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Abstract In a sequential-move, finitely repeated prisoners’ dilemma game (FRPD),
cooperation can be sustained if the first-mover believes her opponent might be a
behavioral type who plays a tit-for-tat strategy in every period. We test this theory
by revealing second-mover histories from an earlier FRPD experiment to their cur-
rent opponent. Despite eliminating the possibility of reputation-building, aggregate
cooperation actually increases when histories are revealed. Cooperative histories lead
to increased trust, but negative histories do not cause decreased trust. We develop a
behavioral model to explain these findings.
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1 Introduction

Cooperation in the finitely repeated prisoner’s dilemma (FRPD) is both widely
observed and difficult to rationalize. The model developed by Kreps et al. (1982)—the
most prominent theory to justify this behavior—shows that such cooperation can be
rational if one player believes her opponent might be a “behavioral type” who plays the
tit-for-tat strategy regardless of the history of play. The opponent can then take advan-
tage of these beliefs by imitating the behavioral type early in the game and defecting
as the final period approaches, resulting in a pattern of cooperation consistent with
aggregate-level data from laboratory experiments (e.g., Andreoni and Miller 1993).

This reputation-building theory requires that players have some uncertainty about
their opponents’ types. In our experiment, however, we find that cooperative play per-
sists even when reputation-building is rendered impossible by revealing players’ histo-
ries of play. Specifically, we have subjects who completed a block of five sequential-
move FRPD games against varying opponents, play a second block of five games
against new opponents, who can see the subjects’ histories of play from the first block.1

Selfish, rational players cannot credibly imitate the behavioral type in the second block
because their true colors have been revealed through their history of play in the first
block. Despite eliminating type uncertainty, we find aggregate patterns of coopera-
tion very similar to treatments where no history is revealed. On the individual level,
first-movers who are relatively distrusting (seldom cooperating in the first block) tend
to be more cooperative in the second block, even when the second-mover’s revealed
history is relatively uncooperative. Hence, rather than reducing cooperation by elim-
inating the opportunity for reputation-building, revealing histories of play generally
improves cooperation. This finding is clearly inconsistent with standard reputation-
building explanations of cooperation in FRPDs.

We organize these results through a model of semi-rational behavior similar to
those of Kreps et al. (1982) and Radner (1986). Here, players decide in which round
to stop playing tit-for-tat and begin unconditionally defecting by weighing the risk of
cooperation against the immediate gain from defecting. Unlike Kreps et al. (1982),
players in our model form arbitrary or “naïve” prior beliefs about how many rounds
their opponents will continue playing tit-for-tat, which may be inconsistent with the
opponent’s actual strategy. Players decide how long to conditionally cooperate in each
game based only on these naïve prior beliefs and information about their opponents’
history of play, if revealed. Because this model does not assume any higher-level reflec-
tion about the rationality or best response of the opponent, it provides a contrasting
benchmark to a model of full, commonly known rationality.

One implication of this model is that cooperation is sustainable for many rounds
even when players have relatively pessimistic beliefs about their opponents’ strategies.
For example, the model predicts that cooperation will be sustained until the penultimate

1 During the first block, subjects know that there will be an optional second experiment but know nothing
about its nature.
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round if the players have a uniform prior, i.e., if players believe their opponent will
defect with equal probability in every round of the FRPD. In stark contrast to the
reputation-building theory, the model also predicts that the level of cooperation will
be the same or even higher when players learn that their opponent is not a behavioral
type. This pattern of behavior is frequently observed in our experiment and sufficient
to reject reputation-building as an explanation for cooperation. Hence, we find that this
semi-rational model of naïve beliefs rationalizes the observed experimental behavior.

The paper is organized as follows. In Sect. 2, we review the related theoretical and
experimental literatures. Section 3 contains a description of the reputation-building
theory of cooperation in FRPDs. Section 4 details the experimental design, and the
results of the experiment are presented in Sect. 5. In Sect. 6, we propose a model
of boundedly rational cooperation that explains the experimental results. Section 7
concludes with a summary of the main results. The “Appendix” contains the proofs
and additional summary statistics.

2 Related literature

Many experiments have studied the consistency of players’ behavior in FRPDs with
the theory of Kreps et al. (1982). For example, Andreoni and Miller (1993) compare the
amount of cooperation in 10-round FRPDs with one-shot prisoners’ dilemma games.
They find significantly higher cooperation in the FRPDs compared to the one-shot
games, as well as significantly higher cooperation in early rounds compared to later
rounds. These patterns are consistent with the reputation-building theory of Kreps
et al. (1982) at an aggregate level, though in a similar FRPD experiment, Cooper et al.
(1996) observe that, at the individual level, only 25 % of subjects play consistently with
reputation-building. Cooper et al. argue that the time path of play exhibits more cooper-
ation than the Kreps et al. model predicts and speculate that their findings could indicate
reputation-building if they were to consider alternative types of “irrational” players.2

Camerer and Weigelt (1988) study the reputation-building sequential equilibrium in
a finitely repeated investment game that is similar in structure to our FRPD game. The
authors randomly assign a small fraction of second-movers to have payoffs such that
they prefer cooperation over defecting. This exogenously induces the behavioral type.
They find evidence consistent with the equilibrium prediction: as time progresses,
first-movers are less likely to trust and second-movers are more likely to defect. The
observed mixing probabilities are different than predicted by the induced probability
of the behavioral type, but can be explained easily by assuming first-movers believe
an additional 17 % of second-movers with the “noncooperative” incentives still prefer

2 In contrast to the finitely repeated case, experimental evidence has shown that cooperation in the infinitely
repeated prisoners’ dilemma aligns well with theoretical predictions. For example, Roth and Murnighan
(1978) and Murnighan and Roth (1983) study behavior in indefinitely repeated prisoners’ dilemma experi-
ments and find behavioral differences predicted by standard folk theorem equilibria. More recently, Dal Bó
(2005) finds experimental evidence that greater cooperation occurs in an indefinitely repeated prisoner’s
dilemma with the same expected length as a finitely repeated control and Dal Bó and Frechette (2011) find
evidence that subgame perfection is a necessary (but not sufficient) condition in supporting cooperation in
an indefinitely repeated prisoners’ dilemma.
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cooperation. To test this theory, the authors run additional experiments in which all
second-movers were given noncooperative payments. The sequential equilibrium pre-
diction assuming beliefs of 17 % is calculated, and the data from the new experiments
conform surprisingly well to that prediction. Thus, Camerer and Weigelt (1988) pro-
vide strong evidence in favor of a reputation-building theory in which the first-mover’s
beliefs are “homemade” naturally and need not be induced in the laboratory.

Neral and Ochs (1992) extend Camerer and Weigelt (1988) by analyzing the behav-
ioral responses of players to changes in the parameters of the game. Like Camerer and
Weigelt, they find that uncertainty induces players to develop a mutually profitable
relationship consistent with the predictions of sequential equilibrium. However, Neral
and Ochs find problems with the comparative static predictions of the sequential equi-
librium model. When the parameters of the game are altered (e.g., decrease the payoff
to second-mover), they find that the players respond in the exact opposite direction
from what the theory predicts and that these results cannot be explained using the
homemade priors specified by Camerer and Weigelt.3

More recently, Reuben and Suetens (2012) find that many players cooperate in
a manner consistent with Kreps et al. (1982). Reuben and Suetens use the strategy
method to disentangle strategically and non-strategically motivated cooperation in
a sequential prisoner’s dilemma with an uncertain end point in which cooperation
is not an equilibrium strategy for rational players.4 Players in their experiment can
condition their action on whether they are currently playing the last period of the
game or whether the game will continue. Second-movers who cooperate as long as the
first-mover cooperates unless it is the final round are classified as reputation builders.
Among second-movers who cooperate, the authors find that one-third to two-thirds do
so for reputation-building rather than reciprocity. Moreover, Reuben and Suetens find
that an increase in the payoff of mutual cooperation increases the ratio of reputation
builders to unconditional defectors, consistent with Kreps et al. (1982).

Kagel and McGee (2014) compare individual play and team play in the finitely
repeated prisoners’ dilemma. In the team play treatment, each player in the game is a
2-person team who can chat internally (but cannot communicate with opponents) and
makes joint decisions. They find that teams are initially less cooperative than individ-
uals, but with experience become more cooperative. Kagel and McGee’s analysis of
team chat logs suggests that cooperation is driven by a failure of common knowledge
of rationality, as teams attempt to anticipate when their opponents might defect and
try to defect one period earlier, without accounting for the possibility of their oppo-
nents thinking similarly. Inconsistent with Kreps et al. (1982), they find no evidence
that players anticipate opponents’ beliefs and attempt to mimic an irrational player,
while they find that increased chat about the round in which the opponent will defect

3 Jung et al. (1994) analyze the sequential equilibrium of a chain-store game that shared some features
with Camerer and Weigelt’s borrower–lender game and also find discrepancies with the theory that cannot
be resolved with an appeal to homemade beliefs. Similarly, both Brandts and Figueras (2003) and Tingley
and Walter (2011) find higher rates of cooperation than predicted by reputation-building in shorter finitely
repeated games.
4 Reuben and Suetens ensure that cooperation is not a rational strategy by setting the probability that the
game terminates below the threshold required for cooperation to constitute a subgame perfect equilibrium.
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is accompanied by an increase in cooperation over the course of the experiment. This
finding is also consistent with Embrey et al. (2014), who find that players learn to
play “threshold strategies” in which they conditionally cooperate for a fixed length
of time and then defect. Though players converge to these strategies, unraveling of
cooperation occurs very slowly across supergames. Subjects clearly are not applying
backwards-induction reasoning.

Other experiments have examined how cooperation in one-shot prisoners’ dilemma
games is impacted when players see their opponents’ play history. Schwartz et al.
(2000), Camera and Casari (2009), and Gong and Yang (2010) all find that observing
an opponent’s history of play significantly increases cooperation, though Duffy and
Ochs (2009) do not observe this effect in their data. In all of these studies, subjects are
aware that their actions will be revealed to future opponents. Thus, players can follow
a reputation-building strategy even though their opponents differ in every period.
In contrast, because subjects in our experiment are not told in the first part of the
experiment that their play histories will be revealed later, they are unlikely to perceive
any benefit from cooperating in the final period of each repeated game in the first part.

Alternative models have been proposed that predict rational cooperation in FRPDs.
For example, Selten and Stoecker (1986) develop an alternative theory based on a
Markov learning model. In their model, players establish a period of first defection
and update their period of intended defection based on their experience in the previ-
ous supergame. The authors conduct an experiment in which subjects play twenty-five
10-period FRPD supergames and find that cooperation ends in earlier periods as sub-
jects gain experience.5 Subjects in their experiment were told that they will play each
opponent only once and were given no information about opponents’ histories of
play in prior supergames. Hence, their data do not address the validity of reputation-
building directly, nor are their results inconsistent with reputation-building.6 By reveal-
ing second-mover histories in one treatment and not in another, our design allows a
more direct examination of how a player’s intended period of first defection and beliefs
about her opponent’s intentions matter for cooperation.7

5 Selten and Stoecker use parameter estimates from the first 20 supergames to predict the outcomes of the
last five supergames and find strong agreement between the predictions and actual outcomes.
6 Subjects in Selten and Stoeker’s experiment participated in 6-person matching groups so could have
learned their opponents’ types over 25 repetitions. Since subjects were told that they would play each
opponent only once, however, they ruled this possibility out.
7 In an fMRI study of a 10-period trust game—which is similar to the FRPD game—King-Casas et al. (2005)
find that second-movers’ brains eventually signal the intent to cooperate before the first-movers’ actions
are revealed. They also become more accurate in predicting first-movers’ actions. This is consistent with
the hypothesis that players build a model of their opponent over time, though the data are not informative
about the content of that model. A related idea is explored by Kahn and Murnighan (1993), who conduct an
experiment on FRPDs in which they explicitly induce uncertainty about opponents’ types by varying their
pecuniary payoffs. They find that “weak” players (players for whom defection is not a dominant strategy
in the stage game) are more cooperative than “strong” players (with typical prisoners’ dilemma payoffs),
and that uncertainty about opponents’ payoffs increases cooperation for “weak” players.

