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Abstract This paper studies games with both strategic substitutes and strategic com-
plements, and more generally, games with strategic heterogeneity (GSH). Such games
may behave differently from either games with strategic complements or games with
strategic substitutes. Undermild assumptions (on one or two players only), the equilib-
rium set in aGSH is totally unordered (no two equilibria are comparable in the standard
product order). Moreover, under mild assumptions (on one player only), parameter-
ized GSH do not allow decreasing equilibrium selections. In general, this cannot be
strengthened to conclude increasing selections. Monotone comparative statics results
are presented for games in which some players exhibit strategic substitutes and others
exhibit strategic complements. For two-player games with linearly ordered strategy
spaces, there is a characterization. More generally, there are sufficient conditions. The
conditions apply only to players exhibiting strategic substitutes; no additional condi-
tions are needed for players with strategic complements. Several examples highlight
the results.
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1 Introduction

Games with strategic substitutes (GSS) and games with strategic complements (GSC)
formalize two basic strategic interactions and have widespread applications. In GSC,
best response of each player is weakly increasing in actions of the other players,
whereas GSS have the characteristic that the best response of each player is weakly
decreasing in the actions of the other players.1

This paper focuses on games with both strategic substitutes and strategic comple-
ments. Relatively little is known about such games even though several classes of
interactions fall in this category. For example, a classic application in Singh and Vives
(1984) considers a duopoly in which one firm behaves as a Cournot firm (exhibiting
strategic substitutes) and the other as a Bertrand firm (with strategic complements).
Variations of the classic matching pennies game provide other examples. A Becker
(1968) type game of crime and law enforcement is another example: The criminal
exhibits strategic substitutes (the greater is law enforcement, the lower is crime),
and the police exhibit strategic complements (the greater is crime, the greater is law
enforcement). Such games also arise in studies of pre-commitment in industries with
learning effects, see Tombak (2006). Moreover, Fudenberg and Tirole (1984) and
Dixit (1987) present examples of pre-commitment where the strategic property of one
player’s action is opposite to that of the other player. More recent examples are found
in Shadmehr and Bernhardt (2011), analyzing collective actions in citizen protests
and revolutions, and Baliga and Sjostrom (2012), analyzing third-party incentives to
manipulate conflict between two players.

Games with both strategic substitutes and strategic complements are the basis for
our more general notion of a game with strategic heterogeneity (GSH), which, in
principle, allows for arbitrary strategic heterogeneity among players. Moreover, the
unified framework of GSH helps clarify the scope of results found separately for GSC
or GSS.

We present three main results.
First, we show that under mild conditions, the equilibrium set in a GSH is totally

unordered (no two equilibria are comparable in the standard product order). These
conditions can take one of the two forms: either just one player has strictly decreasing
and singleton-valued best response, or one player has strictly decreasing best response
and one player has strictly increasing best response; in either case, there are no restric-
tions on strategic interactions among other players. Three implications of this result
are notable. Firstly, the nice order and structure properties of the equilibrium set in

1 There is a long literature developing the theory of GSC. Some of this work can be seen in Topkis (1978,
1979), Bulow et al. (1985), Lippman et al. (1987), Sobel (1988), Milgrom and Roberts (1990, 1994),
Vives (1990), Milgrom and Shannon (1994), Zhou (1994), Shannon (1995), Villas-Boas (1997), Edlin and
Shannon (1998), Echenique (2002, 2004), Quah (2007), and Quah and Strulovici (2009), among others.
Extensive bibliographies are available in Topkis (1998), in Vives (1999), and in Vives (2005). There is a
growing literature on GSS: confer Amir (1996), Villas-Boas (1997), Amir and Lambson (2000), Schipper
(2003), Zimper (2007), Roy and Sabarwal (2008, 2010, 2012), Acemoglu and Jensen (2009), Amir et al.
(2010), Acemoglu and Jensen (2010), Jensen (2010), among others.
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Games with strategic complements and substitutes 67

GSC2 do not survive a minimal introduction of strategic substitutes, in the sense
that if we modify a GSC so that just one player has strict strategic substitutes3 and
has a singleton-valued best response, then the order structure of the equilibrium set
is destroyed completely; no two equilibria are comparable. Similarly, if we modify a
GSC to require that one player has strict strategic complements,4 and another has strict
strategic substitutes, then again the order structure of the equilibrium set is destroyed
completely. Secondly, the non-ordered nature of equilibria implies that starting from
one equilibrium, algorithms to compute another equilibrium may be made more effi-
cient by discarding two areas of the strategy space. Thirdly, if player strategy spaces
are linearly ordered,5 then the set of symmetric equilibria is non-empty, if, and only
if, there is a unique symmetric equilibrium.6 Therefore, in such cases, there is at most
one symmetric equilibrium. In this regard, a game with both strategic substitutes and
strategic complements is different from a GSC and resembles more results for a GSS.

Second, we show that under mild conditions, parameterized GSH do not allow
decreasing equilibrium selections (as the parameter increases, equilibria do not
decrease). These conditions can take one of the two forms: either just one player
has strict strategic substitutes and singleton-valued best response, or just one player
has strict strategic substitutes and strict single-crossing property in (own variable;
parameter); in either case, there are no restrictions on strategic interaction among
other players. Recall that in a GSC (leaving aside stability issues), it is possible to find
a higher equilibrium at a lower parameter and a lower equilibrium at a higher para-
meter. In a GSS, however, there are no decreasing equilibrium selections. Therefore,
our second result implies that decreasing selections in a GSC are eliminated with a
“minimal” introduction of strategic substitutes. Moreover, an example shows that our
second result cannot be strengthened to yield increasing equilibria more generally. In
this regard, too, a GSH is different from a GSC and more closely resembles known
results for a GSS.

Third,we presentmonotone comparative statics results (at a higher parameter value,
there are equilibria in which all players take a higher action) for games in which some
players exhibit strategic substitutes and others exhibit strategic complements. For
two-player games in which one player exhibits strategic substitutes, the other player
exhibits strategic complements, and each player has a linearly ordered strategy space,
we characterize monotone comparative statics via a condition on the best response
of only the player with strategic substitutes. (No additional condition is imposed on
the player with strategic complements). The condition is intuitive and is based on a

2 The equilibrium set in a GSC always has a smallest and a largest equilibrium, and more generally, the
equilibrium set is a non-empty, complete lattice. These properties are useful to provide simple and intuitive
algorithms to compute equilibria and to showmonotone comparative statics of equilibria inGSC. In contrast,
in GSS, the equilibrium set is totally unordered: No two equilibria are comparable in the standard product
order.
3 Intuitively, best response is strictly decreasing in other player strategies.
4 Intuitively, best response is strictly increasing in other player strategies.
5 As usual, a partially ordered set is linearly ordered, if the partial order is complete; that is, every two
elements are comparable.
6 As usual, in a symmetric equilibrium, each player plays the same strategy.
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trade-off between the direct parameter effect and the indirect strategic substitute effect.
Notably, the same condition works for GSS in a similar setting when best responses
are singleton-valued. We present examples to show that this characterization does not
hold when there are more than two players or when strategy spaces are not linearly
ordered. For themore general case, when some players exhibit strategic substitutes and
others exhibit strategic complements, we present sufficient conditions that guarantee
monotone comparative statics. As in the two-player case, these conditions are needed
only for players with strategic substitutes. The conditions are stronger than in the two-
player case, but still involve a trade-off between the direct parameter effect and the
indirect strategic substitute effect. In this regard, games with both strategic substitutes
and complements behave differently from either GSC or GSS.

Recall that if an analyst can choose a new order, then Echenique (2004) shows that
there may exist partial orders in which a strategic game can be viewed as a GSC. This
approach is useful when a partial order is not intrinsic to the game, and its choice does
not materially affect the interpretation of “more” and “less.” The framework in this
paper is more appropriate when there is a natural order on a player’s strategy space
and an interest in equilibrium predictions and comparative statics in this order. For
example, when considering the impact of taxes or subsidies on firm output, a natural
order on output space is the standard order on the real numbers (and not some other
order in which the game may be viewed as a GSC). In our framework, the order on a
player’s strategy space is considered a fixed primitive of the game.

The paper proceeds as follows. Section 2 defines gameswith strategic heterogeneity
and presents the first main result on the structure of the equilibrium set in such games.
Section 3 defines parameterized games with strategic heterogeneity, Sect. 3.1 presents
the secondmain result on non-decreasing equilibrium selections, and Sect. 3.2 presents
the third main result on monotone comparative statics. Section 4 concludes.

