T — E is called a simple
Sfunction if f(T) is finite. The integral of a simple function f is given by

/dev = > vo f({x})x.

xeE

A function f: T — E is strongly measurable if there exists a sequence ( f;,) of simple
functions such that

Tim £ = fa(®)] =0

for v-almost all ¢. Every strongly measurable function is Borel measurable. Since for
v-almost all ¢, f(t) € ct (U " f,,(T)), a strongly measurable function takes values
in a separable subspace of E outside a v-null set. A strongly measurable function
f: T — E is Bochner integrable if there exists a sequence of simple functions ( f;;)
such that

lim / If = fulldv = 0.
n—oo T

In that case, the Bochner integral of f is

/fdv:lim Jadv.

T n—od T

This limit exists and is independent of the particular approximating sequence {f).
A strongly measurable function f is Bochner integrable if and only if the function
t — || f(2)] is Lebesgue integrable (Diestel and Uhl 1977, Theorem 11.2.2). Bochner
integrals inherit many convenient properties of the Lebesgue integral. If f is Bochner
integrable, we call the function from .7 to E given by

Ar—>/Afdv:/T1Axfdv

the indefinite Bochner integral. The indefinite Bochner integral is a v-continuous
countably additive vector measure; v-continuity meaning that if lim,_, o, v(A,) = 0,
then lim,,_ || fAn f dv || = 0 (Diestel and Uhl 1977, Theorem I1.2.4(1)).

In order to be able to integrate functions with values that do not essentially lie
in a separable subspace, one can use weak integrals. Let E* be the topological dual
of E. A function f: T — E is weakly measurable if t +— x* f(t) is measurable
for all x* € E*. A function f: T — E* is weak*-measurable if t +— xf(t) is
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measurable for all x € E. By Pettis’ measurability theorem, a function is strongly
measurable exactly when it is weakly measurable and there is a separable subspace
of E containing almost all values (Diestel and Uhl 1977, Theorem II.1.2). A weak*-
measurable function need not be weakly measurable and a weakly measurable function
need not be strongly measurable (Diestel and Uhl 1977, Examples II.1.5 and 1I.1.6).
Let f: T — E be weakly measurable. If for each A € .7, there is an x4 € E such
that [, x* f dv = x*x, forall x* € E*, f is called Pettis integrable and

/fdv:xA
A

the Pettis integral of f over A. It agrees with the Bochner integral if the latter is
well defined, so this notation is unambiguous. It is possible for a weakly measurable
functionthatt — x* f(¢) isintegrable forall x* € E* without f being Pettis integrable
(Diestel and Uhl 1977, Example 11.3.3). Better behaved in that respect is the Gelfand
integral. If f: T — E™*isweak*-measurableands > xf(¢)isintegrableforallx € E,
then f is Gelfand integrable and there is a unique x* € E* such that fT xfdv=ux*x
for all x € E (Diestel and Uhl 1977, Lemma I1.3.1). We call

/fdv:x*
T

the Gelfand integral of f .1t follows that whenever f is Gelfand integrableand A € .7,
there is an x% € E* such that [, xf dv = x}x forallx € E.

(B) We now collect some set-theoretic results. Many of the results will not be used
in proofs, but in discussing how certain results fit into the literature. All results of this
paper are derivable from the usual axioms of set theory, i.e., Zermelo—Fraenkel set
theory with the axiom of choice (ZFC).

Recall that a partially ordered set is well-ordered if every non-empty subset has
a minimum. An ordinal is a set well-ordered by the relation “c or =" and such that
every element of the set is also a subset. If o and y are ordinals, we write o« < y if
a € y or o = y. Every set of ordinals is well-ordered by < and each ordinal equals
the set of strictly smaller ordinals. In particular, we can use notation such as (xg)s <o
to denote a transfinite sequence indexed by the ordinal «. There is no set containing
all ordinals.

For each set X, there is a smallest ordinal « such that there is a bijection from « onto
X. We call « the cardinal of X and write x = #(X). Finite cardinals can be identified
with the natural numbers 0, 1, 2, 3, ... In particular, 2 = {0, 1}. The set of all finite
cardinals is a cardinal itself, the first infinite cardinal w. The next larger cardinal is
w1, the first uncountable cardinal. The cardinal of R is of special importance and is
denoted by ¢ and called the cardinal of the continuum. If k is a cardinal, we let Kkt
be the smallest cardinal strictly larger than «. For example, o = w;. A cardinal of
the form k™ is a successor cardinal and every other cardinal is a limit cardinal. The
continuum hypothesis (CH) says that w; = .

If k and A are cardinals, we let ” be the cardinal of the set of functions from A to
k. Since one can identify subsets with indicator functions, 2“ is the cardinal of the set
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of all subsets of x. For every cardinal x, we have k < 2. We have ¢ = 2“. CH can be
written as o™ = 2%. The generalized continuum hypothesis (GCH) says that k * = 2¥
for every cardinal «. There are other operations one can do with the cardinals « and A.
We let «k + A be the cardinal of the disjoint union of « and A and « - A be the cardinal
of their Cartesian product. If « or X is infinite and both are nonzero, these operations
are trivial and one has ¥ + A = k - A = max{«, A}.

An axiom A is relatively consistent with ZFC if every proof of a contradiction from
ZFC together with A can be turned into a proof of a contradiction from ZFC alone.
Clearly, everything is relatively consistent with ZFC if there is a contradiction provable
from ZFC. So, we assert our faith in mathematics and assume this is not possible.
The generalized continuum hypothesis, and therefore also the continuum hypothesis,
is relatively consistent with ZFC (Kunen 2011, Theorem I1.6.24). A weakening of
the continuum hypothesis is provided by Martin’s axiom. The original statement of
Martin’s axiom is slightly intricate, but Martin’s axiom is equivalent to the following
statement: If X is a compact Hausdorff topological space in which every disjoint
family of non-empty open subsets is countable, then the intersection of less than ¢
open dense subsets is non-empty (Kunen 2011, Lemma II1.3.17). A consequence of
Martin’s axiom is that the additivity of Lebesgue measure is ¢, that is, the union
of less than ¢ Lebesgue null sets is again a null set (Kunen 2011, Lemma I11.3.28).
Baire’s category theorem for compact Hausdorff spaces shows that Martin’s axiom
in its topological version is implied by the continuum hypothesis. However, Martin’s
axiom is much weaker; in fact, there is a precise sense in which Martin’s axiom is
consistent with the cardinal of the continuum being arbitrarily large (Kunen 2011,
Theorem V.4.1).

There are axioms that are widely used and widely taken to be consistent even though
their relative consistency cannot be established. For example, one cannot prove the
relative consistency of the existence of an atomless probability space in which every
subset is measurable. By a result of Ulam, if such a probability space exists, a so-
called weakly inaccessible cardinal must exist too (Jech 2003, Theorem 10.1). Such
weakly inaccessible cardinals are known to imply the consistency of ZFC (Kunen
2011, Corollary 11.6.26 and Theorem I1.6.23). But by Godels second incompleteness
theorem, an axiom system strong enough to prove the consistency of ZFC is not
relatively consistent with ZFC.
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