Samuelson (1987) shows that cooperation can be sustained for at least some periods when the assumption
that the number of periods is common knowledge is relaxed. Following this approach, Normann and Wallace
(2012) experimentally compare repeated prisoners’ dilemma games with known, random, and ambiguous
number of periods, finding no significant differences in cooperation. An experiment by Bruttel et al. (2012)
studies an FRPD in which the number of periods is uncertain. They find that cooperation breaks down closer
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Other studies have focused on the role of reputation in inducing cooperation, though
not in the context of an FRPD game. Gachter and Thoni (2005) and Ambrus and
Pathak (2011) show how cooperation can be sustained in a public goods contribu-
tion game when some players are selfish and others are reciprocating with varying
information on other players’ past behavior. As in our design, Ambrus and Pathak
incorporate a restart in their experimental design to see how it impacts cooperation,
as do Gachter and Thoni (2005). In Gachter and Thoni (2005), the past behavior of
subjects is revealed, and the response to these “reputations” in the public goods game
is studied. In Ambrus and Pathak, players in their experiment know in advance that
they will be participating in subsequent games, but in Gachter and Thoni (2005), like
our experiment, they do not. Bolton et al. (2005) examine how information about
their partner in an image scoring game affects cooperation, while Irlenbusch and Sli-
wka (2005) study the role of reputation and uncertainty about the partner’s type in
inducing cooperation in a gift-exchange setting. The former find that providing play-
ers with more information about their partner’s last action as well as the action of
their partner’s previous partner increases cooperation while the latter find that direct
reciprocal behavior is stronger when efforts are revealed. Healy (2007) considers a
reputation-building equilibrium when firms stereotype workers and find that selfish
workers imitate fair-minded types when firms have sufficiently high priors to generate
cooperation. Similarly, Roe and Wu (2009) find evidence for the reputation-building
equilibrium by finding that employees classified as selfish mimic cooperative employ-
ees when individual histories are observable, but not when histories are kept private.
Andreoni and Croson (1998) survey repeated public goods game experiments and
find little evidence of reputation-building behavior. Contrary to the expected result
that reputation-building should lead to higher contributions when players’ opponents
are fixed, this is not always the case (Andreoni 1988), and a restart effect seems more
influential than the matching regime in raising contributions.8

3 A reputation-based theory of cooperation

In this section, we apply the theory developed by Kreps et al. (1982) to the sequential-
move FRPD played by the participants in our experiment and characterize the optimal
strategies.9,10 A single stage of the sequential-move FRPD played in our experiment
is shown in Fig. 1. As with Kreps et al. (1982), we assume the first-mover believes

Footnote 7 continued
to the final round than in a baseline treatment with a commonly known finite horizon. They also find that
many players cooperated after they were privately informed about the number of remaining periods. In the
current study, the number of periods is publicly announced to all subjects to eliminate such uncertainty.
8 Broadly related papers in this journal include Chakravorti et al. (1996), Nishihara (1997), Bolton et al.
(2000), Anderlini and Lagunoff (2005), Engle-Warnick and Slonim (2006), and Duffy et al. (2013).
9 See Kreps et al. (1982) for a detailed derivation of the sequential equilibrium and see the “Appendix” for
a derivation of the equilibrium for the specific game used in this experiment, which includes the function
used to generate Fig. 2.
10 The repeated sequential-move game also has the advantage of tractability and yields a unique sequential
equilibrium.
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Fig. 1 A single stage of the sequential-move FRPD

the second-mover may be a tit-for-tat behavior type with positive probability and a
rational second-mover is aware of (and can take advantage of) this belief.11 The tit-
for-tat type always reciprocates the first-mover’s action, regardless of the period.12 In
the following analysis, we therefore focus only on the rational, payoff-maximizing
second-mover’s decisions.13

Let pt be the first-mover’s period-t belief probability that the second-mover is the
tit-for-tat type, with p1 ∈ (0, 1) representing his prior belief. Updating occurs in
equilibrium according to Bayes’ rule. If pt = 0 in any t , then by standard unraveling
arguments, both players must play D in period t and thereafter. For this game, there
exists a unique sequential equilibrium in which there is a belief threshold pt such that
the first-mover is willing to trust the second-mover (by playing C) in period t if and
only if pt ≥ pt . The rational second-mover prefers to maintain a reputation for being
the tit-for-tat type by responding to C with C (i.e., conditionally cooperate) until some
later round that is dependent on pt . As the end of the game nears, the expected payoff
to the first-mover from continuing to play C declines since there are fewer rounds left
and the probability that a rational second-mover plays D increases. In consequence,
the belief threshold pt is strictly increasing in t up to p10 = 4/7, given the specific
stage-game payments shown in Fig. 1.

When p1 < p1, the first-mover will defect in all periods, but when p1 > p1, the
first-mover initially trusts the second-mover, who will perfectly imitate a tit-for-tat
type if he is rational. Because the second-mover is either tit-for-tat, or imitating a
tit-for-tat type, the first-mover’s beliefs do not change in early periods. At some point
in time, however, because the belief threshold increases as t increases, pt may rise
above p1, at which point the first-mover would stop trusting the second-mover. Let t be

11 That is, similar to Kreps et al. (1982), the first-mover’s prior is common knowledge. This assumption
could be relaxed. For example, one could model the first-mover’s prior as coming from a distribution of
priors, in which case the second-mover’s optimal strategy will be a function of the first-mover’s expected
prior. The distribution for this expectation may change as t increases too, but the intuition for the optimal
strategies remains largely the same and revealing oneself as rational removes the uncertainty over the
second-mover’s type.
12 Such beliefs are certainly justified, given that tit-for-tat play is often observed in experimental data; see
Andreoni and Miller (1993), for example.
13 We will more simply refer to a player that has the objective of maximizing his own payoff as a rational
player.
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Fig. 2 Sequential equilibrium of the sequential-move FRPD with a tit-for-tat type. See the “Appendix” for
a proof of the sequential equilibrium and the equations used to derive the figure

the first period in which pt > p1. The second-mover benefits from being trusted and
would prefer to keep pt weakly above pt in every period t ≥ t . He does this by playing
a mixed strategy, so that the first-mover’s beliefs shift up to exactly pt = pt for all
t ≥ t , that is, if the second-mover is observed to conditionally cooperate at t , then the
first-mover’s belief that the second-mover is in fact a tit-for-tat type increases, given
that a rational second-mover would have defected with some probability. Formally,
the second-mover conditionally cooperates in period t with probability

q∗
t = pt

1 − pt

1 − pt+1

pt+1
,

and the first-mover’s beliefs update to

pt+1 =
{ pt

pt +qt (1−pt )
if C is realized;

0 otherwise.

We refer to q∗
t as the post-threshold probability of cooperation. Since pt must continue

to increase over time, q∗
t must decrease accordingly to keep pt above pt .

When pt = pt , the first-mover is exactly indifferent between C and D. Since the
second-mover is mixing, he must also be exactly indifferent between C and D. This is
done by having the indifferent first-mover mix between C and D in period t + 1 with
appropriate probabilities. If the first-mover’s realized action is D, then both types of
second-mover respond with D and beliefs do not update. Thereafter, the first-mover
does not trust the second-mover (because pt+1 = pt = pt < pt+1), and the second-
mover never has a chance to alter beliefs, so defection occurs in every subsequent
period.14 The structure of the unique sequential equilibrium for a first-mover having
belief p1 > p1 is displayed in Fig. 2.

14 The second-mover cannot attempt to restore cooperation by playing C in response to D, for this would
reveal his true rationality with certainty and result in defection in all subsequent periods.
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Observe that the path of equilibrium play depends crucially on p1. If p1 > p10 =
4/7, then no mixing phase is needed; both players play C with certainty until the
rational second-mover defects in the final period. If p1 ∈ [p1, p10], then mixing will
begin in period t (the smallest t such that p1 ≤ pt ), after which one defection will lead
to defection in all subsequent actions. If p1 < p1, then the first-mover will never trust
the second-mover, the second-mover will never have an opportunity to alter beliefs,
and defection will occur in every action.

Regardless of p1, the realized path of play must feature a regime shift from coop-
eration to defection. This shift can be triggered by either player, can occur in the first
action, and may never occur if tit-for-tat players truly exist. In the laboratory, beliefs
are not directly observable and second-movers’ types are unknown, so the time at
which defection begins cannot be predicted without additional data.15

4 Experimental design

Our experiment is designed to test directly the reputation-building aspect of the Kreps
et al. (1982) theory in a sequential-move, finitely repeated prisoner’s dilemma. In
all treatments, 20 subjects are divided into two equal-sized groups: first-movers and
second-movers. The sessions are divided into two blocks. In each block, each subject
plays five finitely repeated prisoners’ dilemma supergames, with each supergame
played against a different subject from the other group.16 Through the course of the
experiment, each subject will therefore play a supergame with each subject in the other
group exactly once (5 in Block 1 and the other 5 in Block 2).17 Each supergame is 10
rounds in length.

The sequential-move game allows us to focus on the second-mover and her opportu-
nities for reputation-building. We study this by varying the information structure in two
treatments, denoted 2S and 1S. The first block of five supergames is identical across
the two treatments. Players see their opponent’s history in the current supergame, but
not from any prior supergames. In Block 2 of treatment 2S, subjects in each supergame
see their opponents’ entire history of play from their five Block 1 supergames, as well
as the play of their opponents’ opponents in these five supergames. Thus, all of the
first-mover’s actions, all of the first-mover’s opponents’ actions, all of the second-
mover’s actions, and all of the second-mover’s opponents’ actions from Block 1 are

15 An alternative model is one in which second-movers begin the game as tit-for-tat players but randomly
“wake up” in some period and become rational as they realize the end of the game is approaching. This
would be identical to the current model, except pt would be decreasing rather than constant in early periods.
Further details are available upon request.
16 Having subjects play multiple supergames in each block allows them to become familiar with the game
and, more importantly, allows second-movers to reveal more information about their types in Block 1.
In any single supergame, it is possible that an individual second-mover might face a very uncooperative
first-mover, so that no information about the second-mover’s type would be revealed.
17 In a couple of sessions, less than 20 subjects participated. In these sessions, subjects played against
a different subject from the other group until they had played against all of them once. In the remaining
supergames of Block 2, subjects were matched randomly with one of the subjects had already faced in
Block 1 but not yet faced in Block 2.
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revealed to both players in each Block 2 supergame of 2S. It is commonly known that
this information is revealed to both players.

In treatment 1S, only the first-mover’s history from Block 1 is revealed to the
second-mover (including the first-mover’s actions and the first-mover’s opponents’
actions); the second-mover’s history is not revealed to the first-mover. Again, this
revelation structure is commonly known. The purpose of this treatment was to control
for changes in behavior between Blocks 1 and 2 that result from revealing the first-
mover’s Block 1 history of play to Block 2 second-movers as well as to use as a control
for any “restart effect.” Differences between 1S and 2S can then be interpreted as the
effect of revealing the second-mover’s Block 1 history of play to Block 2 first-movers
(revealing reputations), given that the second-mover is equally informed about the
first-mover’s history. The treatment names 2S and 1S are mnemonic for “two-sided”
and “one-sided” knowledge of histories, respectively.

At the beginning of Block 1 of both treatments, subjects know they will play five
finitely repeated prisoners’ dilemma supergames against five different opponents in
Block 1. Subjects are also told at the beginning of Block 1 of both treatments that
we will conduct a second experiment immediately following the first in which they
may also participate if they want. They are informed that instructions for the second
experiment will be distributed after the first experiment concludes. The subjects are
not told that they will play prisoners’ dilemmas in the second experiment or that their
histories from the Block 1 may be revealed in Block 2. Only at the beginning of
the Block 2 do they learn that they will play additional repeated prisoners’ dilemma
supergames and that their history from Block 1 will be revealed (depending on the
treatment). Subjects have the option of taking their earnings after Block 1 and leaving
instead of participating in the Block 2 experiment, and if they participate in the second
experiment, they are guaranteed a second minimum show-up payment. All of the
subjects chose to stay for the second experiment.

As mentioned in the previous section, we use the same stage-game payoffs as
Andreoni and Miller (1993) shown in Fig. 1. Subjects are paid for one randomly
selected supergame out of the five supergames in each Block, and this is known in
advance.