2 Games with strategic heterogeneity

Recall that a lattice is a partially ordered set in which every two elements x and y
have a supremum, denoted x ∨ y, and an infimum, denoted x ∧ y. A complete lattice
is a lattice in which every non-empty subset has a supremum and infimum in the
set.7 A function f : X → R (where X is a lattice) is quasi-supermodular if (1)
f (x) ≥ f (x ∧ y) �⇒ f (x ∨ y) ≥ f (y), and (2) f (x) > f (x ∧ y) �⇒ f (x ∨ y) >

f (y). A function f : X × T → R (where X is a lattice and T is a partially ordered
set) satisfies single-crossing property in (x; t) if for every x ′ ≺ x ′′ and t ′ ≺ t ′′, (1)
f (x ′, t ′) ≤ f (x ′′, t ′) �⇒ f (x ′, t ′′) ≤ f (x ′′, t ′′), and (2) f (x ′, t ′) < f (x ′′, t ′) �⇒
f (x ′, t ′′) < f (x ′′, t ′′).
Consider finitely many players I , and for each player i = 1, . . . , I , a strat-

egy space that is a partially ordered set, denoted (Xi ,�i ), and a real-valued pay-
off function, denoted ui (xi , x−i ). As usual, the domain of each ui is the product of
the strategy spaces, (X,�), endowed with the product order.8 The strategic game

7 This paper uses standard lattice terminology. See, for example, Topkis (1998).
8 For notational convenience, we shall usually drop the index i from the notation for the partial order.
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Games with strategic complements and substitutes 69

� = {
(Xi ,�i , ui )Ii=1

}
is a game with strategic heterogeneity, or GSH, if for every

player i ,

1. Xi is a non-empty, complete lattice, and
2. For every x−i , ui is upper-semicontinuous in xi .9

The definition of a GSH here is very general, allowing for arbitrary heterogeneity
in strategic interaction among the players. In particular, no restriction is placed on
whether players have strategic complements or strategic substitutes. Consequently,
this definition allows for games with strategic complements, games with strategic
substitutes, and mixtures of the two.

For each player i , the best response of player i to x−i is denoted β i (x−i ) and is
given by argmaxxi∈Xi ui (xi , x−i ). As the payoff function is upper-semicontinuous
and the strategy space is compact in the order interval topology, for every i , and for
every x−i , β

i (x−i ) is non-empty. Let β : X � X , given by β(x) = (β i (x−i ))
I
i=1,

denote the joint best response correspondence.
As usual, a (pure strategy) Nash equilibrium of the game is a profile of player

actions x such that x ∈ β(x). The equilibrium set of the game is given by E =
{x ∈ X |x ∈ β(x)}. Needless to say, at this level of generality, a GSH may have no
Nash equilibrium. For example, the textbook two-player matching pennies game is
admissible here and has no pure strategy Nash equilibrium. One may impose addi-
tional conditions to invoke standard results to guarantee existence of equilibrium via
Brouwer–Schauder type theorems, or Kakutani–Glicksberg–Ky Fan type theorems,
or other types of results. For the most part, we do not make these assumptions so
that our results apply whenever equilibrium exists, regardless of whether a specific
equilibrium existence theorem is invoked, or whether an equilibrium is shown to exist
directly in a game. Toward the end of the paper, in Theorems 5 and 6, we make stan-
dard assumptions to guarantee existence of equilibrium; these are used to guarantee
existence of a “higher” equilibrium.

Of particular interest to us are cases where the best response of a player is either
increasing (the case of strategic complements) or decreasing (the case of strategic
substitutes) with respect to the strategies of the other players. Here, increasing or
decreasing are with respect to an appropriately defined set order, as follows.

Recall that if the payoff function of player i is quasi-supermodular in xi and satisfies
the single-crossing property in (xi ; x−i ), then the best response correspondence of
player i is non-decreasing in the induced set order. (The standard induced set order
is defined as follows: For non-empty subsets A, B of a lattice X, A in B, if for
every a ∈ A, and for every b ∈ B, a ∧ b ∈ A, and a ∨ b ∈ B). In other words,
x ′−i � x ′′−i ⇒ β i (x ′−i ) in β i (x ′′−i ). When player i’s best response is a function,
this translates into the standard definition of a weakly increasing function: x ′−i �
x ′′−i ⇒ β i (x ′−i ) � β i (x ′′−i ). Let us formalize this by saying that player i has strategic
complements, if player i’s best response correspondence β i is non-decreasing in x−i

in the induced set order. A game with strategic complements, or GSC, is a GSH in
which every player i has strategic complements.

9 In the standard order interval topology.
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Similarly, in a GSH, if the payoff function of each player i is quasi-supermodular in
xi and satisfies the dual single-crossing property in (xi ; x−i ),10 then the best response
correspondence of each player is non-increasing in the standard induced set order:
x ′−i � x ′′−i ⇒ β i (x ′′−i ) in β i (x ′−i ). When player i’s best response is a function,
this translates into the standard definition of a weakly decreasing function: x ′−i �
x ′′−i ⇒ β i (x ′′−i ) � β i (x ′−i ). Let us formalize this by saying that player i has strategic
substitutes, if player i’s best response correspondence β i is non-increasing in x−i in
the induced set order. A game with strategic substitutes, or GSS, is a GSH in which
every player i has strategic substitutes.

Notice that the definitions of strategic complements and strategic substitutes are
weak versions, because both admit a best response correspondence that is constant in
other player actions. Therefore, it is useful to define strict versions of these ideas as
well. Consider the following set order. For non-empty subsets A, B of a lattice X, A is
strictly lower than B, denoted A �s B, if for every a ∈ A, and for every b ∈ B, a ≺ b.
This definition is a slight strengthening of the following set order defined in Shannon
(1995): A is completely lower than B, denoted A c B, if for every a ∈ A, and for
every b ∈ B, a � b. Notice that when A and B are non-empty, complete sub-lattices
of X, A is strictly lower than B, if, and only if, sup A ≺ inf B; and similarly, A is
completely lower than B, if, and only if, sup A � inf B.

Let us say that player i has quasi-strict strategic complements, if for every
x ′−i ≺ x ′′−i , β

i (x ′−i ) c β i (x ′′−i ). Notice that when best response is singleton-valued,
quasi-strict strategic complements are equivalent to strategic complements and there-
fore may not necessarily yield strictly increasing best responses. Say that player i has
strict strategic complements, if for every x ′−i ≺ x ′′−i , β

i
t (x

′−i ) �s β i
t (x

′′−i ). In other
words, player i’s best response is increasing in x−i in the strictly lower than set order.
Applying a result due to Shannon (1995) and based on Milgrom and Shannon (1994),
if player i’s payoff is strictly quasi-supermodular in xi ,11 and player i’s payoff satis-
fies strict single-crossing property in (xi , x−i ),12 then player i has quasi-strict strategic
complements. Moreover, in finite-dimensional Euclidean spaces, Edlin and Shannon
(1998) provide an additional intuitive and easy-to-use differentiable condition regard-
ing strictly increasing marginal returns to derive a comparison in the strictly lower
than set order and therefore to conclude that player i has strict strategic complements.

Similarly, player i has quasi-strict strategic substitutes, if for every x ′−i ≺
x ′′−i , β

i (x ′′−i ) c β i (x ′−i ), and player i has strict strategic substitutes, if for every
x ′−i ≺ x ′′−i , β

i
t (x

′′−i ) �s β i
t (x

′−i ). The conditions for strict strategic complements and
quasi-strict strategic complements can be easily adapted for substitutes.

10 A function f : X × T → R (where X is a lattice and T is a partially ordered set) satisfies dual single-
crossing property in (x; t) if for every x ′ ≺ x ′′ and t ′ ≺ t ′′, (1) f (x ′′, t ′) ≤ f (x ′, t ′) �⇒ f (x ′′, t ′′) ≤
f (x ′, t ′′), and (2) f (x ′′, t ′) < f (x ′, t ′) �⇒ f (x ′′, t ′′) < f (x ′, t ′′). This is a natural generalization of
Amir (1996).
11 A function f : X → R (where X is a lattice) is strictly quasi-supermodular if for all unordered
x, y, f (x) ≥ f (x ∧ y) �⇒ f (x ∨ y) > f (y).
12 A function f : X × T → R (where X is a lattice and T is a partially ordered set) satisfies strict
single-crossing property in (x; t) if for every x ′ ≺ x ′′ and t ′ ≺ t ′′, f (x ′, t ′) ≤ f (x ′′, t ′) �⇒ f (x ′, t ′′) <

f (x ′′, t ′′).
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Our first result, Theorem 1 shows how a single player with (strict) strategic substi-
tutes can destroy the order structure of the equilibrium set.

Theorem 1 In a GSH, suppose one of the following conditions is satisfied.

1. One player has strict strategic substitutes and singleton-valued best response.
2. One player has strict strategic substitutes and another player has strict strategic

complements.

In either case, if x∗ and x̂ are distinct equilibria, then x∗ and x̂ are not comparable.

Proof Suppose condition (1) is satisfied. Suppose, without loss of generality, that
player 1 has strict strategic substitutes with singleton-valued best response, and sup-
pose the distinct equilibria x̂ and x∗ are comparable, with x̂ ≺ x∗. As case 1, suppose
x̂−1 ≺ x∗−1. Then x̂1 = β1(x̂−1) and x∗

1 = β1(x∗−1), and by strict strategic substitutes,
x∗
1 ≺ x̂1, contradicting x̂ ≺ x∗. For case 2, suppose x̂−1 = x∗−1 and x̂1 ≺ x∗

1 . Then
x̂1 = β1(x̂−1) = β2(x∗−2) = x∗

2 , contradicting x̂1 ≺ x∗
1 . Thus, x

∗ and x̂ are not
comparable.

Suppose condition (2) is satisfied. Suppose, without loss of generality, that player
1 has strict strategic substitutes and player 2 has strict strategic complements, and
suppose the distinct equilibria are comparable, with x̂ ≺ x∗. As case 1, suppose
x̂−1 ≺ x∗−1. Then x̂1 ∈ β1(x̂−1) and x∗

1 ∈ β1(x∗−1), and by strict strategic substitutes,
x∗
1 ≺ x̂1, contradicting x̂ ≺ x∗. As case 2, suppose x̂1 ≺ x∗

1 . Then x̂−2 ≺ x∗−2.
As x̂2 ∈ β2(x̂−2) and x∗

2 ∈ β2(x∗−2), strict strategic complements implies x̂2 ≺ x∗
2 ,

whence x̂−1 ≺ x∗−1, and we are in case 1. Thus, x∗ and x̂ are not comparable. ��
The economic intuition in this proof is straightforward. When condition (2) is

satisfied, in case 1 in the proof, if opponents of player 1 play higher strategies in the x∗
equilibrium than in the x̂ equilibrium, then player 1 (with strict strategic substitutes)
must be playing a strictly lower strategy in the x∗ equilibrium than in the x̂ equilibrium,
and therefore, the equilibria are non-comparable. Case 2 essentially says that with
x̂ ≺ x∗, player 1 cannot be playing a higher strategy in the x∗ equilibrium. For if he
did, then player 2 (with strict strategic complements) is playing a higher strategy in the
x∗ equilibrium, and therefore, the opponents of player 1 are playing higher strategies
in the x∗ equilibrium, whence player 1 is playing a strictly lower strategy in the x∗
equilibrium, which is a contradiction.

The intuition behind condition (2) is taken further in condition (1), in the sense
that when the best response of the player with strict strategic substitutes is singleton-
valued, the requirement of a player with strict strategic complements can be dropped.
Intuitively, if x̂ ≺ x∗, then we need only consider the case when opponents of player 1
play higher strategies; that is, x̂−1 ≺ x∗−1. For if x̂−1 = x∗−1, then by singleton-valued
best responses, the best response of player 1 to x̂−1 is the same as her best response
to x∗−1, and thus, both equilibria are the same, which is a contradiction. Condition
(1) in theorem 1 formalizes the intuition that adding one player with strict strategic
substitutes completely destroys the order structure of the equilibrium set.

Notice that Roy and Sabarwal (2008) present a different version of this result, using
(joint) best responses that satisfy a never-increasing property. Their result is designed
for GSS. Their technique cannot be used to prove Theorem 1, because the conditions of

123



72 A. J. Monaco, T. Sabarwal

Fig. 1 Matching pennies:
double-or-nothing

(H, H) (T, H) (H, T) (T, T)

(H, H) -2, 2 -1, 1 -1, 1 2, -2

(T, H) 1, -1 0, 0 0, 0 1, -1

(H, T) 1, -1 0, 0 0, 0 1, -1

(T, T) 2, -2 -1, 1 -1, 1 -2, 2

Player 2

Pl
ay

er
 1

Theorem 1 allow for cases that are excluded by the assumptions used in their proof.13

In particular, their result cannot cover the examples in this paper. This is not altogether
surprising, given their focus onGSS.Additionally, the proof here is different; it is more
direct and relies more on economic intuition.

Let us look at some applications of Theorem 1.

Example 1 (Matching pennies: double-or-nothing) Consider the following extension
of a standard matching pennies game. Each player has two pennies that they lay on a
tablewith their hand covering the pennies. Once the pennies are revealed, the outcomes
determine the payoffs as follows. Let us say that a player goes for double-or-nothing,
if she plays either both heads or both tails, and she does not go for double-or-nothing,
if she plays anything else. If the outcome is (H, H) and (H, H), or (T, T ) and (T, T ),
that is, both players go for double-or-nothing and the pennies match, then player 2
wins $2 from player 1. If the outcome is (H, H); (T, T ), or (T, T ); (H, H), that is,
both players go for double-or-nothing and the pennies do not match, then player 1 wins
$2 from player 2. If both players put up exactly one H and one T , that is, nobody goes
for double-or-nothing, it is a tie and no money changes hands; and if one player goes
for double-or-nothing, that is, plays either (H, H) or (T, T ), and the other does not,
that is, plays (H, T ) or (T, H), then the player who goes for double-or-nothing loses
and pays $1 to the other player. The payoffs of this zero-sum game are summarized
in Fig. 1.

Assuming H ≺ T , and with the standard product order, the strategy space of
each player has the order (H, H) ≺ (H, T ) ≺ (T, T ); (H, H) ≺ (T, H) ≺
(T, T ); and (T, H) and (H, T ) are not comparable. Notice that player 1 has strict
strategic substitutes, player 2 has strict strategic complements, and the four Nash
equilibria (H, T ; T, H), (H, T ; H, T ), (T, H ; T, H), and (T, H ; H, T ) are all non-
comparable. For a more general version without necessarily specifying payoffs, con-
sider the next example.

Example 2 (A general two-player, four-point GSH) Consider a GSHwith two players.
Player 1’s strategy space is a standard four-point lattice, X1 = {a1, b1, c1, d1}, with

13 Their result excludes the general class in which all-but-one players have quasi-strict strategic comple-
ments, the remaining player has at least two actions, and there are no restrictions on the strategic interaction
with the remaining player. Indeed, their result does not apply even when these properties only hold locally.
Details are provided in “Appendix 1”.
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a1 b1

c1 d1

a2 b2

c2 d2

X1 X2

BR2(d1)

BR2(b1) = BR2(c1)
BR2(a1)

BR1(a2)

BR1(d2)
BR1(b2) = BR1(c2)

Fig. 2 A general two-player, four-point GSH

b1 and c1 unordered, and a1 = b1 ∧ c1, and d1 = b1 ∨ c1, shown graphically in
Fig. 2. Similarly, X2 = {a2, b2, c2, d2}, also shown graphically in Fig. 2. Suppose
player 1’s best response correspondence is given as follows: β1(a2) = {d1} , β1(b2) =
β1(c2) = {b1, c1}, and β1(d2) = {a1}, and player 2’s best response correspondence
is given as follows: β2(a1) = {a2} , β2(b1) = β2(c1) = {b2, c2}, and β2(d1) = {d2}.
Both are depicted in Fig. 2. It is easy to check that this example satisfies condition
2 of Theorem 1: Player 1 has strict strategic substitutes, player 2 has strict strategic
complements. Consequently, the four Nash equilibria (b1, b2), (b1, c2), (c1, b2), and
(c1, c2) are all non-comparable. (Notice that double-or-nothing matching pennies is a
special case of this example).

An example in which condition 1 of Theorem 1 is satisfied is presented next.

Example 3 (Cournot duopoly with spillovers) Consider two firms, an incumbent (firm
1) and an entrant (firm 2) competing as Cournot duopolists, producing quantities x1
and x2, respectively. Inverse market demand is given by p = a− b(x1 + x2), and firm
output is in [0, 8]. Firm 1’s costs are linear, given by a constant marginal cost c1 > 0.
Thus, the incumbent’s profit is given by π1(x1, x2) = (a − b(x1 + x2))x1 − cx1.

As ∂2π1
∂x2∂x1

= −b < 0, firm 1’s best response is decreasing in x2. Indeed, firm 1’s

best response is given by x1 = a−c1−bx2
2b . Suppose there is a one-way spillover from

the incumbent to the entrant, say, in the form of cheaper access to industry-specific
talent, or having access to superior supply chain management at a lower cost, and so
on, and this lowers firm 2’s costs. The spillover may depend on firm 1’s output and
is denoted s(x1). Suppose firm 2’s costs are given by c2x2s(x1). Its profits are given
by π2(x1, x2) = (a − b(x1 + x2))x2 − c2x2s(x1). Firm 2’s best response is given by
x2 = a−c2s(x1)−bx1

2b .
Suppose a = 15, b = 1

2 , c1 = 11, c2 = 3, and the spillover function is s(x1) =
2
3 x

3
1 − x21 − 1

2 x1 + 3. (This spillover function is non-negative and non-monotonic: As

firm 1’s output increases from 0 to 1+√
2

2 ≈ 1.2, the spillover reduces from 3 to a local
minimumof about 2.1 and then starts to increase.) In this case, best responses are given
by β1(x2) = 4 − 1

2 x2, and β2(x1) = max{6 + x1 + 3x21 − 2x31 , 0}. Thus, condition
1 in Theorem 1 is satisfied. It is easy to check that there are three Nash equilibria:
( 12 , 7), (2, 4), and (4, 0), as shown in Fig. 3, and as predicted by Theorem 1, these are
non-comparable.

The next two examples document some limits of Theorem 1. An extension of
the matching pennies: double-or-nothing example shows that non-comparability of
equilibria may hold sometimes with conditions slightly weaker than one player with
strict strategic complements and one player with strict strategic substitutes. The
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Fig. 3 Cournot duopoly with spillovers

Dove–Hawk-type example shows that weakening the conditions is not possible in
general.

Example 1 (Matching pennies: double-or-nothing, part 2), continued. Consider the
following modification to the game of double-or-nothing matching pennies. If both
players go for double-or-nothing and the pennies match (that is, the outcome is (H, H)

and (H, H), or (T, T ) and (T, T )), player 2 wins $2 from player 1, and if both pennies
do not match (the outcome is (H, H); (T, T ), or (T, T ); (H, H)), player 1 wins $2
from player 2. In all other cases, the game is a tie, and no money changes hands.
The payoffs of this zero-sum game are summarized in Fig. 4. Assume the same order
structure as in double-or-nothing matching pennies. Notice that player 1 has quasi-
strict strategic substitutes, player 2 has quasi-strict strategic complements, and the four
Nash equilibria are all non-comparable.