We use a strategy-elicitation method for second-mover choices, which asks subjects
to enter their action conditional on the first-mover defecting (choosing right) and
their action conditional on the first-mover cooperating (choosing left) before learning
the first-mover’s action in each round. The second-mover’s strategy for a particular
round is implemented for them after the first-mover chooses an action for that round.
In a survey paper comparing the strategy method to direct response, Brandts and
Charness (2011) found that while the two methods can induce different behavior in
some experiments, there is generally no significant difference in behavior in prisoner’s
dilemma experiments between the two. They conclude from their survey that in cases
where behavior differs between the two methods, the strategy method provides a lower
bound for treatment effects.18

18 Experiments have also been conducted on the (one-shot) sequential prisoners’ dilemma, and they gen-
erally show little difference from simultaneous-move setups. Bolle and Ockenfels (1990) found little dif-
ference in cooperation levels between simultaneous and sequential one-shot prisoners’ dilemma using the
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In the sequential-move prisoner’s dilemma, the second-mover’s strategic intention
may be censored in rounds where the first-mover defects, which leads to defection
by the second-mover as well according to a wide range of strategies. We elicited
second-mover choices using the strategy method, so that we would be able to identify
the second-mover’s intent to cooperate if reciprocated, regardless of the first-mover’s
actual choice. This way, if the first-mover defected and the second-mover responded
by defecting in the same round, we would know whether the second-mover would
have continued cooperating or unilaterally defected if the first-mover had instead
cooperated in that round. All of the second-mover results reported in the paper focus
on this conditional cooperation (the second-mover’s choice conditional on cooperation
by the first-mover) and not the choice actually implemented for the second-mover in
response to the first-mover.

5 Results

We conducted 14 sessions of the experiment at The Ohio State University experi-
mental economics laboratory with a total of 264 subjects: seven sessions of the 1S
treatment with 130 subjects and seven of the 2S treatment with 134 subjects. Subjects
were chosen randomly from a pool of students at The Ohio State University who
had previously signed-up to be considered for participation in economic experiments.
Subjects could not participate in more than one session of this experiment. Table 1
provides summary information for the experiment. Payoffs in the experiment were
denominated in “points” and converted into dollars at the rate of four points per dollar.
Average earnings per subject were approximately $27. We proceed by first analyzing
the players’ aggregate behavior and then focus on how information impacts behavior
at the individual level.

5.1 Aggregate behavior

We focus on cooperation by the first-mover and conditional cooperation by the second-
mover (choosing to cooperate conditional on the first-mover cooperating) as our out-
comes of interest. The first hypothesis, based on Kreps et al. (1982), states that coop-
eration will be eliminated when the second-mover’s history reveals she is rational.

Footnote 18 continued
strategy method to elicit second-mover strategies. Brandts and Charness (2000) found no significant dif-
ference in cooperation between the sequential one-shot prisoner’s dilemma using the strategy method and
direct response. Blanco et al. (2011) used the strategy method with role uncertainty in several information
conditions and belief-elicitation treatments to show that correlation between strategies in different roles is
driven partially (but not completely) by a consensus effect. Clark and Sefton (2001) examined sequential
prisoners’ dilemma games with varying levels of temptation and overall stakes in both the United States
and the United Kingdom. They found substantial cooperation levels in early rounds, which diminished
by the tenth and final round. They also found that second-movers were much more likely to cooperate
if the first-mover cooperated, but this tendency also decreased across rounds and with higher temptation
levels. Higher overall stakes lead to a slight increase in second-mover reciprocal cooperation in the United
Kingdom, but a decrease in reciprocal cooperation in the Unite States.
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Table 1 Summary information

Treatment Revealed information Number of
sessions

Number of
subjects

1S History of play for the first-mover and his
opponents from block 1

7 130

2S History of play for both the first and
second-movers and their opponents from
block 1

7 134

Fig. 3 First-mover average cooperation

Hypothesis 1 Compared to Block 2 of 1S, the rate of aggregate cooperation should
not be higher in Block 2 of 2S.

Figure 3 displays the paths of aggregate cooperation by first-movers over the course
of a supergame. The first row represents the data pooled from each treatment for the first
block, the second row represents the Block 2 data for 1S, and the third row represents
the Block 2 data for the 2S treatment. Each column represents a supergame in the
order in which they were played. The paths of play in Block 1 (1S and 2S pooled) and
Block 2 of 1S are quite similar for first-movers as we would expect given that there is
no change in the information given to first-movers between these treatments. The path
of play in Block 2 of 2S, however, exhibits higher levels of cooperation than the other
treatments. Moreover, the level of cooperation increases across supergames, and the
path of play shows a clear endgame effect in late supergames of Block 2—something
that is not clearly apparent in other supergames where aggregate cooperation declines
more steadily by round.
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Fig. 4 Second-mover average conditional cooperation

Figure 4 displays the paths of aggregate second-mover conditional cooperation—
cooperate conditional on the first-mover cooperating—over the course of a supergame.
The paths of play are again shown by treatment and supergame, as in Fig. 3. The paths
of aggregate cooperation over supergames in Block 2 of 1S show more of an endgame
effect than those in Block 1 (pooled) since cooperation is maintained in early rounds
then drops off more sharply in later rounds. However, round 10 behavior is roughly
the same across blocks, suggesting that players view the endgame similarly in both.19

The paths of play in Block 2 of both 1S and 2S exhibit more cooperation than occurs
in Block 1 with 2S exhibiting even higher levels of cooperation than that in Block 2 of
1S despite first-movers observing the histories of second-movers. That greater over-
all cooperation and sustained cooperation until later rounds of the supergames are
observed when second-mover histories are revealed to first-movers is again inconsis-
tent with the predictions of Kreps et al. (1982).

Result 1 We observe greater aggregate cooperation in Block 2 when second-movers’
histories of play are exposed to first-movers (treatment 2S, compared to 1S).

Table 2 reports the aggregate cooperation frequencies of first-movers and the aggre-
gate conditional cooperation frequencies of second-movers by block and treatment.
There is almost no difference in overall cooperation between Block 1 cooperation in
1S and 2S for either first or second-mover. However, not only do both first- and second-
movers cooperate more in Block 2 of 2S, but their cooperation rates are slightly higher

19 For both first and second-movers in both treatments, round 10 cooperation/conditional cooperation is
never significantly higher in Block 2 than in Block 1 (Wilcoxon signed-rank tests for data having within-
group correlations (Larocque 2005) with the unit of observation being the subject-level average coopera-
tion/conditional cooperation in round 10 across all supergames in a block).
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Table 2 Aggregate cooperation

First-movers Second-movers

No. of subjects % Cooperation No. of subjects % Conditional cooperation

Block 1

1S 65 43.2 65 56.4

2S 67 42.9 67 57.0

Block 2

1S 65 53.4 65 67.5

2S 67 60.9 67 73.1

than that of first- and second-movers in Block 2 of 1S. Wilcoxon–Mann–Whitney tests
(bootstrapped to account for clustering by session) confirm that there is no between-
treatment difference in Block 1 cooperation rates for first- or second-movers (p values
0.959 and 0.662, respectively), while there is slightly higher Block 2 cooperation
rates in 2S than in 1S (p values are 0.063 and 0.071 for first- and second-movers,
respectively).20

5.2 Individual-level behavior

As Cooper et al. (1996) point out, individual behavior provides a better test of theoret-
ical predictions in the FRPD than aggregate cooperation. We now analyze individual-
level behavior and classify players into types based on that behavior.

Figure 5a, b plots average cooperation for each subject in Blocks 1 and 2. The first
figure shows cooperate rates for first-movers while the second shows conditional coop-
eration rates for second-movers. Each data point represents a single subject. Subjects
in the 1S treatment are black circles, while subjects in the 2S treatment are white. Lack
of a treatment effect would express itself in data points scattered symmetrically about
the 45-degree line. In both figures, the 1S data are distributed in this manner. How-
ever, the 2S data are skewed above the 45-degree line, indicating that revealing Block
1 histories of second-movers increases cooperation for both first- and second-movers.
Wilcoxon signed-rank tests for data having within-group correlations (Larocque 2005)
show that differences in the frequency of cooperation across blocks are highly signif-
icant in 2S (p value = 0.063 for first-movers and p value = 0.015 for second-movers)
and insignificant in 1S (p value = 0.222 for first-movers and p value = 0.210 for
second-movers).21

20 The unit of observation in these tests is the average (conditional) cooperation for an individual first
(second) mover across all periods of all Block 2 supergames. As we are testing whether there is higher
cooperation in 2S than 1S, the latter p values are based on a one-sided test in which the null is μ2S = μ1S
and the alternative is that μ2S > μ1S . The two-sided p values are 0.126 and 0.141, respectively.
21 We perform a power calculation for the 1S test, assuming the effect size found in 2S and a 10 %
significance level, and find that our power is 85 %. The standard threshold for acceptable power is 80 %.
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(a) (b)

Fig. 5 Average cooperation by mover by subject (all supergames). a First-mover (observed cooperation),
b second-mover (conditional cooperation)

We classify players into types within each block to control for the heterogeneity
in individual behavior. By focusing on how information differentially impacts players
conditional on their type, we can identify whether the behavior of some players is
consistent with the reputation-building theory. Importantly, we classify players based
on the histories of play only—not on the off-path choices of second-movers—as our
main focus is on the information contained in Block 1 histories revealed in Block 2.
Furthermore, we classify second-movers based solely on their behavior in rounds in
which the first-mover cooperated. Second-movers cannot reveal any information about
their types in rounds in which the first-mover defected, as tit for tat and reputation-
building players alike would defect in such cases. For the ease of explaining the type
classification, rounds in which the first-mover cooperated are referred to as trusting
rounds.

The classification procedure works as follows. For each supergame, a second-mover
is classified as an Imitator if her behavior is consistent with the reputation-building
strategy of Kreps et al. (1982), i.e., she plays cooperate in the first trusting round and
continues doing so until some later trusting round (possibly round 10), after which
she plays defect in each subsequent trusting round. Otherwise, she is classified as a
Cooperator if she cooperates in the first trusting round (but did not play as an Imitator)
or as a Defector if she does not cooperate the first trusting round. Her type classification
for the block is identified by the mode of her five supergame classifications within that
block. In the case of a tie, the most recently used modal type is used.22

By this procedure, we arrive at a classification of second-movers that summarizes
quite well their Block 1 history of play as observed by first-movers. The overall
percentage of Block 1 supergames having a second-mover with a type classification

22 In the “Appendix,” we present similar results in which players are classified only by their type from the
last supergame they play.
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Table 3 Second-mover-type transition matrix

Block 2

Block 1 Defector Cooperator Imitator Total

1S

Defector 10 12 3 25 (38.5 %)

Cooperator 3 16 9 28 (43.1 %)

Imitator 1 3 8 12 (18.5 %)

Total 14 (21.5 %) 31 (47.7 %) 20 (30.8 %) 65 (100.0 %)

2S

Defector 10 12 4 26 (38.8 %)

Cooperator 2 17 10 29 (43.3 %)

Imitator 0 9 3 12 (17.9 %)

Total 12 (17.9 %) 38 (56.7 %) 17 (25.4 %) 67 (100.0 %)

of Imitator, Cooperator, or Defector is 18.2, 41.7, and 39.4 %, respectively.23 Based on
these type classifications, we have the following hypothesis regarding how a second-
mover’s classification will change in Block 2 when her history of play is revealed.

Hypothesis 2 Second-movers in 2S who play as Imitators or Defectors in Block 1
play as Defectors in Block 2 because they are revealed to first-movers as rational.

Table 3 reports the type classifications for second-movers by treatment and block
in the form of a Markov transition matrix. The data reveal that transitions between
second-mover types between Blocks 1 and 2 in 2S are inconsistent with reputation-
building. Surprisingly, nearly half of the Defectors in Block 1 become Cooperators in
Block 2 and only 38 % of the Block 1 Defectors remain Defectors in Block 2. Even
more striking, none of the second-movers who are Imitators in Block 1 of 2S become
Defectors in Block 2. These findings are summarized in the following result.

Result 2 Only 26.3% of second-movers who are classified as Defectors or Imitators
in Block 1 of 2S are classified as Defectors in Block 2, while 55.2% of them are
classified as Cooperators in Block 2.