Example 4 (A Dove–Hawk-type game) Consider the GSH with two players given in
Fig. 5, where for player 1, L ≺ M ≺ H , and for player 2, L ≺ M . We may interpret
L as a low (most Dovish, least Hawkish) action, M as a medium (less Dovish, more
Hawkish) action, and H as a high (or least Dovish, most Hawkish) action. Player 1 has
strict strategic substitutes, with non-singleton-valued best response:β1(L) = {M, H},
and β1(M) = {L}. Player 2 is of a type that prefers less conflict (or avoids aggression
or would prefer amore “cooperative” action). Player 2 exhibits strategic complements;
in fact, player 2’s best response function is constant, β2(L) = β2(M) = β2(H) =
{L}. This game has two Nash equilibria, (M, L) and (H, L), and these equilibria are
comparable, with (M, L) ≺ (H, L).
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Fig. 4 Matching pennies:
double-or-nothing, Part 2

(H, H) (T, H) (H, T) (T, T)

(H, H) -2, 2 0, 0 0, 0 2, -2

(T, H) 0, 0 0, 0 0, 0 0, 0

(H, T) 0, 0 0, 0 0, 0 0, 0

(T, T) 2, -2 0, 0 0, 0 -2, 2

Player 2

Pl
ay

er
 1

Fig. 5 A Dove–Hawk-type
game L M

L 0, 5 5, 0

M 5, 5 0, 0

H 5, 5 0, 0

Player 2

Pl
ay

er
 1

Theorem1 can be used to highlight a particular non-robustness in the order structure
of the equilibrium set in games with strategic complements. Recall that in GSC, the
equilibrium set is a non-empty, complete lattice (see Zhou 1994), and there exist a
smallest equilibrium and a largest equilibrium (various versions of this result can be
seen in Topkis 1978, 1979; Lippman et al. 1987; Sobel 1988; Milgrom and Roberts
1990; Vives 1990; Milgrom and Shannon 1994, among others). On the other hand, in
GSS, the equilibrium set is completely unordered: No two equilibria are comparable
(in the standard product order), as shown in Roy and Sabarwal (2008). Therefore,
when we move from a setting in which all players exhibit strategic complements to
a setting in which all players exhibit strategic substitutes, the order structure of the
equilibrium set is destroyed completely.

Theorem 1 can be used to inquire when and by how much the order structure
of the equilibrium set is affected as we move player-by-player from a setting of all
players with strategic complements to a setting of all players with strategic substitutes.
Consider a GSC. In this case, the equilibrium set is a non-empty, complete lattice,
and every pair of equilibria has a smallest larger equilibrium, and a largest smaller
equilibrium. If we modify this game to require that just one player has strict strategic
substitutes and that player’s best response is singleton-valued (perhaps because that
payoff function is strictly quasi-concave), then the order structure of the equilibrium
set is destroyed completely. That is, no two equilibria are comparable. Similarly, if we
modify this game to require that oneplayer has strict strategic complements and another
has strict strategic substitutes, then again the order structure of the equilibrium set is
destroyed completely. Theorem 1 implies that the nice order and structure properties
of GSC do not survive a minimal introduction of strategic substitutes.
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Of course, the result in Theorem 1 is stronger and applies to general GSH, not just to
GSC. In particular, in any GSH, if there is reason to believe that either (1) one player
has strict strategic complements and another player has strict strategic substitutes,
or (2) just one player has strict strategic substitutes and has singleton-valued best
responses, then without any restrictions on the strategic interaction among the other
players, we may conclude that no two equilibria are comparable. Indeed, Theorem 1
yields the following corollary immediately.

Corollary 1 Let � satisfy one of the conditions of Theorem 1. The following are
equivalent.

(1) E is a non-empty lattice
(2) E is a singleton
(3) E is a non-empty, complete lattice

For the proof, the only part that needs to be checked is that (1) implies (2). This
follows trivially if E is a singleton. If E is a non-empty lattice with more than one
element, then it contains the join and meet of these two elements, and the join and
meet are distinct and comparable, contradicting Theorem 1.

Moreover, Theorem 1 implies that for the cases considered here, with multiple
equilibria, techniques based on the existence of a smallest or largest equilibrium are
invalid. In particular, the standard technique of using extremal equilibria to show
monotone comparative statics in GSC is invalid here. Additionally, the non-ordered
nature of equilibria shows that starting from one equilibrium, algorithms to compute
another equilibrium may be made more efficient by discarding two areas of the action
space.

Furthermore, Theorem 1 implies that when strategy spaces of players are linearly
ordered,14 the game has at most one symmetric equilibrium. Here, an equilibrium is
symmetric, if every player plays the same strategy in equilibrium.

Corollary 2 Let� satisfy one of the conditions of Theorem 1, and suppose the strategy
space of each player is linearly ordered.
The set of symmetric equilibria is non-empty, if, and only if, there is a unique symmetric
equilibrium.

The “only if” direction is provedbynoting thatwith linearly ordered strategy spaces,
if there are two (or more) symmetric equilibria, they are comparable, contradicting
Theorem 1.

Notice that the definition of symmetric equilibrium here makes no reference to
payoffs. Sometimes, a symmetric equilibrium is considered in games inwhich (perhaps
ex-ante) payoffs of all players are identical. In that case, each player’s best response is
identical to that of the other players, and for Theorem 1 to be applicable, each player
would have a decreasing best response, and the game would necessarily be one of
strategic substitutes. The result here applies to more general situations and allows for
strategic heterogeneity. As a simple class of examples, consider a simple two-player

14 As usual, linearly ordered means that every pair of strategies is comparable. A linear order is sometimes
termed a complete order.
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game in which player 1’s payoff is given by u1(x1, x2) = −x1x2 + kx1, for some
positive constant k, and player 2’s payoff is given by u2(x1, x2) = x1x2. In this case,
player 1 has strategic substitutes, player 2 has strategic complements, and the unique
symmetric equilibrium is given by (k, k).

3 Parameterized GSH

Consider finitely many players, I , and for each player i , a strategy space that is
a partially ordered set, denoted (Xi ,�i ), a real-valued payoff function, denoted
ui (xi , x−i , t), and a partially ordered set of parameters, T . As usual, the product of
the strategy spaces, denoted (X,�), is endowed with the product order and topology.
The strategic game � = {(Xi ,�i , ui )Ii=1, T } is a parameterized game with strategic
heterogeneity, or parameterized GSH, if for every player i ,

1. Xi is a non-empty, complete lattice, and
2. For every (x−i , t), ui is quasi-supermodular and upper-semicontinuous in xi ,15

and
3. For every x−i , ui satisfies single-crossing property in (xi ; t).
As earlier, for each t ∈ T , and for each player i , the best response of player i

to x−i is denoted β i
t (x−i ) and is given by argmaxxi∈Xi ui (xi , x−i , t). As the payoff

function is quasi-supermodular and upper-semicontinuous, and the strategy space is
compact in the order interval topology, for every i , and for every (x−i , t), β i

t (x−i ) is a

non-empty, complete sub-lattice. When convenient, we use β
i
t (xi ) = supβ i

t (xi ), and
β i
t
(xi ) = inf β i

t (xi ).
Moreover, as usual, single-crossing property in (xi ; t) formalizes the standard idea

that the parameter is complementary to xi . It implies that β i
t (x−i ) is non-decreasing

in t in the induced set order: For every t � t̂ and for every x−i , β
i
t (x−i ) in β i

t̂
(x−i ).

For each t ∈ T , let βt : X � X given by βt (x) = (β i
t (x−i ))

I
i=1 denote the joint best

response correspondence. From properties of player best responses, it follows that
for every t � t̂ and for every x, βt (x) in βt̂ (x). As usual, for each t ∈ T , a (pure
strategy) Nash equilibrium is a profile of player actions x such that x ∈ βt (x), and the
equilibrium set at t is given by E(t) = {x ∈ X |x ∈ βt (x)}.

As earlier, say that player i has strategic complements, if for every t , player i’s
best response correspondence β i

t is non-decreasing in x−i in the induced set order: For
every t and every x ′−i � x ′′−i , β

i
t (x

′−i ) in β i
t (x

′′−i ). Similarly, player i has strategic
substitutes, if for every t , player i’s best response correspondence β i

t is non-increasing
in x−i in the induced set order: For every t and every x ′−i � x ′′−i , β

i
t (x

′′−i ) in β i
t (x

′−i ).
Strict versions are defined similarly. Let us say that player i has quasi-strict strategic
complements, if for every t , and every x ′−i ≺ x ′′−i , β

i
t (x

′−i ) c β i
t (x

′′−i ). Player i has
strict strategic complements, if for every t , and every x ′−i ≺ x ′′−i , β

i
t (x

′−i ) �s β i
t (x

′′−i ).
Similarly, player i has quasi-strict strategic substitutes, if for every t , and every
x ′−i ≺ x ′′−i , β

i
t (x

′′−i ) c β i
t (x

′−i ). Moreover, player i has strict strategic substitutes,

15 In the standard order interval topology.
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if for every t , and every x ′−i ≺ x ′′−i , β
i
t (x

′′−i ) �s β i
t (x

′−i ). These properties may be
derived from the same conditions on payoff functions presented earlier.

3.1 Non-decreasing equilibrium selections

The following result shows that in a broad class of parameterized GSH, there are no
decreasing selections of equilibria.

Theorem 2 In a parameterized GSH, suppose one of the following conditions is
satisfied.

1. One player has strict strategic substitutes and singleton-valued best response.
2. One player, say player i , has strict strategic substitutes and strict single-crossing

property in (xi ; t).
Then for every t∗ ≺ t̂ , for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂), x̂ ⊀ x∗.

Proof Consider condition 1, and without loss of generality, suppose it is satisfied for
player 1. Suppose x̂ ≺ x∗. As case 1, consider x̂−1 ≺ x∗−1. Then x∗

1 = β1
t∗(x

∗−1) ≺
β1
t∗(x̂−1) � β1

t̂
(x̂−1) = x̂1, contradicting x̂ ≺ x∗. Here, the strict inequality follows

from strict strategic substitutes, and the weak inequality follows from single-crossing
property in (x1; t). As case 2, consider x̂−1 = x∗−1 and x̂1 ≺ x∗

1 . Then x
∗
1 = β1

t∗(x
∗−1) =

β1
t∗(x̂−1) � β1

t̂
(x̂−1) = x̂1, contradicting x̂1 ≺ x∗

1 .
Consider condition 2, suppose it is satisfied for player 1, and suppose x̂ ≺ x∗.

As case 1, consider x̂−1 ≺ x∗−1. Then β1
t∗(x

∗−1) �s β1
t∗(x̂−1) c β1

t̂
(x̂−1), where

the strictly lower than relation follows from strict strategic substitutes, and the com-
pletely lower than relation follows from strict single-crossing property in (x1; t). Con-
sequently, x∗

1 � supβ1
t∗(x

∗−1) ≺ inf β1
t∗(x̂−1) � inf β1

t̂
(x̂−1) � x̂1, contradicting

x̂1 ≺ x∗
1 . As case 2, consider x̂−1 = x∗−1 and x̂1 ≺ x∗

1 . Then β1
t∗(x

∗−1) = β1
t∗(x̂−1) c

β1
t̂
(x̂−1), whence x∗

1 � supβ1
t∗(x

∗−1) = supβ1
t∗(x̂−1) � inf β1

t̂
(x̂−1) � x̂1, contradict-

ing x̂1 ≺ x∗
1 . ��

This theorem presents conditions on one player only to derive equilibrium selec-
tion results. In particular, if one player exhibits strict strategic substitutes and has a
singleton-valued best response, then without any restrictions on the strategic interde-
pendence among the other players, there are no decreasing selections of equilibria.
In particular, this theorem does not require other players to exhibit either strategic
substitutes or strategic complements.

Example 3 (Cournot duopoly with spillovers), continued. Recall the best responses
in the Cournot duopoly with spillovers example above, β1(x2) = a−bx2−c1

2b , and

β2(x1) = a−bx1−c2s(x1)
2b , and the spillover function, s(x1) = 2

3 x
3
1 − x21 − x1

2 + 3,
and consider a as the parameter. This game satisfies condition 1 (and 2) in theo-
rem 2. Given parameter values a = 15, b = 1

2 , c1 = 11, c2 = 3, it is easy to check
that there are three Nash equilibria: ( 12 , 7), (2, 4), and (4, 0), shown in Fig. 6. If we
increase parameter a to 17, both best responses increase, and there are 3 new equi-
libria: (1, 10), (1.686, 8.627), and (6, 0). Notice that no new equilibrium is lower
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Fig. 6 Non-decreasing equilibria for Cournot duopoly with spillovers

than any old equilibrium, as predicted by Theorem 2. Moreover, firm 1’s output in
x̂∗ = (1.686, 8.627) is lower than its output in x∗ = (2, 4), showing that in general,
we cannot strengthen the conclusion of this theorem to guarantee increasing equilibria.

Theorem2 shows that in the presence of strategic substitutes, there are no decreasing
equilibrium selections.Moreover, the example shows that in general, this result cannot
be strengthened to conclude monotone comparative statics. That is, when a parameter
increases, it is possible that there are some higher equilibria, but it is also possible that
there are equilibria that are not higher. Conditions yielding monotone comparative
statics are considered next.

3.2 Monotone comparative statics

Let us first consider two-player GSH in which one player exhibits strategic substitutes
and the other one exhibits strategic complements. In this setting, we present some
results characterizing monotone comparative statics.

Theorem 3 Consider a two-player, parameterized GSH, in which player 1 has strate-
gic substitutes, and player 2 has strategic complements. Suppose strategy spaces are
linearly ordered and best responses are singleton-valued.
For every t∗ � t̂ , for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

1. x∗
2 � x̂2

2. x∗ � x̂ ⇐⇒ x∗
1 � β1

t̂
◦ β2

t̂
(x∗

1 )

Proof Consider statement 1. As case 1, suppose x∗
1 � x̂1. Then x∗

2 = β2
t∗(x

∗
1 ) �

β2
t∗(x̂1) � β2

t̂
(x̂1) = x̂2, where the first inequality follows from strategic complements,

and the second from single-crossing property. As case 2, consider x∗
1 � x̂1. Linearly

ordered strategies implies x̂1 ≺ x∗
1 . In this case, x̂2 ⊀ x∗

2 . (For if x̂2 ≺ x∗
2 , then

x∗
1 = β1

t∗(x
∗
2 ) � β1

t̂
(x∗

2 ) � β1
t̂
(x̂2) = x̂1, where the first inequality follows from
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single-crossing property and the second from strategic substitutes. This contradicts
x̂1 ≺ x∗

1 .) Linearly ordered strategies now yields x∗
2 � x̂2.

Consider statement 2. For sufficiency, suppose x∗ � x̂ . Then x∗
1 � x̂1, and strate-

gic complements implies β2
t̂
(x∗

1 ) � β2
t̂
(x̂1), whence x∗

1 � x̂1 = β1
t̂
(β2

t̂
(x̂1)) �

β1
t̂
(β2

t̂
(x∗

1 )), where the inequality follows from strategic substitutes. For necessity,
suppose x∗

� x̂ . Then, using statement 1, x∗
1 � x̂1, and linear order implies x̂1 ≺ x∗

1 .
Thus, x̂2 = β2

t̂
(x̂1) � β2

t̂
(x∗

1 ), where the inequality follows from strategic comple-

ments. Now, using strategic substitutes yields β1
t̂
(β2

t̂
(x∗

1 )) � β1
t̂
(x̂2) = x̂1 ≺ x∗

1 , as
desired. ��

This result formalizes the intuition that in a two-player GSH, when the parameter
(weakly) increases, the equilibrium response of the player with strategic complements
is always (weakly) higher. For monotone comparative statics, we also need the equilib-
rium response of the playerwith strategic substitutes to be (weakly) higher; this is char-
acterized by the second condition. That is, x∗

1 � x̂1 is equivalent to x∗
1 � β1

t̂
◦β2

t̂
(x∗

1 ).

The condition x∗
1 � β1

t̂
◦β2

t̂
(x∗

1 ) can be viewed as follows. Starting from an existing

equilibrium strategy for player 1, x∗
1 at t = t∗, an increase in t has two effects onβ1

(·)(·).
One effect is an increase in β1, because best response is nondecreasing in t . (This is the
direct effect of an increase in t , arising from the single-crossing property in (x1; t).)
The other effect is a decrease in β1, because an increase in t increases β2

t (x
∗
1 ), and β1

is decreasing in x2, due to strategic substitutes. (This is the indirect effect arising from
player 1’s response to player 2’s response to an increase in t). The condition says that
for player 1, as long as the indirect strategic substitute effect does not dominate the
direct parameter effect, the new equilibrium response of player 1 is (weakly) larger
than x∗

1 . This can be viewed explicitly in the following example.

Example 5 (Differentiated duopoly) Consider the differentiated duopoly in Singh and
Vives (1984), where firm 1 chooses price as a strategic variable, and firm 2 chooses
quantity. Inverse market demand for each firm is given by p1 = a1 − b1q1 − cq2 and
p2 = a2−cq1−b2q2.16 Wemay view the demand parameters (a1, a2) as the parameter
of the game. Rewriting firm 1’s demand yields q1(p1, q2) = 1

b1
(a1 − cq2 − p1), and

assuming zero cost, firm 1’s profit is π1(p1, q2) = p1q1(p1, q2). Similarly, using firm
1’s demand, and assuming zero cost, we may write firm 2’s profit as π2(p1, q2) =(
a2 − c

b1
(a1 − cq2 − p1) − b2q2

)
q2. It is easy to check that ∂2π1

∂q2∂p1
= − c

b1
< 0

and ∂2π2
∂q2∂p1

= c
b1

> 0. In other words, firm 1’s best response is decreasing in firm
2’s quantity choice, and firm 2’s best response is increasing in firm 1’s price choice.
Indeed (the linear), best responses are given as follows: For firm 1, p1 = a1−cq2

2 , and

for firm 2, q2 = a2b1−a1c+cp1
2(b1b2−c2)

. Notice that assuming a1 = a2, both best responses are
increasing in the parameter.

Let t = a1 = a2, and rewrite best responses as follows: For firm 1, β1
t (q2) = t−cq2

2 ,

and for firm 2, β2
t (p1) = tb1−tc+cp1

2(b1b2−c2)
, and notice that best response of both players

is increasing in t . Suppose t = 2, b1 = b2 = 2, and c = 1. In this case, the unique

16 As usual, we assume that a1, a2, b1, b2, c > 0, b1 > c, and b1b2 − c2 > 0.

123



Games with strategic complements and substitutes 81

Fig. 7 Increasing equilibria: differentiated duopoly

Fig. 8 Non-increasing equilibria: differentiated duopoly

Nash equilibrium is given by (p∗
1, q

∗
2 ) = ( 23 ,

2
5 ). Consider an increase to t̂ = 3.

In this case, β1
t̂
(β2

t̂
(p∗

1)) = 43
36 > 2

3 = p∗
1 , and therefore, the new equilibrium is

higher than the old equilibrium, as shown in Fig. 7. Indeed, the new equilibrium is
( p̂1, q̂2) ≈ (1.15, 0.69). (For reference, profits of both firms have gone up as well,
from (0.31, 0.29) to (0.39, 0.72)).