The first-mover-type classification is slightly different. Kreps et al. (1982) allows
for two possible types of first-movers: those who believe the probability of an irrational
second-mover is high enough to justify cooperation in round 1 of a supergame, and
those who do not. Therefore, we classify a first-mover as Trusting if her modal behavior
is to cooperate in round 1 of the five supergames in a given block. Otherwise, a first-
mover is classified as Non-Trusting. Based on these type classifications, we have the

23 The proportion of second-movers who are classified as Cooperators may be inflated relative to imitators
because first-movers defected first in 41.5 % of the Block 1 games with Cooperators. It is possible that these
second-movers were using a reputation-building strategy that is not revealed because of the first-movers’
defection; however, classifying them as Cooperators is still useful because second-movers are not revealed
to first-movers as rational.
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Table 4 First-mover-type transition matrix

Block 2

Block 1 Non-Trusting Trusting Total

1S

Non-Trusting 21 10 31 (47.7 %)

Trusting 2 32 34 (52.3 %)

Total 23 (35.4 %) 42 (64.6 %) 65 (100.0 %)

2S

Non-Trusting 7 19 26 (38.8 %)

Trusting 2 39 41 (61.2 %)

Total 9 (13.4 %) 58 (86.6 %) 67 (100.0 %)

following hypothesis regarding how a first-mover’s classification will change in Block
2 when the second-mover’s history of play is revealed.

Hypothesis 3 Compared to Block 2 of 1S, first-movers are less likely to be classified
as Trusting in Block 2 of 2S.

Table 4 reports type classifications for first-movers by treatment and block in the
form of a Markov transition matrix. In 1S, 47.7 % of first-movers are Non-Trusting, and
about one-third (32.3 %) of these first-movers become Trusting in Block 2. However, in
2S, more than two-thirds (73.0 %) of first-movers are Non-Trusting in Block 1 (38.8 %
of all first-movers in this treatment) transition to Trusting in Block 2. Because this
result is not conditional on the revealed type of second-mover opponents, it would not
contradict the theoretical predictions if no second-movers were exposed as rational,
but some were, so we should expect an aggregate decrease in the number of Trusting
first-movers. Instead, we find the opposite: first-movers become more Trusting when
histories are revealed.

Result 3 A higher proportion of first-movers is Trusting in Block 2 of 2S compared to
Block 2 of 1S (p = 0.007), while there is no difference in the proportion of Trusting
first-movers in Block 1 (p = 0.386);24 Additionally, there is a larger increase in the
proportion of first-movers who are Trusting from Block 1 to Block 2 in 2S: 25.4%
point increase in 2S (p = 0.032) and a 12.3 (p = 0.122) percentage point increase
in 1S.25

We now study first-mover reactions to the second-mover’s revealed type. Because
first-movers should only cooperate if there is some positive probability that the second-
mover is irrational, exposing the second-mover as an Imitator or Defector in Block 1

24 P values are based on a Chi-squared proportion tests, adjusted for session-level clustering (Rao and
Scott 1981, 1984; Sribney 1998).
25 P values are from a McNemar test for data having within-group correlations (Durkalski et al. 2003).
We calculate the power of the 1S test to be 78 %, assuming the effect size observed in 2S.
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Fig. 6 Block 2 cooperation rates when the second-mover is revealed to have been a Cooperator type in
Block 1

should convince the first-mover that the second-mover is rational and destroy cooper-
ation in Block 2 of 2S. This is summarized in the following hypothesis.

Hypothesis 4 In Block 2 of 2S, a first-mover whose opponent’s Block 1 history is an
Imitator- or Defector type will play as a Non-Trusting type against this opponent.

We test hypothesis 4 by splitting the Block 2 data by the second-mover’s Block 1
type and examining how first-movers respond to their opponents’ revealed histories.
Note that in the following analysis, we study Block 2 data using type classifications
based on Block 1 data.

First, we look at the case where the second-mover’s history indicates they are a
Cooperator type. Figure 6 shows average first-mover cooperation and second-mover
conditional cooperation by round in Block 2 games for only those supergames where
the second-mover’s Block 1 histories classify her as a Cooperator. The top two panels
show the Block 2 cooperation rates in 1S and 2S, respectively, for supergames in
which the first-mover is Non-Trusting. The bottom panels are for Block 2 supergames
in which the first-mover is Trusting. Both Non-Trusting and Trusting first-movers
cooperate more frequently and into later rounds after the second-mover is revealed to
be a Cooperator compared to when no histories are revealed to first-movers.

Figure 7 presents a similar view of the data for Block 2 supergames where the
second-movers’ Block 1 histories classify her as an Imitator. First-movers with Trust-
ing Block 1 histories have very similar cooperation rates in each corresponding round
across treatments. Block 2 cooperation is much higher in 2S than in 1S for Non-
Trusting first-movers, however. Revealing information that indicates that second-
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Fig. 7 Block 2 cooperation rates when the second-mover is revealed to have been a Imitator type in
Block 1

movers are willing to cooperate increases first-mover cooperation even if that infor-
mation reveals that the second-mover is rational.

Figure 8 is similar to Figs. 6 and 7 except data are from Block 2 supergames where
the second-movers’ Block 1 histories classify her as a Defector. Initial cooperation
by Trusting first-movers in 2S decreases substantially between 1S and 2S when the
second-mover is revealed to be a Defector. However, Non-Trusting first-movers coop-
erate slightly more when the second-mover is revealed to be a Defector. These findings
are consistent with the notion that providing the second-mover’s history causes first-
movers to update their beliefs regarding the degree of cooperation that they can expect
from a first-mover. Gachter and Thoni (2005) find a similar result in their public goods
game experiment in which players’ behavior from the first game is revealed to other
players in the subsequent series of games (and players were not told this would happen
before the first game). They find that when players whose contributions were low in
the first game are grouped with other low contributors in subsequent games, they con-
tribute more than when grouped randomly. As in our experiment, this behavior may
be due to a failure of backwards induction, combined with updating of pessimistic
beliefs that these low contributors hold in the first game, an interpretation consistent
with the model of naive beliefs that we develop in Sect. 6.

5.3 Rate of first defection

We use logit regressions to test how first-mover cooperation in Block 2 supergames
depends on the type of second-mover. Robust standard errors are corrected to account
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Fig. 8 Block 2 cooperation rates when the second-mover is revealed to have been a Defector type in
Block 1

for within-subject and within-session correlations between observations, i.e., the stan-
dard errors are clustered by individual first-mover and session. Specifications (i) and
(ii) of Table 5 show the impact of revealed player histories on first-mover initial coop-
eration. Specification (i) explores the impact of revealing a player’s history of play
and indicates that first-movers are more trusting when second-movers are observed to
have cooperated in Block 1 supergames. Specification(ii) examines the impact that a
second-mover’s type has on the likelihood that a first-mover will be Trusting. In this
specification, only second-mover types from 2S are identified by first-movers while
second-mover types from 1S are unobserved and represent the omitted second-mover
type in the regression.26 The estimates show that both trusting and Non-Trusting first-
movers are more likely to trust in Block 2 when the second-mover is revealed to be a
Cooperator or an Imitator, compared to when no history is revealed. However, when
facing a Defector, Non-Trusting first-movers are no more likely to trust than when
no history is revealed. Regardless of the second-mover’s type, Trusting first-movers
are more likely than Non-Trusting first-movers to trust in Block 2 when the second-
mover’s history of play is revealed. In this case, even though a second-mover’s model
type is Defector, the first-mover may be responding to the fact that the second-mover
likely cooperated in some supergames.

Specifications (iii)–(v) of Table 5 explore the impact of revealing player types on the
number of periods of joint cooperation before first defection in Block 2 supergames.

26 As the type effects are relative to second-mover types in 1S, the estimates do not simply reflect a restart
effect.
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Table 5 Effect of player types on first-round cooperation and rounds of cooperation before first defection

First-round cooperation by
first-mover

Number of rounds of cooperation before
first defection

(i) (ii) (iii) (iv) (v)

Avg. second-mover block 1 coop. 0.054

(0.308)

× S2 0.138

(0.019)

Defector 0.591

(0.113)

Imitator 1.379 1.606 2.116 1.586

(0.005) (0.186) (0.012) (0.344)

Cooperator 1.703 3.118 0.274 3.722

(0.008) (0.004) (0.818) (0.011)

Trusting

× Defector 0.754 9.779

(0.027) (<0.001)

× Imitator 2.583 10.472

(<0.001) (<0.001)

× Cooperator 1.489 7.002

(0.011) (<0.001)

× Unobserved 1.955

(<0.001)

S2

× Defector 4.647 −4.888 5.863

(<0.001) (<0.001) (<0.001)

× Imitator 3.997 −1.360 5.628

(0.072) (0.011) (0.055)

× Cooperator 3.980 1.996 5.334

(0.074) (0.232) (0.071)

2S×Trusting

× Defector −10.164

(<0.001)

× Imitator −5.744

(0.010)

× Cooperator −1.855

(0.214)

Supergame# 0.385 0.519 0.633 −0.566 3.433

(0.036) (0.031) (0.243) (0.227) (0.004)

(Supergame#)2 −0.047 −0.064 −0.065 0.098 −0.440

(0.122) (0.115) (0.439) (0.201) (0.019)

Constant −0.368 −1.547 −3.916 7.510 −10.574

(0.241) (<0.001) (<0.001) (<0.001) (<0.001)

Observations 660 660 660 375 285

Avg. second-mover block 1 cooperation represents the average number of rounds of cooperation in all of
the Block 1 supergames for the second-mover. Column (iv) includes observations with trusting first-mover,
and column (v) includes observations with Non-Trusting first-mover only. p values from robust standard
errors clustered by individual first-mover and session in parentheses
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As the number of rounds of initial cooperation are censored between 0 and 10, the
results are estimated using Tobit regressions. Furthermore, in contrast to specifications
(i) and (ii), second-movers are classified based on their Block 1 history of play in both
1S and 2S. Although the first-mover cannot classify a second-mover in 1S, it is useful
as an explanatory variable as a second-mover’s type will impact the overall degree
of cooperation and will help us to assess which player characteristics generated the
cooperation rates.

In Sect. 5.1, we analyzed aggregate behavior and showed that there is more coop-
eration in Block 2 than Block 1 with even higher levels of cooperation in 2S despite
first-movers observing the histories of second-movers. Though average cooperation
is informative, it can be biased by the player types. If, for example, one treatment
included more cooperative types, then this could make it appear that average coopera-
tion increased more for that treatment. Specifications (iii)–(v) are designed to explore
how first- and second-mover types relate to the duration of cooperation. Specification
(iii) includes all of the data while specification (iv) includes only Trusting first-movers
and specification (v) includes only Non-Trusting first-movers to help clarify the impact
of the first-movers’ types. The estimate for Cooperator in specification (iii) reveals
that playing with a more cooperative second-mover in either 1S or 2S causes a first-
mover to cooperate for longer within a supergame, especially when the first-mover is
Non-Trusting.27 Interestingly, Non-Trusting first-movers are also more likely to coop-
erate longer with Defector and Imitator second-movers. Given the results in (ii), part
of this result is likely driven by Non-Trusting first-movers’ trusting second-movers
more after observing that these second-movers did not initially defect. Trusting first-
movers, however, do not cooperate as long in 2S when facing a Defector and, to a
lesser extent, an Imitator-type second-mover. As these first-movers have shown that
they are more willing to trust, even when the second-mover’s history of play is not
known, this result can likely be explained by first-movers examining the number of
rounds that second-movers cooperated and trying to preempt their defection without
performing full backward induction.28

Specifications (iv) and (v) help to clarify the impact of the first-mover’s type by
restricting the sample to either Trusting or Non-Trusting first-movers. Reinforcing
the results in (iii), the estimates for specification (iv) indicate that first-movers update
the amount that they are willing to cooperate based on the amount second-movers
cooperated in Block 1. Recall that Defector is the omitted category, thus when trusting
first-movers encounter a Defector or Imitator in Block 2, they will cooperate for
fewer rounds than in 1S but they will also cooperate more with either an Imitator or
Cooperator than a Defector in 2S. The results of specification (v) reveal that Non-
Trusting first-movers, who were more pessimistic in their Block 1 beliefs (i.e., have
a high prior that their opponent is not a tit-for-tat type), cooperate more in Block
2 even when facing a Defector who has revealed that she is not a tit-for-tat type,
suggesting that first-movers update their beliefs about how long these second-movers

27 For Trusting first-movers, the difference in cooperation between 2S and 1S is 2.125, but only with
p = 0.259.
28 This explanation is also consistent with the rates of defecting first shown in Table 6: in 2S, Trusting
first-movers facing imitator-type second-movers defect first 68.4 % of the time, compared to 42.0 % in 1S.
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will cooperate based on the history of play. While the amount of additional cooperation
for a Non-Trusting first-mover does not depend on second-mover type, revealing the
second-mover’s history of play is sufficient to increase average cooperation with a
Non-Trusting first-mover.