For completeness, Fig. 8 represents graphically the case where the direct effect
does not dominate the indirect effect. If best responses change in the manner shown in
Fig. 8, the composite effect is lower, (β1

t̂
(β2

t̂
(p∗

1)) < p∗
1), and as Theorem 3 predicts,

the new equilibrium is not higher than the old equilibrium.
When payoff functions are twice continuously differentiable as well, the condition

in Theorem 3 can be translated to payoff functions, as follows. Notice that if x∗ is
an equilibrium at t∗, and if β1

t ◦ β2
t (x

∗
1 ) is increasing in t at t∗, then the condition in
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Theorem3 is satisfied for an increase in t from t∗. For twice continuously differentiable
payoff functions, this implies the following condition. For player 1, the condition in
Theorem 3 is satisfied locally, if ∂

∂t

(
β1
t (β

2
t (x1))

)∣∣
(x∗,t∗) > 0.17 Using the implicit

function theorem, it is easy to calculate that

∂

∂t

(
β1
t (β

2
t (x1))

)∣
∣
∣
∣
(x∗,t∗)

> 0 ⇔ ∂2u1
∂x1∂t

+ ∂2u1
∂x1∂x2

⎛

⎝−
∂2u2
∂x2∂t

∂2u2
∂x22

⎞

⎠

∣
∣
∣
∣
∣
∣
(x∗,t∗)

> 0.

This condition has the same intuition as earlier. For player 1, ∂2u1
∂x1∂t

is positive and

captures the direct effect of an increase in t . The term ∂2u1
∂x1∂x2

⎛

⎝−
∂2u2
∂x2∂t

∂2u2
∂x22

⎞

⎠ is negative

and captures the indirect effect of an increase in t .18 As above, if the indirect effect
does not dominate the direct effect, monotone comparative statics are guaranteed. Of
course, Theorem 3 holds without differentiability or concavity, and without restriction
to convex strategy spaces.

In order to characterize increasing equilibria with best response correspondences,
we have the following result (which is proved using the three lemmas in “Appendix 2”).

Theorem 4 Consider a two-player, parameterized GSH, in which player 1 has strict
strategic substitutes, and player 2 has strict strategic complements. Suppose strategy
spaces are linearly ordered.
For every t∗ � t̂ , for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

1. x∗
2 � x̂2

2. x∗ � x̂ ⇐⇒ x∗
1 � β

1
t̂ ◦ β2

t̂
(x∗

1 )

Theorems 3 and 4 present results for two-player GSHwith linearly ordered strategy
spaces. These results may not necessarily hold more generally, either with nonlinearly
ordered strategy spaces, or with more than two players, as shown in the next two
examples.

Example 6 (Crime and punishment) Consider a simplified version of Becker (1968):
There is a criminal (player 1) and a police force (player 2). The criminal has four
actions: no crime (a1), grand theft auto (a2), bank robbery (a3), and both grand theft
auto and bank robbery (a4), with a1 ≺ a2 ≺ a4, a1 ≺ a3 ≺ a4, and a2 and a3 are
unordered. This makes X1 = {a1, a2, a3, a4} into a lattice that is not linearly ordered.
The police have two actions: low enforcement (b1) and high enforcement (b2), with
b1 ≺ b2. Suppose payoffs are given in the left panel of Fig. 9. It is easy to check that
the criminal exhibits strategic substitutes and the police exhibit strategic complements.
This game has a unique Nash equilibrium: (a2, b1).

17 As usual, to apply this version, we suppose that the derivative is well defined; in particular, (x∗, t∗) is
in the interior.
18 Notice that ∂2u1

∂x1∂x2
< 0 formalizes strategic substitutes, and ∂2u2

∂x22
< 0 formalizes strict concavity in

own argument. Moreover, ∂2u2
∂x2∂t

> 0 formalizes increasing differences in t .
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Fig. 9 Crime and punishment

Now suppose the bank receives a new, large, cash deposit—the equivalent of an
increase in a parameter representing potential value of the bank’s deposits. Denote
the new parameter t̂ . The new game is given in the right panel of Fig. 9. It is easy
to check that compared to the left panel, the best response for each player is non-
decreasing; that is, the single-crossing property is satisfied. The new unique Nash
equilibrium is (a3, b2), which is not comparable to (a2, b1), because a2 and a3 are not
comparable.

Notice that the necessary and sufficient condition (2) of Theorem 3 is satisfied
in this case, because a2 ≺ a4 = β1

t̂
(β2

t̂
(a2)). This example shows that when we

extend the analysis to nonlinearly ordered lattices, the analogue of Theorem 3 does
not necessarily hold.

Example 6 (Crime and punishment, part 2), continued. Consider another version of
crime and punishment: There is a criminal (player 1) and two police forces (players
2 and 3). The criminal has four actions: a1, a2, a3, and a4, with the range of criminal
activity increasing in intensity a1 ≺ a2 ≺ a3 ≺ a4. Police force 1 has two actions:
low enforcement (b1) and high enforcement (b2), with b1 ≺ b2. Police force 2 has
two actions: low enforcement (c1) and high enforcement (c2), with c1 ≺ c2. Suppose
payoffs are given in Fig. 10. It is easy to check that the criminal exhibits strategic
substitutes and both police forces exhibit strategic complements. The unique Nash
equilibrium is given by x∗ = (a3, b1, c1).

Suppose, as earlier, an increase in the parameter corresponds to an increase in the
value of criminal activity to the criminal. Denote the new parameter t̂ , and suppose
the new payoffs are given in Fig. 11. The unique Nash equilibrium is given by x̂ =
(a2, b2, c2), and this is not comparable to x∗ = (a3, b1, c1).

Notice that the second iterate condition from Theorem 3 would be as follows:
x∗
1 � β1

t̂
(β2

t̂
(x∗−2), β

3
t̂
(x∗−3)). This condition is satisfied, because β2

t̂
(a3, c1) = b1,

β3
t̂
(a3, b1) = c2, and therefore, x̂∗

1 = a3 � a3 = β1
t̂
(b1, c2) = β1

t̂
(β2

t̂
(x∗−2), β

3
t̂
(x∗−3)).
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b1(low) b2 (high) b1(low) b2 (high)

a1 1, 5, 5 1, 0, 2 a1 1, 5, 0 1, 0, 0

a2 5, 2, 2 5, 0, 2 a2 5, 2, 0 0, 0, 0

a3 10, 2, 2 0, 0, 2 a3 3, 2, 0 0, 0, 0

a4 7, 0, 0 0, 10, 0 a4 2, 0, 10 0, 10, 10

c1 c)wol( 2 (high)

Fig. 10 Crime and punishment-2, before parameter change

b1(low) b2 (high) b1(low) b2 (high)

a1 1, 5, 5 1, 0, 2 a1 1, 5, 0 1, 6, 0

a2 5, 2, 2 5, 0, 2 a2 5, 2, 0 3, 4, 4

a3 10, 2, 2 10, 0, 2 a3 10, 2, 4 0, 4, 4

a4 15, 0, 0 7, 10, 0 a4 7, 0, 10 0, 10, 10

c1 c)wol( 2 (high)

Fig. 11 Crime and punishment-2, after parameter change

b1 b2 b3 b4 b1 b2 b3 b4

a1 -2, 2 1, 1 1, 1 2, -2 a1 -20, 20 0, 10 0, 10 20, -20

a2 1, -1 1, 0 1, 1 1, -1 a2 10, -10 0, 0 0, 10 10, -10

a3 1, -1 0, 1 0, 0 1, -1 a3 10, -10 10, 10 10, 0 10, -10

a4 2, -2 -1, 1 -1, 1 -2, 2 a4 20, -20 10, 10 10, 10 -20, 20

Player 2

Pl
ay

er
 1

Player 2

Pl
ay

er
 1

Fig. 12 Equilibrium outcome of strategic complement player goes down

Moreover, in the absence of linearly ordered spaces, it is not necessary that the
equilibrium outcome of the player with strategic complements goes up, as shown in
the next example.

Example 7 Consider the following two-player parameterized game in which player
1 has four actions, X1 = {a1, a2, a3, a4}, with a1 ≺ a2 ≺ a4, a1 ≺ a3 ≺ a4, and
a2 and a3 are unordered, and player 2 has four actions, X2 = {b1, b2, b3, b4}, with
b1 ≺ b2 ≺ b3 ≺ b4. Payoffs before the parameter change are in the panel on the left,
whereas those after the parameter change are in the panel in the right (Fig. 12).

Notice that player 1 has strategic substitutes (best response of player 1 is weakly
decreasing, but not constant) and player 2 has strategic complements (best response of
player 2 is strictly increasing and singleton-valued). Moreover, best response of player
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1 increases weakly after the parameter change, and best response of player 2 does not
change with the parameter. The unique Nash equilibrium before the parameter change
is (a2, b3), and the unique Nash equilibrium after the parameter change is (a3, b2),
with the equilibrium outcome for player 2 going down from b3 to b2.19

These examples show that a straightforward application of Theorem 3 may not
necessarily work for more general cases. In the remainder of this subsection, we
develop results that can be applied to more general cases by extending the definition
of a parameterized GSH as follows.

The strategic game � = {
(Xi ,�i , ui )Ii=1, T

}
is a parameterized GSH , if for every

player i ,

1. The strategy space of player i is Xi , a non-empty, sub-complete, convex, sub-lattice
of a Banach lattice, with closed, convex order intervals.20 Let x̄i = sup Xi .

2. X = X1 × · · · × XI is the overall strategy space with the product order and
topology, and T is a partially ordered set.

3. For every player i, ui : X × T → R is continuous in x , quasi-supermodular and
quasi-concave in xi and satisfies single-crossing property in (xi ; t).

Theorem 5 Consider a parameterized GSH in which players 1, . . . , J have strategic
substitutes and J + 1, . . . , I have strategic complements. Suppose best responses are
singleton-valued.
For every t∗ � t̂ and every x∗ ∈ E(t∗), let ŷ = (ŷi )Ii=1 be defined as follows: ŷi =
β i
t̂
(x∗−i ), for i = 1, . . . , J , and ŷi = β i

t̂
((ŷ j )Jj=1; (x̄ j )Ij=J+1, j �=i ), for i = J+1, . . . , I .

If for i = 1, . . . , J, x∗
i � β i

t̂
(ŷ−i ), then there is x̂ ∈ E(t̂) such that x∗ � x̂ .

Proof For i = 1, . . . , I , let Bi = [x∗
i , ŷi ], and let B = ×I

i=1Bi . For i =
1, . . . , J , consider β i

t̂
on B−i . Notice that x∗

i � β i
t̂
(ŷ−i ) by assumption, and

β i
t̂
(x∗−i ) = ŷi , by definition. Therefore, β i

t̂
(B−i ) ⊆ Bi ; that is, β i

t̂
restricted

to B−i maps into Bi . Similarly, for i = J + 1, . . . , I , consider β i
t̂
on B−i .

Single-crossing property in (xi ; t) yields x∗
i � β i

t̂
(x∗−i ) and also, β i

t̂
(ŷ−i ) =

β i
t̂
((ŷ Jj=1); (ŷ j )Ij=J+1, j �=i ) � β i

t̂
((ŷ Jj=1); (x̄ j )Ij=J+1, j �=i ) = ŷi , where the inequal-

ity follows from (ŷ j )Ij=J+1, j �=i � (sup X j )Ij=J+1, j �=i = (x̄ j )Ij=J+1, j �=i and strategic

complements. Therefore, β i
t̂
(B−i ) ⊆ Bi . Consequently, the joint best response func-

tion satisfies βt̂ (B) ⊆ B; that is, the restriction of β to B is a self-map, and applying
Brouwer–Schauder–Tychonoff’s theorem, there is a fixed point x̂ ∈ E(t̂) such that
x∗ � x̂ . ��

Notice that the fact that order intervals are compact and convex is used only to guar-
antee existence of an equilibrium. In classes of games where an equilibrium always

19 It is possible to formulate a similar example with three players, each with linearly ordered strategy space.
Moreover, an additional counterexample can be constructed where two players exhibit strategic substitutes
and one player exhibits strategic complements.
20 The assumption on order intervals is automatically satisfied in standard Banach lattices, such as
R
n , L p(μ) spaces, space of continuous functions over a compact set, and so on. See, for example, Aliprantis

and Border (1994). Moreover, the order and topological structure is assumed to be compatible in terms of
lattice norms.
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exists, these assumptions are not needed to prove Theorem 5. For example, in quasi-
aggregative games, see Jensen (2010), equilibrium existence is guaranteed without
convexity or quasi-concavity assumptions, and therefore, our proofwillwork by invok-
ing equilibrium existence on [x∗, ŷ], and not requiring convexity or quasi-concavity.
Similarly, example 7 below does not require convex strategy spaces.

The condition for multi-player games in Theorem 5 is stronger than the condition
characterizing increasing equilibria in two-player games (in Theorem 3). This can be
seen as follows. Consider a two-player game in which player 1 has strategic substitutes
and player 2 has strategic complements. Notice that by the single-crossing property in
(x1; t), x∗

1 � β1
t̂
(x∗

2 ) = ŷ1, and therefore, using ŷ2 = β2
t̂
(ŷ1), it follows that β1

t̂
(ŷ2) =

β1
t̂
◦β2

t̂
(ŷ1) � β1

t̂
◦β2

t̂
(x∗

1 ). Consequently, when the condition in Theorem5 is satisfied,

that is, x∗
1 � β1

t̂
(ŷ2), the condition in Theorem 3 is satisfied automatically, that is,

x∗
1 � β1

t̂
◦ β2

t̂
(x∗

1 ). Intuitively, the condition in Theorem 3 evaluates the combined

direct and indirect effects given by β1
t̂

◦ β2
t̂
at x∗

1 , and the condition in Theorem 5
evaluates the combined effects at ŷ1, which is higher than x∗

1 .
The need for a stronger condition in multi-player games arises due to additional

strategic interaction among the players. For example, consider a three-player game
in which player 1 exhibits strategic substitutes and players 2 and 3 exhibit strategic
complements. The natural generalization of the condition in Theorem 2 would be:
x∗
1 � β1

t̂
(β2

t̂
(x∗−2), β

3
t̂
(x∗−3)). As shown in the crime and punishment, Part 2 example

above, this is not sufficient to guarantee monotone comparative statics. Intuitively,
when the parameter increases from t∗ to t̂ , the direct effect on players 2 and 3 is
captured by (β2

t̂
(x∗−2), β

3
t̂
(x∗−3)), which raises their strategies. But an increase for

player 2 has a further impact for player 3, due to strategic complements, and vice-
versa. The crime and punishment, part 2 example essentially shows that not including
these additional effectsmay lead to an incorrect evaluation of the combined effects. The
condition in Theorem 5 adjusts for these effects by applying the combined evaluation
on ŷ−i , which is larger than x∗−i .

A benefit of the condition in Theorem 5 is that there are no restrictions on strategy
spaces to be linearly ordered, as required by Theorem 3.

A similarity between Theorems 5 and 3 is that the condition needs to hold for
players with strategic substitutes only. There is no additional restriction on players
with strategic complements. Moreover, a special case of Theorem 5 is the result for
games with strategic substitutes (Theorem 1 in Roy and Sabarwal 2010); it obtains
when J = I .

Example 8 (Cournot oligopoly) Consider 3 firms competing in quantities. Firm 1 is
a large firm (or, say, an incumbent) that can produce one of three levels of output:
low, medium, and high (denoted L1, M1, and H1). It exhibits strategic substitutes.
Firms 2 and 3 are smaller (or, say, potential entrants) and are capable of producing
either low or medium level of output. Thus, X1 = {L1, M1, H1}, X2 = {L2, M2},
and X3 = {L3, M3}. Suppose the smaller firms experience a technological spillover
if enough output is produced by their rival firms, and therefore, each exhibits strategic
complements. Payoffs are as follows (in Fig. 13).
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Fig. 13 Cournot oligopoly, before parameter change

Fig. 14 Cournot oligopoly, after parameter change

Notice that a smaller firm is only willing to produce the medium level of output, if
both competitors produce their maximum levels. Also notice the strategic substitutes
property of the large firm: It is only willing to produce a level other than L1 if both
competitors produce low levels. It is easy to check that the unique equilibrium is
x∗ = (M1, L2, L3). Now let the parameter t increase to some t̂, t̂ � t∗, and consider
the following payoffs Fig. 14.

Notice that the parameter increase is (weakly) complementary for each firm. Firm
3 is more willing to increase its output: It will produce M3 as long as one of its
competitors is producing more than the low level of output. Firm 2 is now willing
to produce M2, if, and only if, firm 1 produces H1. The condition in Theorem 5
needs to be checked for firm 1 only (the firm with strategic substitutes). In this case,
ŷ1 = β1

t̂
(x∗

2 , x
∗
3 ) = β1

t̂
(L2, L3) = M1, ŷ2 = β2

t̂
(ŷ1, x̄3) = β2

t̂
(M1, M3) = L2, and

ŷ3 = β3
t̂
(ŷ1, x̄2) = β3

t̂
(M1, M2) = M3. Therefore, x∗

1 = M1 � M1 = β1
t̂
(L2, M3) =

β1
t̂
(ŷ−1). Consequently, there is a higher equilibrium: x̂ = (M1, L2, M3).
The result in Theorem 5 can be extended with similar intuition to best response

correspondences, as follows.

Theorem 6 Consider a parameterized GSH in which players 1, . . . , J have strategic
substitutes, and players J +1, . . . , I have strategic complements and the strict single-
crossing property in (xi ; t).

For every t∗ ≺ t̂ and every x∗ ∈ E(t∗), let ŷ = (ŷi )i∈I be defined as follows:

ŷi = β
i
t̂ (x

∗−i ), for i = 1, . . . , J , and ŷi = β
i
t̂ ((ŷ j )

J
j=1; (x̄ j )Ij=J+1, j �=i ), for i =

J + 1, . . . , I .
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If for i = 1, . . . , J, x∗
i � β i

t̂
(ŷ−i ), then there is x̂ ∈ E(t̂) such that x∗ � x̂ .

Proof Notice that for every i, x∗
i � ŷi , as follows. For i = 1, . . . , J , using single-

crossing property, x∗
i � β

i
t∗(x

∗−i ) � β
i
t̂ (x

∗−i ) = ŷi . And for i = J + 1, . . . , I, x∗
i �

β
i
t∗(x

∗−i ) � β
i
t∗((ŷ j )

J
j=1; (x̄ j )Ij=J+1, j �=i ) � β

i
t̂ ((ŷ j )

J
j=1; (x̄ j )Ij=J+1, j �=i ) = ŷi , where

the second inequality follows from strategic complements, and the last inequality from
single-crossing property.