In summary, both trusting and Non-Trusting first-movers are more trusting when
they can view the second-mover’s history of play; Non-Trusting first-movers cooperate
longer in 2S than in 1S regardless of the second-mover type; and Trusting first-movers
cooperate for fewer periods with Defectors and to a lesser extent with Imitators. These
results indicate that cooperation in the finitely repeated prisoners’ dilemma continues
even after the opportunity for reputation-building by second-movers is destroyed. We
therefore reject Hypothesis 4.

Result 4 Compared to a first-mover whose opponent’s history is not revealed, a first-
mover whose opponent’s Block 1 history is revealed as Imitator type (a) is more
likely to cooperate in round 1 of a Block 2 supergame, and (b) Non-Trusting first-
movers cooperate longer when second-mover histories are revealed while Trusting
first-movers do not cooperate for as long when second-movers are revealed to be
Defectors or Imitators.

5.4 Beliefs

In some later sessions, we added a belief-elicitation stage at the end of the experiment.
Subjects were presented with a sequence of five randomly selected Block 1 histories,
consisting of five supergames each for both first- and second-movers from previous
sessions of the same type of treatment, that is, if the subject participated in 1S, then she
would only see the first-mover’s history of play, and if the subject participated in a 2S
treatment, then she saw both histories of play just as was visible in her block 2 games.
Since the elicited beliefs were based on the same available information as subjects
had in their Block 2 supergames, they should be similar to the beliefs they held when
playing the game. For each set of histories, subjects were then asked to state how many
rounds they believed these past participants would cooperate before the first defection
when matched with one another. For one randomly selected belief-elicitation question,
each subject was paid $5 if her stated belief was exactly correct.29

Regression results are shown in Table 8 in the “Appendix,” summarizing how
elicited beliefs responded to observed cooperation rates in displayed histories as well
as the role of the player whose beliefs are elicited. While we find some evidence that
elicited beliefs respond to observed cooperation in the expected directions, statistical
significance is weak due to small sample size. Furthermore, we find that first- and
second-movers report systematically different beliefs, suggesting that elicited beliefs
may be biased by the subjects’ own experience in the experiment.

29 We decided not to elicit beliefs before or during gameplay because doing so is difficult and may itself
affect beliefs and behavior. We thank an anonymous referee for the suggestion of eliciting beliefs about
third parties.
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6 A model of naïve beliefs

In contrast to the predictions of the reputation-building theory of Kreps et al. (1982),
our experiment shows that there will be substantial cooperation in FRPDs even when
players’ previous histories are revealed. Moreover, learning that an opponent imitated
a tit-for-tat type frequently increases cooperation, rather than destroying it.

The observed increases in cooperation may be partially motivated by fairness or
indirect reciprocity. For example, Ho and Su (2009) utilize an ultimatum game in an
experiment and find that roughly half of their subjects value how their offer compares
to offers other followers have received. A similar notion of fairness could plausibly
affect cooperation in other games, such as the FRPDs played here, when subjects
can view how their current opponents treated previous opponents; however, fairness
would seem to be a less salient concern in a prisoner’s dilemma setting, where payoffs
are determined more symmetrically (i.e., both players have a hand in the outcome),
than in an ultimatum game setting, where control over payoffs is heavily unbalanced.
Moreover, a concern for fairness would not explain why Non-Trusting first-movers
become more Trusting when they observe that their opponent is a Defector. In com-
munity games with public reputations, indirect reciprocity has been shown to induce
cooperation (see Nowak and Sigmund 2005, for a recent survey), but these games
typically feature frequent rematching among small groups of subjects, who play sim-
ple, one-shot stage games with unilaterally determined payoffs, making reputation in
future matches a dominant concern. In contrast, the matching protocol we employ
minimizes the opportunity for indirect reciprocity by generally matching each sub-
ject no more than once with each other subject. In addition, the payoff gradient of
strategic interactions in an FRPD supergame is large enough that the direct payoff
consequences of behavior in a given supergame should reduce the extent to which
behavior is motivated by potential payoffs in future supergames.

Though we cannot rule out that cooperation in our experiment may be partially
motivated by fairness or indirect reciprocity, we have reason to doubt that they are the
primary drivers of the cooperation we observe. For example, our results are consistent
with the findings of Kagel and McGee (2014)’s experiment on FRPDs played by
teams. They observe an increase in cooperation over time because teams anticipate
that their opponent will defect in later rounds. Kagel and McGee find no evidence
in team chat logs, however, that teams anticipate opponents’ beliefs and attempt to
mimic an irrational player as the Kreps et al. (1982) model predicts. Nor do they
find evidence of reciprocity or concerns for fairness. Instead, they find evidence that
teams anticipate when their opponents will defect (i.e., their opponents’ actions, not
their beliefs) and attempt to defect one round earlier, which they interpret as a failure
of common knowledge of rationality. These results suggest that boundedly rational
behavior is a primary driver of cooperation in FRPDs. We now propose a simple model
of boundedly rational behavior, in which we relax the requirement that players’ prior
beliefs be consistent with an opponent’s best response.30

30 This approach is similar to Radner (1986), in which players have arbitrary beliefs about the opponent’s
trigger strategy choice in a simultaneous-move FRPD and choose a best-response trigger strategy given
these beliefs.
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As in Kreps et al. (1982), players in our model decide in which round to stop
playing tit for tat and begin unconditionally defecting. This is decided by weighing
the long-term benefit of cooperation against the risk of the other player defecting first.31

The difference between this approach and that of Kreps et al. (1982) is that players
do not engage in higher-level reflection about the beliefs of their opponent. Instead,
players form “naïve” beliefs which may not be consistent with their opponent’s best
response. This is consistent with Kagel and McGee (2014), who provide evidence
that players simply try to defect one round before their opponent’s anticipated first
defection without reflecting on the beliefs of their opponents. Given arbitrary initial
beliefs about how many rounds the opponent will continue playing tit for tat, players
update beliefs within the game based on their opponents’ choices using Bayes’ rule
and choose the optimal round to stop playing tit for tat and begin unconditionally
defecting.32

This simple model generates predictions that are consistent with our experimental
results. First, the common finding that cooperation in the FRPD does not break down
until one or two rounds before the last is consistent with the model if players have
uniform or even more pessimistic beliefs.33 Second, the first-mover who plays cooper-
atively in Block 1 may defect earlier in Block 2 supergames after the second-mover’s
history of play from Block 1 exposes him as generally uncooperative. Third, there
will be as much, if not more, cooperation in Block 2 after a second-mover’s history
of play from Block 1 has exposed him as rational. The first two predictions are also
consistent with the reputation-building theory of Kreps et al. (1982), but the third is
not. These results demonstrate that while the behavior we observe is inconsistent with
Kreps et al. (1982), it is rational in a reasonable non-equilibrium sense. While this is
not the only model that could explain our experimental data, the recent evidence from
Kagel and McGee (2014) indicates that this interpretation is worthy of a more careful
exploration.

For a formal description of the model, let rounds be counted backwards. Play begins
in round 10 and ends after round 1. We assume that all players adopt a strategy from
S = {s11, s10, . . . , s1}. A player adopting strategy sk plays tit for tat in rounds 10
through k and defects in rounds k −1 through 1. Strategy s11 is defined as defecting in
every round. In addition to the Kagel and McGee (2014) chat evidence, Embrey et al.

31 Selten and Stoecker (1986) propose an alternative non-Bayesian model of learning from histories of
play in FRPDs, which predicts a general pattern of behavior that is consistent with our data. In their model,
a player defects one period earlier (or later) with some probability if her previous opponent defected earlier
(or later) than she did, and she defects in the same period otherwise. This learning model does not include
beliefs about other players nor does it assume optimizing behavior, but only an iterative Markov transition
learning rule given a starting point and supergame outcome. Unlike our experiment, subjects in Selten and
Stoecker (1986) are given no information about opponents’ histories of play in prior supergames, and it is
not clear how strategies would be updated in their model when players see the current opponent’s history
of play against others. In contrast to Selten and Stoecker, we model players as Bayesian optimizers in a
framework that is general enough to accommodate the informational environment of our experiment as well
as most other FRPD experiments.
32 Evidence of non-equilibrium behavior like this is abundant in the experimental literature on strategic
sophistication. See Crawford et al. (2013) for a recent survey.
33 This observation implies that cooperation would be sustained at least as long for more optimistic beliefs.
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(2014) find that subjects learn with experience to play exactly these strategies, so we
believe that restricting the strategy space in this way has empirical foundations.

Players have prior beliefs μ over their opponent’s strategies in S. Thus, μ(sk)

is the probability of playing against an opponent using strategy sk . Though s1 is
dominated for a payoff-maximizing agent, we find a non-negligible amount of last-
round cooperation in our data. Thus, we assume beliefs μ are such that μ(sk) ∈ (0, 1)

for all k, including k = 1.34

Players’ beliefs are updated within each supergame round by round according
to Bayes’ rule based on the prior μ and the opponents’ history of actions in that
supergame. If her opponent has cooperated up to and including round t + 1, a player
believes that her opponent will continue playing tit for tat for at least one more round
with probability pt = ∑t

i=1 μ(si )
/∑t+1

i=1 μ(si ). In Proposition 1, we characterize
the beliefs for which a naïve player chooses strategy sk in terms of the conditional
probability pt that the opponent will continue to play tit for tat in round t , given that
he has played tit for tat for all previous rounds, for all t up to round k.

Proposition 1 (a) The first-mover plays sk if and only if

pl ≥ 4

∑l
i=k+1

(
3

l−1∏
j=i

p j
)+ 7

l−1∏
i=k

pi

for every l ∈ {k, . . . , 10}.
(b) The second-mover plays sk+1 if and only if

pl ≥ max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3
,

5

∑l
i=k+1

(
3

l−1∏
j=i

p j

)
+ 8

l−1∏
i=k

pi

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for all l ∈ {k, . . . , 10}.
Proposition 1 provides lower bounds on the beliefs needed to sustain a particular

strategy, sk . For each round l ≥ k, the subjective probability that the second-mover
will play tit for tat until round l must be high enough that the expected payoff of
cooperating in round l exceeds the payoff that can be obtained by defecting in round
l. To build intuition, consider the condition for round l = k + 1 given strategy sk .
First, notice that the first-mover can always defect in rounds k + 1 and k and obtain
a total payoff of 8 from these two rounds (as a rational second-mover would respond
by defecting, earning each player a payoff of 4 in each round). By playing tit for tat

34 We restrict μ(sk ) ∈ (0, 1) so that Bayes’ rule can always be used. Without changing the results of this
section, we could instead assume players update via Bayes’ rule whenever possible and allow beliefs to be
free when zero-probability events are observed, and an opponent’s history does not eliminate any strategies
and assign a new belief of zero when a particular strategy may be eliminated based on the opponent’s
history.
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through round k instead, the first-mover faces three possible outcomes assuming that
the second-mover has also chosen a strategy in S. She may earn payoffs of 0 in round
k + 1 and 4 in round k (if the second-mover defects in rounds k + 1 and k), payoffs of
7 in round k + 1 and 0 in round k (if the second-mover cooperates in round k + 1 and
defects in round k), or payoffs of 7 in both rounds k + 1 and k (if the second-mover
cooperates in both rounds). Thus, the first-mover is guaranteed a payoff of at least 4
from these two rounds. She can gain an additional 4 with certainty by defecting in
rounds k +1 and k, but expects that she can gain either an additional 3 or 10 with some
probability by playing tit for tat in rounds k + 1 and k. If the subjective probability of
these cooperation payoffs is sufficiently high, then it is rational for the first-mover to
play tit for tat in round k + 1.

The second-mover’s strategy is governed by similar belief conditions to the first-
mover’s. Consider the second-mover’s condition for round l = k + 1 given strategy
sk (assuming that the first-mover cooperates in round k + 1). The second-mover can
always defect in rounds k + 1, k, and k − 1 to obtain a total payoff of 20 from these
three rounds (12 in round k +1 and 4 in each of the following two rounds). By playing
tit for tat through round k instead, the second-mover faces three possible outcomes
assuming that the first-mover has also chosen a strategy in S. She may earn payoffs
of 7 in round k + 1 and 4 in rounds k and k − 1 (if the first-mover defects in rounds k
and k − 1), payoffs of 7 in rounds k + 1 and k, and 4 in round k − 1 (if the first-mover
cooperates in round k and defects in round k − 1), or payoffs of 7 in rounds k + 1 and
k, and 12 in round k − 1 (if the first-mover cooperates in rounds k and k − 1). Thus,
the second-mover is guaranteed a payoff of at least 15 from these three rounds. She
can gain an additional 5 with certainty by defecting in rounds k + 1, k, and k − 1, but
expects that she can gain either an additional 3 or 11 with some probability by playing
tit for tat in rounds k + 1 and k. If the subjective probability of these cooperation
payoffs is sufficiently high, then it is rational for the second-mover to play tit for tat
in round k + 1. However, if the subjective probability that the first-mover plays tit for
tat in any round is less than 1

3 , it is optimal for the second-mover to defect before that
round due to the incentive to defect before the first-mover (and earn a payoff of 12
instead of 4 for one round).

The conditions in Proposition 1 are permissive enough that cooperation is sustained
into later rounds with a large variety of beliefs. The following examples demonstrate
the range of beliefs that can support late-round cooperation.

Example 1 (Uniform prior) Assume that both players have prior beliefs such that
μ(sk) = 1/11 for all k. Then, by Proposition 1, the first-mover’s optimal Block 1
strategy is s2 and the second-mover’s optimal Block 1 strategy is s3.35 that is, the
first-mover plays tit for tat until the last round, in which she always defects, while the

35 Calculation of the conditional probabilities pt and the conditions in Proposition 1 for a uniform
prior show that this is the case. Take the first-mover for example. Because pt decreases in t for
these beliefs, sk is optimal if and only if pk ≥ 4

/
7 holds because pk ≥ 4

/
7 implies that pl ≥

4
/[∑l

i=k+1
(
3
∏l−1

j=i p j
)+ 7

∏l−1
i=k pi

]
holds for all l ≥ k. s2 is optimal because pk ≥ 4

/
7 holds

for all k ≥ 2 and p1 < 4
/

7 . The calculation is similar for the second-mover.
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second-mover plays tit for tat up to the next-to-last round and always defects in the
last two rounds. Hence, cooperation until the penultimate round is observed.

Example 2 (Pessimistic triangular prior) Assume that both players have prior beliefs
μ(sk) = k

/
66 for all k. Then, by Proposition 1, the first-mover’s optimal Block 1

strategy is s3 and the second-mover’s optimal Block 1 strategy is s5, that is, the first-
mover plays tit for tat for eight rounds and then defects, while the second-mover plays
tit for tat for six rounds and then defects thereafter. These relatively pessimistic beliefs
still support cooperation for more than half of the supergame.

Now, consider how players update their beliefs based on revealed Block 1 his-
tories. We assume that players’ own past opponents’ behavior from either Blocks 1
or 2 does not affect beliefs because players know that they will not face previous
opponents again. In Block 2, however, players incorporate their opponents’ histo-
ries into their beliefs when available. Let μ̃ represent the updated beliefs based on
the prior μ and the observed Block 1 history. Because players are assumed to adopt
a pure strategy from S, beliefs are updated such that if a player’s opponent never
defected before her opponent in rounds 10, . . . , n, then

∑11
i=n−1 μ̃(si ) = 0 holds. If

the opponent always defected before her opponent by round m, then
∑m

i=1 μ̃(si ) = 0
holds. If the opponent’s opponent always defected first, then μ̃(si ) = μ(si ) holds for
all i .

If players focus on how long they can expect their opponent to cooperate, then first-
movers could have a fairly optimistic prior (i.e., first-movers may be trusting in Block
1) and then, upon learning that their opponent was a Defector in Block 1, become
more pessimistic and cooperate less in Block 2. This argument is formalized in the
following proposition.

Proposition 2 Suppose that the second-mover always defected before her opponent
by round n of Block 1 supergames. If the naïve first-mover’s prior beliefs satisfy
μ(sk+1) ≤ (3

/
4 )
∑k

i=1 μ(si ) for all k ∈ {m, . . . , 10}, where m ≤ n, then her Block
1 strategy is sm and her Block 2 strategy is sm+t for some t ≥ 1.

Proposition 2 applies to the set of first-mover prior beliefs such that, for a certain
number of rounds beginning with the first, the probability that the second-mover
will begin unconditionally defecting in each of these rounds is not more than three-
fourths the probability that the second-mover will play tit for tat in that round. This
set includes Examples 1 and 2 above and infinitely many others. Given such beliefs, a
first-mover who is classified as Trusting in Block 1, playing strategy si , will respond
to a second-mover’s Defector history (s j , j ≥ i) by choosing a strategy si+t , t ≥ 1 in
Block 2. In other words, if the first-mover had been playing tit for tat up to round i in
Block 1, she will defect at least one round earlier in Block 2 games against a second-
mover whose game history shows that he always defected in round i or earlier in
Block 1. Again, this prediction is consistent with our data, which shows a significant
decrease in cooperation by Trusting first-movers whose opponents are revealed as
Defectors compared to those whose opponents’ types are not revealed. Proposition 2
also predicts earlier defections in a given supergame by Trusting first-movers when
the second-mover is revealed to be a Defector than when no information is revealed,
as observed in the data.
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In contrast, a first-mover may become more optimistic about how long he can
expect to cooperate when his opponent is revealed to be an Imitator through her Block
1 history. In this way, a first-mover will choose to cooperate longer upon seeing that
his opponent was cooperative in Block 1. The following proposition formalizes this
argument.

Proposition 3 Suppose that the second-mover never defected before her opponent in
rounds 10, . . . , m of Block 1 supergames.

(a) If the naïve first-mover’s prior beliefs satisfy μ(sk+1) ≤ (3
/

4 )
∑k

i=1 μ(si ) for
all k ∈ {n, . . . , 10}, where n > m, then her Block 1 strategy is sn and her Block
2 strategy is sn−t for some t ≥ 1.

(b) If the naïve first-mover’s prior beliefs satisfy μ(s11) > 3
/

7 , then her Block 1
strategy is s11 and her Block 2 strategy is s11−t for some t ≥ 1.

Proposition 3 applies to the same set of prior beliefs as Proposition 2 as well as
beliefs under which the first-mover defects in every round of Block 1 supergames.
Given these beliefs, a first-mover plays strategy s11, is classified as Non-Trusting
in Block 1, and responds to a second-mover’s Imitator-type history (si , i ≤ 10) by
choosing a strategy s j , j ≤ 10 in Block 2. The simple intuition for this result is that if
the first-mover had been playing tit for tat up to round i in Block 1, she will continue
to play tit for tat at least one round later in Block 2 games against a second-mover
whose game history shows that he always played tit for tat beyond round i in Block
1. This prediction is consistent with our data, which shows a significant increase in
initial cooperation by Non-Trusting first-movers when their opponents are revealed
as Imitators compared to those whose opponents’ types are not revealed, a finding
that is clearly inconsistent with the predictions of the Kreps et al. (1982) model.
This model may also provide a more plausible explanation than Kreps et al. (1982)
for the finding of Gachter and Thoni (2005)’s public goods experiment, where low
contributors contribute more when grouped with other players revealed to have made
low contributions in the past.

7 Conclusion

We have shown that cooperation in FRPDs occurs when the reputation-building theory
of Kreps et al. (1982) predicts complete unraveling. The results of the experiment indi-
cate that first-movers change their strategy when they observe their opponent’s history
of play by either increasing or decreasing their degree of cooperation based on the
relative cooperativeness of their opponent. First-movers tend to cooperate at least as
often initially and continue cooperating at least as long when second-mover histories
are revealed, except in the case of relatively trusting first-movers meeting relatively
uncooperative second-movers. Second-movers also tend to behave more cooperatively
when their histories are revealed. In particular, we find the surprising result that reveal-
ing histories improve cooperation even in the case of a relatively Non-Trusting first-
mover meeting a relatively uncooperative second-mover. Thus, cooperation persists
and often increases, even when revealed histories are relatively uncooperative. These
results are clearly inconsistent with the reputation-building theory.
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We show that an alternative behavioral model to Kreps et al. (1982) generates
predictions that are consistent with the features of our experimental data. Players
in this model form beliefs over the strategies of their opponents, which may not be
consistent with the opponent’s best response, and then choose the optimal strategy
based on those naïve beliefs. We do not view this as the ultimate model of behavior
in FRPDs, but as a simple and reasonable one which generates predictions that fit the
observed behavior better than prevailing equilibrium models. By using such a simple
model, we avoid ad hoc assumptions about more specific behavioral types which could
possibly fit behavior in this game more precisely. One limitation of this analysis is that
beliefs are a critical part of our behavioral model, but we are able to observe beliefs only
in a very limited way. Because our main hypotheses could be tested without elicited
beliefs, and because eliciting beliefs before or during gameplay is complicated and
may itself alter beliefs and behavior, we opted not to do so. Examining beliefs in more
depth may be an interesting direction for future research.
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Appendix

See Tables 6, 7, 8 and 9.

Table 6 First- and second-movers’ frequency of defecting first

Second-mover 2S 1S

First-mover
(%)

Second-mover
(%)

Neither
(%)

First-mover
(%)

Second-mover
(%)

Neither
(%)

Trusting first-mover

Imitator 68.4 31.6 0.0 42.9 57.1 0.0

Cooperator 43.6 40.4 16.0 53.2 29.9 16.9

Defector 63.0 37.0 0.0 38.5 50.8 10.8

Non-Trusting first-mover

Imitator 81.8 18.2 0.0 84.4 12.5 3.1

Cooperator 62.7 21.6 15.7 77.8 12.7 9.5

Defector 63.2 31.6 5.3 76.7 18.3 5.0
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Table 7 Mean number of round before first defection (conditional defection) for first-movers
(second-movers)

Second-mover 2S 1S

First-mover Second-mover First-mover Second-mover

Trusting first-mover

Imitator 7.6 8.1 8.2 8.3

Cooperator 8.1 8.2 6.6 8.1

Defector 3.2 4.1 6.4 6.3

Non-Trusting first-mover

Imitator 4.0 7.5 2.2 5.0

Cooperator 4.9 7.6 2.9 6.3

Defector 3.5 4.5 1.2 3.4

Table 8 Elicited beliefs

Predicted No. of rounds of cooperation

1S 2S

Respondent is a first-mover

× first-mover avg. rounds coop. in block 1 0.497 −0.011

(<0.001) (0.920)

× second-mover avg. rounds coop. in block 1 0.113

(0.769)

Respondent is a second-mover 0.447 −7.134

(0.665) (0.098)

× first-mover avg. rounds coop. in block 1 0.129 0.092

(0.339) (0.642)

× second-mover avg. rounds coop. in block 1 0.734

(0.051)

Constant 3.201 6.689

(<0.001) (0.042)

Observations 460 200

p values from robust standard errors clustered by individual mover
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Proposition 4 Let p ∈ (0, 1) be the common belief that the other player plays tit for
tat and pt the period t posterior belief. The following is a sequential equilibrium for
a sequential-move FRPD.

(a) The second-mover plays tit for tat in round t with probability

qt (p) = min

{
p

1 − p

1 − p̄t+1

p̄t+1
, 1

}
.

Otherwise, the second-mover defects in round t.
(b) The first-mover cooperates in round t if and only if t ≥ t∗(p) where

t∗ (p) = min {t ∈ N : p ≥ p̄t } and p̄t =
(

4

7

)t

hold for all t.

Otherwise, the first-mover defects in round t.

Proof It is easier notationally to derive the equilibrium by counting backwards with
t = 10 representing the first round of the supreme. In the body of the paper, however,
time is indexed forward with t = 1 representing the first round of the supreme. Now,
in any period t , the first-mover will cooperate if

pt

(
7 + Vt−1

(
pt

pt + (1 − pt ) qt (pt )

))

+(1 − pt )

[
qt (pt )

(
7 + Vt−1

(
pt

pt + (1 − pt ) qt (pt )

))
+ (1 − qt (pt ))Vt−1(0)

]

≥ 4 + Vt−1 (pt ) ,

where Vt−1 (p) is the continuation value of the first-mover entering period t − 1 with
belief p. Let V0 ≡ 0. Let p̄t be the smallest value of pt satisfying this inequality. (We
will show later that the inequality in fact grows in pt .)