For i = 1, . . . , I , let Bi = [x∗
i , ŷi ], and let B = ×I

i=1Bi . For i = 1, . . . , I , con-

sider β i
t̂
on B−i . Then x∗

i � β i
t̂
(ŷ−i ) by assumption, and β

i
t̂ (x

∗−i ) = ŷi , by definition.

Therefore, β i
t̂
(B−i ) ⊆ Bi ; that is, β i

t̂
restricted to B−i maps into Bi . Similarly, for

i = J + 1, . . . , I , consider β i
t̂
on B−i . Strict single-crossing property in (xi ; t) yields

x∗
i � β

i
t∗(x

∗−i ) � β i
t̂
(x∗−i ). Moreover, β i

t̂
(ŷ−i ) = β i

t̂
((ŷ Jj=1); (ŷ j )Ij=J+1, j �=i ) in

β i
t̂
((ŷ Jj=1); (x̄ j )Ij=J+1, j �=i ), where the induced set order inequality follows from

strategic complements. Therefore, β
i
t̂ (ŷ−i ) � β

i
t̂ ((ŷ

J
j=1); (x̄ j )Ij=J+1, j �=i ) = ŷi .

Thus, β i
t̂
(B−i ) ⊆ Bi . Consequently, the joint best response correspondence satisfies

βt̂ (B) ⊆ B; that is, the restriction of β to B is a self-map, and applying Kakutani–
Fan–Glicksberg’s theorem, there is a fixed point x̂ ∈ E(t̂) such that x∗ � x̂ . ��

4 Conclusion

This paper studies games with strategic heterogeneity (GSH). Such games include
cases in which some players exhibit strategic complements and others exhibit strategic
substitutes.

The equilibrium set in a GSH is totally unordered under mild assumptions. More-
over, parameterized GSH do not allow decreasing equilibrium selections, under mild
assumptions related to strategic substitutes for one player only. In general, this can-
not be strengthened to exhibit an increasing equilibrium selection. Finally, monotone
comparative statics results are presented for games in which some players exhibit
strategic complements and others exhibit strategic substitutes. For two-player games
with linearly ordered strategy spaces, there is a characterization of monotone compar-
ative statics. More generally, there are sufficient conditions. In both two-player and
multi-player settings, the conditions apply only to players exhibiting strategic sub-
stitutes. No additional conditions are needed for players with strategic complements.
Several examples highlight the results.

Our results show that it takes only a single player with strict strategic substitutes
to destroy many of the nice properties of GSC, highlighting limits of techniques
developed to analyze GSC and the role of strategic substitutes in analyzing more
heterogeneous cases. Moreover, our results advance the study of GSH in several ways:
showing uniqueness of symmetric equilibria in some cases, making equilibrium search
algorithms more efficient, ruling out decreasing equilibrium selections, and providing
conditions formonotone comparative statics in gameswith both strategic complements
and strategic substitutes.
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Appendix 1

Roy and Sabarwal (2008) assume that the best response correspondence satisfies a
never-increasing property, defined as follows. Let X be a lattice and T be a partially
ordered set. A correspondence φ : T � X is never increasing, if for every t ′ ≺ t ′′,
for every x ′ ∈ φ(t ′), and for every x ′′ ∈ φ(t ′′), x ′

� x ′′.21 This property is satisfied
in a GSS, but it excludes cases of interest when there are both strategic complements
and strategic substitutes, as follows.

Recall that player i has quasi-strict strategic complements, if her best response,
β i (x−i ), is increasing in the completely lower than set order. Moreover, when best
responses are singleton-valued, player i has quasi-strict strategic complements, if, and
only if, player i has strategic complements.

Proposition 1 Let� be aGSH in which all-but-one players exhibit quasi-strict strate-
gic complements, and the remaining player has at least two actions. The best response
correspondence in such a game does not satisfy the never-increasing property.

Proof Suppose,without loss of generality, that all-but-player-1 have quasi-strict strate-
gic complements. Consider x ′

1 ≺ x ′′
1 in X1, and x ′−1 ∈ X−1. Then (x ′

1, x
′−1) ≺

(x ′′
1 , x ′−1). Let y

′
1 ∈ β1(x ′−1). For each i �= 1, let x ′−i = (x ′

1, x
′
−(1,i)) and x ′′−i =

(x ′′
1 , x ′

−(1,i)). Then for each i �= 1, x ′−i ≺ x ′′−i . For each such i , fix y′
i ∈ β i (x ′−i )

and y′′
i ∈ β i (x ′′−i ) arbitrarily. By quasi-strict strategic complements, y′

i � y′′
i .

Thus, (x ′
1, x

′−1) ≺ (x ′′
1 , x ′−1), (y

′
1, y

′−1) ∈ β(x ′
1, x

′−1), (y
′
1, y

′′−1) ∈ β(x ′′
1 , x ′−1), and

(y′
1, y

′−1) � (y′
1, y

′′−1), contradicting the never-increasing property. ��
Consequently, the case where all-but-one players exhibit quasi-strict strategic com-

plements and the remaining player has strategic substitutes is not covered by Roy and
Sabarwal (2008).

It is easy to see that the global nature of the definition of a never-increasing corre-
spondence rules out additional cases of interest. The Cournot duopoly with spillovers
(Example 3) provides an example. In this case, player 2 does not have quasi-strict
strategic complements. Nevertheless, the best response correspondence does not sat-
isfy the never-increasing property, because for example, for all ε > 0 sufficiently small,
( 12 , 7) ≺ ( 12 +ε, 7), but β2( 12 ) ≺ β2( 12 +ε), and therefore, β( 12 , 7) ≺ β( 12 +ε, 7). This
occurs, because player 2 has quasi-strict strategic complements in a neighborhood of
1
2 , even though he does not have quasi-strict strategic complements globally. This is
sufficient to violate the never-increasing property. This observation can be general-
ized. In particular, a similar proof shows that the conclusion of Proposition 1 holds
even when all-but-one players exhibit “local” quasi-strict strategic complements.

Appendix 2

This appendix documents the lemmas needed to prove Theorem 4 in the paper.

21 When best responses are functions, this coincides with the definition of a not-increasing function,
t ′ ≺ t ′′ ⇒ φ(t ′) � φ(t ′′), and in linearly ordered X , this is equivalent to a strictly decreasing function.
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Lemma 1 Consider a two-player, parameterized GSH, in which player 1 has strict
strategic substitutes, and player 2 has quasi-strict strategic complements. Suppose
strategy spaces are linearly ordered. For every t∗ � t̂ , for every x∗ ∈ E(t∗), and for
every x̂ ∈ E(t̂), x∗

2 � x̂2.

Proof Suppose x∗
2 � x̂2. Then linear order implies x̂2 ≺ x∗

2 . Thus, β1
t∗(x

∗
2 ) in

β1
t̂
(x∗

2 ) �s β1
t̂
(x̂2),where the induced set order inequality follows fromsingle-crossing

property in (x1; t), and the strict set order inequality follows from strict strategic sub-

stitutes. This implies x∗
1 � β

1
t∗(x

∗
2 ) � β

1
t̂ (x

∗
2 ) ≺ β1

t̂
(x̂2) � x̂1. Therefore, β2

t∗(x
∗
1 ) in

β2
t̂
(x∗

1 ) c β2
t̂
(x̂1),where the induced set order inequality follows fromsingle-crossing

property in (x2; t), and the completely lower set order inequality follows from quasi-

strict strategic complements. This implies x∗
2 � β

2
t∗(x

∗
1 ) � β

2
t̂ (x

∗
1 ) � β2

t̂
(x̂1) � x̂2, a

contradiction. ��
Lemma 2 Consider a two-player, parameterizedGSH, in which player 1 has strategic
substitutes, and player 2 has strategic complements. Suppose strategy spaces are
linearly ordered. For every t∗ � t̂ , for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂), x∗

1 �
x̂1 �⇒ x∗

1 � β
1
t̂ β

2
t̂
(x∗

1 ).

Proof x∗
1 � x̂1 implies β2

t̂
(x∗

1 ) � β2
t̂
(x̂1) � x̂2, where the first inequality follows

from strategic complements. This, in turn, implies, x∗
1 � x̂1 � β

1
t̂ (x̂2) � β

1
t̂ β

2
t̂
(x∗

1 ),
where the last inequality follows from strategic substitutes. ��
Lemma 3 Consider a two-player, parameterized GSH, in which player 1 has quasi-
strict strategic substitutes, and player 2 has strict strategic complements. Suppose
strategy spaces are linearly ordered. For every t∗ � t̂ , for every x∗ ∈ E(t∗), and for

every x̂ ∈ E(t̂), x̂1 ≺ x∗
1 �⇒ β

1
t̂ β

2
t̂
(x∗

1 ) ≺ x∗
1 .

Proof Using strict strategic complements, x̂1 ≺ x∗
1 implies β2

t̂
(x̂1) �s β2

t̂
(x∗

1 ), and

therefore, x̂2 � β
2
t̂ (x̂1) ≺ β2

t̂
(x∗

1 ). Using quasi-strict strategic substitutes, it follows

that β1
t̂
(β2

t̂
(x∗

1 )) c β1
t̂
(x̂2). Consequently, β

1
t̂ β

2
t̂
(x∗

1 ) � β1
t̂
(x̂2) � x̂1 ≺ x∗

1 .

These lemmas yield Theorem 4 immediately.
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