The probability a selfish second-mover cooperates is the highest q such that the
first-mover is willing to cooperate in periods t − 1 after observing cooperation in
period t . Thus, if p̄t is the lowest belief at which first-mover will cooperate in period
t , then qt (p) solves

qt (p) = arg max

{
q ∈ [0, 1] : p

p + q (1 − p)
≥ p̄t−1

}
,

and so

qt (p) = min

{
p

1 − p

1 − p̄t−1

p̄t−1
, 1

}
.

For completeness, let qt (1) = 1 for all t and qt ≡ 1 for any t where p̄t−1 = 0. Since
a selfish second-mover never cooperates in the last period, set q1 (p) = 0 for all p.
(This is equivalent to setting p̄0 = 1.)
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Table 9 Effect of player types on first-round cooperation and rounds of cooperation before first defection—
types defined by last block 1 Supergame

1st round cooperation by
first-mover

No. of rounds of cooperation before 1st
defection

(i) (ii) (iii) (iv) (v)

Avg. second-mover Block 1 coop. 0.042

(0.251)

× S2 0.116

(0.013)

Defector 0.648

(0.046)

Imitator 1.388 1.264 2.698 0.996

(0.006) (0.377) (<0.001) (0.588)

Cooperator 1.996 2.278 1.950 2.425

(<0.001) (0.006) (0.038) (0.016)

Trusting

× Defector 0.482 8.374

(0.282) (<0.001)

× Imitator 1.921 9.921

(<0.001) (<0.001)

× Cooperator 0.973 8.144

(0.065) (<0.001)

× Unobserved 1.961

(<0.001)

S2

× Defector 4.701 −4.950 5.729

(<0.001) (<0.001) (<0.001)

× Imitator 4.434 0.040 6.079

(0.061) (0.939) (0.042)

× Cooperator 5.028 0.953 6.521

(0.004) (0.556) (0.004)

2S×Trusting

× Defector −10.205

(<0.001)

× Imitator −4.520

(0.039)

× Cooperator −4.042

(0.003)

Supergame# 0.385 0.503 0.839 −0.402 4.517

(0.035) (0.047) (0.143) (0.466) (0.019)

(Supergame#)2 −0.047 −0.062 −0.099 0.066 −0.596

(0.121) (0.138) (0.262) (0.469) (0.049)

Constant −0.307 −1.617 −4.219 5.983 −11.873

(0.226) (<0.001) (<0.001) (<0.001) (< 0.001)

Observations 660 660 660 405 255

Avg. second-mover Block 1 coop. represents the average number of rounds of cooperation in all of the
Block 1 supergames for the second-mover. Column (iv) includes observations with Trusting first-mover
and column (v) includes observations with Non-Trusting first-mover only. p values from robust standard
errors clustered by individual first-mover
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For any t > 1, consider the case where pt ≥ p̄t−1. Here, qt (pt ) = 1 (the second-
mover cooperates with certainty) and

pt

pt + (1 − pt ) qt (pt )
= pt ,

so the above inequality becomes

pt (7 + Vt−1 (pt )) + (1 − pt )
[
(7 + Vt−1 (pt ))

] ≥ 4 + Vt−1 (pt ) ,

or
7 ≥ 4.

In other words, the first-mover always cooperates if pt ≥ p̄t−1 . This proves that
p̄t ≤ p̄t−1.

Now, suppose pt < p̄t−1. Here,

qt (pt ) = pt

1 − pt

1 − p̄t−1

p̄t−1

and so pt

pt + (1 − pt ) qt (pt )
= p̄t−1.

The above inequality becomes

pt (7 + Vt−1 ( p̄t−1))

+(1 − pt )

[
pt

1 − pt

1 − p̄t−1

p̄t−1
(7 + Vt−1( p̄t−1)) +

(
1 − pt

1 − pt

1 − p̄t−1

p̄t−1

)
Vt−1(0)

]

≥ 4 + Vt−1 (pt ) .

After several steps of algebra, this reduces to

pt ≥ p̄t−1
4 + Vt−1 (pt ) − Vt−1 (0)

7 + Vt−1 ( p̄t−1) − Vt−1 (0)
.

Since p̄t solves this inequality exactly, it has the property that

p̄t = p̄t−1
4 + Vt−1 ( p̄t ) − Vt−1 (0)

7 + Vt−1 ( p̄t−1) − Vt−1 (0)
.

In t = 1, the first-mover cooperates if

p1 (7) + (1 − p1) [0] ≥ 4,

and so
p̄1 = 4/7.
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Thus,

V1 (p) =
{

7p if p ≥ p̄1
4 otherwise

,

or
V1 (p) = max {7p, 4} .

Note that V1 (p1) = 4 = V1 (0) for any p1 ≤ p̄1.
In t = 2, we know that if p2 ≥ p̄1 = 4/7, then the first-mover cooperates with

certainty.
If p2 < p̄1, then he will cooperate only if p2 ≥ p̄2 , where p̄2 solves

p̄2 = p̄1
4 + V1 ( p̄2) − V1 (0)

7 + V1 ( p̄1) − V1 (0)

=
(

4

7

)2

.

The expression for V2 (p) is given by

V2 (p)

=

⎧⎪⎨
⎪⎩

p (7 + V1 (p)) + (1 − p) (7 + V1 (p)) if p ≥ p̄1

p (7 + V1 ( p̄1)) + (1 − p)
(

p
1−p

1− p̄1
p̄1

(7 + V1 ( p̄1)) +
(

1 − p
1−p

1− p̄1
p̄1

)
(V1 (0))

)
if p ∈ [ p̄2, p̄1)

4 + V1 (p) otherwise

,

which is equal to

V2 (p) =
⎧⎨
⎩

7 + 7p if p ≥ p̄1
7 p

p̄1
+ 4 if p ∈ [ p̄2, p̄1)

4 + 4 otherwise
.

Note that V2 (p2) = 8 = V2 (0) for any p2 ≤ p̄2.
In t = 3, we know that if p3 ≥ p̄2, then the first-mover cooperates with certainty.
If p3 < p̄2, then he will cooperate only if p3 ≥ p̄3, where p̄3 solves

p̄3 = p̄2
4 + V2 ( p̄3) − V2 (0)

7 + V2 ( p̄2) − V2 (0)

=
(

4

7

)3

.

The expression for V3 (p) is given by

V3 (p)

=

⎧⎪⎨
⎪⎩

p (7 + V2 (p)) + (1 − p) (7 + V2 (p)) if p ≥ p̄2

p (7 + V2 ( p̄2)) + (1 − p)
(

p
1−p

1− p̄2
p̄2

(7 + V2 ( p̄2)) +
(

1 − p
1−p

1− p̄2
p̄2

)
(V2 (0))

)
if p ∈ [ p̄3, p̄2)

4 + V2 (p) otherwise

,
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which is equal to

V3 (p) =

⎧⎪⎪⎨
⎪⎪⎩

7 + 7 + 7p if p ≥ p̄1
7 + 7 p

p̄1
+ 4 if p ∈ [ p̄2, p̄1)

7 p
p̄2

+ 4 + 4 if p ∈ [ p̄3, p̄2)

4 + 4 + 4 otherwise

.

In general, we will have

p̄t =
(

4

7

)t

and

qt (p) = min

{
p

1 − p

1 − p̄t−1

p̄t−1
, 1

}
.

Let
t∗ (p) = min {t ∈ N : p ≥ p̄t } .

First-movers will cooperate in period T if p∗
T ≥ p̄T . Thereafter, they will cooperate

as long as they have never seen a defection and will never cooperate after seeing a
defection. In that case, beliefs will evolve according to the formula

p∗
t =

{
p∗

t+1 if t ≥ t∗
(

p∗
T

)
p̄t otherwise

.

Beliefs change to p∗
t = 0 if a defection is observed in any previous period. If p∗

T <

p̄T , then both players always defect and p∗
t = p∗

T for every period t . The on-path
continuation value of the first-mover will equal

Vt (p) =
{

7 (t − t∗ (p)) + 7 p
p̄t∗(p)−1

+ 4 (t∗ (p) − 1) if t∗ (p) ≤ t

4t if t∗ (p) > t
,

where we set p̄0 = 1.

Proof of Proposition 1 (a) Let the first-mover’s expected payoff in round s from the
remaining rounds 1, . . . , s given beliefs p1, . . . , ps be denoted by Vs(p1, . . . , ps).
The expected payoff for cooperating in round t is pt (7 + Vt−1(p1, . . . , pt−1)) +
(1 − pt )Vt−1(0, . . . , 0). The expected payoff for defecting in round t , given that
the second-mover will respond by defecting for at least one round, is at most 4 +
Vt−1(p1, . . . , pt pt−1). Therefore, the first-mover plays tit for tat in period t if and
only if the following inequality holds

pt (7+Vt−1(p1, . . . , pt−1))+(1 − pt )Vt−1(0, . . . , 0)≥4+Vt−1(p1, . . . , pt pt−1).

We need to show that

Vt (p1, p2, . . . , pt ) = 4(t − 1) +
t∑

i=k+1

⎛
⎝3

t∏
j=i

p j

⎞
⎠+ 7

t∏
i=k

pi
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if

pl ≥ 4∑l
i=k+1

(
3
∏l−1

j=i p j

)
+ 7

∏l−1
i=k pi

∀t ≥ l ≥ k

and

Vt (p1, p2, . . . , pt ) = 4t

otherwise.
The proof is by induction. First, we know that the first-mover cooperates in round

1 if and only if p17 + (1 − p1)0 ≥ 4 holds. Therefore, if p1 ≥ 4
7 holds, then we have

V1(p1) = 7p1, and if p1 < 4
7 holds, then we have V1(p1) = 4, and the formula is

true for t = 1.
Now, assume that the formula holds for all rounds up to t −1 and show that it holds

for round t . Assume that the following holds

Vt−1(p1, p2, . . . , pt−1) = 4(t − 2) +
t−1∑

i=k+1

⎛
⎝3

t−1∏
j=i

p j

⎞
⎠+ 7

t−1∏
i=k

pi

if

pl ≥ 4∑l
i=k+1

(
3
∏l−1

j=i p j

)
+ 7

∏l−1
i=k pi

∀t − 1 ≥ l ≥ k

and

Vt−1(p1, p2, . . . , pt−1) = 4(t − 1)

otherwise.
The first-mover cooperates in round t if and only if

pt (7+Vt−1(p1, . . . , pt−1))+(1 − pt )Vt−1(0, . . . , 0)≥4+Vt−1(p1, . . . , pt pt−1).

We have assumed that pl ≥ 4∑l
i=k+1(3

∏l−1
j=i p j )+7

∏l−1
i=k pi

holds for all l such that

t − 1 ≥ l ≥ k. First, suppose also that pt pt−1 ≥ 4∑t−1
i=k+1(3

∏t−2
j=i p j )+7

∏t−2
i=k pi

holds.

Then, the first-mover cooperates in round t if and only if

pt (7 + 4(t − 2) +
t−1∑

i=k+1

⎛
⎝3

t−1∏
j=i

p j

⎞
⎠+ 7

t−1∏
i=k

pi ) + (1 − pt )4(t − 1) ≥ 4 + 4(t − 2)

+
t−1∑

i=k+1

⎛
⎝3

t∏
j=i

p j

⎞
⎠+ 7

t∏
i=k

pi
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⇔ 7pt + 4(t − 2)pt +
t−1∑

i=k+1

⎛
⎝3

t∏
j=i

p j

⎞
⎠+ 7

t∏
i=k

pi + 4(t − 1) − 4(t − 1)pt ≥ 4(t − 1)

+
t−1∑

i=k+1

⎛
⎝3

t∏
j=i

p j

⎞
⎠+ 7

t∏
i=k

pi

⇔ (7 − 4)pt ≥ 0 ⇔ pt ≥ 0.

Now, suppose that pt pt−1 < 4∑t−1
i=k+1(3

∏t−2
j=i p j )+7

∏t−2
i=k pi

holds. Then, the first-

mover cooperates in round t if and only if

pt

⎛
⎝7 + 4(t − 2) +

t−1∑
i=k+1

⎛
⎝3

t−1∏
j=i

p j

⎞
⎠+ 7

t−1∏
i=k

pi

⎞
⎠+ (1 − pt )4(t − 1) ≥ 4t

⇔ pt

⎛
⎝3 +

t−1∑
i=k+1

⎛
⎝3

t−1∏
j=i

p j

⎞
⎠+ 7

t−1∏
i=k

pi

⎞
⎠ ≥ 4

⇔ pt ≥ 4∑t
i=k+1

(
3
∏t−1

j=i p j

)
+ 7

∏t−1
i=k pi

.

Hence, the first-mover cooperates in round t and Vt (p1, p2, . . . , pt ) = 4(t − 1) +∑t
i=k+1(3

∏t
j=i p j )+ 7

∏t
i=k pi if and only if pl ≥ 4∑l

i=k+1(3
∏l−1

j=i p j )+7
∏l−1

i=k pi
holds

for all l such that t ≥ l ≥ k. Otherwise, the first-mover defects in round t and
Vt (p1, p2, . . . , pt ) = 4t .

(b) Let the second-mover’s expected payoff in round s from the remaining rounds
1, . . . , s−1 given beliefs p1, . . . , ps−1 be denoted by Vs(p1, . . . , ps−1). The expected
payoff for cooperating in round t is 7 + pt (7 + Vt (p1, . . . , pt−1)) + (1 − pt )(4 +
Vt (0, . . . , 0)). The expected payoff for defecting in round t , given that the first-mover
will respond by defecting for at least one round, is at most 12 + Vt (p1, . . . , pt pt−1).
Therefore, the second-mover plays tit for tat in period t +1 if and only if the following
inequality holds

7 + pt (7 + Vt (p1, . . . , pt−1)) + (1 − pt )(4 + Vt (0, . . . , 0))

≥ 12 + Vt (p1, . . . , pt pt−1).

We need to show that

Vt+1(p1, p2, . . . , pt ) = 4(t − 1) +
t∑

i=k+1

⎛
⎝3

t∏
j=i

p j

⎞
⎠+ 8

t∏
i=k

pi
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if

pl ≥ max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3
,

5

∑l
i=k+1

(
3

l−1∏
j=i

p j

)
+ 8

l−1∏
i=k

pi

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∀t ≥ l ≥ k

and

Vt+1(p1, p2, . . . , pt ) = 4(t − 1)

otherwise.
The proof is by induction. First, we know that defection is the dominant action for

the second-mover in round 1. The second-mover cooperates in round 2 if and only if
7 + p112 + (1 − p1)4 ≥ 12 + 4 holds. Therefore, if p1 ≥ 5

8 holds, then we have
V2(p1) = 4 + 8p1, and if p1 < 5

8 holds, then we have V2(p1) = 4, and the formula
is true for t = 1.

Now, we assume that the formula holds for all rounds up to t − 1 and show that it
holds for round t . Assume that the following holds

Vt (p1, p2, . . . , pt−1) = 4(t − 2) +
t−1∑

i=k+1

⎛
⎝3

t−1∏
j=i

p j

⎞
⎠+ 8

t−1∏
i=k

pi

if

pl ≥ 5

∑l
i=k+1

(
3

l−1∏
j=i

p j

)
+ 8

l−1∏
i=k

pi

∀t − 1 ≥ l ≥ k

and

Vt (p1, p2, . . . , pt−1) = 4(t − 2)

otherwise.
The second-mover cooperates in round t + 1 if and only if

7 + pt (7 + Vt (p1, . . . , pt−1)) + (1 − pt )(4 + Vt (0, . . . , 0))

≥ 12 + Vt (p1, . . . , pt pt−1).

We have assumed that pl ≥ 5∑l
i=k+1(3

∏l−1
j=i p j )+8

∏l−1
i=k pi

holds for all l such that

t − 1 ≥ l ≥ k. First, suppose that pt pt−1 ≥ 5∑t−1
i=k+1(3

∏t−2
j=i p j )+8

∏t−2
i=k pi

holds. Then,

the second-mover cooperates in round t + 1 if and only if
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7 + pt

⎛
⎝7 + 4(t − 2) +

t−1∑
i=k+1

⎛
⎝3

t−1∏
j=i

p j

⎞
⎠+ 8

t−1∏
i=k

pi

⎞
⎠

+(1 − pt )4(t − 1) ≥ 12 + 4(t − 2)

+
t−1∑

i=k+1

⎛
⎝3

t∏
j=i

p j

⎞
⎠+ 8

t∏
i=k

pi

⇔ 11 + 4(t − 2) + 3pt +
t−1∑

i=k+1

⎛
⎝3

t∏
j=i

p j

⎞
⎠+ 8

t∏
i=k

pi ≥ 12 + 4(t − 2)

+
t−1∑

i=k+1

⎛
⎝3

t∏
j=i

p j

⎞
⎠+ 8

t∏
i=k

pi

⇔ pt ≥ 1

3
.

Now, suppose that pt pt−1 < 5∑t−1
i=k+1(3

∏t−2
j=i p j )+8

∏t−2
i=k pi

holds. Then, the second-

mover cooperates in round t + 1 if and only if

7 + pt

⎛
⎝7 + 4(t − 2) +

t−1∑
i=k+1

⎛
⎝3

t−1∏
j=i

p j

⎞
⎠+ 8

t−1∏
i=k

pi

⎞
⎠

+(1 − pt )4(t − 1) ≥ 12 + 4(t − 1)

⇔ pt

⎛
⎝3 +

t−1∑
i=k+1

⎛
⎝3

t−1∏
j=i

p j

⎞
⎠+ 8

t−1∏
i=k

pi

⎞
⎠ ≥ 5

⇔ pt ≥ 5∑t
i=k+1

(
3
∏t−1

j=i p j

)
+ 8

∏t−1
i=k pi

.

Hence, the second-mover cooperates in round t + 1 and Vt+1(p1, p2, . . . , pt ) =
4(t−1)+∑t

i=k+1(3
∏t

j=i p j )+8
∏t

i=k pi if pl ≥ max{ 1
3 , 5∑l

i=k+1(3
∏l−1

j=i p j )}+8
∏l−1

i=k pi

holds for all l such that t ≥ l ≥ k. Otherwise, the second-mover defects in round t +1
and Vt+1(p1, p2, . . . , pt ) = 4t .

Proof of Proposition 2 By Proposition 1, the first-mover’s Block 1 strategy is sm if and
only if μ is such that pk ≥ 4∑k

i=m+1(3
∏k−1

j=i p j )+7
∏k−1

i=m pi
holds for all k ∈ {m, . . . , 10}.

This condition can be rewritten in terms of the prior beliefs μ as

∑k
i=1 μ(si )∑k+1
i=1 μ(si )

≥ 4∑k
i=m+1

(
3
∏k−1

j=i

(∑ j
l=1 μ(sl )

/∑ j+1
l=1 μ(sl )

))
+ 7

∏k−1
i=m

(∑i
l=1 μ(sl )

/∑i+1
l=1 μ(sl )

)
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for all k ∈ {m, . . . , 10}. After several steps of algebra, the denominator of the right-
hand side of the above inequality simplifies to 1∑k

i=1 μ(si )
((7+3(k−n))(

∑m
i=1 μ(si ))+

3
∑k

i=m+1((k + 1 − i)μ(si ))), and the condition can be simplified to

μ(sk+1) ≤ 3

4
(k + 1 − m)

m∑
i=1

μ(si ) + 1

4

k∑
i=m+1

((3(k − i) − 1)μ(si ))

for all k ∈ {m, . . . , 10}.
Now, suppose that the first-mover’s prior beliefs satisfy μ(sk+1) ≤ (3

/
4 )
∑k

i=1
μ(si ) for all k ∈ {m, . . . , 10}. For k = m, the above condition is satisfied trivially. We
now show that the above condition is satisfied for k = m + r for any r ≥ 1. For any
r ≥ 1, the inequality μ(sm+r+1) ≤ (3

/
4 )
∑m+r

i=1 μ(si ) can be rewritten as

μ(sm+r+1) ≤ 3

4

m∑
i=1

μ(si ) + 3

4

m+r∑
i=m+1

μ(si ) + 3

4
r

m∑
i=1

−3

4
r

m∑
i=1

+1

4

m+r∑
i=m+1

(3(m+r − i) − 1)μ(si )− 1

4

m+r∑
i=m+1

(3(m+r − i) − 1)μ(si )

= 3

4
(r + 1)

m∑
i=1

μ(si ) + 1

4

m+r∑
i=m+1

(3(m + r − i) − 1)μ(si )

−3

4
r

m∑
i=1

μ(si ) + 1

4

m+r∑
i=m+1

(3(1 − m − r + i) + 1)μ(si )

= 3

4
(r + 1)

m∑
i=1

μ(si ) + 1

4

m+r∑
i=m+1

(3(m + r − i) − 1)μ(si ) + δ

where δ = 1
4

∑m+r
i=m+1(3(1 − m − r + i) + 1)μ(si ) − 3

4r
∑m

i=1 μ(si ). If r = 1, then
δ = μ(sm+1) − 3

4

∑m
i=1 μ(si ) ≤ 0 holds and the condition for the first-mover to play

strategy sm in Block 1 is satisfied. Now, suppose that r ≥ 2. We can rewrite δ as
follows:

δ = 1

4

m+r∑
i=m+1

(3(1 − m − r + i) + 1)μ(si ) − 3

4
r

m∑
i=1

μ(si )

= μ(sm+r )+ 1

4
μ(sm+r−1)+ 1

4

m+r−2∑
i=m+1

(3(1 − m − r + i)+1)μ(si ) − 3

4
r

m∑
i=1

μ(si )

= μ(sm+r ) + 1

4
μ(sm+r−1) + γ − 3

4
r

m∑
i=1

μ(si ),
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where γ = 1
4

∑m+r−2
i=m+1 (3(1 − m − r + i) + 1)μ(si ). Note that if r ≥ 2, then γ < 0.

Therefore, we have the following

δ < μ(sm+r ) + 1

4
μ(sm+r−1) − 3

4
r

m∑
i=1

μ(si )

≤
((

3

4

)r

+ 1

4

(
3

4

)r−1

− 3

4
r

)
m∑

i=1

μ(si )

= 3

4

((
3

4

)r−2

− r

)
m∑

i=1

μ(si ).

r ≥ 2 implies that ( 3
4 )r−2 −r < 0, so δ < 0 holds and the condition for the first-mover

to play strategy sm in Block 1 is satisfied.
Given that the second-mover always defected before her opponent by round n of

Block 1 supergames, where m < n, we have μ̃(sk) = 0 for all k ≤ m. Therefore,
p̃l = 0 holds for all l ≤ m. By Proposition 1, it follows that the first-mover’s Block 2
strategy is sm+t for some t ≥ 1.

Proof of Proposition 3 (a) By Proposition 1, the first-mover’s Block 1 strategy is sn if
and only ifμ is such that pk ≥ 4∑k

i=n+1(3
∏k−1

j=i p j )+7
∏k−1

i=n pi
holds for all k ∈ {n, . . . , 10}.

By similar logic to the proof of Proposition 2, if the first-mover’s prior beliefs satisfy
μ(sk+1) ≤ (3

/
4 )
∑k

i=1 μ(si ) for all k ∈ {n, . . . , 10}, then the condition for the first-
mover to play strategy sn in Block 1 is satisfied. Given that the second-mover never
defected before her opponent in rounds 10, . . . , m of Block 1 supergames, where
m < n, we have μ̃(sk) = 0 for all k > m. Therefore, p̃l = 1 holds for all l ≥ m. By
Proposition 1, it follows that the first-mover’s Block 2 strategy is sn−t for some t ≥ 1.

(b) μ(s11) > 3
/

7 implies that μ(s11) > (3
/

4 )
∑10

i=1 μ(si ) holds, so the condition
for the first-mover to play strategy s11 in Block 1 is satisfied. Given that the second-
mover never defected before her opponent in rounds 10, . . . , m of Block 1 supergames,
where m ≤ 10, we have μ̃(sk) = 0 for all k > m. Therefore, p̃l = 1 holds for all
l ≥ m. By Proposition 1, it follows that the first-mover’s Block 2 strategy is s11−t for
some t ≥ 1.
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